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Abstract

Given three positive integers n < N and M , we study those functions
F from the vector space FN

2 (possibly endowed with the field structure)
to FM

2 , which map at least one n-dimensional affine subspace of FN
2 to

a subset of an affine subspace of dimension n, or at least of a dimension
less than M . This provides functions from Fn

2 to Fm
2 for some m (and

in some cases, permutations) that have a simple representation over FN
2

or over F2N . We show that the nonlinearity of F must not be too large
for allowing this and that if it is zero, there automatically exists a strict
affine subspace of its domain that is mapped by F into a subset of a
strict affine subspace of its co-domain. In this case, we show that the
nonlinearity of the restriction may be large. We study the other crypto-
graphic properties of such restriction, viewed as an (n,m)-function (resp.
an (n, n)-permutation).

We then focus on the case of an (N,N)-function F equal to ψ(G(x))
where G is almost perfect nonlinear (APN) and ψ is a linear function
with a kernel of dimension 1. We will build upon the follow fact: the
restriction of G over an affine hyperplane A has the D-property (introduced
by Taniguchi after a result from Dillon) as an (N − 1, N)-function, if and
only if for every such ψ, the restriction of F(x) = ψ(G(x)) over A is not an
APN (N−1, N−1)-function. If this holds for all affine hyperplanes A, we
say that G has the strong D-property. The fact of not satisfying this nice
property is also positive in a way since it allows to construct a number
of APN (N − 1, N − 1)-functions from G. We give a characterization
of the strong D-property for crooked functions by means of their ortho-
derivatives and we prove that the Gold APN function in dimension N ≥ 9
odd does have the strong D-property. Completing a result from Taniguchi
for N ≥ 6 even, we can prove that the strong D-property of the Gold APN
function in dimension N holds if and only if N = 6 or N ≥ 8. Then we
give a partial result on the Dobbertin APN power function and on this
basis, we conjecture that it has the strong D-property.
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We then move our focus to infinite families of (N −1, N −1)-permuta-
tions constructed as the restriction of (N,N)-functions F(x) = ψ(G(x)) or
F(x) = ψ(G(x))+x where ψ and G are as before but with the extra hypoth-
esis that G is an APN permutation. There are in the literature two families
of differentially 4-uniform permutations corresponding to this framework,
but no proof was given that they are not APN. We investigate these con-
structions deeply and prove that they do not produce APN permutations
in dimension n = N − 1 even. We present our own construction and we
show a relation between infinite families of APN (N,N)-permutations and
infinite families of 4-uniform (N − 1, N − 1)-permutations. This gives a
deeper understanding on the problem of constructing infinite families of
APN permutations in even dimension (for trying to solve the so-called
big APN problem) with the method explored in this paper. This prob-
lem is also related to the strong D-property and we conjecture that some
classes of APN power permutations have such property in dimension large
enough. We show that only few APN permutations do not have the strong
D-property (and this happens only for small dimension). Our construc-
tion gives many families of 4-uniform (N − 1, N − 1)-permutations with
high nonlinearity that are additionally, under some conditions, complete
permutations.

1 Introduction

Given a power q of a prime, the known methods for designing infinite classes of
permutations over the space Fnq that admit a simple representation (whatever
it is) are not numerous. One has been much studied: identify Fnq with the
field Fqn (thanks to the choice of a basis of the vector space Fqn over Fq)
and search for infinite classes of permutation polynomials. The representation
of each permutation is then very simple (we just need a basis of the vector
space Fqn and the polynomial expression of the permutation). But permutation
polynomials having good properties for applications such as cryptography and
coding theory (the two most important properties being a large nonlinearity and
a low differential uniformity) are not that numerous and this classical method
has provided only a few interesting classes (see [1, 2]), that can be used in such
applications. Another method which has been little investigated, surprisingly,
is to find permutation polynomials F over FqN with N > n, or even functions
from FqN to itself, such that there exists an n-dimensional affine subspace A of
the vector space FqN over Fq, that is mapped by F onto an affine subspace A′ of
FqN of the same dimension; we identify then A and A′ with Fnq through choices
of bases and we obtain a permutation over Fnq with a simple representation over
FqN . This representation consists again in a basis - but this time, of the affine
subspace, which is in FqN and not in Fqn - completed into a basis of FqN over
Fq, and the polynomial representation of the permutation over FqN , which is
now a polynomial over FqN and not over Fqn . This representation is a little
less simple than in the classical case, but it is still quite simple compared to
a look-up table; it is also more informative. In this paper, we study the case
q = 2 and we are also more generally interested when the (n, n)-function is not
bijective.

A setting that could seem restrictive but which is surprisingly difficult to
study is when the (N,N)-function F (that is a function from FN2 to itself) is
equal to ψ(G(x)) where G is almost perfect nonlinear (APN) and ψ is a linear
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function with a kernel of dimension 1. This setting was also explored by Beierle
et al. in 2022 [3] to find new quadratic APN functions. One year later, Taniguchi
introduced in [4] the D-property as a generalization for APN (N,M)-functions
of a property proved by Dillon on APN (N,N)-functions. A consequence of
the work by Taniguchi in [4] is that the restriction of an APN (N,N)-function
G over an affine hyperplane A has the D-property as an (N − 1, N)-function if
and only if for every linear surjective (N,N − 1)-function ψ, the restriction of
F(x) = ψ(G(x)) over A is not an APN (N − 1, N − 1)-function. We use this as
a motivation for the introduction of the notion of the strong D-property of an
(N,N)-function G, meaning that the restriction of G over A has the D-property
as an (N−1, N)-function for all affine hyperplanes A. Such setting was partially
investigated by the same Taniguchi and presented as a positive result for some
classes of functions (namely power and quadratics); in our paper we build upon
the fact that its negation is also a rather positive property since it allows to
construct a number of APN (N − 1, N − 1)-functions from G. Therefore, it is
important to study the strong D-property of all classes of functions because if
they have it, they are stronger cryptographically than other APN functions, and
if they do not, we can construct new APN functions in dimension N − 1 and
this is also important.

The first infinite family defined by the restriction of functions with zero
nonlinearity was the one constructed by the first author in 2011 [5] by using the
inverse function. It is composed of 4-uniform (n, n)-permutations with optimal
algebraic degree n−1, and nonlinearity at least 2n−1−2

n
2 +1 (that is not optimal)

for n even and at least 2n−1−⌊2n
2 +1⌋−1 for n odd. Three years after in 2014, Li

and Wang [6] constructed many families of 4-uniform (n, n)-permutations where
n is even with optimal known nonlinearity 2n−1 − 2

n
2 and algebraic degree n+2

2
using the inverse of the Gold APN function.

We investigate these constructions deeply and prove that they do not pro-
duce APN permutations in dimension n = N − 1 even. We will not study the
family [5] for the case N even because, in that dimension, the inverse function is
not APN and this setting is out of the scope of this paper. The theory we develop
for such proofs helps understanding the problem of constructing APN permuta-
tions in even dimension (for trying to solve the so-called big APN problem) with
this method. We give many families of 4-uniform permutations in F2n where
n = N−1 with high nonlinearity and that are, under some conditions, complete
permutation polynomials. We observe that if the (N,N)-permutations used for
constructing these (N−1, N−1)-permutations have the strong D-property, then
any restriction of the (N,N)-permutation to an affine hyperplane is non-APN.
The converse of this implication is not true in general and we show evidence
that proving the non-APNness of such classes of permutations can be easier than
proving the strong D-property of the APN permutation G. In practice, proving
the strong D-property is a matter of showing that many systems of equations
have at least one solution while we solve only those systems that are relevant
for the construction of permutations in dimension N − 1. We do this for the
inverse function in odd dimension and the inverse of the Gold APN function.
Because the importance of showing such nonexistence results, we believe that
this is a good argument to conjecture that those two APN power permutations
have the strong D-property in dimension N large enough. We leave the difficult
proof of these conjectures for future work.

In Section 2, we give some preliminaries on vectorial Boolean functions.
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In Section 3, we discuss more generally the cryptographic properties of the
restriction of any (N,M)-function providing an (n,m)-function. The differential
uniformity of the restriction is bounded above by the differential uniformity of
the starting function. We give an explicit form of the Walsh transform and the
nonlinearity of the restriction. Then we discuss a sufficient condition such that
the nonlinearity of the restriction is nonzero. In Section 4, we discuss the special
case of (N,M)-functions with affine components that is a sufficient condition
for the existence of a strict affine subspace of its domain that is mapped into
a subset of a strict affine subspace of its co-domain. We prove that, up to EA
equivalence, we can write these functions in the form F(x) = ψ(G(x)) where
ψ is linear and we can assume that G has nonzero nonlinearity for the case
M = N ≥ 3. With this easier-to-handle form, we determine some bounds on the
cryptographic property of the restriction. In Section 5, we introduce the strong
D-property of APN (N,N)-functions. We give a characterization for crooked
functions and prove that the Gold APN function has the strong D-property for
N ≥ 9 odd (and thanks to Taniguchi’s result for N even, we can address all
cases). As a Corollary, we give a partial result on the strong D-property of the
Dobbertin APN power function and we use this to conjecture such property.
In Section 6, we study the infinite families introduced in [5, 6] and prove that
they can never produce APN permutations in even dimension. We give two
conjectures on the strong D-property of some power APN permutations and we
define many families of 4-uniform permutations with high nonlinearity that are,
under some conditions, complete permutation polynomials when represented in
F2n where n = N − 1.

2 Preliminaries

Let N,M ∈ N. We say that F is an (N,M)-function if F is a function from FN2
(which can be identified with F2N ) to FM2 (which can be identified with F2M ).
When we do not wish to specify the values of N and M , we speak of a vectorial
function. We say that F is a permutation over FN2 if F is a bijective (N,N)-
function. We say that f is a Boolean function over FN2 if f is a (N, 1)-function.

A Boolean function f over FN2 has a unique representation as a multivariate
polynomial with coefficients in F2 and of degree at most N called the algebraic
normal form (ANF). The degree of the ANF of f is called the algebraic degree
of f [2]. We can write an (N,M)-function as F = (f1, f2, . . . , fM ) , where the
Boolean functions f1, f2, . . . , fM are called the coordinate functions of F . A
component function (briefly, a component) of F is any nonzero linear combina-
tion of its coordinate functions. The algebraic degree of F is equal to the max-
imum algebraic degree among its coordinate functions (and then also, among
its component functions). A vectorial Boolean function F is affine, quadratic,
or cubic if its algebraic degree is respectively less than or equal to 1, 2, or 3.
Moreover, F is linear if it is affine and F(0) = 0. If we identify FN2 with the
finite field F2N , then any function F over F2N is also uniquely represented as a

univariate polynomial, F(x) =
∑2N−1
i=0 cix

i where ci ∈ F2N , called the univariate
representation. The algebraic degree of F is equal to the maximum Hamming
weight of the binary expansion of the exponents i of the terms of the polynomial
F(x) such that ci ̸= 0.

Two (N,M)-functions F and F ′ are called affine equivalent if one equals the
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other composed on the right by an affine permutation of FN2 and on the left by
an affine permutation over FM2 . More generally, they are called extended affine
(EA) equivalent if one is affine equivalent to the sum of the other and of an
affine (N,M)-function. Still more generally, they are called CCZ equivalent if
the indicators of their graphs {(x,F(x)) : x ∈ FN2 } and {(x,F ′(x)) : x ∈ FN2 }
are affine equivalent (as (N+M)-variable Boolean functions). A particular case
of CCZ equivalence is between any (N,N)-permutation and its compositional
inverse. If a notion is preserved by affine (respectively, EA, CCZ) equivalence,
we shall say that it is affine (respectively EA, CCZ) invariant.

We denote by the same symbol “·” an inner product in FN2 and an inner
product in FM2 (there will be no ambiguity). For any α ∈ F2N \ {0}, we can

define the inner product x · y = TrN (αxy) over F2N , where TrN (x) =
∑N−1
i=0 x2

i

is the absolute trace function from F2N to F2. If it is clear from the context,
then we write Tr = TrN . For k,N such that k|N we denote by TrNk (x) the
relative trace function from F2N to F2k , equal to x+ xk + x2k · · ·+ xN−k.

We define the adjoint operator in the context of vector spaces over F2. Let
ψ : FN2 → FM2 be a linear function. The adjoint operator is the linear mapping
ψ∗ : FM2 → FN2 such that for all a ∈ FN2 , b ∈ FM2 , ψ(a) · b = a ·ψ∗(b). Since every
linear form over a field F can be written in a unique way as a → a · c, we have
indeed that ψ∗(b) is defined as equal to the unique element c corresponding to
the linear form a → ψ(a) · b. In this way, if we have chosen an inner product,
then ψ∗ is uniquely defined. Let E be a vector subspace of FN2 . We denote
by E⊥ the orthogonal of E with respect to the inner product “·”, equal to the
vector space of all those v ∈ FN2 such that v · e = 0 for every e ∈ E. Let
u1, . . . , un ∈ FN2 . We define E = ⟨u1, . . . , un⟩ as the vector space spanned by
u1, . . . , un. We say that A ⊆ FN2 is respectively an affine line, or an affine plane,
or an affine hyperplane if A is an affine space of dimension 1, or 2, or N − 1.

Let F be an (N,M)-function. For any u ∈ FN2 and v ∈ FM2 we denote by
WF (u, v) the value at (u, v) of the Walsh transform of F :

WF (u, v) =
∑
x∈FN

2

(−1)v·F(x)+u·x.

The extended Walsh spectrum of F is the multiset of all the absolute values
that the Walsh function assumes.

