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Abstract. Masking is a counter-measure that can be incorporated to
software and hardware implementations of block ciphers to provably
secure them against side-channel attacks. The security of masking can be
proven in different types of threat models. In this paper, we are interested
in directly proving the security in the most realistic threat model, the
so-called noisy leakage adversary, that captures well how real-world side-
channel adversaries operate. Direct proofs in this leakage model have
been established by Prouff & Rivain at Eurocrypt 2013, Dziembowski
et al. at Eurocrypt 2015, and Prest et al. at Crypto 2019. These
proofs are complementary to each other, in the sense that the weaknesses
of one proof are fixed in at least one of the others, and conversely. These
weaknesses concerned in particular the strong requirements on the noise
level and the security parameter to get meaningful security bounds, and
some requirements on the type of adversary covered by the proof — i.e.,
chosen or random plaintexts. This suggested that the drawbacks of each
security bound could actually be proof artifacts. In this paper, we solve
these issues, by revisiting Prouff & Rivain’s approach.

1 Introduction

1.1 Context

Side-Chanel Analysis (SCA) represents an important threat for cryptographic
implementations on embedded devices such as smart-cards, Micro-Controller
Units (MCUs), etc. [35,36]. In such attacks, the adversary has a physical access
to the target device. More precisely, the adversary is assumed to measure some
physical metrics of the device called leakages — e.g. the power consumption
of the device or the Electro-Magnetic (EM) emanations around the target —
during one or several encryptions. It is then possible to use this side information
— beside leveraging plaintexts and ciphertexts — to guess the values of sensitive
variables, i.e. the values of intermediate calculations depending on some chunks
of secret. This way, an SCA adversary may independently recover the secret in a
divide-and-conquer approach, making the typical complexity of such attacks often
negligible compared to a regular cryptanalysis. That is why the SCA threat should
carefully be taken into account in the design of cryptographic implementations.



Thankfully, this does not prevent the deployment and the use of embedded
cryptography, as this threat can be mitigated by incorporating counter-measures
in the implementation. At a very high level, most of the counter-measures such
as masking or shuffling turn a deterministic cryptographic primitive into a non-
deterministic implementation by injecting some randomness during the execution
of the primitive, either at a physical level or at an algorithmic level. In this
paper, we focus on the main counter-measure considered so far in SCA, namely
masking [27,16], a.k.a. “Multi-Party Computation (MPC) on silicon” [32]. In a
nutshell, any sensitive variable is submitted to a (d + 1)-linear secret-sharing,
where d is the security parameter that the designer may control in order to
achieve the desired security level. The implementation is then modified in a way
such that all the subsequent calculations involving a sensitive variable are now
replaced by some gadgets operating on the shares separately, as in multi-party
computation. As a result, any SCA adversary must have access to the noisy
observation of every share of secret to be able to recover any piece of information
about a sensitive variable. If any noisy observation induces some uncertainty on
the actual value of the corresponding share, it results in an amplified uncertainty
on the actual value of the target sensitive variable — an intuition that dates
back to the seminal works of Chari et al. at Crypto 99 [16]. As a consequence,
the complexity of any SCA attack increases exponentially fast with the security
parameter d, at the price of quadratic (or super-linear) runtime and memory
overheads in the implementation only [32].

1.2 Provable Security of Masking

The latter intuition has been formalized over the past few years by masking
security proofs. Generally speaking, a masking security proof takes as inputs
an abstract representation of the implementation, the number of shares d + 1
(where d act as he security parameter) and a measure of the noisiness of the
leakage, usually characterized from the device embedding the implementation.
The masking security proof then returns an upper bound on a metric depicting
the security level of the implementation.

There exists different strategies to establish a masking security proof. In this
paper, we focus on masking security bounds directly stated in the most realistic
threat model. This approach has been first considered by Chari et al. [16], before
being formalized by Prouff and Rivain [45]. Concretely, a noisy observation of
an intermediate calculation is a Probability Mass Function (p.m.f.) over all the
hypothetical values that the operands may take: the closer the p.m.f. to the
uniform distribution, the noisier the leakage.

The idea of security proofs in the noisy leakage model is to assume that any
noisy leakage accessed by the adversary is δ-close to the uniform distribution, for
some real-valued parameter δ stated in a metric that can be measured by the
practitioner.1 Then, the goal is to prove that the p.m.f. of the secret key, given an
1 e.g., the Statistical Distance (SD), the Euclidean Norm (EN), or the Mutual Infor-
mation (MI). Notice that in our context, “noisier” means a lower δ.
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access to the full leakage, is in turn ε-close to the p.m.f. that an adversary without
access to side-channel would get, for some real-valued parameter ε depending on
δ, the security parameter d, and some other specifications of the implementation.

This direct approach has gained the reputation of being “not convenient” [8,10]
to work with, up to the point that most masking security proofs are now es-
tablished in much simpler yet unrealistic threat models [32,6,8,9,15], relying
on a non-tight reduction from the noisy leakage model to such simpler threat
models [23]. As a result, only three previous works tackled masking security
proofs through this direct way so far. These works, from Prouff and Rivain
at Eurocrypt 2013 [45], Dziembowski et al. at Eurocrypt 2015 [25], and
Prest et al. at Crypto 2019 [44], considered implementations of block ciphers
protected with an Ishai-Sahai-Wagner (I.S.W.) masking scheme [32,47], assuming
leak-free refreshings. The latter assumption is a drawback, as it is unrealistic
— otherwise studying leaky computations would not be relevant — and some
real-world refreshings could critically decrease the security level [19]. Interestingly,
these three proofs are quite complementary to each other, in the sense that the
weaknesses of one proof are fixed in at least one of the others, and conversely.
We give hereafter a brief overview of these pros and cons — also synthesized in
Table 1:

1. Strong noise requirements [45]. Prouff and Rivain’s bound required the
baseline noise parameter δ to scale polynomially with the field size, which
is prohibitive for concrete block ciphers, e.g., the Advanced Encryption
Standard (AES) whose field size is 256. On the opposite, Dziembowski et
al.’s bound have a nearly tight noise requirement that does not depend on
the field size.

2. Lack of incentive for noisier leakage [25]. In Dziembowski et al.’s se-
curity bound assuming that the noise requirement is verified, the bound no
longer depends on the actual baseline noise level δ. This suggests that to
reach the desired security level ε, the designer would have no incentive in
choosing a noisier device on which implementing the block cipher, which
sounds unrealistic. In the extreme case where the device is so noisy enough
that δ ≤ ε, masking would not be necessary, whereas Dziembowski et al.’s
bound would still require a prohibitive number of shares to be meaningful.
On the opposite, the bounds of Prouff and Rivain and Prest et al. still carry
some incentive towards noisier baseline leakage.

3. Too conservative and hard to estimate metric [44]. Contrary to the
other proofs, the baseline noise in Prest et al.’s security bound is assumed to
be measured in a worst-case metric, the so-called Relative Error (RE). This
contrasts with all the other works considering average-case metrics, such as
the MI [45] or the SD [25], and does not fit either with SCA security metrics
such as Guessing Entropy (GE) or Success Rate (SR) [50] that are averaged
metrics as well. Using worst-case metrics has two main drawbacks. First, a
baseline noise characterization made with a worst-case metric necessarily
results in more conservative requirements than with average-case metrics.
Second, worst-case metrics are by definition harder to estimate on concrete
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devices by evaluators, and hereupon the RE may not be efficiently tractable
— especially for high-dimensional leakage — nor even be formally defined in
some cases. As an example, Prest et al. even needed to use tedious tail-cut
arguments on the exemplary leakage distributions of their case study [44,
Remark 2].

4. Random message attacks [45]. Last but not least, Prouff and Rivain’s
security bounds are given for random message attacks, whereas Dziembowski
et al. and Prest et al. state security bounds for chosen plaintext attacks.
Even if most of state-of-the-art SCA adversaries consider random plaintext
attacks, this contrasts with the common practice in cryptography, where the
adversary is assumed to (adaptively) choose the message or the ciphertext.

Table 1: Comparison between all proofs in the Noisy Leakage model: Prouff & Rivain [45],
Dziembowski et al. [25], Prest et al. [44].

Feature [45] [25] [44] Our work

Strong noise requirement Yes No No No
Leak-free refreshing Yes Yes Yes (Sec. 6) Yes
Incentive to small δ 3 7 3 3

Average-case metric 3 3 7 3

Adaptive attacks 7 3 3 3

1.3 Recent Improvements on Security Bounds for Encodings Only

In light of the previous drawbacks listed so far, Duc et al. conjectured at Euro-
crypt 2015 that the weaknesses (1-3) were actually proof artifacts [24]. More
precisely, it would be possible to prove a masking security bound in terms of MI
with tight noise requirement, and tight amplification rates, while covering the
leakage of the full block cipher. In a recent line of works, Ito et al. [33], Masure
et al. [40], and Béguinot et al. [14] have been able to prove a reduced version
of Duc et al.’s conjectured security bound, for the leakage of one encoding only.
While these works represent a first milestone, they were limited in that they did
not cover the leakage coming from the computations, and Duc et al.’s conjecture
remained to be proven for the leakage of a full block cipher.

