
Strict Linear Lookup Argument

Xiang Fu0000−0002−6608−1654

Xiang.Fu@hofstra.edu, Hofstra University

June 12, 2023

Keywords: Lookup Argument, Quasi-Adaptive NIZK

Abstract

Given a table t ∈ FN , and a commitment to a polynomial f(X) ∈
F<n[X] over a multiplicative subgroup H ⊂ F. The lookup argument as-
serts that f |H ⊂ t. We present a new lookup argument protocol that
achieves strict linear prover complexity, after a pre-processing step of
O(N log(N)).

1 Introduction

A lookup argument [GW20] proves that each element of a committed smaller
table of size n belongs to a bigger table of size N . The past year has wit-
nessed a rapid improvement of prover complexity from O(n2+nlog(N)) in Caulk
[ZBK+22], to O(n2) in Caulk+ [PK22], to O(nlog2(n)) in Baloo and Flookup
[ZGK+22, GK22], and to O(nlog(n)) in cq [EFG22]. In this work, we further
improve the state of the art to its theoretical optimal: O(n) prover cost, O(1)
proof size and O(1) verifier cost. CORRECTION: we are not able to achieve
O(1) proof size/verifier cost at the same time. Will submit another draft.

Our technique builds upon cq [EFG22], which is based on the following
observation made in [Hab22]. Let f(X) =

∑n
i=1 fiτi(X) where τi(X) are the

Lagrange bases for H. f |H ⊂ t if and only if there exists m ∈ FN such that∑N
i=1

mi

X+ti
=
∑n
i=1

1
X+fi

. cq uses a Σ-protocol to reason about both sides of

the equation and the O(nlog(n)) complexity arises in the processing of RHS.
Our protocol retains the first half of cq and improves the prover complexity of
RHS to O(n).

2 Preliminaries

2.1 Notations

Let G be a generator of bilinear groups, i.e., (p,g1,g2, G1,G2,GT , e) ← G(1λ).
Here G1, G2, and GT all have prime order p, with g1 (g2) as the generator

1

of G1 (G2). e : G1 × G2 → GT is the bilinear map s.t. for any a, b ∈ Zp:
e(g1

a,g2
b) = e(g1,g2)ab and e(g1,g2) is the generator of GT . Following the

notations in Groth16 [Gro16], we write G1 and G2 as additive groups. That is:
given a ∈ Zp, we denote g1

a as [a]1, and similarly are group elements in G2 and
GT denoted. For instance, g1

ag1
b is written as [a]1 + [b]1 or [a+ b]1, (g2

a)b as
[ab]2, and e(g1

a,g2
b) is denoted as [a]1 · [b]2 or [ab]T .

2.2 Summary of cq [EFG22]

We recall the idea of cq. Let n and N be both power of two where n << N . Let

V =
{
ωi
}N
i=1

where ωN = 1. V, as a multiplicative subgroup of F, needs to have
Fast Fourier Transform (FFT) applicable. For instance, BLS12-381 supports
N up to 232. Similarly, define H = {νi}ni=1 ⊂ F as a multiplicative subgroup

of size n. Define vanishing polynomial ZV(X) =
∏N
i=1(X − ωi), and ZH(X) =∏n

i=1(X − νi). Let {Li(X)}Ni=1 be the Lagrange bases of V s.t. Li(ωi) = 1 and
Li(ωj) = 0 for j 6= i. Similarly define Lagrange bases {τi(X)}ni=1 for H. Assume
that a trusted set-up provides KZG commitment [KZG10] keys in the form of
{[xi]}Ni=0 where x is the trapdoor of the setup. A commitment to a polynomial
p(X) is [p(x)]1. Lookup Argument: Given a table t ∈ FN and Cf = [f(x)]1
to a polynomial f(X) ∈ F<n[X], the goal is to prove that f |H ⊂ t.