We shall recall two equalities (first discovered in [7]) satisfied by the Walsh
transform related to affine subspaces. Let v ∈ FM2 , a, b ∈ FN2 , and E,E0 be two
vector subspaces of FN2 such that E ⊕ E0 = FN2 . The Walsh transform satisfies
the Poisson summation formula:∑

u∈b+E⊥

(−1)a·uWF (u, v) = |E⊥|(−1)a·b
∑

x∈a+E
(−1)v·F(x)+b·x. (1)

The Walsh transform satisfies the second-order Poisson summation formula:

∑
u∈E⊥

WF (u, v)
2 = |E⊥|

∑
a∈E0

( ∑
x∈a+E

(−1)v·F(x)

)2

. (2)

The two main cryptographic parameters of a vectorial function are its non-
linearity and its differential uniformity, which both are CCZ invariants.
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The nonlinearity of F equals by definition the minimum Hamming distance
between the component functions v · F , v ̸= 0, of F and the affine Boolean
functions u · x+ ϵ, ϵ ∈ F2 over FN2 . It equals:

nl(F) = 2N−1 − 1

2
max

u∈FN
2 ,v∈FM

2 \{0}
|WF (u, v)| . (3)

The nonlinearity should be large (as close to the maximum 2n−1 − 2
n
2 −1 as

possible) for allowing the vectorial function to contribute to the resistance of
the block cipher using it as a substitution box to the linear attack [2]. As
a generalization of the nonlinearity, we have the d-th order nonlinearity of a
vectorial Boolean function F denoted as nld(F) that is equal to the minimum
Hamming distance between the nonzero components of F and the set BN,d of
Boolean functions over FN2 with algebraic degree at most d (for d = 1 it is the
same notion as nonlinearity). Moreover, we have that nld(F) = 2N−1 − ωd

2
where

ωd = max
g∈BN,d,v∈FM

2 \{0}

∣∣∣∣∣∣
∑
x∈FN

2

(−1)v·F(x)+g(x)

∣∣∣∣∣∣ .
The differential uniformity of F is the (positive and even) integer δF defined

as:
δF = max

a∈FN
2 \{0},b∈FM

2

δF (a, b),

where δF (a, b) =
∣∣{x ∈ FN2 |DaF(x) = b}

∣∣ and DaF(x) = F(x + a) + F(x) is
the derivative of F through the direction a ∈ FN2 \ {0}. An (N,M)-function is
called differentially δ-uniform if its differential uniformity is at most δ. The
differential uniformity should be low (as close to the minimum 2 as possible) for
allowing the vectorial function to contribute to the resistance of block cipher
using it as a substitution box (in SPN, ”function” should be ”permutation”,
and in a Feistel cipher, “(N,N)” can be “(N,M)”) to the differential attack [2].
If δ = 2, we call F almost perfect nonlinear (APN).

A Boolean function f over FN2 is called plateaued if its extended Walsh spec-
trum assumes only two values that are 0 and a positive number, which happens
to be equal to 2k for some k ≥ N

2 , because of the Parseval’s relation [2] (after
Corollary 5). The integer 2k is called the amplitude of f . Function f is called
bent if k = N/2, near-bent if k = (N + 1)/2, and semi-bent if k = N/2 + 1.
A generalization of bent functions is partially-bent functions that are character-
ized by the property of having all their derivatives either constant or balanced.
Partially-bent functions are also plateaued. A vectorial Boolean function is
called respectively plateaued, strongly plateaued, and bent if all its components
are respectively plateaued, partially-bent, and bent. An almost bent (AB) func-
tion F is an (N,N)-function that reaches the SCV bound [2, Theorem 6], that is

such that nl(F) = 2N−1−2
N−1

2 . AB functions have many interesting properties
such as being APN and having all near-bent components; they can only exist
in odd dimension N . Crooked functions are (N,N)-functions such that for any
a ∈ FN2 \ {0}, the image set of DaF is an affine hyperplane; equivalently, they
are APN and strongly plateaued [2] (after Definition 68). Crooked functions
share almost all the nice properties of quadratic APN functions and it is conjec-
tured that the two notions coincide. It has been proven that there is no bijective
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crooked function in even dimension and that the only crooked monomials and
binomials are quadratic [8].

Let f be a Boolean function over FN2 , then f is said to be n-normal (resp.
n-weakly-normal), if there exists an n-dimensional affine space A such that f is
constant (resp. affine) on A.

Proposition 2.1 ([7]). Let f be a Boolean function over FN2 . If f is n-weakly-
normal, then nl(f) ≤ 2N−1 − 2n−1.

3 Cryptographic properties of restrictions of vec-
torial functions to affine spaces

Let F be an (N,M)-function such that there exists an affine space A of di-
mension n, that is mapped by F to a subset of an affine space A′ of dimension
m. We identify then A with Fn2 and A′ with Fm2 through the choice of bases
and we obtain an (n,m)-function. We shall denote by FA one of the functions
obtained this way. When we shall find such case of an affine space mapped
by a function F to a subset of a strict affine space of the co-domain of F , we
shall of course be interested in the cryptographic properties for FA. But there
are several possibilities of defining the affine space in which F(A) is included
(hence, to choose the dimension m of the co-domain of FA). And if this affine
space is taken too large, then the nonlinearity of FA will be automatically zero,
because when we see an (n,m)-function as an (n,m′)-function with m′ > m by
adding virtual coordinate functions (which equal the zero function if we identify
Fm2 with Fm2 × {0} ⊂ Fm′

2 ), this drops the nonlinearity to zero. So, if it is not
specified otherwise, we shall assume that A′ is the intersection of all the affine
spaces that contain F(A).

Definition 3.1. Let F be an (N,M)-function such that there exists an affine
space A = a+E (where E is a vector space) of dimension n, that is mapped by
F to a subset of an affine space A′ = a′ + E′ (where E′ is a vector space) of
dimension m. We call then F an (E, a,E′, a′)n,m affine-to-affine mapping. We
say that the tuple (ϕ, a, ψ, a′) is a representation of FA if

FA(x) = ψ (F(ϕ(x) + a) + a′)

where ϕ is a linear bijective function from Fn2 to E, and ψ is a linear surjective
(M,m)-function such that ψ(E′) = Fm2 .

Note that all the representations defined in Definition 3.1 are affine equiva-
lent and if a function F ′ is affine equivalent to F , then the resulting restriction
of F ′ is affine equivalent to a restriction of F (if both are represented as (n,m)-
functions).

3.1 Differential uniformity of restrictions

Concerning the differential uniformity, the situation is rather simple. Let F be
an (N,M)-function that is an (E, a,E′, a′)n,m affine-to-affine mapping. It is
clear that the differential uniformity of FA where A = a+ E is given by

δFA
= max
α∈E\{0}, β∈E′

|{x ∈ A | F(x+ α) + F(x) = β}| .
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Observe that if F is differentially δ-uniform for some δ, then the restriction FA
is also differentially δ-uniform, since for every nonzero α ∈ E \ {0}, β ∈ E′, we
have

#{x ∈ A | F(x+ a) + F(x) = b} ≤ #{x ∈ FN2 | F(x+ a) + F(x) = b}.

In particular, the restriction of an almost perfect nonlinear (APN) function
is still APN (examples of such APN functions have been discussed in [9, 10]).
We shall recall a useful characterization of the APN property.

Proposition 3.2 ([2]). Let F be an (N,M)-function withM ≥ N ≥ 3. Then F
is APN if and only if for all distinct x, y, z ∈ FN2 , we have F(x)+F(y)+F(z) ̸=
F(x+ y + z).

3.2 The Walsh transform and nonlinearity of restrictions

Concerning the nonlinearity, the situation is also apparently simple: the nonlin-
earity of FA equals the minimum Hamming distance between the components
of FA and the affine Boolean functions over A. But we need to define what is a
component function of FA and the situation is then a little more delicate. We
also need a way to effectively calculate the nonlinearity. In practice, we can first
try to relate the Walsh transform of the restriction to the Walsh transform of
F . The nonlinearity of the restriction of a Boolean function to an affine space
has been studied in [11, 7], but without that a precise expression of the Walsh
transform be exhibited. The results that we shall revisit were obtained in [11]
in a complex way and in [7] by using the Poisson summation formula (1) and
the second-order Poisson summation formula (2), which led to bounds and to
the study of their cases of equality without needing a precise expression of the
Walsh transform. Let us provide such a precise expression in the framework
which is ours here, that is, for vectorial functions.

Remark 3.3. Let ζ be any linear function and let ζ∗ be the adjoint operator
of ζ with respect to an inner product. We recall that Im ζ∗ = (ker ζ)⊥ and
ker ζ∗ = (Im ζ)⊥.

Lemma 3.4. Let F be an (N,M)-function that is an (E, a,E′, a′)n,m affine-
to-affine mapping and let A = a+E. Then for every representation (ϕ, a, ψ, a′)
of FA, we have Imψ∗⊕ (E′)⊥ = FM2 . Moreover, for every v′ ∈ FM2 \ (E′)⊥ there
exists a representation (ϕ, a, ψ, a′) of FA such that v′ ∈ Imψ∗.

Proof. Let us prove that Imψ∗⊕(E′)⊥ = FM2 for any representation (ϕ, a, ψ, a′)
of FA. Let w′ ∈ Imψ∗ ∩ (E′)⊥ and w ∈ Fm2 be such that ψ∗(w) = w′. Suppose
that w′ ̸= 0. Let e′ ∈ E′, then w · ψ(e′) = ψ∗(w) · e′ = w′ · e′ = 0 because
w′ ∈ (E′)⊥. Since ψ(E′) = Fm2 , we have that w = 0 and that w′ = 0. This
is a contradiction. So Imψ∗ ∩ (E′)⊥ = {0}. Since Imψ∗ (resp. (E′)⊥) has
dimension m (resp. M −m), we have that Imψ∗ ⊕ (E′)⊥ = FM2 .

Let us prove the second part. Let v′ ∈ FM2 \ (E′)⊥ and let (ϕ, a, ψ, a′) be
a representation of FA. If v′ ∈ Imψ∗, there is nothing to prove. Otherwise,
we will prove that there exists a linear function ν such that v′ ∈ Im ν∗ and
(ϕ, a, ν, a′) is a representation of FA. Let E0 be a vector space over F2 such that
v′ ∈ E0 and E0 ⊕ (E′)⊥ = FM2 . Then E0 has dimension m. Let ζ be a linear
function from Fm2 to FM2 such that Im ζ = E0 and consider ν = ζ∗.We claim that
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ν is such that v′ ∈ Im ν∗ and that (ϕ, a, ν, a′) is a representation of FA. Since
Im ν∗ = Im ζ = E0, then v

′ ∈ Im ν∗. To prove that (ϕ, a, ν, a′) is a representation
of FA we must prove that ν(E′) = Fm2 . Since ker ν = (Im ν∗)⊥ = E⊥

0 and
E⊥

0 ∩ E′ = (E0 + (E′)⊥)⊥ = {0}, then ν(E′) has dimension m and this is
enough to prove that ν(E′) = Fm2 .

Theorem 1. Let F be an (N,M)-function that is an (E, a,E′, a′)n,m affine-to-
affine mapping, let A = a + E, and let (ϕ, a, ψ, a′) be a representation of FA.
Then for all u ∈ Fn2 , v ∈ Fm2

WFA
(u, v) =

(−1)ϵ

2N−n

∑
z∈E⊥

(−1)z·aWF ((ϕ
−1)∗(u) + z, ψ∗(v))

where ϵ = ψ∗(v) · a′ + a · (ϕ−1)∗(u) and

nl(FA) = 2n−1 − 1

2N−n+1
max

u′∈E1, v′∈(E2\{0})

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u
′ + z, v′)

∣∣∣∣∣∣ ,
where E⊥ ⊕ E1 = FN2 and (E′)⊥ ⊕ E2 = FM2 . Moreover, we can write the
nonlinearity of FA as

nl(FA) = 2n−1 − 1

2N−n+1
max

u′∈F2N , v
′∈FM

2 \(E′)⊥

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u
′ + z, v′)

∣∣∣∣∣∣ .
Proof. Let F ′(x) = F(x+ a) + a′ and FA = ψ ◦ F ′ ◦ ϕ. First notice that ψ∗ is
injective because kerψ∗ = (Imψ)⊥ = (Fm2 )⊥ = {0} and (ϕ−1)∗ is also injective
because ker(ϕ−1)∗ = (Imϕ−1)⊥ = (Fn2 )⊥ = {0}. Let u ∈ Fn2 , v ∈ Fm2 and set
u′ = (ϕ−1)∗(u), v′ = ψ∗(v). We have:

WFA
(u, v) =

∑
x∈Fn

2

(−1)v
′·F ′(ϕ(x))+u·x =

∑
y∈E

(−1)v
′·F ′(y)+u′·y.

By using the Poisson summation formula (1) we have that

WFA
(u, v) =

1

2N−n

∑
z∈E⊥

WF ′(z + u′, v′).

We continue by writing the Walsh transform of F ′ in term of the Walsh trans-
form of F , that is WF ′(z + u′, v′) = (−1)a

′·v′+a·u′
(−1)a·zWF (z + u′, v′).

Notice that we can exclude the case v′ = 0 when we compute the nonlinear-
ity of FA, since by definition we must take v ̸= 0 and we saw that ψ∗ is injective.
So v′ ∈ Imψ∗ \ {0}. By using Lemma 3.4, we have that v′ ∈ FM2 \ (E′)⊥ and we
can set E2 = Imψ∗. Let E1 ⊆ FN2 be a vector space such that E⊥ ⊕ E1 = FN2 .
We can write u′ as u′ = u1 + u2, where u1 ∈ E1 and u2 ∈ E⊥, and conse-
quently:

∣∣∑
z∈E⊥(−1)z·aWF (u

′ + z, v′)
∣∣ = ∣∣∑

z∈E⊥(−1)z·aWF (u1 + z, v′)
∣∣ . So

we can assume u′ ∈ E1. The rest is clear.
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3.3 A sufficient condition to have nl(FA) ̸= 0

The case nl(F) = 0 is interesting (and we shall study it apart in Section 4):
we shall see that FA can have good nonlinearity, even when starting from a
function F with zero nonlinearity. A direct consequence of Theorem 1 is the
following relation

nl(FA) ≥ nl(F)− (2N−1 − 2n−1) (4)

that is already known from [11, 7]. Observe that by using relation (4), we have
that a sufficient condition for nl(FA) ̸= 0 is that nl(F) > 2N−1−2n−1. But this
property is impossible to satisfy with m < M since if F maps A to a subset of
an affine hyperplane, of equation, say, v · x + ϵ = 0, then the Boolean function
v · F(x) being constant over A, it is n-normal and Proposition 2.1 shows that
this is impossible. This observation proves the following proposition.