1.4 Our Contribution

In this paper, we prove new masking security bounds stated in the noisy leakage
model, in the same setting as the one of the previous works discussed so far —
namely Rivain-Prouff’s masking scheme, with leak-free refreshings [45]. To this
end, we revisit Prouff and Rivain’s approach, by showing that some drawbacks
of their results can be circumvented.
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– A tight bound with respect to the noise parameter δ. We leverage
the recent results of Ito et al. [33], Masure et al. [40] and Béguinot et al. [14],
to bound the amount of informative leakage of computations coming from a
full block cipher, masked with an I.S.W.-like masking scheme. As a result,
our noise requirement is tight [31], while carrying a much higher incentive to
noisier leakage than in the previous works.

– A security bound with low dependency on the field size. With the
previous contribution alone, our final security bound would still carry a
constant factor scaling quadratically with the size of the field over which the
block cipher operates, regardless of the number of shares. While this is much
better than Prouff & Rivain’s bound and competitive with Dziembowski
et al.’s bound, this still sounds unnatural, as it does not perfectly fit Duc
et al.’s conjecture [24], and might be fatal for block ciphers operating over
large fields. To tackle this problem, we show how a careful scrutiny of the
implementation, under mild assumptions on the Sbox, can allow us to make
this constant factor quasi-linear with the field size. We even show how this
constant factor overhead can further be made almost independent of the
field size, by combining the Rivain-Prouff masking scheme with blinding, a
well-known counter-measure in asymmetric cryptography.

– Security Bound with Average Metric. In our masking security proof,
any metric, be it the baseline noise δ or the final security bound ε, is expressed
in MI. This contrasts with Prouff & Rivain’s work where the parameters δ
and ε are not expressed in the same metric. Since MI is an averaged metric,
it is quite easy to estimate by evaluators when characterizing the behavior of
the target device in worst-case evaluations [4].

– Attacks with Chosen Messages. Eventually, we argue how our security
bounds stated for random plaintext attacks can be extended to the case
of chosen plaintext attacks, using a similar argument as the one stated by
Dziembowski et al. in their follow-up work at Tcc 2016 [26].

Overall, our work is the first to state a masking proof with meaningful security
bounds, i.e., for which the desired security level can be reached with a reasonable
amount of masking shares, and requiring a reasonable amount of noise from the
device. Therefore, our masking security bound can be practically used by an
SCA evaluator to upper bound current state-of-the-art SCA adversaries. This
suggests that masking proofs directly stated in the noisy leakage model can be
seen as complementary to the more generic proofs in other threat models. The
only shortcoming of our proof, in line of the previous works, concerns the use of
leak-free refreshings. We hope future works may allow to relax this assumption,
and thereby provide a comparable setting with masking security proofs in the
indirect approach taking advantage of reductions between models.

2 Preliminaries

In this paper, we denote sets by calligraphic letters, e.g., X . In particular, the
letter Y denotes a finite field (Y,⊕,×) of characteristic two. Upper-case letters
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are used to denote random variables, while lower-case letters denote observations
of random variables. In this paper, we adopt the following convention: A,B stand
for independent random variables uniformly distributed over Y , while G,H denote
random variables that are not necessarily uniform over Y, nor assumed to be
independent. The letter L will be used to denote a random function Y → L, were
the set L is assumed without loss of generality to be discrete. When the context
does not carry any ambiguity, we will often denote the random variable L(Y)
by omitting the reference to Y. Finally, bold letters denote vectors of random
variables.

Mutual Information. Let Y ∈ Y be a discrete random variable. The entropy
of Y, denoted by H(Y), defined by: H(Y) = −

∑
s∈Y Pr(Y = s) log2 Pr(Y = s) .

Moreover, we define MI between two discrete random variables Y and L as:

MI(Y;L) = H(Y)− E
l
[H(Y | L = l)] .

2.1 Model of Noisy Leaking Computation

We describe hereafter the frame in which Prouff and Rivain’s result is established,
that is mostly adapted from their seminal work [45].2

Block Cipher. A block cipher over a finite field Y is defined by a pair of
inputs K,P seen as vectors of Y , and by a sequence of T elementary calculations
(Ci)1≤i≤T defined either over Y or Y × Y. More precisely, since Y is assumed to
be a finite field, we consider the elementary calculations to be either an addition
⊕ or a field multiplication ×, whether the operands are constant or random
variables.3

Leakage and SCA Adversary. When processed on some input Y (resp. a pair
of inputs A,B), an elementary calculation Ci reveals Li(Y) (resp. L(A,B)) to
the adversary, for some noisy leakage function Li, that depends both on Y (resp.
A,B), and on some internal randomness assumed to be drawn independently
each time Li leaks. Whenever the context does not carry any ambiguity, we may
simply denote the leakage Li(Y) by Li. In this paper, we consider an adversary
having access to the full leakage induced by each elementary calculation and
trying to recover a chunk of secret key.

Definition 1 (SCA key recovery adversary). An SCA adversary for a block
cipher defined over Y is an algorithm that, upon a sequence of Na plaintexts
P = (P1, . . . ,PNa

), takes as an input a sequence {(Li)1≤i≤T }1≤j≤Na
of leakages

2 The interested reader may also refer to Rivain’s habilitation thesis for a thorough
discussion about the leakage model [46].

3 As argued by Prouff & Rivain, any mapping over a finite field can be decomposed as
a sequence of additions and multiplications, using Lagrange interpolation.
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induced by each elementary calculation of a block cipher, and that returns a
guess K̂ of one chunk K ∈ Y of the secret key K. We say that the adversary is
random-plaintext if P is chosen randomly and uniformly over YNa , whereas we
say that the adversary is chosen-plaintext if the adversary can arbitrarily choose
the sequence P — possibly adaptively.

Notice that K̂ depends on the plaintexts used by the adversary (and on the
internal randomness of the leakage functions). Accordingly, the accuracy of the
key guessing is expected to increase with the number Na of queries. We formalize
this in the definition hereafter.

Definition 2 (Success Rate). The success rate of an SCA key recovery ad-
versary is the quantity

SR(Na) = Pr
(
K̂ = K

)
. (1)

Similarly, for any probability threshold 1
|Y| ≤ β ≤ 1, we define the efficiency

N?
a (β) of an SCA key recovery adversary as the minimal amount of queries

necessary to get a success rate higher than β.

MI-Noisy Leakage. The success of an SCA key recovery adversary depends
on how informative the leakage is about the underlying secret data processed. To
measure this, we assume that the evaluator may determine how noisy any leakage
function is. To this end, we formally define hereafter the concept of MI-noisy
leakage.

Definition 3 (Noisy leakage for unary gates). Let C : Y → Y be an elemen-
tary calculation associated with the leakage function L. L is said to be δ-MI-noisy,
for some δ ≥ 0, if for any input random variable A of C, uniformly distributed
over Y,

MI(A;L(A)) ≤ δ .

Definition 4 (Noisy leakage for binary gates). Let C : Y2 → Y be an
elementary calculation associated with the leakage function L. L is said to be δ-
MI-noisy, for some δ ≥ 0, if for any input random variables A,B of C, uniformly
distributed over Y,

MI(A,B;L(A,B)) ≤ δ .

We chose the MI as a metric of reference in our proof, because it is at
the core of Prouff & Rivain’s security bound that we revisit in this paper,
and also because we can therefore rely on the recent improvement of Ito et
al. [33], Masure et al. [40] and Béguinot et al. [14]. Moreover, the MI is known
to be tightly linked to the complexity of Differential Power Analysis (DPA)
attacks [37,38,39,22,17], and “generally carries more intuition (see, e.g., [5] in the
context of linear cryptanalysis)” [24]. We discuss this choice of metric in section 5.
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2.2 Rivain-Prouff’s Masking Scheme

We recall hereafter the definition of masking, mostly taken from Prouff and
Rivain’s paper [45, Def. 2].

Definition 5. Let d be a positive integer. The d-encoding of Y ∈ Y is a (d+ 1)-
tuple (Yi)0≤i≤d satisfying

⊕d
i=0 Yi = Y and such that for any strict subset I of

J0, dK, (Yi)I is uniformly distributed over Y |I|.

The parameter d in Definition 5 refers here to the security parameter of
the counter-measure. In their paper, Prouff and Rivain explain how to turn
any block cipher into a d-order secure implementation — i.e. such that any
intermediate computation depending on a secret has a (d+1)-encoding [45]. First,
the plaintext and the secret key are split into d+1 shares. Then, each elementary
calculation of the block cipher is transformed as follows. If the elementary
calculation is linear with respect to its inputs, then it is replaced by the sequence
of elementary calculations listed in Algorithm 1. If the elementary calculation

Algorithm 1 Linear gadget in Prouff & Rivain’s proof.
Require: A: (d+ 1)-sharing of A, C: elementary calculation linear with its input.
Ensure: B : (d+ 1)-sharing of C(A).
1: for i = 0, . . . , d do
2: Bi ← C(Ai) . Type 1 or 2
3: end for
4: B← Refresh(B) . Assumed to be leak-free
5: A← Refresh(A) . Only if A used subsequently.

is an Sbox, then it can first be decomposed as a sequence of linear calculations
and field multiplications. Then the linear calculations can be processed as in
Algorithm 1, and the field multiplications can be replaced by the procedure
listed in Algorithm 2. It is a variant of the actual I.S.W. scheme revisited by
Rivain and Prouff at Ches 2010, up to a permutation between independent
operations, so it does not change the amount of informative leakage. Overall,
Rivain-Prouff’s masked implementation can be decomposed as subsequences of
any of the following types:

1. (zi ← g(xi))0≤i≤d, with g being a linear function (of the block-cipher);
2. (zi ← g(xi))0≤i≤d, with g being an affine function (within an Sbox evalua-

tion);
3. (vi,j ← ai × bj)0≤i,j≤d (cross-products computation step in multiplication);
4. (ti,j ← ti,j−1 ⊕ vi,j)0≤i,j≤d (compression step multiplication).