The key to achieving prover complexity independent of table size N is that
Lagrange bases and quotient polynomials can be pre-computed. First, t can
be characterized by a polynomial T (X) =

∑N
i=1 tiLi(X) s.t. for each i ∈ [1, N]

T (ωi) = ti. If {[Li(x)]1}Ni=1 can be pre-computed, then [T (x)]1 can be computed
in O(N) time. Similarly, [f(x)]1 can be computed in O(n) time. Define quotient

polynomial Qi(X) = T (X)−ti
Z′

V(ω
i)(X−ωi) . It is shown in [EFG22] that {[Qi(x)]}Ni=1 can

be computed in O(N log(N)) time.
cq is based on the following observation made in [Hab22]. f |H ⊂ t if and

only if there exists m ∈ FN such that
∑N
i=1

mi

X+ti
=
∑n
i=1

1
X+fi

. Intuitively, let
the elements in t be distinct. For each element ti, the value of mi is the number
of times that ti appears in table f . Apparently, there are up to n non-zero mi

entries. Let β ∈ F is a random challenge supplied by the verifier, the equation
in [Hab22] can be checked by:

N∑
i=1

mi

β + ti
=

n∑
i=1

1

β + fi
(1)

Let Ai = mi

β+ti
and A(X) =

∑N
i=1AiLi(X). Similarly define M(X) =∑N

i=1miLi(X). Note that the prover does not have to compute them, but
can compute their commitment: [A(x)]1 and [M(x)]1 in O(n) time, because
up to n entries of mi are non-zero. The prover sends these commitments to
verifier, and proves that they are well-formed by establishing that there exists
a polynomial Q(X) s.t.

A(X)(T (X) + β)−M(X) = Q(X)ZV(X) (2)

2

Equation 2 can be verified by a pairing check and the key is to provide
[Q(x)]1, which can be computed in O(n) from the pre-processed information:
{[Qi(x)]1}Ni=1.

Recall that we still need to argue for the LHS = RHS for Equation 1. Its LHS
is
∑N
i=1Ai. Based on the result of Aurora [BSCR+19],

∑N
i=1A(ωi) = N ·A(0).

Thus, the prover just needs to compute A(0) and provide its KZG evaluation

proof
[
A(x)−A(0)

x

]
1
, which can be computed in O(n) from the pre-processed

information.
For the RHS of Equation 1, a similar polynomial B(X) can be defined such

that:
B(X)(f(X) + β)− 1 = QB(X)ZH(X) (3)

Note that, however, it is different from Equation 2 in that the T (X) in
Equation 2 is replaced by f(x). There is no pre-processed information for com-
puting quotient polynomials for f(x), as it is the secret witness of the prover.
Then, the prover would have to compute B(X) for the rest of the proof (round
3 in cq [EFG22]), and this incurs O(nlog(n)) field operations due to polynomial
interpolation via FFT.

Our scheme differs from cq in the way how RHS is proved. We rely on the
linear subspace argument [KW15] and its improved version in [CFQ19]. By
applying a random combination scheme, we are able to prove the value of RHS
with linear cost.

2.3 QA-NIZK for Linear Subspace

We recall the QA-NIZK presented in LegoSnark [CFQ19, Appendix D] which is
adapted from [KW15] by removing its restriction on matrix dimension.

Given [M]1 ∈ Gl×t1 , and w ∈ Ztq, and [x]1 ∈ Gl1, the Linear Subspace QA-
NIZK proves the following statement: 1

[x]1 = [M]1 · w

The QA-NIZK consists of the following operations:

1. σls ← SetupLS([M]1) generates a prover/verifier key of size O(l + t). 2

Intuitively, σls encodes the public matrix [M]1.

2. ([x]1, πls) ← ProveLS(σls, w) computes the the [x]1 and generates the
proof for knowledge of w. The prover spends one multi-exponentiation of
O(t), and the proof size is O(1).

3. and 0/1← VerifyLS(σls, π, [x]1) verifies the claim that the prover knows
a secret witness w s.t. [x]1 = [M]1 · w. It costs O(l) pairings.

1To verifier, [x]1 and [M]1 are public and w is the secret witness of the prover.
2For convenience, we do not distinguish prover and verifier keys but verifier key is shorter.