Proposition 3.5. Let N,M,n be positive integers such that N ≥ n. Let F
be an (N,M)-function. If nl(F) > 2N−1 − 2n−1, then for every affine space
A ⊆ FN2 of dimension n we have that F(A) is not included in any affine space
of dimension m < M .

We are going to prove a sufficient condition for having nl(FA) ̸= 0 which
will be weaker and then more useful.

Proposition 3.6. Let F be an (N,M)-function that is an (E, a,E′, a′)n,m
affine-to-affine mapping and let A = a + E. If nl(FA) = 0, then there exist
v ∈ FM2 \ (E′)⊥ and u ∈ FN2 such that |WF (u, v)| ≥ 2n.

Proof. According to Theorem 1, nl(FA) = 0 if and only if there exist b ∈ FN2
and v ∈ FM2 \ (E′)

⊥
such that

∣∣∑
x∈b+E⊥(−1)x·aWF (x, v)

∣∣ = 2N . Using the

Poisson summation formula (1), we have then |
∑
x∈A(−1)v·F(x)+b·x| = 2n and

therefore v · F(x) + b · x is constant on A. Let f = v · F(x) + b · x, then f is a
n-normal function and therefore nl(f) ≤ 2N−1 − 2n−1 by Proposition 2.1. So
we can conclude that there exists u ∈ FN2 such that |WF (u, v)| ≥ 2n.

Remark 3.7. By using Proposition 3.6, we have immediately a sufficient con-
dition for nl(FA) ̸= 0 that is

max
u∈FN

2 , v∈FM
2 \(E′)⊥

|WF (u, v)| < 2n.

This observation justifies the setting of the next section where we will assume
that only some components have zero nonlinearity while the others can have any
value for their nonlinearity.

4 Functions with affine components

In this section, we will study the case where function F has affine components
(that is when nl(F) = 0) because we can find automatically a strict affine
subspace of its domain mapped to a strict affine subspace of its co-domain. We
will prove that, up to EA equivalence, we can write F(x) = ψ(G(x)) where ψ
is linear and we can assume that G has nonzero nonlinearity for the case M =
N ≥ 3. We will show that this technique allows to construct more functions
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than the ones provided by G since we can drop the nonlinearity to 0 and not
be constrained by the necessary condition of Proposition 3.5 as explained in
Remark 3.7.

4.1 Functions mapping affine spaces to subsets of proper
affine subspaces

The next proposition is a generalization of the simple following observation:
assume that F has an affine component; for instance, assume that its last co-
ordinate function fM is affine, then F maps (without loss of generality up to
affine equivalence) the affine space equal to the pre-image f−1

M (0) to a subset of
the affine space {y ∈ FM2 ; yM = 0}.

Proposition 4.1. Let F be an (N,M)-function. Let V be any subset of FM2
such that v · F is affine for every v ∈ V . Let ℓ : FM2 → F2 be any linear form
and A = {x ∈ FN2 | ∀v ∈ V, v ·F(x) = ℓ(v)}. If A ̸= ∅, then A is an affine space
mapped by F to a subset of the affine space A′ = {y ∈ FM2 | ∀v ∈ V, v ·y = ℓ(v)}
with direction ⟨V ⟩⊥. Any translate a+A for a ∈ FN2 is also mapped to a subset
of an affine space of direction ⟨V ⟩⊥.

Proof. By definition, A equals the intersection of the affine spaces {x ∈ FN2 |
v · F(x) = ℓ(v)}, where v ranges over V . Being non-empty, it is then an affine
space. The image of A by F is clearly a subset of the affine space {y ∈ FM2 |
∀v ∈ V, v · y = ℓ(v)}, whose direction equals its homogeneous version, that is,
⟨V ⟩⊥. And any translate a+ A of A has the same form, by changing ℓ(v) into
ℓ(v) + v · (F(a) + F(0)). Indeed, since v · F is affine, we have v · F(x + a) =
v · F(x) + v · F(a) + v · F(0). Then, F(a + A) and F(A) are subsets of affine
spaces with the same direction ⟨V ⟩⊥.

Note that taking ℓ linear does not reduce the generality since it is necessary
for allowing A to be non-empty. Moreover, observe that if v · F is affine for
every v ∈ V , then v · F is affine for every v ∈ ⟨V ⟩. Hence, we can then always
assume that V is a vector space.

Remark 4.2. As we already evoked it (more or less) at the beginning of Section
3, we need to reduce the dimension of the co-domain of the restriction of a
function to an affine space in such a way that we erase all its affine components,
if we want the restriction to have a chance of having nonzero nonlinearity. More
precisely, let V = {v ∈ FM2 | v · F is affine} (that is, let V be maximal); let W
be a strict subspace of V , α ∈ FN2 , and B = {x ∈ FN2 | ∀w ∈ W, w · F(x) =
w ·F(α)}. Then nl (FB) = 0, where the co-domain of FB is an affine space with
direction W⊥. Indeed, let v ∈ V \W . By using Lemma 3.4, we can choose a
representation (ϕ, b, ψ, b′) of FB such that v ∈ Imψ∗. Since v · F is affine, then
also v · F(ϕ(x) + b) is affine and

v · F(ϕ(x) + b) = v′ · ψ (F(ϕ(x) + b)) = v′ · ψ(b′) + v′ · FB(x)

where v = ψ∗(v′). Consequently v′ · FB is affine and, since v′ ̸= 0 because
v ̸= 0, we conclude that nl (FB) = 0.

Note that FA can still have zero nonlinearity even if V is maximal, since
a component function f = v · F of F for v ̸∈ V can be non-affine, and its
restriction fA be affine.
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4.2 Cryptographic properties of restrictions of functions
with affine components

Before studying the cryptographic properties of restrictions of (N,M)-functions
with affine components, let us put them in a form easing their study, and make
a first observation.

Proposition 4.3. Let F be an (N,M)-function. Let V ⊆ FM2 be a vector space
such that, for every v ∈ V , we have that v · F is affine. Let ψ be any linear
(M,M)-function with Imψ = V ⊥, then there exists an (N,M)-function G, and
an affine (N,M)-function A such that:

F(x) = ψ (G(x)) +A(x).

Suppose that M = N ≥ 3 and V is the whole vector space of those v ∈ FN2 such
that v · F is affine, then G can be take such that nl(G) ̸= 0 and additionally we
have the following:

1. Assuming that v · F is non-constant for all v ∈ V \ {0}, we can take
A(x) = x.

2. Assuming that v · F is constant for all v ∈ V , we can take A = 0.

Proof. Let e1, . . . , eM be the canonical basis of FM2 , that is the one composed
by vectors of Hamming weight 1 and “·” be the inner product of FM2 defined as
v · w = v1w1 + · · · vMwM where v = (v1, . . . , vM ), w = (w1, . . . , wM ) ∈ FM2 . Let
m be the dimension of the vector space V ⊥. Up to affine equivalence, we can
assume that V = ⟨e1, . . . , eM−m⟩. Then V ⊥ is the vector space of all vectors in
FM2 that have the firstsM−m coordinates equal to zero and F = (f1, . . . , fM ) is
such that its firstsM−m coordinates are affine functions. Let A = (a1, . . . , aM )
be the affine (N,M)-function such that ai = fi if i ≤ M − m and ai = 0
otherwise. Then the image of the function F +A is contained in V ⊥ and there
exists an (N,M)-function G = (g1, . . . , gM ) such that F(x) = ψ (G(x)) + A(x)
where the i-th coordinate of ψ(x) is xi if i > M−m and 0 otherwise. Therefore,
fi = gi for i > M −m. We are going to use this setting for the rest of the proof.

Let us prove that if M = N ≥ 3 and V is the vector space of all v ∈
FN2 such that v · F is affine, then we can choose G such that nl(G) ̸= 0. By
construction fi = ai if i ≤ N − m and fi = gi otherwise, so the coordinate
functions g1, . . . , gN−m can be chosen arbitrarily. By hypothesis, any nonzero
linear combination of gN−m+1, . . . , gN is not affine so by choosing appropriate
g1, . . . , gN−m we have that G = (g1, . . . , gN ) has nonzero nonlinearity. Let
N −m < i ≤ N and let ḡi be the Boolean function obtained by gi removing all
the terms of degree less or equal than 1 in the algebraic normal form (ANF).
Considering now the vector space V of all the Boolean functions that are either
0 or have only terms of degree strictly greater than 1 in their ANF, we have
that V has dimension

∑N
d=2

(
N
d

)
= 2N − N − 1. Since N ≥ 3, we have that

2N−N−1 > N and we can always find ḡ1, . . . , ḡN−m ∈ V such that ḡ1, . . . , ḡN ∈
V are linearly independent. Since any linear combinations using elements of V
can only result in either the zero function or a Boolean function with algebraic
degree at least 2, we can conclude the proof by setting gi = ḡi for i ≤ N −m.

Let us prove 1. Since v · F = v · A is non-constant for all v ∈ V \ {0},
then we can assume up to affine equivalence that ai = xi for i ≤ N −m. Let
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L(x) = A(x)+x, then we have that F(x) = ψ(G(x))+A(x) = ψ(G′(x))+x where
G′ = G+L because ψ◦L = L. We conclude by observing that nl(G′) = nl(G) ̸= 0.

Let us prove 2. Since v · F = v · A is constant for all v ∈ V \ {0}, then we
can assume up to affine equivalence that ai = 0 for i ≤ N −m. So we have that
A = 0.

Note that, in the framework of Proposition 4.3, the affine spaces A of Propo-
sition 4.1 are all the affine spaces of the form {x ∈ FN2 | ∀v ∈ Imψ⊥, v · A(x) =
ℓ(v)} and their images by F and by ψ ◦ G have Imψ for direction.

Remark 4.4. Referring again to Proposition 4.3, consider the two functions
F(x) = ψ(G(x)) and F ′(x) = ψ(G(x)) + A(x). It is clear that the two are EA
equivalent. Let A be equal to {x ∈ FN2 | ∀v ∈ Imψ⊥, v · A(x) = ℓ(v)} as in
Proposition 4.1, then the two restrictions FA and F ′

A are EA equivalent if we
consider the restriction of the codomain over an affine space with direction Imψ.

Remark 4.5. Let G be an (N,N)-function. Suppose there exists an affine
n-dimensional subspace A of FN2 such that G(A) ⊆ A′ where A′ is an m-
dimensional subspace of FM2 . Without loss of generality, assume that A′ = E′

is a vector space. For any linear (M,M)-function ψ such that ψ(E′) = Imψ
has dimension m, we have that, by choosing the appropriate representations, the
two (n,m)-functions GA and FA are affine equivalent where F(x) = ψ(G(x)).
In fact, we can assume that FA = ψE′ ◦ GA where ψE′ is a linear (m,m)-
permutation.

As a consequence of the previous remarks, studying the cryptographic prop-
erties of restrictions of functions of the form F(x) = ψ(G(x)) is not restrictive
in our setting. In the general hypothesis of the next theorem we do not assume
that there is an affine space mapped to the subset of a strict subspace of dimen-
sion m < M , but we let m to be equal to the dimension of Imψ (that can also
be the whole space if ψ is a permutation).

Theorem 2. Let G be an (N,M)-function and ψ a linear (M,M)-function with
image of dimension m. Let A be any affine space with dimension n and direction
E. Then the (N,M)-function F(x) = ψ(G(x)) and the (n,m)-function FA have
the following cryptographic properties:

1. For every u ∈ FN2 and v ∈ FM2 , we have that WF (u, v) = WG(u, ψ
∗(v))

and that nl(FA) ≥ nl(G)− (2N−1 − 2n−1).

2. Let a ∈ FN2 and b ∈ FM2 . If b ̸∈ Imψ, then δF (a, b) = δFA
(a, b) = 0. If

b ∈ Imψ, then for any b′ ∈ FM2 such that ψ(b′) = b we have that:

δF (a, b) =
∑

c∈kerψ

δG(a, b
′ + c),

and if a ∈ E, we have that

δFA
(a, b) =

∑
c∈kerψ

δGA
(a, b′ + c),

where GA is the restriction of G to A with co-domain FM2 . Moreover, we
have that δG ≤ δF ≤ 2M−mδG and δGA

≤ δFA
≤ 2M−mδGA

.
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Proof. Observe that the image of F is included in Imψ, so FA can be represented
as an (n,m)-function since n is the dimension of A and m is the dimension of
Imψ.

Let us prove 1. Given u ∈ FN2 and v ∈ FM2 , we have that WF (u, v) =
WG(u, ψ

∗(v)) because v · ψ(G) = ψ∗(v) · F . Because of Theorem 1 and the fact
that the direction of F(A) is included Imψ, the nonlinearity of FA is

2n−1 − 1

2N−n+1
max

u∈FN
2 , v∈FM

2 \(Imψ)⊥

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u+ z, v)

∣∣∣∣∣∣ ,
where A = a+ E. Let u ∈ FN2 , v ∈ FM2 \ (Imψ)⊥, then we have that∣∣∣∣∣∣

∑
z∈E⊥

(−1)z·aWF (u+ z, v)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWG(u+ z, ψ∗(v))

∣∣∣∣∣∣
≤ 2N−n max

z∈E⊥
|WG(u+ z, ψ∗(v))| .

Since v ̸∈ (Imψ)⊥ = kerψ∗, then ψ∗(v) ̸= 0. So we can conclude that nl(FA) ≥
nl(G)− (2N−1 − 2n−1).