For concreteness, we list two examples of schemes of the AES Sbox (at least
its non-linear part) with this method in Algorithms 3 and 4. Algorithm 3 is the
one initially proposed by Rivain and Prouff at Ches 2010. Recently, Cardoso
et al. proposed at Cardis 2022 an alternative exponentiation scheme depicted
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Algorithm 2 Multiplication gadget in Prouff & Rivain’s proof.
Require: A,B: (d+ 1)-sharing of A,B.
Ensure: C : (d+ 1)-sharing of A× B.
1: for i = 0, . . . , d do
2: for j = 0, . . . , d do
3: Vi,j ← Ai × Bj . Cross products (type 3)
4: end for
5: end for
6: V← Refresh(V) . Assumed to be leak-free
7: for i = 0, . . . , d do
8: Ci = 0
9: for j = 0, . . . , d do
10: Ci ← Ci ⊕Vi,j . Compression (type 4)
11: end for
12: end for
13: C← Refresh(C) . Assumed to be leak-free
14: A,B← Refresh(A) ,Refresh(B) . Only if A,B used subsequently.

in Algorithm 4 which, combined with other implementation tricks, improved
upon Rivain-Prouff’s exponentiation [48]. Both exponentiations contain the same
number of I.S.W. multiplications.4

Algorithm 3 R&P’s Exp254 [47].
Require: X: (d+ 1)-sharing of X
Ensure: C : (d+ 1)-sharing of X254

1: Z← SecLin(s 7→ s2,X) . Z = X2

2: X← Refresh(X)
3: Y ← SecMult(Z,X) . Y = X3

4: V ← SecLin(s 7→ s4,Y) . V = X12

5: V ← Refresh(V)
6: Y ← SecMult(Y,V) . Y = X15

7: Y ← SecLin(s 7→ s16,Y) . Y = X240

8: Y ← SecMult(Y,W) . Y = X252

9: C← SecMult(Y,Z) . C = X254

Algorithm 4 Cardoso’s Exp254 [48].
Require: X: (d+ 1)-sharing of X
Ensure: C : (d+ 1)-sharing of X254

1: Z← SecLin(s 7→ s2,X) . Z = X2

2: Z← Refresh(Z)
3: Y ← SecMult(Z,X) . Y = X3

4: Z← SecLin(s 7→ s2,Y) . Y = X6

5: Y ← SecMult(Z,X) . Y = X7

6: Z← SecLin(s 7→ s2,Y) . Z = X14

7: Y ← SecMult(Z,X) . Y = X15

8: Y ← SecLin(s 7→ s16,Y) . Y = X240

9: C← SecMult(Y,Z) . C = X254

3 Revisiting Prouff and Rivain’s Bound

We are now ready to revisit Prouff and Rivain’s formal security proof in this
section. To this end we briefly recall the outline of their proof — that we follow
as well — based on three steps. First, they leverage the assumption that refresh
gadgets are leak-free in order to reduce the MI of a sequence of elementary
computations to the sum of the MIs between the secret and each subsequence of
leakage. Second, some of these elementary computations — e.g., the non-linear
operations of the Sbox — may process non-uniform secrets. That is why the

4 There are other generic methods to securely compute an Sbox with masking [30],
which are out of the scope of this paper.
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authors make an intermediate reduction to the case where every elementary
computation processes uniform secrets — and mutually independent as well, in
the case of binary gates. Finally, the authors apply some noise amplification
lemma from the literature. Our revisited proof applies the same outline. We now
dig into the details of these steps.

3.1 Step 1: Decomposition into Subsequences

We first recall that the MI of a sequence of mutually independent leakages can
be bounded by the sum of MIs of each leakage.

Theorem 1 (Subsequence decomposition [45]). Let Y be a random variable
over a finite set Y, not necessarily uniform. Let L = (L1, . . . ,Lt) be t random
variables such that the random variables (Li | Y = y)i are mutually independent
for every y ∈ Y. Then, we have

MI(Y;L) ≤
t∑
i=1

MI(Y;Li) . (2)

Although we do not claim any improvement in this first step, we reproduce
the proof in section B for completeness.

3.2 Step 2(a): Reduction to Uniform Secrets for Unary Gates

We now revisit the second step of Prouff and Rivain’s work, namely the reduction
from non-uniform secrets to uniform secrets. To this end, we will split our results
into two cases. The first case processed in this subsection deals with non-uniform
inputs of unary calculations, such as Line 4 in Algorithm 3. The second case
deals with non-uniform and non-independent inputs of binary calculations, such
as Line 6 in Algorithm 3, and will be deferred in subsection 3.3.

The results presented in this section aim at bounding the MI between C(Y),
where C : Y → Y and its corresponding leakage. We first state the following
theorem that relies on a technical lemma from Shulman and Feder [49].

Theorem 2 (Generic Bound for Non-Uniform Secrets [49, p. 1360]).
Let L : Y → L be a random function denoting a leakage, and let Y be uniformly
distributed over Y. Then, there exists a constant α such that for all random
variables G arbitrarily distributed over Y, the following inequality holds true:

MI(G;L(G)) ≤ α · |Y| ·MI(Y;L(Y)) . (3)

Moreover, the smallest value α such that Equation 3 holds true belongs to the
interval α ∈

[
log2(e)
e , 1− e−1

]
≈ [0.53, 0.63].

Theorem 2 introduces an overhead scaling with |Y|, which could decrease
the final security level by one or several orders of magnitude (e.g., for the AES,
|Y| = 28). Note that Equation 3 is nearly tight in the general case, in the sense
that the range of α is narrow. Shulman and Feder exhibit an example of worst
case leakage function, such that Equation 3 becomes an equality, for α ≈ 0.53 [49].
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The Power Map Trick. However, such worst-case C functions are not likely
to be used in cryptographic primitives, since, e.g., the input and output of Sbox
are expected to be uniformly distributed, for cryptographic reasons. That is why
we refine hereafter the generic statement of Theorem 2, and we present some
examples where this refinement could remove the dependency on the field size. To
this end, we revisit Theorem 2 by relying on an intermediate result of Shulman
and Feder’s proof.

Lemma 1 ([49, Lemma 6]). Given a leakage function L and two random
variables Y,Y′ distributed (non-necessarily uniformly) over the finite set Y, and
such that the support of Pr

(
Y′
)
contains the support of Pr(Y). Then, the following

inequality holds:
MI(Y;L(Y))
MI
(
Y′;L(Y′)

) ≥ min
y∈Y

Pr(Y = y)

Pr
(
Y′ = y

) .

As a result, we straightforwardly get the following corollary.

Corollary 1. In the same setting as in Lemma 1, if now the support of Pr(Y)
contains the support of Pr

(
Y′
)
, the following inequality holds true:

MI
(
Y′;L(Y′)

)
MI(Y;L(Y))

≤ max
y∈Y

Pr
(
Y′ = y

)
Pr(Y = y)

. (4)

Proof. Straightforward, using Lemma 1 and the identity maxx∈X x = 1
min

x∈X 1
x

,

for some finite ordered set X .

We will leverage Corollary 1 in the case where the Sbox is a monomial, i.e.
is of the shape y 7→ yk. Admittedly, this makes our proof slightly more specific
than Prouff and Rivain’s one, as the latter one can handle any Sbox expressed
as a polynomial. Nevertheless, this assumption remains mild, as it covers many
Sboxes used in practical ciphers, including the AES, and will allow us to remove
a constant factor equal to the field size.

We have seen in Algorithms 3 and 4 that the monomial y 7→ yk can be
computed in the Rivain-Prouff masking scheme by computing intermediate power
maps y 7→ yk

′
for some k′ ≤ k, through some square-and-multiply schemes [47].

The bound on the leakage induced by such an intermediate computation is
handled by the following corollary.

Corollary 2. Let Y be a uniform random variable over a finite field Y of size
M ≥ 2. For any k ∈ J1,M − 1K, define the function C : y ∈ Y 7→ yk. Let
L : Y → L be a δ-MI-noisy leakage. Then:

MI
(
Y;L(Yk)

)
≤ M

M − 1
· gcd{k,M − 1} · δ . (5)

Proof. Using the Data Processing Inequality (DPI) (stated in Lemma 2 in
Appendix A), we are reduced to upper bound MI

(
Yk;L(Yk)

)
. To this end, we

shall compute the p.m.f. of Yk. The result will then follow from Lemma 1 and
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Lemma 2. First, notice that by definition of a field, yk = 0 if and only if (i.f.f.)
y = 0, so Pr

(
Yk = 0

)
= 1

M . Second, notice that since (Y,⊕,×) is a finite field,
the group (Y∗,×) is cyclic, hence isomorphic with ZM−1. As a result, for any
s 6= 0 for which there exists y ∈ Y verifying yk = s, we have

Pr
(
Yk = s

)
=

gcd(k,M − 1)

M − 1
,

and Pr
(
Yk = s

)
= 0 otherwise. To summarize, for all s ∈ Y, we have

Pr
(
Yk = s

)
Pr(Y = s)

≤ M

M − 1
· gcd(k,M − 1) . (6)

Comparing the universal bound of Equation 3 to the specific bound in Equa-
tion 5, we can see that we replaced a factor 0.63 ·M by a factor gcd(k,M − 1)
(ignoring the factor M

M−1 for large values of M). As an example Table 2 reports
the different constant factors induced by Equation 5 for the exponentiation
scheme of Algorithms 3 and 4, and how they compare to the generic bound of
Equation 3. Our power-map-specific bound is between one and two orders of
magnitude lower than the generic bound in Equation 3.