3

1 Trusted Set-up: σ ← Setup(1λ, t, N, n)

(S1-1) Compute (p,G1,G2,GT ,g1,g2, e)← G(1λ).

(S1-2) Sample x from Z∗p, and compute
{

[xi]1
}N
i=1

, and
{

[xi]2
}N
i=1

.

(S1-3) Compute [ZV(x)]2, [T (x)]2, {Li(x)}Ni=1,
{
Li(x)−Li(0)

x

}N
i=1

,

{[Qi(x)]1}Ni=1 using the algorithm in [EFG22].
(S2-1) Sample u ∈ Znp and α ∈ Zp, compute C~1,α =

∑n
i=1[u2iα

i−1]1.

(S2-2) Compute {[τi(x)]j}ni=1 for j ∈ {1, 2}.

(S2-3) Define M1 ∈ F2×n as M1 =

[
[[u1]1, ..., [un]1],
[[α0]1, ..., [α

n−1]1]

]
. Define

M2 ∈ F2×n as M2 =

[
[[u1]1, ..., [un]1],
[[1]1, ..., [1]1]

]
. Define M3 ∈ F2×n as

M3 =

[
[[u1]1, ..., [un]1],
[[τ1(x)]1, ..., [τn(x)]1]

]
. Compute σMi

← SetupLS(Mi) for

i ∈ {1, 2, 3}.
(S2-4) Return

σ =

{

[xi]1
}N
i=1

,
{

[xi]2
}N
i=1

, [T (x)]2, {Li(0)}Ni=1 , [1/x]1,

{[Li(x)]1}Ni=1 ,
{

[Li(x)−Li(0)
x]1

}N
i=1

, {[Qi(x)]1}Ni=1 , [ZV(x)]2,

{τi(x)}ni=1 , {[τi(x)]j}ni=1 for j ∈ {1, 2},
{[ui]1}ni=1 , {[ui]2}

n
i=1 , σM1

, σM2
, σM3

,C~1,α,
∑n
i=1[u2i]1

.

Figure 1: Set-Up

3 Linear Lookup Argument Protocol

3.1 Insights

Recall that our goal is to prove RHS of Equation 1 with linear cost. We rely on
the QA-NIZK for linear subspace. One can use it to prove the equivalence of
two commitments and the sum of secrets behind a commitment. We elaborate
the details below.

Let {[gi]1}ni=1 be a Pedersen Vector Commitment key where the prover has
no knowledge of gi and any linear relation of the key. let {[αi−1]1}ni=1 be a KZG
commitment key. Define Cf =

∑n
i=1 fi[gi]1 and Cf,α =

∑n
i=1 fi[α

i−1]1. Let
[x]1 = [Cf ,Cf,α], and w = {fi}ni=1 for the QA-NIZK for Linear Subspace. One
can prove the equivalence of the two commitments (encoding the same vector
f), using the following matrix:

M1 =

[
[g1]1 [g2]1 . . . [gn]1
[α0] [α1]1 . . . [αn−1]1

]
(4)

Clearly the prover cost is O(n) and verifier cost is O(1), because M has 2 rows.

4

Using the following M , one can prove the sum of a Pedersen vector commit-
ment, i.e., the [x]1 in the QA-NIZK relation is: [Cf , [

∑n
i=1 fi]1], and the witness

is vector f .

M2 =

[
[g1]1 [g2]1 . . . [gn]1
[1]1 [1]1 . . . [1]1

]
(5)

We use the above gadgets to prove the correctness of polynomials for the
RHS of Equation 2 and the value of RHS. We present the entire protocol in
Figure 2.

3.2 Trusted Set Up

We show the set-up in Figure 1. It has two parts: (1) steps labeled with S1

are for round-1 of cq [EFG22], and (2) steps S2 for the new RHS proof.3 The
complexity is O(N log(N)). We provide the detailed analysis in Appendix A.1.
For convenience of presentation we do not distinguish prover and verifier key.