Let us prove 2. Let a ∈ FN2 and b ∈ FM2 , then the integer δF (a, b) is the
number of solutions x ∈ FN2 of the equation:

F(x) + F(x+ a) = ψ (G(x) + G(x+ a)) = b, (5)

which equals, by denoting z = G(x)+G(x+a), the number of solutions (x, z) ∈
FN2 × FM2 of the system: {

ψ(z) = b
G(x) + G(x+ a) = z

(6)

The first equation ψ(z) = b has solutions if and only if b ∈ Imψ, and in that
case, the set of solutions equals the affine space b′ + kerψ for some b′ ∈ FM2
such that ψ(b′) = b. For every c ∈ kerψ, the number of solution to the equation
G(x)+G(x+a) = b′+c is δG(a, b

′+c), and consequently we have that δF (a, b) =∑
c∈kerψ δG(a, b

′+c). Consider now the restriction FA where A is an affine space
with direction E. If a ∈ E and b ∈ Imψ, we can obtain δFA

(a, b) in a similar
way. We still have that Equation (5) with unknown in A has the same number
of solutions as System (6) with unknown in A × FM2 . Since b ∈ Imψ, the set
of solutions of the first equation of Equation (6) equals b′ + kerψ for some
b′ ∈ FM2 such that ψ(b′) = b. For every c ∈ kerψ, the number of solution
to the equation G(x) + G(x + a) = b′ + c is exactly δGA

(a, b′ + c) where GA
is the restriction of G to A with co-domain FM2 . Consequently we have that
δFA

(a, b) =
∑
c∈kerψ δGA

(a, b′ + c). The two bounds follows directly.

The following proposition groups together two known results that have been
rediscovered several times (for instance, in [6, 4]). In our case, they will follow
from Theorem 2.

Proposition 4.6. Let N ≥ 4, let G be an (N,N)-function, let ψ be a linear
(N,N)-function where n = N − 1 is the dimension of Imψ, and let F(x) =
ψ(G(x)). For any affine hyperplane A of FN2 , the following hold:
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1. If G is APN, then δF = 4. Conversely, if δF = 4, then G is differentialy
4-uniform.

2. If G is AB, then FA is differentialy 4-uniform and has nonlinearity 2n−1−
2

n
2 .

Proof. Let us prove 1. If G is APN, then δF ≤ 4 by Theorem 2. Since F has
zero nonlinearity, then it cannot be APN [2, Proposition 161]. Conversely if
δF = 4, then G is differentialy 4-uniform again by Theorem 2.

Let us prove 2. Let n = N −1. Using Theorem 2, each of the nonzero Walsh
values of FA is either ±2

n
2 or ±2

n
2 +1. Since there are no bent (n, n)-functions

for n ≥ 3, then nl(FA) = 2n−1 − 2
n
2 .

In the setting of Proposition 4.6, we can conclude that to construct APN
(N − 1, N − 1)-functions we can assume that G is differentialy 4-uniform and
has nonzero nonlinearty by Proposition 4.3.

5 APN (N − 1, N − 1)-functions as restrictions
of (N,N)-functions with an affine component,
and the D-property

In this section, we will discuss the problem of constructing APN (N −1, N −1)-
functions as restrictions of (N,N)-functions with an affine component. We
will show that this problem is closely related to the D-property of (N − 1, N)-
functions discussed by Taniguchi in [4]. This will motivate the introduction of
the notion of strong D-property. We will investigate this property for crooked
functions and for their inverse when they exists. Then we will prove that the
Gold APN function has the strong D-property for N large enough. As a conse-
quence, we will present a partial result on the Dobbertin APN function and we
use this to conjecture that it has the strong D-property.

To the best of our knowledge, the paper by Berierle, Leander, and Perrin [3]
is the first that investigates the problem of constructing APN (N − 1, N − 1)-
functions from APN (N,N)-functions. We shall emphasize some differences
between their approach and ours. They use the term “restriction” of an (N,M)-
function G to indicate any (n,m)-function of the form ζ ◦ G ◦ η where η is an
injective affine (n,N)-function and ζ is a surjective affine (M,m)-function. The
only difference (up to affine equivalence) with our notion of restriction is that
we impose that ζ is injective on G(Im η) (see Definition 3.1). So restrictions
in our sense, can be seen as a special case of restrictions in their sense. On
the other hand, it is fairly simple to study restrictions in their sense using our
terminology. Observe that we can write without loss of generality ζ = ζ ′ ◦ ψ
where ψ is a linear (M,M)-function with Imψ of dimensionm and ζ ′ is an affine
(M,m)-function injective on Imψ. Then ζ ◦G ◦η = ζ ′ ◦ (ψ ◦G)◦η is a restriction
of ψ ◦ G in our sense. In our setting, specifying the kernel of ψ is very relevant
to study the differential uniformity of restrictions (see Theorem 2), while this
information could be overlooked by using their notion. Moreover, to construct
permutations as restrictions of functions we need to impose anyway that ζ is
injective on the image of the chosen affine space through the function we are
restricting.
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In [3], they focus on the case N = M and n = m = N − 1 and define the
trimming operation on G to constructing an (N − 1, N − 1)-function, that can
be described as choosing an affine hyperplane A, taking the restriction (also in
our sense) GA as an (N −1, N)-function and then discard one component of GA.
They prove that this operation is EA equivalent to construct (N − 1, N − 1)-
restrictions in their sense. Let FA be a restriction (in our sense) of an (N,N)-
function F(x) = ψ(G(x)) where A is an affine hyperplane, and ψ is a linear
(N,N)-function with kernel of dimension 1. Such (N − 1, N − 1)-function FA
is a trim of G by the Berierle et al. [3] terminology. Indeed, any component
v′ · FA for some v′ ∈ FN−1

2 \ {0} is equal (up to affine equivalence) to ψ∗(v) · GA
for some v ∈ FN2 \ {0}, so we can obtain FA by discarding a component v0 · GA
from GA for some v0 ∈ FN2 \ Imψ∗.

A useful characterization for FA to be APN when G is APN is that G(x) +
G(y) + G(z) + G(x + y + z) ̸= c for all x, y, z ∈ A where c ∈ FN2 \ {0} and
kerψ = ⟨c⟩. Indeed, it is a direct consequence of Theorem 2 because FA is APN
if and only if for any a ∈ E \{0} we have that δGA

(a, b) is nonzero (that equals 2
because GA is APN) for some b ∈ FN2 implies δGA

(a, b+c) = 0. This is equivalent
to saying that for any a ∈ E and x, y ∈ A we have that DaG(x) +DaG(y) ̸= c.

Lemma 5.1. Let G be an APN (N,N)-function with N ≥ 3, let ψ be a linear
(N,N)-function where kerψ = ⟨c⟩ for c ∈ FN2 \ {0}, let F(x) = ψ(G(x)), and
let A be an affine hyperplane. Then FA is APN if and only if we have that
G(x) + G(y) + G(z) + G(x+ y + z) ̸= c for all x, y, z ∈ A.

5.1 The strong D-property

It is known that for any APN (N,N)-function G and any c ∈ FN2 \{0} there exist
x, y, z ∈ FN2 such that G(x)+G(y)+G(z)+G(x+y+z) = c. This was proven by J.
Dillon in a private communication reported in [2] (after Proposition 161). Using
that as a motivation, Taniguchi in [4] called D-property of an (N,M)-function
G, the fact that {G(x) + G(y) + G(z) + G(x + y + z) : x, y, z ∈ FN2 } = FM2 .
If N ̸= M , it is not true that all APN (N,M)-functions have the D-property.
WhenM = N+1, the property is very relevant to our setting. Consider an APN
(N,N)-function G and its restriction GA over an affine hyperplane A. Observe
that according to Lemma 5.1 if GA has the D-property as an (N−1, N)-function,
then we cannot construct an APN (N − 1, N − 1)-function. This observation
can be also seen as a consequence of [4, Lemma 3] because GA is APN. This
discussion motivates the following definition of strong D-property.

Definition 5.2 (strong D-property). We say that an (N,N)-function G has the
strong D-property if we have that

{G(x) + G(y) + G(z) + G(x+ y + z) : x, y, z ∈ A} = FN2 ,

for all affine hyperplanes A of FN2 .

If G is APN, satisfying this property can be seen as a nice feature because
the sums of the values of G taken over hyperplanes present then some uniformity
in their distribution and this kind of random behavior may help ciphers using
G as an S-box to resist integral attacks (see [12]). Moreover, such property is
stronger than the D-property of an APN (N,N)-function (and is then possibly
not satisfied by a given APN (N,N)-function). In the same time, not satisfying
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it may be seen as a good thing too because it allows to construct at least one (N−
1, N−1)-function from G (see Lemma 5.1). So either G has a good cryptographic
property or we can construct a number of APN functions in dimension N − 1.
In both cases, we learn something new about G.

We observe that the strong D-property is EA invariant, which is straight-
forward, and not CCZ invariant, which is less intuitive, which is a little less
intuitive; an example (that can be verified computationally) is the Gold APN

function x3 over F25 that does not have the strong D-property, but x
1
3 has it

over F25 .
Taniguchi in [4] studies the D-property of (N − 1, N)-functions constructed

as the restrictions of APN (N,N)-functions over the linear hyperplane {x ∈
F2N | Tr(x) = 0} (where we identify FN2 and F2N ). The results obtained in [4]
indicate that the strong D-property could be very common among quadratic
functions and power functions.

Regarding power functions, we have the following remark that it is enough to
verify the strong D-property on only one linear hyperplane and its complement.

Remark 5.3. Let A = {x ∈ F2N | Tr(vx) = ϵ} where ϵ ∈ F2 and v ∈ F2N \
{0}. Let d be a positive integer, then for any affine plane π ⊆ A we have
that

∑
x∈π x

d = v−d
∑
x∈π′ xd where π′ = {vx : x ∈ π} is a plane contained in

A′ = {x ∈ F2N | Tr(x) = ϵ}. So if {xd+yd+zd+(x+y+z)d | x, y, z ∈ A′} = F2N ,
then {xd + yd + zd + (x+ y + z)d | x, y, z ∈ A} = vd · F2N = F2N .

For quadratic APN functions, we have the following proposition that allows
us to verify the strong D-property on linear hyperplanes instead of on all hy-
perplanes. It follows from Lemma 5.1 and the fact that since G is quadratic,
we have for all a, b, x ∈ FN2 that DaDbG(x) = DaDbG(0) = φG(a, b) where
φG(a, b) = G(a+ b) + G(a) + G(b) + G(0).

Proposition 5.4. Let N ≥ 3, let G be a quadratic APN (N,N)-function, let
ψ be a linear (N,N)-function where kerψ = ⟨c⟩ for c ∈ FN2 \ {0}, let F(x) =
ψ(G(x)), and let A be an affine hyperplane with direction E. Then FA is APN
if and only if for all a, b ∈ E we have that φG(a, b) ̸= c.

The argument that we used for the proof of Proposition 5.4 cannot be ex-
tended for crooked functions since the fact that every second-order derivative
is constant is a characterization of quadratic functions. If we try to apply the
same approach to a crooked function G, we are led to using [2, Corollary 18],
but we cannot because x, y and z live in an affine space and the restriction of a
plateaued function to an affine space is not necessarily plateaued. We will show
however in Proposition 5.12 below that such extension exists, but it will require
a more complicated argument.

Remark 5.5. By combining Remark 5.3 and Proposition 5.4, it is enough for
the Gold APN function to verify the strong D-property on the linear hyperplane
{x ∈ F2N | Tr(x) = 0} (and it is the only function, up to EA equivalence, for
which we can do this).

Regarding the strong D-property of quadratic APN (N,N)-function, we can
say something more for the case N even depending on the amplitude of its
components. We cannot say much for the case N odd since, in that case, all
quadratic APN functions are automatically AB.
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Proposition 5.6. Let G be a quadratic APN function in even dimension N .
Then we have the following:

1. If there are at least two linearly independent components of G that are not
bent and not semi-bent, then G has the strong D-property.

2. If G has the strong D-property, then nl(G) > 2N−2.

Proof. We recall that for any quadratic function in odd dimension the APN
property is equivalent to the AB property.

Let us prove 1. Suppose that G does not have the strong D-property. Then
there exist an affine hyperplane A and c ∈ FN2 \{0} such that G(x)+G(y)+G(z)+
G(x+ y + z) ̸= c for all x, y, z ∈ A. By Lemma 5.1, we have that for any linear
function ψ with kerψ = ⟨c⟩ the function FA is an APN (N − 1, N − 1)-function
where F(x) = ψ(G(x)). So FA is AB because it is a quadratic APN function in
dimensionN−1 odd. Let v1, v2 ∈ FN2 be linearly independent and such that v1·G
and v2 · G have amplitude respectively λ1 and λ2 strictly greater than 2N/2+1.
Since Imψ⊥ has dimension 1, we can suppose that v1 ∈ FN2 \ Imψ⊥. Therefore,
there exists u ∈ FN2 such that 1

2

∣∣∑
z∈E⊥(−1)a·zWG(u+ z, v1)

∣∣ ≥ λ1/2 where
A = a + E. By Theorem 1 and Theorem 2, we have nl(FA) ≤ 2N−2 − λ1/4 <
2N−2 − 2N/2−1 that is a contradiction because FA is AB.

Let us prove 2. If nl(G) ≤ 2N−2, then we that nl(G) = 2N−2 because it is
the minimum nonlinearity that a quadratic APN function can achieve. It is
proven in [9, Remark 12] that if a quadratic APN (N,N)-function G is such
that nl(G) = 2N−2, then there exists an EA equivalent function G′ to G such
that G′ maps some affine hyperplane A into a subset of an affine hyperplane.
So G′

A is an APN (N − 1, N − 1)-function and clearly it does not have the
D-property if represented as an (N − 1, N)-function. So G′ does not have the
strong D-property and the same holds for G.