Table 2: Factor overheads from Equation 5, and ratio between the generic bound of
Equation 3 and the refined bound of Equation 5.

Scheme k gcd(k, 255) (1−e−1)·256
gcd(k,255)

Rivain-Prouff [47] 2, 3, 12, 1, 3, 3, 161.3, 53.8, 53.8,
15, 240, 252 15, 15, 3 10.8, 10.8, 53.8

Cardoso et al. [48] 2, 3, 6, 7, 1, 3, 3, 1, 161.3, 53.8, 53.8, 161.3,
14, 15, 240, 252 1, 15, 15 161.3,10.8, 10.8, 53.8

Admittedly, the numbers reported in Table 2 depend on the exponentiation
scheme, and thereby depend on the underlying power-map we aim at computing
— which may differ for other block ciphers with power-map-based Sbox beyond
the AES. We may therefore wonder how gcd(k,M − 1) generally scales when
M grows. It is not hard to find some integer k such that gcd(k,M − 1) scales
linearly with M ,5 so our improved bound could marginally improve the one
from Equation 3 in some worst-case exponentiation schemes. Still, the following
theorem suggests that this is not likely to happen.
5 As an example, for the AES field M − 1 = 255, which is divided by 3 so there exists
some k, e.g., k = 85, such that gcd(k,M − 1) = M−1

3
.
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Theorem 3 ([12, Thm. 3.2]). Let M > 2 be an integer. Then, for all ε > 0,
we have E

k
[gcd(k,M)] = O(M ε) , where the expectation is taken with respect to k

uniformly distributed in J1,MK.

The practical interpretation of Theorem 3 is that if a given exponentiation
scheme gives high constant factors, then it should not be hard to modify it, in
order to make the constant factor in the right hand-side of Equation 5 arbitrarily
low. As a consequence, we may treat the right hand-side of Equation 5 as
asymptotically independent of M with high probability. That is why in the
remaining of this paper, we will abuse notation by denoting any gcd factor as
scaling as O(M ε) — which is confirmed on our implementations of interest by
Table 2.

3.3 Step 2(b): Reduction to Uniform Secrets for Binary Gates

We have shown in subsection 3.2 how to significantly decrease the loss in the
reduction from non-uniform secrets to uniform secrets for leakage coming from
unary gates dealing with power maps. In order to have a complete toolbox
for reductions to uniform secrets, we also need to deal with leakages coming
from gadgets with two input operands, e.g., I.S.W. multiplications. Hereupon,
Theorem 2 straightforwardly applies, although spanning a loss of 0.63 |Y|2 in the
reduction.

That is why we may naturally think of extending the power map trick
introduced before. But contrary to Theorem 2, Corollary 2 does not extend
as straightforwardly for binary gates. Indeed, calculations with more than one
operand add another difficulty: not only the operands may not be uniformly
distributed, but they might also be non-independent. This results in the following
corollary.

Corollary 3. Let Y be a random variable uniformly distributed over the finite
field Y. For p, q ∈ J2,M − 2K, let Z = (Yp,Yq). Let L : Y2 → L be a δ-MI-noisy
leakage. Then,

MI(Y;L(Z)) ≤ M

M − 1
·min {gcd(p,M − 1) , gcd(q,M − 1)} ·M · δ . (7)

Proof. We apply Lemma 1 for the random vector Z′ = (Y,Y′), where Y′ is an
independent copy of Y. For any x, y ∈ Y, the total probability formula implies
that

Pr(Yp = x,Yq = y)

Pr
(
Y = x,Y′ = y

) ≤ ∑y′ Pr(Y
p = x,Yq = y′)

Pr
(
Y = x,Y′ = y

) =
Pr(Yp = x)

Pr(Y = x) Pr
(
Y′ = y

) .

Using Equation 6, we get that

Pr(Yp = x,Yq = y)

Pr(Y = x) Pr
(
Y′ = y

) ≤ M

M − 1
· gcd(p,M − 1) ·M . (8)

By symmetry, we can obtain the same bound by permuting the roles of p and q,
which gives Equation 7.
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Remark 1. Note that the inequality in Equation 8 is tight, e.g., if p divides q,
or inversely. Likewise, we argued that Equation 3 is generally tight — unless
considering further assumptions on the prior distribution. Nevertheless, both facts
do not necessarily imply that Equation 7 is tight. Whether the latter inequality
could be refined for binary gates with non-independent operands remains an
open-question that we will briefly discuss in subsection 3.4.

3.4 Step 3: The Amplification Theorems

We now revisit the third step of Prouff & Rivain’s approach. To this end, like
in subsection 3.2 and subsection 3.3, we make a discrepancy between the unary
gates and the binary gates.

For Unary Gates. The following amplification theorem is at the core of our
direct proof in the noisy leakage model, and holds the name of Mrs. Gerber’s
Lemma (MGL). It has initially been stated by Wyner and Zyv [53] for binary
random variables, and has been recently extended by Jog and Anantharam to
random variables in Abelian groups whose size is a power of two [34]. This result
has recently been pointed out to the SCA community by Béguinot et al. at
Cosade 2023 [14].

Theorem 4 (Mrs. Gerber’s Lemma (MGL) [14, Cor. 1]). Let |Y| = 2n

for some bit-size n and d be a positive integer. Let Y0, . . . ,Yd be a (d+1)-encoding
of the uniform random variable Y over Y, and L = (L0, . . . ,Ld) be such that,
conditionally to Yi, the variable Li is independent of the others. Assume that for
all i ∈ J0, dK, MI(Yi;Li) ≤ δi for some parameter 0 ≤ δi ≤ 1. Then

MI(Y;L) ≤ fMI(δ0, . . . , δd) , (9)

where fMI(·) is Mrs. Gerber’s function.

We refer to the works of Béguinot et al. for more details about Mrs. Gerber’s
function [14]. In our context, we only need the properties summarized hereafter.

Proposition 1 (The MGL function [14, Thm. 1, Prop. 3]). The Mrs.
Gerber’s Lemma (MGL) function fMI(·) is concave with respect to any of its
variables, when the remaining ones are kept fixed. Let η = (2 log 2)−1 ≈ 0.72.
Then for all δ0, . . . , δd ∈ [0, 1], we have

fMI(δ0, . . . , δd) ≤ η
d∏
i=0

δi
η
. (10)

For Binary Gates. We now extend Béguinot et al.’s Theorem 4 to the case
of binary gates, as stated hereafter by the following theorem that we prove in
Appendix B.1, following a similar outline as Prest et al. [44, Thm. 6].
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Theorem 5. Let A,B be two independent and uniform random variables, over a
finite field Y. Let (Ai)0≤i≤d, (Bj)0≤j≤d be d-encodings of A and B respectively. Let
Li,j : Ai,Bj 7→ Li,j(Ai,Bj) be a family of randomized and mutually independent
leakage functions such that for every i, j, MI(Ai,Bj ;Li,j(Ai,Bj)) ≤ δi,j , for some
δi,j ∈ [0, 1]. Denote the concatenation of the leakages {Li,j}0≤i,j≤d by L. Then,

MI(A,B;L) ≤ fMI

 d∑
j=0

δ0,j , . . . ,

d∑
j=0

δd,j

+ fMI

(
d∑
i=0

δi,0, . . . ,

d∑
i=0

δi,d

)
. (11)

3.5 Security Bound for each Type of Subsequence

In this section, we leverage the noise amplification result to bound the amount
of leakage in each subsequence.

Type 1 subsequences occur for linear elementary calculations over uniform
secrets, and are already covered by Theorem 4, which is a straightforward
application of the MGL.

Corollary 4 (Type 1 subsequences). Let Y be a uniform random variable
over a finite field Y and (Yi)0≤i≤d be a d-encoding of Y. Let δ ≥ 0 and L0, . . . ,Ld
be δ-MI-noisy leakage functions over Y. Denote (L0(Y0), . . . ,Ld(Yd)) by L. Then
we have:

MI(Y;L) ≤ η ·
(
δ

η

)d+1

. (12)

Likewise, type 2 subsequences cover linear elementary calculations over non-
uniform secrets, e.g., occurring inside Sboxes. Such subsequences are covered by
the following corollary.

Corollary 5 (Type 2 subsequences). Let Y be a uniform random variable
over a finite field Y. Let k, d be positive integers and (Gi)0≤i≤d be a (d+1)-sharing
of Yk. Let 0 ≤ δ ≤ 1 and let L0(G0), . . . ,Ld(Gd) be δ-MI-noisy leakages. Denote
the concatenation of the leakages {Li}0≤i≤d by L. Then, we have:

MI(Y;L) ≤ |Y|
|Y| − 1

· gcd(k, |Y| − 1) · η ·
(
δ

η

)d+1

. (13)

Proof. Straightforward, by combining Theorem 4 with Corollary 2.

We now focus on the more involved type of subsequences, namely type 3,
which is a binary gate. It occurs in the cross-products of the I.S.W. multiplication.