3.3 LHS: cq Round-1

We now present the complete protocol in Figure 2. We apply Fiat-Shamir so
that the protocol is converted to non-interactive. It provides the Prove() and
Verify() operations. The Prove() takes t, f as input and generates Cf =∑n
i=1 fi[τi(x)]1, and it produces a proof π for f being a sub-table of t.
The first part (labeled P1) in Prove() is essentially the round-1 of cq [EFG22].

Its goal is to prove that the A(X), Q(X), M(X) on the LHS of Equation 2 are
well-formed, and it tries to convince the verifier that the value of LHS is A(0)·N .
This part is verified using two pairing checks in step (V1) of Verify().

The prover cost is O(n) field and group operations. The analysis is presented
in in Appendix A.2.

3.4 RHS

We now show how to achieve O(1) prover cost for RHS, using the linear subspace
QA-NIZK. The prover has a secret table f ∈ Znp . Let s =

∑n
i=1

1
fi+β

. The goal
is to prove that s is indeed the value of RHS.

The prover prepares two arrays: {ai = fi + β}ni=1 and
{
bi = 1

fi+β

}n
i=1

. Ba-

sically, we need a protocol that certifies that (1) for all i: aibi = 1, (2) ai = fi+β,
and (3) s =

∑n
i=1 bi.

Claim (3) is addressed by P2-2 in Figure 2. Claim (2) needs two steps.
First, we present Ca−β =

∑n
i=1(ai − β)[ui]1 as a commitment to fi over bases

{[ui]1}ni=1. We use Step P2-4, to show that it commits to the same vector (i.e.,

3We note that the the process could be actually split into two parts: one trusted set-up
which does not take t, and a pre-processing step prepared by the prover that processes [Qi(x)]1
using the prover key. They are combined in this way for convenience of presentation.

5

1 Prove: (Cf , π)← Prove(σ, t, f)
(P1-1) Retrieve data in prover/verifier key σ as shown in S2-4 in Figure
1. Compute Cf =

∑n
i=1 fi[τi(x)]1.

(P1-2) Compute m ∈ FN s.t.
∑N
i=1

mi

β+ti
=
∑n
i=1

1
β+fi

.

(P1-3) Define M(x) =
∑N
i=1miLi(X). Compute [M(x)]1 using

{Li(x)}Ni=1. Note: prover does not compute M(x). Apply Fiat-Shamir
and compute β = hash(Cf , [M(x)]1)
(P1-4) For each i ∈ [1, N] define Ai = mi

β+ti
. Define

A(X) =
∑N
i=1AiLi(X). Compute a0 = A(0), and [A(x)]1.

(P1-5) Let Q(X) be the polynomial s.t.
A(X)(T (X) + β)−M(X) = Q(X)ZV(X). Compute [Q(x)]1 using the
the {[Qi(x)]1}Ni=1 in σ following algorithm in [EFG22].

(P1-6) Compute πa0 =
[
A(x)−a0

x

]
1
.

(P1-7) Let πL = ([A(x)1], [Q(x)1], [M(x)]1, a0, πa0).
(P2-1) Compute a, b ∈ Znp s.t. for each i ∈ [1, n]: ai = fi + β and

bi = 1
ai

. Compute s =
∑n
i=1 bi.

(P2-2) Compute ([Ca,Ca,α], πa)← ProveLS(σσM1
, a).

(P2-3) Compute ([Cb, [s]1)], πb)← ProveLS(σM2 , b). Compute
Cb,2 =

∑n
i=1 bi[ui]2.

(P2-4) Compute ([Ca−β ,Cf)], πf)← ProveLS(σM3
, f).

(P2-4) Let πR = (s,Ca,Ca,α,Cb,Cb2,Ca−β , πa, πb, πf).
(P2-5) Let π = (s, πL, πR). Return (Cf , π).

2 Verify: 0/1← VerifyAQ(σ, π)
Retrieve all elements from σ, and parse π as shown in P1-7 and P2-4.
Return 1 if and only if all of the following checks pass.
(V1) Proof related to LHS.