Remark 5.7. Using Proposition 5.6, we have that the extended Walsh spectrum
of a quadratic APN function G in even dimension N can give additional infor-
mation on the strong D-property. We recall that the number of nonzero Walsh
values in a plateaued function over FN2 of amplitude 2k is 22N−2k (according
to Parseval’s relation). As a consequence, we have that many of the quadratic
APN function in dimension 8 discovered in [10] have the strong D-property.
Namely the ones that have the value 26 = 64 appearing 2 · 216−12 = 32 times in
the extended Walsh spectrum. Regarding quadratic APN functions with nonlin-
earity 2N−2, we know that they exist in dimension 6 [13] and 8 [10]. Moreover,
we can conclude that they have only one component of amplitude 2N−1 and
the rest are either bent or semi-bent because otherwise such functions have the
strong D-property and we know they do not have it. The situation is unclear
for quadratic APN functions that either have Gold-like spectrum (all components
bent or semi-bent) or have one and only one component with amplitude 2k where
N/2+1 < k < N −1 and all the other components are bent or semi-bent. Func-
tions of the first kind are very common among the known APN functions [2],
while examples of functions of the second kind can be found in dimension 8 [10]
where k = 6 but there is no clear indication of how common they are in higher
dimension.
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5.2 The strong D-property of crooked functions

We are going to study the strong D-property of crooked functions. Abbondati
et al. in [14] proved a characterization of the D-property of strongly plateaued
APN (N−1, N)-functions obtained as the restriction of strongly plateaued APN
(N,N)-functions (that are crooked; see e.g. [2] after Definition 68) where N is
odd. The characterization we are going to present is similar, but with some
important differences. It is valid for any N , fast to verify, and practical for
proving that some classes of functions have the strong D-property for N large
enough. As a consequence, we will present a characterization of the strong
D-property for APN permutations with quadratic inverse.

Remark 5.8. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be
the ortho-derivative of G, that is the unique function such that πG(0) = 0 and
πG(a)·φG(a, b) = 0 for all a, b ∈ FN2 where φG(a, b) = G(a+b)+G(a)+G(b)+G(0).
As discussed in e.g. [2] (after Definition 68), we have that G is strongly plateaued
and if N is odd, then πG is a permutation and G is almost bent (AB).

We will see that the strong D-property of a crooked function G can be char-
acterized by the Walsh transform of its ortho-derivative πG . In the following
proposition, we give an expression for such Walsh transform.

Proposition 5.9. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be
the ortho-derivative of G. For any u, v ∈ FN2 we have that

WπG (u, v) =
∑
a∈FN

2

(−1)u·a|Λv,a|+ 2− 2N (δ0(u) + δ0(v))

where Λv,a = {b ∈ FN2 | φG(a, b) = v}.

Proof. Let w ∈ FN2 . Then for any a ∈ FN2 \{0} we have that
∑
b∈FN

2
(−1)w·φG(a,b)

equals 2N if w ∈ ⟨πG(a)⟩ and 0 otherwise. Let u, v ∈ FN2 and set

σ =
∑

a,b,w∈FN
2

(−1)w·(φG(a,b)+v)+u·a.

We have that

σ =
∑
a∈FN

2

(−1)u·a
∑
w∈FN

2

∑
b∈FN

2

(−1)w·(φG(a,b)+v) = 2N
∑
a∈FN

2

(−1)u·a|Λv,a|

since we know that
∑
w∈FN

2
(−1)w·y = 2Nδ0(y). By separating the cases (1)

a = 0, (2) a ̸= 0 and w = 0, (3) a ̸= 0 and w = πG(a), (4) a ̸= 0 and
w ̸∈ ⟨πG(a)⟩ we have that

σ =2N
∑
w∈FN

2

(−1)w·v + 2N
∑

a∈FN
2 \{0}

(−1)u·a + 2N
∑

a∈FN
2 \{0}

(−1)v·πG(a)+u·a

=22Nδ0(v) + 22Nδ0(u)− 2N + 2NWπG (u, v)− 2N .
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Remark 5.10. Let G be a crooked (N,N)-function with N ≥ 3. We give
some preliminary observations on the cardinality of sets Λc = {(a, b) ∈ (FN2 )2 |
φG(a, b) = c} where c ∈ FN2 . Observe that since G is strongly plateaued, then
|Λc| = |{(a, b) ∈ (FN2 )2 | DaDbG(u) = c}| for any u ∈ FN2 [2, Corollary 18].
Therefore, |Λc| ≠ 0 because G has the D-property. If c = 0, we have that
|Λ0| = 3 · 2N − 2 [2, Proposition 172]. Otherwise, |Λc| is divisible by 6. Indeed,
if (a, b) ∈ Λc then a, b are linearly independent and (x, y) ∈ Λc for any distinct
x, y ∈ {a, b, a+ b} (so we have exactly 6 choices). To conclude, let us prove that
for any (a, b), (a′, b′) ∈ Λc the two sets S = {a, b, a+ b} and S′ = {a′, b′, a′ + b′}
are either equal or disjoint. If S ∩ S′ is not empty, then let x ∈ S ∩ S′. Take
y ∈ FN2 such that (x, y) ∈ Λc then because G is APN, y is also in S ∩S′. Hence,
{x, y, x+y} is contained in S∩S′ and so {x, y, x+y} = S∩S′ because S∩S′ has
cardinality at most 3. Therefore, the sets S, S′ are both equal to {x, y, x+ y}.

Let λmin and λmax be respectively the minimum and the maximum among
the cardinalities |Λc| for c ∈ FN2 \ {0}. Since∑

c∈FN
2 \{0}

|Λc| = 22N − |Λ0| = 22N − 3 · 2N + 2 = (2N − 2)(2N − 1),

then λmin ≤ 2N − 2 ≤ λmax. A characterization of G being AB is that λmin =
2N −2 = λmax [2, Corollary 27]. If N is even, then λmin < 2N −2 < λmax since
G cannot be AB (note also that 2N − 2 is not divisible by 6 because 2N−1 − 1 is
divisible by 3 only if N is odd).

With the following lemma, we give a characterization of the strong D-
property for crooked functions that depends on their ortho-derivative.

Lemma 5.11. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be the
ortho-derivative of G. Then G has the strong D-property if and only if, for all
c, v ∈ FN2 \ {0}, we have that

|Γ(1)
v,c| <

|Λc|
3

(7)

where Γ
(1)
v,c = {a ∈ FN2 | c · πG(a) = 0, v · a = 1} and Λc = {(a, b) ∈ (FN2 )2 |

φG(a, b) = c}.

Proof. Let c, v ∈ FN2 \ {0}. We claim that |Γ(1)
v,c| < |Λc|

3 if and only if, for all
u ∈ FN2 , there exist a, b ∈ FN2 such that G(a+b+u)+G(a+u)+G(b+u)+G(u) = c

and v ·a = v ·b = 0. To prove that, we show in a first step that |Γ(1)
v,c| < |Λc|

3 if and
only if there exists (a, b) ∈ Λc with v·a = v·b = 0. As a second step, we will show
that if there exists u ∈ FN2 such that G(a+b+u)+G(a+u)+G(b+u)+G(u) = c
and v ·a = v ·b = 0, then for all u ∈ FN2 there exist a, b ∈ FN2 such that G(a+b+
u)+G(a+u)+G(b+u)+G(u) = c and v ·a = v ·b = 0 (this implication is then an
equivalence, since the converse is of course true). With these two steps proven,

we can conclude the proof. Suppose that |Γ(1)
v,c| < |Λc|

3 for all c, v ∈ FN2 \ {0}.
Let A be an affine hyperplane, then there exists v ∈ FN2 \ {0} and u ∈ FN2 such

that A = {x ∈ FN2 | v · (x+ u) = 0}. Let c ∈ FN2 \ {0}. Since |Γ(1)
v,c| < |Λc|

3 , then
there exist a, b ∈ FN2 such that G(a+ b+u)+G(a+u)+G(b+u)+G(u) = c and
v · a = v · b = 0. So we have that {G(x) + G(y) + G(z) + G(x+ y + z) : x, y, z ∈
A} = FN2 (to get zero, it is enough to set x = y = z). So G has the strong
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D-property. Suppose that G has the strong D-property. Let c, v ∈ FN2 \ {0}.
Since {G(x) + G(y) + G(z) + G(x+ y + z) : x, y, z ∈ E} = FN2 where E = ⟨v⟩⊥,
then there exists x, y, z ∈ FN2 such that G(x) + G(y) + G(z) + G(x+ y + z) = c
and v · x = v · y = v · z = 0. Therefore, for all all u ∈ FN2 , there exist a, b ∈ FN2
such that G(a + b + u) + G(a + u) + G(b + u) + G(u) = c and v · a = v · b = 0.

So we have that |Γ(1)
v,c| < |Λc|

3 .
We prove now the first step. Let Γc be the set of all a ∈ FN2 such that

(a, b) ∈ Λc for some b ∈ FN2 , then we have that |Γc| = |Λc|/2 because if a ∈ Γc
then {b ∈ FN2 | (a, b) ∈ Λc} contains two elements exactly, since G is APN (note

that since c is nonzero, a is nonzero). Then Γ
(1)
v,c = {a ∈ Γc | v · a = 1} because

if v · a = 1 then a ̸= 0 and so we have that φG(a, b) = c for some b ∈ FN2 if
and only if c · πG(a) = 0. Observe that Γc can be partitioned in sets of the
form {a, b, a+ b} such that (a, b) ∈ Λc (see Remark 5.10) and we have that the

cardinality |{a, b, a+b}∩Γ
(1)
v,c| is equal either to 0 or to 2 (indeed, the number of

elements among a, b, and a+b that are non-orthogonal to v is necessarily even).

Then |Γ(1)
v,c| ≤ (2/3)|Γc| = |Λc|/3 with equality only if for all {a, b, a + b} ⊆ Γc

with (a, b) ∈ Λc we have that |{a, b, a+ b} ∩ Γ
(1)
v,c| = 2. So |Γ(1)

v,c| < |Λc|/3 if and

only if there exists (a, b) ∈ Λc with |{a, b, a + b} ∩ Γ
(1)
v,c| = 0 that is such that

v · a = v · b = 0.
Let us prove now the second step. Let us fix u ∈ FN2 and observe that

Gu(x) = G(x + u) is also crooked. Set Λc(u) = {(a, b) ∈ (FN2 )2 | φGu
(a, b) = c}

and Γ
(1)
v,c(u) = {a ∈ FN2 | c ·πGu(a) = 0, v ·a = 1}. Using what we have proven in

the previous paragraph, we have that |Γ(1)
v,c(u)| < |Λc(u)|/3 if and only if there

exist a, b ∈ FN2 such that φGu
(a, b) = G(a+b+u)+G(a+u)+G(b+u)+G(u) = c

and v·a = v·b = 0. To conclude the proof, we must show that for any u1, u2 ∈ FN2
we have that |Γ(1)

v,c(u1)| < |Λc(u1)|/3 if and only if |Γ(1)
v,c(u2)| < |Λc(u2)|/3. It

follows from the fact that |Λc(u1)| = |Λc(u2)| because G is strongly plateaued

[2, Corollary 18] and that Γ
(1)
v,c(u1) = Γ

(1)
v,c(u2) because πGu1

= πGu2
.

In the following proposition, we show (as announced after Proposition 5.4)
that Proposition 5.4 holds even if we assume that G is crooked instead of
quadratic APN. It is indeed important, each time we have a result on APN
quadratic functions, to check whether it extends to crooked functions: if it
does, then this argues in favor of the conjecture that all crooked functions are
quadratic, and if not, this makes this conjecture more questionable.

Proposition 5.12. Let N ≥ 3, let G be a crooked (N,N)-function, let ψ be a
linear (N,N)-function where kerψ = ⟨c⟩ for c ∈ FN2 \ {0}, let F(x) = ψ(G(x)),
and let A be an affine hyperplane with direction E. Then FA is APN if and
only if for all a, b ∈ E we have that φG(a, b) ̸= c.

Proof. Let E = ⟨v⟩⊥ for some v ∈ FN2 \ {0}. Using the second step of the proof
of Lemma 5.11, we have that if there exist a, b ∈ FN2 such that φG(a, b) = c
and v · a = v · b = 0, then for all u ∈ FN2 there exists a, b ∈ FN2 such that
G(a+ b+u)+G(a+u)+G(b+u)+G(u) = c and v ·a = v · b = 0. This is enough
to conclude the proof by Lemma 5.1 because A = u+ E for some u ∈ FN2 .

Remark 5.13. Thanks to Proposition 5.9, the condition in Lemma 5.11, for
the strong D-property of a crooked (N,N)-function G can be expressed by means
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of the Walsh transform of πG. Indeed, let c, v ∈ FN2 \ {0} and set Γ
(0)
v,c = {a ∈

Γc | v · a = 0}. Since

WπG (v, c) =
∑
a∈FN

2

(−1)v·a|Λc,a|+ 2 = 2|Γ(0)
c,v| − 2|Γ(1)

c,v|+ 2

=2|Γc| − 4|Γ(1)
c,v|+ 2 = |Λc| − 4|Γ(1)

c,v|+ 2

(8)

and WπG (0, c) = |Λc| − 2N + 2, we have that |Λc| = WπG (0, c) + 2N − 2 and

|Γ(1)
c,v| =

|Λc|+2−WπG (v,c)

4 . So one can check by means of the Walsh transform
the strong D-property by using Lemma 5.11. This way of checking the strong
D-property is fast because it reduces to the computation of the Walsh transform
of a function.

In the following theorem, we give a sufficient condition for the strong D-
property of a crooked function by means of the first-order nonlinearity of its
ortho-derivative and of the parameter λmin that we introduced above. Note
that if G is AB (N odd) then λmin equals 2N − 2 and the condition is nicely
simple since it depends only on the nonlinearity. If G is not AB, then λmin needs
to be determined, or at least bounded from below, and this may represent much
work.

Theorem 3. Let G be a crooked (N,N)-function with N ≥ 3. Let πG be the
ortho-derivative of G. Let λmin = minc∈FN

2 \{0} |Λc| where Λc = {(a, b) ∈ (FN2 )2 |
φG(a, b) = c} and ω be such that nl(πG) = 2N−1 − (ω/2). If ω < (λmin/3) − 2,
then G has the strong D-property.

Proof. Let c, v ∈ FN2 \ {0}. We have that WπG (v, c) = |Λc| − 4|Γ(1)
c,v|+ 2 by (8).