Corollary 6 (Type 3 subsequences). Let Y be a uniform random variable
over a finite field Y, let d, p, q be positive integers. Let (Gi)i, (Hj)j be d + 1-
additive sharings of Yp,Yq respectively. Let 0 ≤ δ, and {Gi,Hj 7→ Li,j(Gi,Hj)}i,j
be δ-MI-noisy leakage functions. Let us denote the concatenation of the leakages
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{Li,j}0≤i,j≤d by L, and denote ϕ(p, q,M) = min(gcd(p,M − 1) , gcd(q,M − 1)).
Then we have:

MI(Y;L) ≤ 2 · |Y| · |Y|
|Y| − 1

· ϕ(p, q, |Y|) · η ·
(
(d+ 1) · δ

η

)d+1

. (14)

Proof. Combining Theorem 5 with Corollary 3.

It now remains to give some upper bounds for type 4 subsequences. These
subsequences can be observed in the compression phase of I.S.W. multiplications
(after cross-products and refreshings). This is the aim of the following result that
we prove in Appendix B.1.

Theorem 6. Let Y0, . . . ,Yd be d+ 1 independent uniformly random variables
over a finite set Y. Let L1, . . . ,Ld be a family of δi-MI leakage functions, defined
over Y × Y, for some 0 ≤ δi ≤ 1. We have:

MI(Yd;L1(Y0,Y1), . . . ,Ld(Yd−1,Yd)) ≤ δd . (15)

Corollary 7 (Type 4 subsequences). Let Y be a secret, such that for p, q ∈ N
the product of the multiplication Yp ×Yq is processed by an I.S.W. gadget. For
0 ≤ i, j ≤ d and for Ti,j ,Vi,j ∈ Y, let L = {Li,j(Ti,j−1,Vi,j)}0≤i,j≤d denote the
corresponding type 4 leakages such that for all i, j, the leakage Li,j(Ti,j−1,Vi,j)
is δi,j-MI-noisy, for δi,j ≤ δ ≤ 1. Then the following inequality holds true:

MI(Y;Li,j(Ti,j−1,Vi,j)0≤i,j≤d) ≤
|Y|
|Y| − 1

· gcd(p+ q,M − 1) · η ·
(
δ

η

)d+1

.

(16)

Proof. Using Corollary 2, we reduce to the case where Yp × Yq is uniformly
distributed over Y, inducing a gcd(p+ q,M − 1) factor overhead. Then, by
gathering the leakages Li,j sharing the same index i by batches, we may notice
that each batch of index only depends on one share of Y. We may therefore
invoke Theorem 4 as follows:

MI(Y;L) ≤ f (δ′0, . . . , δ
′
d) , (17)

where δ′i = MI
(
Yi; {Li,j(Ti,j−1,Vi,j)}0≤j≤d

)
. Finally, we can upper bound each

δ′i by δi,d using Theorem 6.

3.6 From Subsequences to a Complete Computation.

We can now combine the three previous steps to state the main result, in a similar
way as Prouff and Rivain [45, Thm. 4] and as Prest et al. [44, Sec. 6.3].

Theorem 7. Consider a Y-block cipher with monomial Sboxes, where a sequence
of elementary calculations depends on a random variable Y uniformly distributed.
Assume that these elementary calculations are protected by a d-encoding masking
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scheme as described in subsection 2.2, resulting in T elementary calculations
giving access to the leakage L = (Li)1≤i≤T , where each leakage function Li is
assumed to be δ-MI-noisy. Then, the following inequality is verified:

MI(Y;L) ≤ t3 · η ·
(
(d+ 1)δ

η

)d+1

+ t1,2,4 · η ·
(
δ

η

)d+1

,

such that

t3 =
∑

(p,q)∈M

ϕ(p, q, |Y|) , t1,2,4 =
∑

(p,q)∈M

φ(p, q, |Y|) +
∑
k∈S

ψ(k, |Y|) , (18)

whereM is the sequence of pairs (p, q) of exponents in the operands of the I.S.W.
multiplication gadgets, S is the sequence of exponents (k) of operands over which
a linear transformation is applied, and

– ϕ(p, q,M) = 2 ·M · M
M−1 ·min(gcd(p,M − 1) , gcd(q,M − 1)),

– φ(p, q,M) = M
M−1 · gcd(p+ q,M − 1),

– ψ(k,M) = gcd(k,M − 1).

Proof. We apply Theorem 1 to decompose the MI into a sum of MIs for each
subsequence. Since by assumption Y is uniformly distributed over Y , Corollaries 4,
5, 6, 7 directly apply to bound each term in the sum.

Note that in (18), t3 = O
(
|Y|1+ε · |M|

)
, and t1,2,4 = O(|Y|ε · (|M|+ |S|)).

Corollary 8. For any random-plaintext SCA key recovery adversary targeting a
Y-block cipher protected by the masking scheme described in subsection 2.2, the
efficiency verifies the following bound:

N?
a (SR) ≥

f(SR, |Y|)
t3 + t1,2,4

· 1
η
·
(

η

(d+ 1)δ

)d+1

,

where f(SR,M) = log2(M) − (1 − SR) log2(M − 1) − H2(SR), where H2 is the
binary entropy function, and where the constants t3 and t1,2,4 are the ones defined
in Theorem 7.

Proof. Chérisey et al.’s security bound allows to link the SCA key recovery
efficiency to the MI between Y = K⊕ P and the corresponding leakage:

N?
a (β) ≥

f(SR, |Y|)
MI(Y;L)

.

Plugging Theorem 7 into the latter inequality gives the result.

In other words, any random plaintext attack on the masked implementation

will require at least Ω
(
|Y|−(1+ε) · log |Y| ·

(
η

(d+1)δ

)d+1
)

queries to the target

device.
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4 A Tweaked ISW Gadget with Tight Security Bounds

In Remark 1 we have discussed the fact that the bound in Equation 7 might not
be tight, despite the different inequalities used to reach this result are individually
tight. Therefore, whether Equation 7 could be further tightened remains an open
question. To tackle this challenge, one should directly state an amplification
result similar to Theorem 5 without going through the intermediate reduction to
uniform and independent operands. Unfortunately, to the best of our knowledge,
all the amplification lemmata used so far in direct proofs in the noisy leakage
model [45, Thm. 1], [26, Thm. 2], [44, Lemma 6] always assume the shares to
be mutually independent and uniformly distributed, in order to prove the noise
amplification.6 To the best of our knowledge, there is no amplification result for
non-uniform secret yet. So the question our challenge opens may be seen as the
challenge of finding such amplification results for non-uniform secrets.

4.1 The Blinding Counter-Measure to the Rescue

Rather than trying to tackle the challenge raised in section 4, we propose here-
after to circumvent it: if we cannot improve the bounds, we may still tweak
the implementation. We instantiate this idea by proposing in Algorithm 5 a
tweaked variant of the I.S.W. multiplication, relying on a similar idea as the
so-called blinding counter-measure for asymmetric cryptography [38, p. 225].

Algorithm 5 “Blinded” I.S.W.
Require: G,H: (d+ 1)-sharing of g(Y), h(Y).
Ensure: I : (d+ 1)-sharing of g(Y)× h(Y).
1: R← $(1d+1)
2: G′ ←G⊕R
3: G′,R← Refresh(G′) ,Refresh(R)
4: M← ISW1(G′,H) . G′ |= H
5: H← Refresh(H)
6: H′ ← ISW2(H,R) . H |= R
7: M,H′ ← Refresh(M) ,Refresh(H′)
8: I←M⊕H′ . M,H′ linked
9: I← Refresh(I)
10: G,H← Refresh(G) ,Refresh(H)

Y

G

H

⊕
R← $

ISW1

ISW2

⊕
I

Rf

Rf

Rf

Rf

Rf

Rf

Fig. 1: “Blinded” I.S.W.. “Rf” denote
the Refresh gadgets.

The idea, depicted in Figure 1, is to enforce the input operands of the I.S.W.
multiplication gadget to be independent. This is done by blinding one operand of
the ISW1 gadget in Figure 1, by adding it with the (d+ 1)-sharing of a random
nonce. Using a second I.S.W. gadget, we can keep the overall output correct by

6 Proofs via reduction to the random probing model do not require the underlying
secret to be uniformly distributed, as the reduction is applied to the leakage for
each share anyway [23, Lemma 2]. Hence, it ensures that the d-encoding is uniformly
distributed over Yd+1, which corresponds to a uniform secret.

18



leveraging the identity: G×H = (G⊕R)×H⊕ (R×H). At first glance, one may
think that this trick somewhat shifts the problem without fixing it, since the
input operands of both I.S.W. are independent, but now the input operands of
the final Xor in line 8 of Algorithm 5 are no longer independent. Surprisingly, the
prior joint distribution of the outputs (M,H′) of the two I.S.W. multiplications
has a much lower bias with respect to the joint uniform distribution, compared
to the bias of the joint distribution of (G,H). This is formalized in the following
theorem, proven in Appendix B.2.

Theorem 8. Let Y ∈ Y be uniformly distributed, and let L corresponding to the
leakage of Algorithm 5. Then, assuming leak-free refreshings, and that g(Y) = Yp

and h(Y) = Yq, for p, q positive integers, the following inequality is satisfied:

MI(Y;L) ≤ ϕ(p, q, |Y|) · η ·
(
(d+ 1)δ

η

)d+1

+ φ(p, q, |Y|) · η ·
(
δ

η

)d+1

,

where

– ϕ(p, q,M) = 4 · M
M−1 · gcd(q,M − 1),

– φ(p, q,M) = 4 + M
M−1 · gcd(p,M − 1) + max

(
2, M

M−1 · gcd(p+ q,M − 1)
)
.