1. e([A(x)]1, [T (x)]2) = e([Q(x)]1, [ZV (x)]2) · e([M(x)]1−β[A(x)]1, [1]2)

2. e([A(x)]1 − [a0]1, [1]2) = e(πa0 , [x]2)

(V2) Proof related to RHS.

1. VerifyLS(σM1
, [Ca,Ca,α], πa).

2. VerifyLS(σM2 , [Cb, [s]1], πb)).

3. VerifyLS(σM3
, [Ca−β ,Cf], πf)).

4. Ca = Ca−β + β(
∑n
i=1[ui]1).

5. e(Ca,α,Cb,2) = e(C~1,α, [1]2).

6. e(Cb, [1]2) = e([1]1,Cb,2).

(V3) Verify Fiat-Shamir: β = hash(Cf , [M(x)]1).
(V4) Verify a0 ·N = s.

Figure 2: Complete Linearlookup Protocol
6

f) as Cf (albeit they are over two different commitment keys). Then it is easy
to show the relation between Ca−β and Ca with:

Ca−β +

n∑
i=1

(β[ui]1) = Ca

Note that as
∑n
i=1[ui]1 is included in the verifier key, the check of the above is

O(1).
Lastly, claim (1) is addressed by step P2-1 and verifier step V2.5. Essentially

V2.5 asserts the following:

n∑
i=1

αi−1(aibi[u
2
i]1) =

n∑
i=1

αi−1[u2i]1

This is a randomized combination of all equations of aibi = 1 for i ∈ [1, n]. We
present a detailed analysis of complexity in Appendix A.3. CORRECTION:
this claim is wrong. Will be corrected and another draft will be
submitted.

3.5 Discussion

It is possible to take advantage of the data parallelism of circuit if we feed
the RHS of Equation 1 to a general purpose proof system, to accomplish O(n)
prover complexity. Most work exploiting data parallel circuits exist in GKR or
Sum-check protocol based zk-proof systems [Tha13, WJB+17, LYH+21]. The
basic idea is to encode layers of circuit via multi-linear extension polynomials.
The prover complexity can be linear, however, for either or both of the proof
size and verifier work, the cost is at least O(log(n)) where n is the circuit width
(already taking into the account that depth of circuit is a constant).

4 Conclusion

Let N and n be the size of bigger and smaller tables in the lookup argu-
ment. By improving the cq protocol we show that after a pre-processing step
of O(N log(N)), the prover cost is O(n), and the verifier cost and proof size are
both O(1).
Acknowledgment: We would like to thank Dr. Ariel Gabizon for correcting
the error in the protocol.

A Complexity Analysis

A.1 Set Up

We recall the analysis of the complexity of cq set-up [EFG22]. Given secret x,

the complexity to compute
{

[xi]1
}N
i=1

and
{

[xi]2
}N
i=1

is O(N). Since FFT is

applicable to V, ZV(X) = XN − 1. Hence computing [ZV(x)]1 is O(1).

7

Consider Lagrange polynomial Li(X) =
∏

1≤j≤N ∧ j 6=i
X−ωj

ωi−ωj , it can be

represented as: Li(X) = ZV(X)
(X−ωi)

∏
j∈[1,N] ∧ j 6=i(ω

i−ωj) . It is shown in Baloo

[ZGK+22] that to compute
{∏

j∈[1,N] ∧ j 6=i(ω
i − ωj)

}N
i=1

via FFT the cost is

O(N log(N)) field operations. Then {[Li(x)]1}Ni=1 and
{

[Li(x)−Li(0)
x]1

}N
i=1

costs

O(N log(N)).

Finally the set-up can compute {[Qi(x)]1}Ni=1 following the algorithm pre-
sented in cq [EFG22], which uses Toeplitz matrix [FK23]. T (X) can be com-
puted through interpolation over FFT domain which takes O(N log(N)). Thus,
the steps S1-1 to S1-3 in Figure 1 up takes O(N log(N)) field and group oper-
ations. Similarly the complexity for S2 steps is O(nlog(n)).