If we prove that |Γ(1)
c,v| < |Λc|/3, then by Lemma 5.11 we can conclude that G

has the strong D-property. The hypothesis ω < λmin

3 − 2 implies:

|Γ(1)
c,v| =

|Λc|+ 2−WπG (v, c)

4
≤ |Λc|+ 2 + ω

4
<

|Λc|+ 2 + |Λc|
3 − 2

4
=

|Λc|
3
.

We shall now present in Theorem 4, in the case where G is a quadratic
permutation, a sufficient condition for G and G−1 to have both the strong D-
property, which only depends on the nonlinearity of πG , but this time, the
second-order nonlinearity. We shall need the next lemma that uses a similar
idea to Lemma 5.11. We recall that since G is an (N,N)-permutation, N must
be odd (and therefore G is AB).

Lemma 5.14. Let G be a crooked (N,N)-permutation. Let c, v ∈ FN2 \ {0} and

c0 = c+G−1(0). Let Ω
(1)
c,v = {a ∈ FN2 \{c0} | G(c0) ·πG(a+c0) = 0, v ·G(a) = 1}.

Then |Ω(1)
c,v| < 2N−2

3 if and only if there exists a, b ∈ FN2 such that φG−1(a, b) = c
and v · a = v · b = 0.

Proof. Let (a, b) ∈ (FN2 )2 be such that φG−1(a, b) = c and v · a = v · b =
0. Mapping (a, b) into (G(a),G(b)) we have that φG−1 (G(a),G(b)) + c = 0 is
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equivalent to G−1(G(a) + G(b)) + a+ b+ G−1(0) + c = 0 and to G(a+ b+ c0) +
G(a) + G(b) = 0 and we are led to the system{

G(a+ b+ c0) + G(a) + G(b) = 0

v · G(a) = v · G(b) = 0
. (9)

Let Ωc be the set of a ∈ FN2 such that G(a+b+c0)+G(a)+G(b) = 0 for some b ∈
FN2 , then Ω

(1)
c,v is the set of all a ∈ Ωc with v · G(a) = 1. Note that c0 is nonzero,

since we know that G(x) = 0 if and only if x = G−1(0) and c0 = c+G−1(0) with
c ̸= x then implies c0 ̸= 0. Observe that since G(a + b + c0) + G(a) + G(b) = 0
is equivalent to Da+c0G(b) +Da+c0G(c0) = G(c0), there exists b satisfying this
equality if and only if G(c0) belongs to the direction of the hyperplane Da+c0G,
and we have then Ωc = {a ∈ FN2 \{c0} | π(a+c0)·G(c0) = 0}. Since G is AB, then

|Ωc| = 2N−2
2 . Moreover, if (a, b) ∈ FN2 is such that G(a+b+c0)+G(a)+G(b) = 0,

then the number of elements among G(a), G(b), and G(a+ b+ c0) that are non-
orthogonal to v is necessarily even. Similarly as the proof of Lemma 5.11, we

have that |Ω(1)
c,v| < (2/3)|Ωc| = 2N−2

3 if and only if there exists (a, b) solution of
system (9).

Theorem 4. Let G be a quadratic APN (N,N)-permutation. Let πG be the
ortho-derivative of G. Let ω2 be such that nl2(πG) = 2N−1 − (ω2/2). If ω2 <
2N−2

3 − 2, then G and G−1 have the strong D-property.

Proof. Since nl(πG) ≥ nl2(πG), then ω ≤ ω2 where nl(πG) = 2N−1−(ω/2). Since
λmin = 2N − 2, then G has the strong D-property by Theorem 3. To prove that
G−1 has the strong D-property, let c, v ∈ FN2 \ {0} and c0 = c + G−1(0). Let
f(a) = g(a) + h(a) where g(a) = G(c0) · πG(a + c0) and h(a) = v · G(a). Let

γi,j = |{a ∈ a ∈ FN2 \ {c0} | g(a) = i, h(a) = j}|. We claim that γ0,1 <
2N−2

3
and this will prove that there exists a, b ∈ FN2 such that φG−1(a, b) = c and
v · a = v · b = 0 by Lemma 5.14. Then we will show that for all u ∈ FN2 there
exists a, b ∈ FN2 such that G−1(a+b+u)+G−1(a+u)+G−1(b+u)+G−1(u) = c
and v · a = v · b = 0. This will imply the strong D-property of G−1. Let us
prove the (first) claim. Observe that g and h are balanced because πG and G are
permutations and G(c0) ̸= 0. Moreover, g(c0) = 0 because πG(0) = 0. Then we
have that γ0,1+γ0,0 = |g−1(0)\{c0}| = 2N−1−1, γ0,1+γ1,1 = |h−1(1)\{c0}| =
2N−1 − 1 + δ0(h(c0)), and γ1,0 + γ0,0 = |h−1(0) \ {c0}| = 2N−1 − δ0(h(c0)). So
we have that ∑

a∈FN
2 \{c0}

(−1)f(a) = γ1,1 + γ0,0 − γ1,0 − γ0,1

=2γ0,0 − 2γ0,1 + (γ0,1 + γ1,1)− (γ1,0 + γ0,0) =

=− 4γ0,1 + 2(γ0,1 + γ0,0)− 1 + 2δ0(h(c0)) =

=− 4γ0,1 + 2N − 3 + 2δ0(h(c0))

and that ∑
a∈FN

2

(−1)f(a) =2δ0(h(c0))− 1 +
∑

a∈FN
2 \{c0}

(−1)f(a)

=2N − 4γ0,1 − 4 + 4δ0(h(c0)).
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Observe that since −
∑
a∈FN

2
(−1)f(a) ≤

∣∣∣∑a∈FN
2
(−1)f(a)

∣∣∣ ≤ ω2, then

γ0,1 ≤ 1

4

2N −
∑
a∈FN

2

(−1)f(a)

− 1 + δ0(h(c0))

≤ 2N + ω2

4
<

2N − 2

3
.

By Lemma 5.14, we have that there exists a, b ∈ FN2 such that φG−1(a, b) = c
and v · a = v · b = 0. Let us prove the (second) claim. We have proven that,

for any crooked function G, if nl2(πG) > 2N−1 − 2N−2
6 + 1, then there exists

a, b ∈ FN2 such that φG−1(a, b) = c and v · a = v · b = 0. Let u ∈ FN2 and
observe that πG = πGu where Gu(x) = G(x) + u and (Gu)−1(x) = G−1(x + u).

Since nl2(πGu) = nl2(πG) > 2N−1 − 2N−2
6 + 1, there exists a, b ∈ FN2 such that

φ(Gu)−1(a, b) = G−1(a + b + u) + G−1(a + u) + G−1(b + u) + G−1(u) = c and
v · a = v · b = 0.

5.3 The strong D-property of the Gold APN function

Let G(x) = x2
i+1 be the Gold APN function over F2N where gcd(i,N) = 1. To

prove the strong D-property of G, it is enough to verify the D-property of the
(N − 1, N)-function GE where E = {x ∈ F2N | Tr(x) = 0} (see Remark 5.5).
Therefore, we can use some of the results by Taniguchi in [4]. We have that G
has the strong D-property for N ≥ 6 even [4, Example 6]. By using Theorem 3,
we are going to address the case N odd. With this result, all the cases will be
covered. To apply Theorem 3, we will prove that the (first-order) nonlinearity
of the ortho-derivative of the Gold APN function is greater or equal than the
second-order nonlinearity of the inverse function x−1. Then we conclude by
using a lower bound proven in [15].

For the rest of the section, the ortho-derivative of a crooked function over
F2N is defined by using the inner product a · b = Tr(ab) for any a, b ∈ F2N .

Theorem 5. Let N ≥ 3 and i be such that gcd(i,N) = 1. Then the Gold

APN function x2
i+1 over F2N has the strong D-property if and only if N = 6

or N ≥ 8.

Proof. As we have discussed previously, the cases N < 10 can be verified com-
putationally and the case N ≥ 10 even follows from [4, Example 6] and Remark
5.5. By using Theorem 3, we will prove the case N ≥ 11 odd. We have that
πG(x) = x−(2i+1) as shown in [16] where G(x) = x2

i+1. Let u, v ∈ F2N . Since
N is odd, then πG is a permutation (see Remark 5.8). So the nonlinearity of πG
depends on the values of WπG (u, v) with u ̸= 0 and v ̸= 0. Observe that since

WπG (u, v) =
∑
x∈F2N

(−1)Tr(v·πG(x)+ux) =
∑
x∈F2N

(−1)Tr(v·πG(x−1)+ux−1),

and πG(x
−1) = x2

i+1 is quadratic, we have that

nl(πG) = 2N−1 − 1

2
max

u,v∈F2N \{0}
|WπG (u, v)| ≥ nl2(x

−1).
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By [15, Proposition 5], we have that

nl2(x
−1) ≥ 2N−1 − 1

2

√
(2N − 1)2N/2+2 + 3 · 2N

and therefore

|WπG (u, v)| ≤
√

(2N − 1)2N/2+2 + 3 · 2N

for any u, v ∈ F2N \ {0}. We claim that for N ≥ 11 we have that the inequality√
(2N − 1)2N/2+2 + 3 · 2N <

2N − 2

3
− 2 (10)

holds and conclude by using Theorem 3. Observe that the expression on the
left side of (10) is equal to

√
2(3N+4)/2 + 2N+1 + 2N − 2(N+4)/2 that is less or

equal than
√
2 · 2(3N+4)/2 = 2(3N+6)/4. The inequality 2(3N+6)/4 < 2N−2

3 − 2 is

equivalent to the inequality 2(3N+10)/4 + 2(3N+6)/4 + 8 < 2N that is true if and
only if N > 10. So (10) holds for N ≥ 11.

We observe that for the Gold APN function in even dimension, the values of
λmax and λmin defined in Remark 5.10 are known [2] (Example 2 after Theorem
18), so we could have proven similarly that for some positive integer N0 the
Gold APN function has the strong D-property for N ≥ N0 even. We didn’t do
that because the even case was already proven by Taniguchi [4, Example 6].

The ortho-derivatives of other classes of quadratic APN functions can be
derived from the work done in the paper [16], but they do not have an easy-to-
handle representation like the Gold APN function. In Theorem 3, we have used
the fact that the function πG(x

−1) is quadratic and this is a relevant case for
the Gold APN function.

In [4, Example 16], Taniguchi proved a result on the D-property of the
restriction of the Dobbertin APN power function in even dimension over the
linear hyperplane E = {x ∈ F2N | Tr(x) = 0}. We are going to use the same
idea in odd dimension, that is to apply [4, Theorem 25] and [4, Theorem 26].
The two theorems together cover all cases of power APN functions xd since they
are all such that gcd(d, 2N −1) = 1 if N is odd and gcd(d, 2N −1) = 3 otherwise
(this is an observation by Dobbertin stated in [2, Proposition 165]). We group
the two theorems in the following lemma.

Lemma 5.15 ([4]). Let G(x) = xd be an APN power function over F2N with
N ≥ 3. Let Ek = {x ∈ F2k | Trk(x) = 0} for any k. Let t > 2 be a positive
integer such that t divides N and such that t is even if N is even. If the
(t−1, t)-function GEt

has the D-property, then the (N −1, N)-function GEN
has

the D-property.

Proposition 5.16. Let t be a positive integer, let G(x) = xd where d = 24t +
23t + 22t + 2t − 1 be the Dobbertin APN function over F25t , and let E = {x ∈
F25t | Tr5t(x) = 0}. Then the (5t− 1, 5t)-function GE has the D-property if and
only if t ≥ 2.

Proof. We will use the notation Ek = {x ∈ F2k | Trk(x) = 0} for any k. The
cases t ≤ 5 can be verified computationally. Assume t > 5. Let us prove the
case t ̸= 7. Since t is even if 5t is even, we can use Lemma 5.15. So it is enough
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to prove that the (t − 1, t)-function GEt
has the D-property. Observe that G

restricted to F2t is equal to the cube function x3 because 24t = 23t = 22t =
2t = 1 mod 2t − 1. The function x3 over F2t has the strong D-property by
Theorem 5, so the restriction of x3 over Et has the D-property. To prove the
case t = 7, we use again Lemma 5.15 but this time we consider the restriction
over F25 . It can be verified computationally that the (4, 5)-function GE5

has the
D-property.

The previous proposition does not imply the strong D-property of the Dob-
bertin APN function for t ≥ 2, but it is enough as a strong argument to conjec-
ture that it holds.

Conjecture 1. For t ≥ 2, the Dobbertin APN function in dimension N = 5t
has the strong D-property.

Unfortunately, all the results obtained by Taniguchi in [4] are only for the
case of restrictions over the hyperplane E = {x ∈ F2N | Tr(x) = 0} and not its
complement A. According to Remark 5.3, proving that for t ≥ 2 the restriction
of the Dobbertin APN function over A has the D-property is the last piece to
prove Conjecture 1.

6 On the non-APNness of infinite families of
(N − 1, N − 1)-permutations

When constructing an infinite family of (N − 1, N − 1)-permutations FA by
restricting to an affine hyperplane a family of (N,N)-functions F with one affine
component, we have only two cases to consider up to equivalence: either F is
equal to ψ(G(x))+x or to to ψ(G(x)) where G has nonzero nonlinearity and ψ is
a linear function with kernel of dimension 1. This follows from Proposition 4.3
because either the affine component of F is constant or it is not. In this section,
we will be interested in the case where G is an APN permutation and we study
whether FA can be APN. As we have mentioned at the beginning of Section
5, Berierle et al. in [3] investigated a similar setting to ours. However, they
did not impose the permutation property on G and neither they were aiming
to construct specifically permutations as the restriction of G (in their sense of
the term) because they used an approach up to EA equivalence. We begin with
two examples of differentially 4-uniform permutations in literature which enter
in our framework, up to the addition of a linear function, and in which the
permutation G is the multiplicative inverse function in the first example, and
the compositional inverse of a Gold permutation in the second example.

6.1 On the non-APNness of family [5]

We shall discuss the family constructed by the first author in [5] (for a more
completed version see [2] Subsection 11.6.4, sixth point) for N odd (which is
more interesting since the inverse function, on which the construction is based,
is then APN). We are going to prove the family does not contain any APN
permutation (in even dimension).