Note that in Theorem 8, both ϕ and φ are almost independent of the field
size, whereas t3 in Theorem 7 scales at least linearly with the field size. From
Theorem 8 follows the corollary stated hereafter.

Corollary 9. In the same setting as in Corollary 8, if the I.S.W. multiplication
gadgets are replaced by the scheme in Algorithm 5, then

N?
a (SR) ≥ Ω

(
|Y|−ε · log |Y| ·

(
η

(d+ 1)δ

)d+1
)

.

Proof. The proof follows the one of Corollary 8, by updating the functions ϕ and
φ in Equation 18 with the new values in Theorem 8.

5 Discussion

We have established our main results in section 3 and section 4. We propose
hereafter to discuss some features of our results, and to compare them to previous
works. To this aim, we first compare in subsection 5.1 our bounds to previous
works. We then discuss in subsection 5.2 how we can extend our results to
security bounds in terms of chosen plaintext attacks. We conclude this section by
discussing the advantages and drawbacks of the blinded I.S.W. gadget presented
in section 4.
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5.1 Comparison with Related Works

We compare in this section our security bounds with related works. To this end, we
first discuss the noise requirements in the different security bounds in the literature.
We synthesize in Table 3 the different noise requirements of masking security
bounds. We can see that our security bound gets a similar noise requirement as
the proofs of Dziembowski et al. [25] and Prest et al. [44], although stated in
different metrics. Notice that the dependency of our noise requirement in d is
tight, since it depicts the potential ability of an adversary to increase its success
of recovering each share through horizontal attacks, as argued by Battistello et
al. [7] and Grosso and Standaert [31]. Nevertheless, it is still possible to relax
this dependency by using other multiplication gadgets [1,3,2,8,28,29].

Moreover, we also extend Prest et al.’s case study on the exemplary leakage
distribution in which each intermediate calculation is assumed to leak its Hamming
weight with an additive Gaussian noise of standard deviation σ [44, Table 1].
We complete Table 3 with our new result, by using the fact that for such a
leakage model, MI = Θ

(
log(M)
σ2

)
. It can be noticed that on this particular leakage

distribution, our requirement on the minimal noise level is now the weakest of all
security proofs based on the I.S.W. masking scheme.

Table 3: Noise requirements, and illustration on a case study on a Hamming weight
leakage model with additive Gaussian noise.

Work (year) Noise requirement Equivalent Gaussian noise

[45] (2013) EN ≤ O
(

1
dM3

)
σ ≥ Ω

(
dM5/2

√
log(M)

)
[23] (2014) SD ≤ O

(
1

dM2

)
σ ≥ Ω

(
dM2

√
log(M)

)
[25] (2015) SD ≤ O

(
1
d

)
σ ≥ Ω

(
d
√

log(M)
)

[44] (2019) RE ≤ O
(
1
d

)
σ ≥ Ω(d log(M))7

This work MI ≤ O
(
1
d

)
σ ≥ Ω

(√
d log(M)

)

At first glance, Table 3 suggests that Prest et al.’s RE-based security bound
remains quite competitive with the other works based on the noise requirements.
However, we emphasize that the RE is a worst-case metric, whereas all the other
metrics in Table 3 are averaged metrics. Estimating worst-case metrics may not
always be efficiently tractable by practitioners, especially for high-dimensional
leakage. In addition, worst-case metrics are by definition much more conservative
than averaged metrics, which contrasts with the concrete SCA security metrics
like the GE or the SR [50] that are also averaged metrics. To illustrate this, let us

7 As explained by Prest et al. [44, Remark 2], the RE is not even formally defined
for leakage models with Gaussian noise, unless requiring to a tail-cut argument that
adds another constant factor hidden in the Ω(·) notation.
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consider another example of leakage distribution, namely the now famous random
probing model considered by Duc et al. in their groundbreaking work [23]. In
this leakage model, the adversary can recover the exact value of any intermediate
calculation, each with probability 0 ≤ κ ≤ 1, where the parameter κ denotes the
baseline noise level here. It can be verified that the MI of this leakage model is
log |Y| · κ, whereas its RE is always fixed to |Y| − 1 regardless of the value of κ,
so that the MI can be set arbitrarily close to zero — by setting κ accordingly —
while the RE remains constant. In other words, the random probing model can
never be proven secure with masking by using a security bound involving the
RE, whereas our masking security bound remains meaningful for the random
probing leakage model, as long as κ ≤ O

(
1

log|Y|·d

)
.8

As a result, the only security bound comparable with ours in terms of noise
requirements remains Dziembowski et al.’s bound [25]. Their bound is obtained
using Chernoff-like concentration inequalities [11]. Although this approach has
been fruitful in Duc et al.’s elegant reduction to the probing model [23] due to
its genericity, it has a major drawback since the convergence rate of the security
bound no longer depends on the actual baseline noise level δ. This is highlighted
in their final bound [25, Eq. (42)]: it can be verified that the bound is even always
increasing for values of d between 0 and 8, and becomes non-trivial — i.e., lower
than one — only for d ≥ 142 if |Y| = 256. On the opposite, our security bounds
do not suffer from this caveat, since they depend on the actual baseline noise level
δ, which makes our bounds non-trivial for arbitrarily small value of d, provided
that δ is small enough as we will depict later in Figure 2.

5.2 Beyond Random Plaintext Attacks

One may argue that the latter comparison with the works of Dziembowski et al.
is not completely fair, since their bound is stated for SCA adversary with chosen
plaintext. Hereupon, the authors stated later at Tcc 2016 that by leveraging a
reduction from non-uniform secrets to uniform secrets [26, Lemma 2],

“The cryptographic interpretation of [reductions from non-uniform to
uniform secrets] is that it suffices to consider only random-plaintext
attacks, instead of chosen-plaintext attacks” [26, p. 297].

We notice that our Theorem 2 actually represents such a reduction. Accordingly,
our main results Theorem 7 and Theorem 8 can be extended to cover adversaries
with chosen plaintexts, by multiplying the constant factors by (1− e−1) · |Y|, as
pointed out in the following Corollary 10.

Corollary 10. Let Y be a random variable arbitrarily distributed over Y, and
protected by a masking scheme with d+ 1 shares as described in subsection 2.2
resulting in T elementary calculations. Assume that the scheme protects |S| linear
8 This condition could even be relaxed to κ ≤ O

(
1
d

)
in the particular case of leakage

in the random probing model, if one would directly state a security bound for this
leakage model, e.g., by extending Eq. (9) of Duc et al. [24].
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operations, and |M| I.S.W. multiplications that are part of a monomial Sbox,
and protected according to Algorithm 5. Let L = (Li)1≤i≤T be the random vector
denoting the leakage of the full masking scheme, and let δ ≥ 0 be such that every
Li is δ-MI-noisy. Then, the inequality in Theorem 7 is verified for:

t3 = (1− e−1) · |Y| ·
∑

(p,q)∈M

ϕ(p, q, |Y|) ,

t1,2,4 = (1− e−1) · |Y| ·

 ∑
(p,q)∈M

φ(p, q, |Y|) +
∑
k∈S

ψ(k, |Y|)

 ,

where ϕ and φ are the functions defined in Theorem 8, and ψ is the function
defined in Theorem 7.

5.3 Beyond Monomial Sboxes

Likewise, we can extend our previous results to random or chosen plaintext
attacks on block ciphers whose Sbox is not a monomial, as stated by Corollary 11.

Corollary 11. Let Y be a random variable arbitrarily distributed over Y, and
protected by a masking scheme with d+ 1 shares as described in subsection 2.2,
resulting in T elementary calculations. Assume that the scheme protects |S| linear
operations, and |M| I.S.W. multiplications. Let L = (Li)1≤i≤T be the random
vector denoting the leakage of the full masking scheme, and let δ ≥ 0 be such that
every Li is δ-MI-noisy. Then, the inequality of Theorem 7 is verified for:

t3 = 2 ·
(
1− e−1

)
· |Y|2 · |M| , t1,2,4 =

(
1− e−1

)
· |Y| · (|S|+ |M|) .

Proof. We apply Theorem 1, then we group the type 1, 2, and 4 subsequences
together and we apply the reduction to uniform secrets using Theorem 2. Likewise,
we apply Theorem 2 for type 3 subsequences over the domain Y × Y. We can
then directly apply Theorem 4 and Theorem 5 respectively.

Notice that the only difference in the assumptions of Corollary 10 and Corol-
lary 11 is that we no longer need any particular assumption on the Sbox in
the latter case. Whether we could leverage further assumptions on the Sbox for
arbitrarily distributed secrets is left as an open question for further works.

Table 4 synthesizes the different constant factors t3, whether the SCA adver-
sary is assumed to operate with random or chosen plaintexts, or whether the
blinded I.S.W. multiplication gadget is used or not. Likewise, we may notice that
the constant factor of Corollary 11 scaling quadratically with the field size seems
at first glance worse than the one of Dziembowski et al. [25, Thm. 1], whereas
their security bound only scales linearly with the field size |Y|. Nevertheless, our
work considers the paradigm where the leakage comes from the computations [41],
where Dziembowski et al.’s result considers the simulation paradigm where the
leakage comes from the wires. Duc et al. argue that security bounds stated
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Table 4: Constant factor overhead, depending on the attack scenario, and on the
multiplication gadget used.