A.2 LHS Complexity

We briefly show that the complexity of the first part (round-1 of cq) in Figure
2. The prover does not have to compute M(x), A(x). However, [M(x)]1 can
be computed in linear time because there are up to n entries of mi being non-
zero. Similarly [A(x)]1 is computed in O(n). In [EFG22], [Q(x)]1 is computed

in O(n) using the prover key [Qi(x)]1. A(0) can be computed as
∑N
i=1AiLi(0),

which is O(n) given the {Li(0)} in prover key. Similarly, πa0 can be computed

as [
∑N

i=1 AiLi(x)−a0
x]1, which can be computed as as [

∑N
i=1 Ai(Li(x)−Li(0))

x]1 +∑N
i=1(Ai ·Li(0)−a0/N)[1x]1, which is linear given the pre-processed information

in prover key.

A.3 RHS Complexity

We now discuss the complexity of the second part of Figure 2. Apparently, the
cost of P2-2 to P2-4 are both O(n) because the matrix involved for the linear
subspace argument have 2 rows. P2-1 costs O(n) field operations.

For the V2 checks in the Verify() operation. All VerifyLS() operations
costs O(1) given the row number of matrices. Step (4) of V2 has constant cost
because

∑n
i=1[ui]1 is given in verifier key.

In summary, the proof size is O(1) and the verifier cost is O(1).

References

[BSCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward. Aurora: Transparent succinct arguments for r1cs. In
EUROCRYPT, pages 103–128, 2019.

[CFQ19] M. Campanelli, D. Fiore, and A. Querol. LegoSNARK: Modular
Design and Composition of Succinct Zero-Knowledge Proofs. IACR
Cryptol. ePrint Arch. 2019:142, 2019.

8

[EFG22] L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast
lookups. IACR Cryptol. ePrint Arch., 2022.

[FK23] D. Feist and D. Khovratovich. Fast Amortized KZG Proofs. IACR
Cryptol. ePrint Arch., 2023.

[GK22] A. Gabizon and D. Khovratovich. Flookup: Fractional
decomposition-based lookups in quasi-linear time independent of
table size. IACR Cryptol. ePrint Arch., 2022.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments.
In EUROCRYPT, pages 305–326, 2016.

[GW20] A. Gabizon and Z. J. Williamson. Plookup: A simplified polynomial
protocol for lookup tables. IACR Cryptol. ePrint Arch., 2020.

[Hab22] U. Habock. Multivariate lookups based on logarithmic derivatives.
IACR Cryptol. ePrint Arch., 2022.

[KW15] E. Kiltz and H. Wee. Quasi-adaptive NIZK for Linear Subspaces
Revisited. In EUROCRYPT, pages 101–128, 2015.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size com-
mitments to polynomials and their applications. In ASIACRYPT,
pages 177–194, 2010.

[LYH+21] Y. Li, C. Ye, Y. Hu, I. Morpheus, Y. Guo, C. Zhang, Y. Zheng,
Z. Sun, Y. Lu, and H. Wang. ZKCPlus: Optimized Fair-exchange
Protocol Supporting Practical and Flexible Data Exchange. In
CCS, pages 3002–3021, 2021.

[PK22] J. Posen and A. Kattis. CaulkPlus: Table-independent lookup ar-
guments. IACR Cryptol. ePrint Arch., 2022.

[Tha13] J. Thaler. Time-optimal interactive proofs for circuit evaluation.
IACR Cryptol. ePrint Arch., 2013.

[WJB+17] R. Wahby, Y. Ji, A. Blumberg, J. Thaler, M. Walfish, and T. Wies.
Full Accounting for Verifiable Outsourcing. In CCS, pages 2071–
2086, 2017.

[ZBK+22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu,
and M. Simkin. Caulk: Lookup Arguments in Sublinear Time. In
CCS, pages 3121–3134, 2022.

[ZGK+22] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and C. Ràfols.
Baloo: Nearly Optimal Lookup Arguments. IACR Cryptol. ePrint
Arch., 2022.

9