The permutation in even dimension N − 1 is obtained as the restriction of
the (N,N)-function F(x) = 1

x2+1 + 1
x+1 + x over the linear hyperplane E =
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{x ∈ F2N | Tr(x) = 0}. The fact that FE is a permutation is proved in [5]
thanks to observations involving the Dickson permutation polynomials. Using
Lemma 5.1 and changing x into x+1, FE is not APN if and only if there exists

x, y, z ∈ F2N such that Tr(x) = Tr(y) = Tr(z) = 1 and x2
N−2+y2

N−2+z2
N−2+

(x+ y + z)2
N−2 = 1 (because Tr(a+1) = Tr(a)+1). We shall prove more: there

is a solution (x, y, z) such that z = 1, that is, the system{
x2

N−2 + y2
N−2 + (x+ y + 1)

2N−2
= 0

Tr(x) = Tr(y) = 1
(11)

has a solution in F2N for N ≥ 7 odd. We will prove it by using the well known
Hasse-Weil bound [17, Chapter 5] for algebraic curves over finite fields, while
for N = 5, the strong D-property itself can be verified computationally.

The Hasse-Weil bound works in the following setting. Let H(X,Y, Z) be an
homogeneous multivariate polynomial with coefficients in F2N . Then a curve
in a projective plane is defined as VP2(F2N )(H) = {(X : Y : Z) ∈ P2(F2N ) |
H(X,Y, Z) = 0} where P2(F2N ) = {(X : Y : Z) : (X,Y, Z) ∈ (F2N )3\{(0, 0, 0)}}
and (X : Y : Z) = {(aX, aY, aZ) ∈ F3

2N | a ∈ F2N \ {0}}. The curve is called
absolutely irreducible if and only if the multivariate polynomial H is irreducible
in every extension field of F2N . The curve is called non-singular if the system
given by the equations ∂XH(X,Y, Z) = 0, ∂YH(X,Y, Z) = 0, ∂ZH(X,Y, Z) = 0
(where ∂ indicates the partial formal derivative) has no solution in every field
extension of F2N such that (X,Y, Z) ̸= (0, 0, 0). The Hasse-Weil bound states
that if a curve is both absolutely irreducible and non-singular, then

||VP2(F2N )(H)| − (2N + 1)| ≤ 2g · 2N/2

where g = (D−1)(D−2)
2 is the genus of the curve and D is the degree of H.

Theorem 6. Let N be odd. Then we have that:

1. If N ≥ 7, system (11) has a solution.

2. If N ≥ 5, the (N − 1, N − 1)-permutation FE is not APN where F(x) =
1

x2+1 + 1
x+1 + x and E = {x ∈ F2N | Tr(x) = 0}.

Proof. Note that since Tr(x) = Tr(y) = 1, any solutions (x, y) of (11) are
nonzero and such that x+ y + 1 is also nonzero. Then we can rewrite equation

x2
N−2+y2

N−2+(x+ y + 1)
2N−2

= 0 of system (11) into y(x+y+1)+x(x+y+
1)+xy = 0. Set F (x, y) = y(x+y+1)+x(x+y+1)+xy. Therefore, system (11)
has solution if and only if G(X,Y ) = F (X2+X+1, Y 2+Y +1) has a root (X,Y ).
Let D be the degree of G(X,Y ) and let H(X,Y, Z) = zD · G(XZ ,

Y
Z ) be the

homogenization of G(X,Y ). We verified by using MAGMA [18] (see Appendix
A) that VP2(F2N )(H) does not contain points at infinity (that are points with Z =
0), it is absolutely irreducible, it is non-singular, and it has genus 3. So we can
apply the Hasse-Weil bound and we have that |VP2(F2N )(H)| ≥ 2N+1−2·3·2N/2.
Since 2N + 1− 6 · 2N/2 > 0 for N ≥ 7, we have proved the first part. By using
Lemma 5.1, if system (11) has a solution, then FE is not APN. Since the case
N = 5 can be verified computationally, this concludes the proof.

Remark 6.1. When considering the strong D-property of the inverse function,
the problem is more complex since it corresponds to verify that the restriction

27



of ψ(x−1) over A is not APN whatever is the affine hyperplane A and whatever
is the kernel of ψ (while above, we verified this for the hyperplane of equation
Tr(x) = 1 and for kerψ = ⟨1⟩ only). However, using a similar reduction as in
the proof of Theorem 6, we can define for any c ∈ F2N \ {0} and any ϵ ∈ F2 the
following system in (x, y) ∈ (F2N )2:{

x2
N−2 + y2

N−2 + (x+ y + ϵ)2
N−2 + ϵ+ c = 0

Tr(x) = Tr(y) = ϵ
. (12)

According to Remark 5.3, proving that there exists a solution (x, y) ∈ (F2N )2 of
system (12) for all c ∈ F2N \{0} and all ϵ ∈ F2 implies that the inverse function
in dimension N has the strong D-property. To prove that the system (12) has a
solution, we can define an algebraic curve by using the polynomial Hc,ϵ(X,Y, Z)
that is the homogenization of Gc,ϵ(X,Y ) = Fc,ϵ(X

2 +X + ϵ, Y 2 + Y + ϵ) where
Fc,ϵ(x, y) is equal to left side of the first equation of system (12). However,
having c and ϵ as parameters of the curve (while above we had only one value
for c and one for ϵ) increase the difficulty of the problem noticeably because we
cannot use MAGMA to prove properties of the curve (notice that the coefficients
of the curve do not belong to a fixed subfield as for the case c = 1).

Conjecture 2. For any N ≥ 5 odd, the inverse function in dimension N has
the strong D-property.

Conjecture 2 is verified computationally for every odd N between 5 and 19.

6.2 On the non-APNness of Li-Wang families

Li and Wang in [6] define explicitly two families of permutations in dimension
N − 1 even, of the form FE where F(x) = ψ(G(x)), ψ is a linear function with
kernel of dimension 1, E = Imψ, and G is an APN permutation. The first one

is such that ψ(x) = cx2
i

+ c2
i

x for any c ∈ F2N \ {0} and G(x) = x
1

2i+1 with
gcd(i,N) = 1 is the inverse of the Gold APN function [6, Theorem 4]. The

second one is such that ψ(x) = x2
i

+ x and G(x) = x
1

2i+1 +TrN3 (x+ x2
2s

) with
N divisible by 3, gcd(i,N) = 1, and s = i mod 3 [6, Theorem 6]. We will show
that both families never produce APN permutations (in even dimension N −1).
Using that as a motivation, we conjecture that the inverse of the Gold APN
function has the strong D-property in dimension N ≥ 5 odd. We first need a
lemma.

Lemma 6.2. Let N ≥ 3 be odd. Then |{x ∈ F2N | Tr(x) = 1, Tr(x−1) = 0}| ≥
2N−2 − 2N/2−1.

Proof. Let γi,j = |{x ∈ F2N | Tr(x) = i, Tr(x−1) = j}|. Since γ1,0 = γ0,1 and
γ1,1 + γ1,0 = γ0,0 + γ1,0 = 2N−1, we have that∑

x∈F2N

(−1)Tr(x
−1+x) = γ1,1 + γ0,0 − 2γ1,0

= (γ1,1 + γ1,0) + (γ0,0 + γ1,0)− 4γ1,0

= 2N − 4γ1,0.

We conclude by observing that
∑
x∈F2N

(−1)Tr(x
−1+x) ≤ 2N/2+1 because nl(x−1) ≥

2N−1 − 2N/2 [2]. This concludes the proof.
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Theorem 7. Let N, i be positive integers such that N ≥ 5 is odd and gcd(i,N) =

1. Let d = 2i + 1. For any c ∈ F2N \ {0}, set ψc(x) = cx2
i

+ c2
i

x. Then we
have the following:

1. For any c ∈ F2N \{0}, function FE is not APN where E = Imψc, F(x) =

ψc(G(x)), and G(x) = x
1
d .

2. Let s = i mod 3 and let N be divisible by 3. Then FE is not APN where
E = Imψ1, F(x) = ψ1(G(x)), and G(x) = x

1
d +TrN3 (x+ x2

2s

).

Proof. Observe that Imψc = {x ∈ F2N | Tr(π(c)x) = 0} where π(x) = x−d is
the ortho-derivative of G−1(x) = xd because ψc(x) = φG−1(c, x).

Let us prove 1. Let c ∈ F2N \ {0}. Using Lemma 5.1, we have that if there
exists a, b ∈ F2N such that φG(a, b) = c and Tr(π(c)a) = Tr(π(c)b) = 0, then FE
is not APN. To prove the existence of such a and b, we are going to use Lemma

5.14. Let c0 = c+ G(0) and Ω
(1)
c,π(c) = {a ∈ FN2 \ {c0} | Tr(π(a+ c0)G−1(c0)) =

0, Tr(π(c)G−1(a)) = 1}. Using Lemma 5.14, we have that if |Ω(1)
c,π(c)| <

2N−2
3 ,

then there exists a, b ∈ F2N such that φG(a, b) = c and Tr(π(c)a) = Tr(π(c)b) =

0. Since π(x) = x−d, G−1(x) = xd, and G(0) = 0 then Ω
(1)
c,π(c) = {a ∈ FN2 \ {c} |

Tr((a+ c)−dcd) = 0, Tr(c−dad) = 1}. Notice that

|Ω(1)
c,π(c)| = |{a ∈ F2N \ {0} | Tr(a−dcd) = 0, Tr(c−d(a+ c)d) = 1}|

= |{a ∈ F2N \ {0} | Tr(a−dcd) = 0, Tr(c−dad) = 0}|
= |{a ∈ F2N \ {0} | Tr(a) = 0, Tr(a−1) = 0}|,

where in the first equality we use the substitution a := a + c, in the second
we use the fact that Tr(c−d(a + c)d) = Tr(c−dad) + 1, and in the third we use

the substitution a := a−dcd. So we have that |Ω(1)
c,π(c)| + |{a ∈ F2N | Tr(a) =

1, Tr(a−1) = 0}| = |{a ∈ F2N \ {0} | Tr(a−1) = 0}| = 2N−1 − 1 and |Ω(1)
c,π(c)| ≤

2N−1−1−2N−2+2N/2−1 = 2N−2+2N/2−1−1 by Lemma 6.2. We conclude by

observing that 2N−2 + 2N/2−1 − 1 < 2N−2
3 if and only if 2N−1 + 2N−2 + 2N/2 +

2N/2−1 < 2N + 1 that is true for N ≥ 5.
Let us prove 2. It follows from the fact that the (N − 1, N − 1)-function

defined in 1 for c = 1 is EA equivalent to FE because F(x) = ψ1(G(x)) =

ψ1(x
1
d ) + ψ1(Tr

N
3 (x+ x2

2s

)) (see Remark 4.4).

With the previous theorem, we have a partial result on the strong D-property
of the inverse of the Gold APN permutation. So, as for the inverse function,
we believe this is a good argument to conjecture the strong D-property of the
inverse of the Gold APN function in dimension N ≥ 5 odd (it can be verified
computationally that the property does not hold for N = 3).

Conjecture 3. For N ≥ 5 odd, the inverse of the Gold APN function in
dimension N has the strong D-property.

Conjecture 3 is verified computationally for every odd N between 5 and 19.
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6.3 On a general construction for families of permutations

We will build upon the results by Li and Wang in [6] to investigate completely
the problem of constructing an (N − 1, N − 1)-permutation from an (N,N)-
function F(x) = ψ(G(x)) where ψ is a linear function with kernel of dimension
1 and G is a permutation. Then we discuss the case where F(x) is equal to
ψ(G(x)) + x instead. In this way, we provide many families of permutations
with good cryptographic properties.

We will present the Li-Wang construction with our notation.

Construction 1 (Li-Wang construction [6]). Let G be an APN permutation
over F2N with quadratic compositional inverse G−1 and such that G(0) = 0. So
N is odd because quadratic APN permutations exist only in odd dimension [2,
Subsection 11.3.4]. For any c ∈ F2N \{0} the function ψc(y) = G−1(y)+G−1(y+
c) + G−1(c) is linear with kernel of dimension 1. Li and Wang proved that by
taking F(x) = ψc(G(x)), the restriction FE where E = Imψc is a permutation
with differential uniformity 4 [6, Theorem 2] and optimal known nonlinearity in
even dimension [6, Theorem 3], that is 2n−1 − 2

n
2 where n = N − 1. We will

prove that if A is the complement of E, then also FA is a permutation and it is
CCZ equivalent to FE. Even if Li and Wang in [6] did not discuss the function
FA, we will still say that it is a product of the Li-Wang construction.

With the following Lemma (heavily inspired by the first part of [6, Theorem
2]) we are going to exhibit some necessary and sufficient conditions such that
the restriction over an affine hyperplane of a function of the form ψ(G(x)) is a
permutation when G is a permutation and ψ is linear with kernel of dimension
1.

Lemma 6.3. Let G be a permutation over F2N , let v, c ∈ F2N \ {0}, let E =
{x ∈ F2N | Tr(vx) = 0}, let A be the complement of E, and let ψ be any
linear function over F2N with kerψ = ⟨c⟩. Let F(x) = ψ(G(x)) and let B(x) =
G−1(G(x) + c). Then the following are equivalent:

1. FE is a permutation.

2. B(E) = A.

3. FA is a permutation.

4. Tr(vB(x)) = Tr(vx) + 1 for all x ∈ F2N .

5. Tr(vDcG−1(x)) = 1 for all x ∈ F2N .

Proof. We observe that for x, y ∈ F2N with x ̸= y, we have that F(x) = F(y) if
and only if G(x) + G(y) ∈ kerψ. Since G is a permutation, this happens only if
G(x) + G(y) = c. Observe that the latter equation is equivalent to the equation
y = G−1(G(x) + c) = B(x).

Let us prove that 1 implies 2. Suppose that there exists x ∈ E such that
y = B(x) = G−1(G(x) + c) is in E. Then G(x) + G(y) = c and this is a
contradiction since FE is a permutation. So B(E) ⊆ A and therefore B(E) = A
because B is a permutation.