Sbox \ Plaintext Random Chosen

Any Sbox O
(
|Y|2

)
O
(
|Y|2

)
Monomial Sbox O

(
|Y|1+ε

)
O
(
|Y|2

)
Monomial Sbox + Blinding O(|Y|ε) O

(
|Y|1+ε

)

with the simulation paradigm with leakage from the wires can be converted into
security bounds in the “leakage from computations” paradigm by considering
wires defined over Y ×Y rather than Y [23, Sec. 5.5]. This would convert the |Y|
constant factor in Dziembowski et al.’s result into |Y|2.9

5.4 On the Tweaked ISW Gadget

We finally discuss some aspects of our blinded I.S.W. multiplication gadget. For
concreteness, we present hereafter in Table 5 a comparison of the constant factors
in Theorem 7 and Theorem 8, for the AES Sbox exponentiation only. We can

Table 5: Constant factors for the whole AES Sbox exponentiation.

Scheme Corollary 10 Theorem 7 Theorem 8
t3 t1,2,4 t3 t1,2,4 t3 t1,2,4

Rivain-Prouff [47] 331,413 1, 132 4096 41.1 32.1 80.3
Cardoso et al. [48] 331,413 1, 294 2048 40.1 16.1 78.2

observe that while using the blinded I.S.W. gadget doubles the t1,2,4 constant
factor, it decreases the t3 constant factor by a factor of |Y| /2, which is of at least
two orders of magnitude for the AES field. Interestingly, the t3 constant factor in
Cardoso et al.’s scheme is even close to 16, which is the tightest possible, given
that their exponentiation scheme contains four multiplications. This is because
each multiplication in Cardoso et al.’s scheme involves either Y or Y14, but both
1 and 14 are coprime with |Y| − 1 = 255.

We end this subsection by discussing whether blinding would have a significant
practical interest for current masked implementations of AES. Admittedly, the
significant gain in the constant factor comes though with an increased cost in
terms of field multiplications and fresh randomness (by a factor two). Figure 2
compares the security bounds for the whole AES Sbox Rivain-Prouff scheme
(stated in bits) with respect to the number of field multiplications. We can see
on Figure 2a, that for the AES field and δ = 10−2, the dotted curve is below
the plain curve, by one order of magnitude. This means that the blinded I.S.W.

9 We also recall that their bound is stated in terms of SD, whereas ours is stated in
terms of MI.
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δ = 10−1, no blinding δ = 10−2, no blinding δ = 10−3, no blinding
δ = 10−1, blinding δ = 10−2, blinding δ = 10−3, blinding

50 100 150 200
10−10

10−6

10−2

102

#multiplications

M
I

(a) |Y| = 28.

50 100 150 200

10−10

10−3

104

#multiplications

M
I

(b) |Y| = 232.

Fig. 2: Security bounds without and with blinding, with respect to the number of field
multiplications, for d ∈ [1, 5]. The number of multiplications is calculated over the
Rivain-Prouff scheme for the AES Sbox.

multiplication implies tighter security bounds for a comparable implementation
cost. However, this gain vanishes for noisier implementations, e.g., for δ = 10−3.
The advantage of our blinded I.S.W. becomes more significant when working on
larger fields, as depicted on Figure 2b where the field is of size 232. Whether the
advantage of our blinded I.S.W. in terms of provable security also translates in
terms of actual practical security gains remains an open questions and is let for
further investigations in the future.

5.5 Perspectives

The main limitation of our work remains the leak-free assumption for the mask
refreshings, like in the previous works [45,25,44]. It remains an open problem
whether this assumption could be relaxed. Likewise, our masking security proof
only covers the I.S.W. masking scheme, as in the previous works, whereas the
generic approach through the probing model can cover any type of masking
scheme. Nevertheless, we do not see any prior reason why our security proof
could not be used to extend over different masking gadgets, beyond the I.S.W.
multiplication gadget, and in particular for table-based masking schemes [18,20],
that are known to be efficiently secure in the probing model, but much less in the
noisy leakage [51,13]. Overall, this leaves the door open for good opportunities of
improvement in the next few years.
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A Utilitary Lemma

Proposition 2 (MGL properties). Let f (·) be the MGL function defined in
Equation 9, and let δ0, . . . , δd be d+ 1 mutually independent random variables.
Then the following inequality holds:

E
δ0,...,δd

[f (δ0, . . . , δd)] ≤ f
(
E [δ0] , . . . ,E [δd]

)
. (19)

Lemma 2. Let Y ∈ Y be a discrete random variable, and let g : Y 7→ g(Y) be a
mapping Y → Y. Let L : Y → L be a random variable. Then:

MI(Y;L(g(Y))) = MI(g(Y);L(g(Y))) .

Proof of Lemma 2. First, notice that we have the two following Markov chains:

Y→ g(Y)→L(g(Y)) ,
g(Y)← Y→L(g(Y)) .

By the DPI [21, Sec. 2.8] on the first two chains, we have MI(Y;L(g(Y))) Q
MI(g(Y);L(g(Y))), hence:

MI(Y;L(g(Y))) = MI(g(Y);L(g(Y))) .

Lemma 3. Let Y,R be two independent random variables, uniformly distributed
over a field Y of size M . For all a, b ∈ Y, we have

Pr
(
Yp+q ⊕ RYq = a,RYq = b

)
≤ 1

M2
·max

{
2,

M

M − 1
· gcd(p+ q,M − 1)

}
.

(20)

Proof. Denote by p the left hand-side of Equation 20. Notice that we may restate
p as follows:

p = Pr
(
Yp+q = a⊕ b | RYq = b

)
Pr(RYq = b)

Let us distinguish the following cases, in which we will show that p is always
upper bounded by the right hand-side of Equation 20.

Case a = b = 0. Here, Pr
(
Yp+q = 0 | RYq = 0

)
= Pr

(
Yp+q = 0

)
= 1

M , and

Pr(RYq = 0) = Pr(R = 0 ∪Yq = 0)

= Pr(R = 0) + Pr(Yq = 0)− Pr(R = 0 ∩Yq = 0)

= Pr(R = 0) + Pr(Yq = 0)− Pr(R = 0) · Pr(Yq = 0) ,

where the first equality comes from the property of the field multiplication, the
second equality is an application of the inclusion/exclusion formula, and the last
equality comes from the independence between R and Y. Therefore, it comes
that

Pr(RYq = 0) =
2

M
− 1

M2
≤ 2

M
. (21)

Hence, p ≤ 2
M2 .
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Case a 6= 0, b = 0. Using Bayes’ theorem, we may restate p as follows:

p = Pr
(
RYq = 0 | Yp+q = a

)
· Pr
(
Yp+q = a

)
= Pr

(
R = 0 ∪Y = 0 | Yp+q = a

)
· Pr
(
Yp+q = a

)
= Pr(R = 0) · Pr

(
Yp+q = a

)
=

1

M
· Pr
(
Yp+q = a

)
,

where the third equality comes from R and Y being independent, and necessarily
Y 6= 0. Using Equation 6 and Equation 21, it comes that

p ≤ gcd(p+ q,M − 1)

M(M − 1)
≤ 2

gcd(p+ q,M − 1)

M2
.

Case b 6= 0. Here, RYq is uniformly distributed over the non-zero values of Y,
so Pr(RYq = b) ≤ 1

M−1 , and is independent of Y. As a consequence, we have

Pr
(
Yp+q = a⊕ b | RYq = b

)
= Pr

(
Yp+q = a⊕ b

)
,

so p = Pr
(
Yp+q = a⊕ b

)
· Pr(RYq = b). It remains to bound the first factor of

p using Equation 6, and we get p ≤ gcd(p+q,M−1)
(M−1)2 . Finally, using the inequality

1
M−1 ≤

2
M , for M ≥ 2, we obtain p ≤ 2 gcd(p+q,M−1)

M2 .

B Proofs of Main Results

Proof of Theorem 1. By definition, we have

H(L | Y) = E
y
[H(L1, . . . ,Lt | Y = y)] . (22)

By assumption, all the leakages, conditioned to Y = y are mutually independent
so

H(L | Y = y) =

t∑
i=1

H(Li | Y = y) .

Hence, combining with Equation 22, H(L | Y) =
∑t
i=1 H(Li | Y). Thereby,

MI(L;Y) ≤
t∑
i=1

MI(Li;Y)

Proof of Theorem 2. Now, we can see L as an — undesired — communication
channel. By definition of the capacity C of the channel L, and using Lemma 2,
we get that

MI(Y;L(g(Y))) = MI(g(Y);L(g(Y))) ≤ max
Pr(Z)

MI(Z;L(Z)) = C .
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Using [49, Thm. 1, Eq. (17)], we get that

C

MI(Y;L(Y))
≤ |Y| ·min

{
2−C , 1− e−1

}
≤ |Y| ·

(
1− e−1

)

B.1 Proof of Theorem 5 and Theorem 6

Proof of Theorem 5. Using the chain rule of MI [21, Thm. 2.5.2], we have:

MI((A,B);L) = MI(A;L) +MI(B;L | A) . (23)

Let us bound the first term of Equation 23. The bound on the second term will
straightforwardly follow.

Bounding MI(A;L). Observe that since A and B are independent, it follows that
A and B are also independent. As a result,

MI(A;L) ≤ MI(A;L | B) = E
b
[MI(A;L | B = b)] . (24)

Let b = (b0, . . . , bd) be fixed for now, and let us bound MI(A;L | B = b). To
this end, notice that we may now gather the leakages Li,j by batches sharing the
same index i as follows:

MI(A;L | B = b) = MI
(
A; {L0,j(A0, bj)}0≤j≤d , . . . , {Ld,j(Ad, bj)}0≤j≤d

)
.

(25)
By assumption, each batch of leakages {Li,j(Ai, bj)}0≤j≤d only depends on
the share Ai. Hence, we may use Theorem 4 to bound the right hand-side of
Equation 25 as follows. Let us define MI

(
Ai; {Li,j}0≤j≤d

)
= δ′i — notice that δ′i

depends on bi. Then we have

MI
(
A; {L0,j}0≤j≤d , . . . , {Ld,j}0≤j≤d

)
≤
(9)

f2n(δ
′
0, . . . , δ

′
d) . (26)

Substituting Equation 26 in Equation 25, and then plugging into Equation 24
gives

MI(A;L) ≤ E
b
[f2n(δ

′
0, . . . , δ

′
d)] ≤ f2n

(
E
b0
[δ′0] , . . . , E

bd
[δ′d]

)
, (27)

where the second inequality comes from Proposition 2. We are then reduced to
upper bound E [δ′i] for all 0 ≤ i ≤ d. To this end, notice that for i fixed, the batch
of leakages {Li,j(Ai, bj) | Ai}0≤j≤d are mutually independent. Hence, we can
now leverage Theorem 1 to upper bound δ′, as follows:

MI
(
Ai; {Li,j(Ai, bj)}0≤j≤d

)
≤
(2)

d∑
j=0

MI(Ai;Li,j(Ai, bj)) . (28)
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Using the chain rule of MI [21, Thm. 2.5.2] the other way around, we get that

MI(Ai;Li,j(Ai, bj)) ≤ MI(Ai,Bj ;Li,j(Ai,Bj)) = δi,j . (29)

Hence, combining Equation 28 with Equation 29, and taking the expectation, we
get that

E [δ′i] ≤
d∑
j=0

δi,j . (30)

Finally, plugging Equation 30 into Equation 27 gives the first term in the right
hand-side of Equation 11.

Bounding MI(B;L | A). Using the chain rule of the MI again, we may bound
MI(B;L | A) by conditioning on the d last shares of A (except the share of
index 0):

MI(B;L | A) ≤ MI
(
B;L | A, {Ai}1≤i≤d

)
Using the same argument as Dziembowski et al. [26, Lemma 3], we may notice
that since A is assumed to be uniform:(

A, {Ai}1≤i≤d
)
d
=

(
A⊕

(
d⊕
i=1

Ai

)
, {Ai}1≤i≤d

)
d
= {Ai}0≤i≤d ,

it implies that MI
(
B;L | A, {Ai}1≤i≤d

)
= MI(B;L | A). By symmetry of the

roles, the latter term can be bound in the same way as the right hand-side of
Equation 24, by permuting the roles of the indices i and j.

Proof of Theorem 6. Let L = (L1(Y0,Y1), . . . ,Ld(Yd−1,Yd)) for short. Expand-
ing MI(Yd;L), we have

MI(Yd;L) = MI(Yd;Ld(Yd−1,Yd) | Ld−1(Yd−2,Yd−1), . . . ,L1(Y0,Y1))

+MI(Yd;Ld−1(Yd−2,Yd−1), . . . ,L1(Y0,Y1))

Notice first that the second term in the right hand-side equals 0, since by
assumption Yd is independent of the {Yi}0≤i≤d−1. Likewise, the first term of the
right hand-side can be upper bounded by MI(Yd;Ld(Yd−1,Yd) | Yd−1), which
can in turn be upper bounded by δd.

B.2 Proofs for the Blinded ISW Gadget

Proof of Theorem 8. We now show how to bound the MI between Y and the
whole leakage. Notice that we may not directly use Theorem 1 to upper bound
MI(Y;L) by the sum of the MIs over all the elementary subsequences of the
gadget in Figure 1, since they are not all independent due to the presence of R.
This problem can be easily circumvented by using the DPI:

MI(Y;L) ≤ MI(Y,R;L) . (31)
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Since the encodings of each sharing is refreshed by the leak-free refresh oracle,
all the subsequences in the blinded I.S.W. are now mutually independent, so we
may now use Theorem 1:

MI(Y,R;L) = MI(Y,R;L⊕1) +MI(Y,R;L⊕2)

+MI
(
Y,R;LISW1,in

)
+MI

(
Y,R;LISW1,out

)
+MI

(
Y,R;LISW2,in

)
+MI

(
Y,R;LISW2,out

) (32)

We shall upper bound each term in the right hand-side of Equation 32.

Bounding MI(Y,R;L⊕1). Recall that L⊕1 is the random variable denoting
the leakage of the input operands of the first Xor in Figure 1, namely Yp and
R. Using Lemma 2, we get that MI(Y,R;L⊕1

(Yp,R)) = MI(Yp,R;L⊕1
(Yp,R)).

Observe that G and R are independent, so we may refine Corollary 3 . To this
end, let A be uniformly distributed over Y, and independent of R. Observe that
for any g, r ∈ Y2,

Pr(Yp = g,R = r)

Pr(A = g,R = r)
=

Pr(Yp = g) Pr(R = r)

Pr(A = g) Pr(R = r)
≤ |Y|
|Y| − 1

· gcd(p, |Y| − 1) . (33)

Therefore, injecting Equation 33 into Equation 4 gives

MI(Yp,R;L⊕1
(Yp,R)) ≤ |Y|

|Y| − 1
· gcd(p, |Y| − 1) ·MI(A,R;L⊕1

(A,R)) .

We are then reduced to bound MI(A,R;L⊕1
). Applying Corollary 4 on the pair

of variables (A,R), we get that:

MI(A,R;L⊕1
) ≤ f (δ, . . . , δ) .

Putting everything together, we get that

MI(Yp,R;L⊕1
) ≤ |Y|
|Y| − 1

· gcd(p, |Y| − 1) · f (δ, . . . , δ) . (34)

Bounding MI(Y,R;L⊕2). Using Lemma 2, we get that

MI
(
Y,R;L⊕2(H

′,M)
)
= MI

(
H′,M;L⊕2(H

′,M)
)
.

Using Lemma 3, we deduce that

MI
(
H′,M;L⊕2(H

′,M)
)
≤ max

{
2,

M

M − 1
· gcd(p+ q,M − 1)

}
·MI(A,B;L⊕2(A,B)) ,

where A,B are independent and uniformly distributed over Y. We may then
apply Corollary 4 to get

MI(A,B;L⊕2
(A,B)) ≤ f (δ, . . . , δ) .

Putting everything together, we get that

MI(Y,R;L⊕2
) ≤ max

{
2,

M

M − 1
· gcd(p+ q,M − 1)

}
· f (δ, . . . , δ) . (35)
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Bounding MI
(
Y,R;LISW1,in

)
. Using Lemma 2, we get that

MI
(
Y,R;LISW1,in

(G′,H)
)
= MI

(
G′,H;LISW1,in

(G′,H)
)
.

Observe that the input operands of ISW1 are independent, and that G′ is uniformly
distributed over Y. Moreover, for all h ∈ Y we have Pr(H = h) ≤ gcd(q,|Y|−1)

|Y|−1 ,
which implies that

MI
(
G′,H;LISW1,in

(G′,H)
)
≤ |Y|
|Y| − 1

·gcd(q, |Y| − 1)MI
(
G′,B;LISW1,in

(G′,B)
)
,

where B ∈ Y is uniform and independent of G′. We may then apply Theorem 5
to get

MI
(
G′,B;LISW1,in

(G′,B)
)
≤ 2 f ((d+ 1)δ, . . . , (d+ 1)δ) .

Putting everything together, we have that

MI
(
Y,R;LISW1,in

)
≤ 2 |Y|
|Y| − 1

· gcd(q, |Y| − 1) · f ((d+ 1)δ, . . . , (d+ 1)δ) . (36)

Bounding MI
(
Y,R;LISW2,in

)
. In this case, we get exactly the same bound as

in Equation 36, by changing G′ with R. The same arguments then apply.

Bounding MI
(
Y,R;LISW1,out

)
. Using Lemma 2, we get that

MI
(
Y,R;LISW1,out(M)

)
= MI

(
M;LISW1,out(M)

)
.

Then, notice that M = (G⊕R)H, and that we argued that G⊕R = G′ is uniformly
distributed, and independent of H. Therefore, M is uniformly distributed over the
non-zero values of Y , provided that M 6= 0. If not, then we have Pr(M = 0) = 1

M .
Overall, for all y ∈ Y,

Pr(M = y)

Pr(Y = y)
≤ 2 .

By virtue of Equation 6, we have that

MI
(
M;LISW1,out

(M)
)
≤ 2MI

(
Y;LISW1,out

(Y)
)
.

We can now apply the remaining of the proof of Corollary 7 (starting after the
reduction from non-uniform to uniform secrets) to deduce that

MI
(
Y;LISW1,out

(Y)
)
≤ f (δ, . . . , δ) .

Putting everything together, we have that

MI
(
Y,R;LISW1,out

(M)
)
≤ 2 f (δ, . . . , δ) . (37)

Bounding MI
(
Y,R;LISW2,out

)
. Observing that G⊕ R may be replaced by R

in the previous case of LISW1,out without any loss of generality, we get the same
bound as in Equation 37.
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