Let us prove that 2 implies 1. Suppose that there exists x, y ∈ E with x ̸= y
and G(x)+G(y) = c. Then y = B(x), but this is not possible because B(E) = A.
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To prove that 2 and 3 are equivalent, the argument is similar to the proof
that 2 and 1 are equivalent. Indeed, we have that 2 is equivalent to B(A) = E
because B is a permutation.

We have that 2 and 4 are equivalent since B(E) = A (resp. B(A) = E)
is equivalent to having that, for any x ∈ F2N such that Tr(vx) = 0 (resp.
Tr(vx) = 1), we have that Tr(vB(x)) = 1 (resp. Tr(vB(x)) = 0).

We have that 4 and 5 are equivalent since B(x) + x = G−1(G(x) + c) + x =
G−1(G(x) + c) + G−1(G(x)) = DcG−1(y) for y = G(x).

As a consequence of Lemma 6.3, we have that the Li-Wang construction
(Construction 1) produces two permutations that are FE and FA.

We observe that Condition 5 on G−1 in Lemma 6.3 is met by any crooked
permutation because the image of every derivative (with nonzero direction) is
an affine hyperplane that is not linear [2] (see after Definition 68). So the
Li-Wang construction (Construction 1) is in this framework because quadratic
APN functions are crooked. The simplest example is the Gold APN function
in odd dimension. However, G−1 can be not crooked and satisfy condition 5
of Lemma 6.3. As an example, Li and Wang constructed in [6, Theorem 6]
a family of permutations where G−1 is not crooked. They showed that for

G(x) = x
1

2i+1 + TrN3 (x + x2
2s

) with N odd divisible by 3, gcd(i,N) = 1, and
s = i mod 3, we have that Tr(D1G−1(x)) = 1 for all x ∈ F2N [6, Lemma 5] and

that the restriction of F(x) = G(x)2i + G(x) over E = {x ∈ F2N | Tr(x) = 0} is
a permutation. But their result is less exciting after observing that FE is EA

equivalent to family [6, Theorem 4], that is the restriction of x
2i

2i+1 +x
1

2i+1 over
E because the two functions in dimension N are EA equivalent (see Remark
4.4). So it still remains unclear if it is possible to use Lemma 6.3 to construct
a permutation in dimension N − 1 using an APN permutation G which is EA
inequivalent to any permutation with quadratic inverse.

Using Lemma 6.3, we are now going to define our construction.

Construction 2. Let N ≥ 4 be a positive integer, let G be a permutation over
F2N , and let v, c ∈ F2N \ {0} be such that Tr(vDcG−1) = 1. Let E = {x ∈
F2N | Tr(vx) = 0}, let A be the complement of E, and let ψ be any linear
function over F2N with kerψ = ⟨c⟩. By Lemma 6.3, we have that FE and FA
are permutations where F(x) = ψ(G(x)). By Theorem 2, both functions have
nonlinearity greater or equal than nl(G)− 2N−2 and they are 2δ-uniform if G is
δ-uniform (in particular, they are 4-uniform if G is APN).

Proposition 6.4. The Li-Wang construction (Construction 1), the family de-
fined in [6, Theorem 4], and the one defined in [6, Theorem 6] are a particular
case of Construction 2.

Proof. The framework of Construction 2 is exactly the one given in Lemma 6.3
and we have already shown that the Li-Wang construction and those families
are in such framework.

In the following lemma, we give a description of (FE)−1 (resp. (FA)−1) by
following a similar idea to [6, Proposition 2]. This gives a sufficient condition
to have that FE and FA are CCZ equivalent.

Lemma 6.5. In the setting of Construction 2, the following holds on F(x) =
ψ(G(x)):
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1. Defining the two functions over F2N :

H(x) = G−1(x) + Tr
(
vG−1(x)

)
DcG−1(x)

and H′(x) = H(x) +DcG−1(x), we have that for every linear hyperplane
E0 in F2N such that c ̸∈ E0, function (FE)−1 is affine equivalent to HE0

and function (FA)−1 is affine equivalent to H′
E0

.

2. If the function DcG−1(x) is affine, then FE is CCZ equivalent to FA.

Proof. Let us prove 1. Let a ∈ F2N . Observe that the restriction of ψ over
E0 is bijective with codomain Imψ because E0 ∩ kerψ = {0} and E0 has the
same cardinality as Imψ. We claim that HE0 = (FE)−1 ◦ ψE0 and H′

E0
=

(FA)−1 ◦ ψE0
. To prove it, we show that for any linear function ψ′ such that

ψ′
Imψ = (ψE0

)−1 we have that HE0
= (ψ′

Imψ ◦FE)−1 and H′
E0

= (ψ′
Imψ ◦FA)−1.

Let x ∈ a+E and y = ψ′(F(x)). We claim that x = H(y) if a ∈ E and x = H′(y)
otherwise and this will conclude the proof. Observe that y = G(x) if G(x) ∈ E0

and y = G(x) + c otherwise. This implies that y = G(x) if Tr
(
vG−1(y)

)
=

Tr (vx) = Tr(va) and that y = G(x)+c if Tr
(
vG−1(y)

)
= Tr

(
vG−1(y + c)

)
+1 =

Tr (vx) + 1 = Tr(va) + 1. Let g(y) = Tr
(
vG−1(y)

)
+Tr(va), then

x =

{
G−1(y) if g(y) = 0,

G−1(y + c) otherwise.

Since we have that

x =(g(y) + 1)G−1(y) + g(y)G−1(y + c)

=G−1(y) + g(y)DcG−1(y),

then x = H(y) if a ∈ E and x = H′(y) otherwise.
Let us prove 2. Let E0 be a linear hyperplane such that c ̸∈ E0. Using 1, we

have that (FE)−1 is affine equivalent to HE0
and (FA)−1 is affine equivalent to

H′
E0

. Since the function DcG−1(x) is affine and H′(x) = H(x)+DcG−1(x), then
HE0

and H′
E0

are EA equivalent (see Remark 4.4). Therefore, function (FE)−1

is EA equivalent to function (FA)−1 and so function FE is CCZ equivalent to
function FA.

In the proof of Lemma 6.5, we showed the existence of a sequence of in-
versions, EA transformations, and affine transformations which transforms FE
into FA and we deduced that these two functions are CCZ equivalent by the
transitivity of the CCZ equivalence relation. This is possible because we have
imposed that DcG−1 is an affine function, so the equivalence may not be true
in the general setting of Construction 2. Regarding EA equivalence, we veri-
fied computationally that there are some examples where FE and FA are CCZ
equivalent but not EA inequivalent. We did our investigation for the case of

the function G(x) = x
1

2i+1 with gcd(i,N) = 1 for N ∈ {7, 9} (see Construction
2). Observe that the choice of ψ does not matter as long as the kernel is equal
to ⟨c⟩, because changing ψ (with the same kernel) result in affine equivalent
functions. We have that FE and FA are CCZ equivalent by Lemma 6.5 because
DcG−1(x) = cx2

i

+ c2
i

x+ c2
i+1 is linear. We verified computationally that for

c = 1 (so v must be 1) we have that FE and FA are not EA equivalent. For
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c ̸∈ F2 we have that, in some cases (but not all of them), FE and FA are EA
equivalent. This shows that, in some cases, we are able to construct a new
function more than the ones constructed by Li and Wang in [6].

In [6, Theorem 5], Li and Wang observed that the family constructed in
[6, Theorem 4] using the inverse of the Gold APN function, can be twisted to
increase the algebraic degree of the compositional inverse. They show that F ′

E

is a permutation where F ′(x) = F(x)+x and that (F ′
E)

−1 has algebraic degree
(N + 1)/2. We will show that the same twist can be applied to a particular
case of Construction 2, that is when ψc(x) = DcG−1(x) +DcG−1(0) is a linear
function with kernel of dimension 1 and ψ = ψc. This setting includes the Li-
Wang construction because G−1 is a quadratic APN function and so ψc has the
property we want. For F ′(x) = F(x) + x, we construct two functions F ′

E and
F ′
A that are EA equivalent respectively to FE and FA (see Remark 4.3). To

prove that F ′
E and F ′

A are permutations, we will prove that F ′ is a permutation.
We will study two properties that requires a specific representation over F2N−1

and that are not affine invariant. The first one is that the two functions are
complete permutations (i.e. are permutations P(x) such that P(x)+x is also a
permutation) and the second is that (F ′

E)
−1 = F ′

A. There is no mention of these
property in [6] because we believe that the authors where more focused on affine
invariant properties and they did not focus on representations of restrictions.

Proposition 6.6. Suppose to be in the setting of Construction 2 with the ad-
ditional hypothesis that ψc(x) = DcG−1(x) + DcG−1(0) is a linear function
with kernel of dimension 1 and that ψ = ψc. Let F ′(x) = ψc(G(x)) + x, let
a = DcG−1(0), and let ϕ be a linear bijective function from F2N−1 to E. Then
we have the following:

1. We have that a ∈ A and that function F ′(x) is equal to G−1(G(x)+ c)+a.

2. Up to affine equivalence, we can write FE(y) = ϕ−1(F(ϕ(y))), FA(y) =
ϕ−1(F(ϕ(y) + a)), F ′

E(y) = ϕ−1(F ′(ϕ(y))), and F ′
A(y) = ϕ−1(F ′(ϕ(y) +

a) + a).

3. Using the representations in 2, we have that FE , FA, F ′
E , and F ′

A are
complete permutations and that F ′

A = (F ′
E)

−1.

Proof. Let us prove 1. We have that a ∈ A because Tr(vDcG−1) = 1. Func-
tion F ′(x) is equal to G−1(G(x) + c) + a because ψc(G(x)) = G−1 (G(x) + c) +
G−1 (G(x)) +DcG−1(0) = G−1(G(x) + c) + x+ a.

Let us prove 2. Let ζ be a linear surjective function from F2N to F2N−1 such
that ζ(x) = ϕ−1(x) for all x ∈ E. We have that (ϕ, 0, ζ, 0) is a representation
of FE and of F ′

E , (ϕ, a, ζ, 0) is a representation of FA, and (ϕ, a, ζ, a) is a
representation of F ′

A (see Definition 3.1). Since ζ(x) = ϕ−1(x) for all x ∈ E,
the representations we mentioned are exactly those we want to prove.

Let us prove 3. Since F ′(x) = G−1(G(x)+c)+a, then F ′ is a permutation and
the two functions F ′

E and F ′
A are permutations. We claim that FE(y)+F ′

E(y) =
y and that FA(y) +F ′

A(y) = y. Since F(x) +F ′(x) = x, we have that FE(y) +
F ′
E(y) = ϕ−1 (F(ϕ(y)) + F ′(ϕ(y))) = ϕ−1 (ϕ(y)) = y and that FA(y)+F ′

A(y) =
ϕ−1 (F(ϕ(y) + a) + F ′(ϕ(y) + a) + a) = ϕ−1 (ϕ(y) + a+ a) = y. We claim that
F ′
A = (F ′

E)
−1. Observe that since F ′(x) +DcG−1(0) = G−1(G(x) + c), we have

that F ′(F ′(x) + a) + a = x and that (F ′)−1(x) = F ′(x + a) + a. We conclude
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by showing that (F ′
E)

−1(y) = ϕ−1((F ′)−1(ϕ(y))) = ϕ−1(F ′(ϕ(y) + a) + a) =
F ′
A(y).

Using Proposition 6.6, we define the following construction.

Construction 3. Suppose to be in the setting of Construction 2 with the addi-
tional hypothesis that ψc(x) = DcG−1(x) +DcG−1(0) is a linear function with
kernel of dimension 1 and that ψ = ψc. Let F ′(x) = ψc(G(x)) + x. Using
the representations in 2 of Proposition 6.6, we have that FE , FA, F ′

E , and F ′
A

are complete permutations and that F ′
A = (F ′

E)
−1 by using the representations.

Functions F ′
E and F ′

A are EA equivalent respectively to FE and FA (see Re-
mark 4.4), so the differential uniformity and the nonlinearity are the same as
in Construction 2.

Using the representations in 2 and the results in 3 of Proposition 6.6, we
can describe precisely the linear function that maps the graph of FE to the
graph of FA. We claim that such function is (y, z) 7→ (y + z, z) over (F2N−1)2.
Since (y,FE(y)) 7→ (y + FE(y),FE(y)) = (F ′

E(y),FE(y)), we have to show
that FE(w) = FA(y) where w = (F ′

E)
−1(y). Indeed, we have that FE(w) =

FE(w) + w + w = F ′
E(w) + w = y + F ′

A(y) = FA(y) because w = F ′
A(y).
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A Second part of the proof of Theorem 6

The curve VP2(F2N )(H) has coefficients in F2, so to prove that for any N odd
it is absolutely irreducible, non-singular, and of genus 3 it is enough to study
those invariants for VP2(F2)(H). The following code in MAGMA [18] proves our
claims.

propertiesCurve:=procedure()

R<x,y,z>:=ProjectiveSpace(GF(2),2);

F:=y*(x+y+1)+x*(x+y+1)+x*y;

G:=Evaluate(F,[x^2+x+1,y^2+y+1,z]);

H:=Zero(GF(2));

D:=Degree(G);

for m in Terms(G) do

H+:=m*z^(D-Degree(m));

end for;

C:=Curve(R,H);

printf "\n\n";

printf "F=%o\n",F;

printf "Set G(x,y)=F(x^2+x+1,y^2+y+1)\n";

printf "G=%o\n",G;

printf "The curve has degree %o\n",D;

printf "Define H as the homogenization of G\n";

printf "H=%o\n",H;

printf "C: H=0\n";

printf "The curve C is absolutely irreducible = %o\n",

IsAbsolutelyIrreducible(C);

printf "The curve C is not singular = %o\n",IsNonsingular(C);

printf "The curve C has genus %o\n",Genus(C);

printf "\n";

printf "The curve C does not have points at infinity\n";

printf "H(x,y,0)=%o\n",Evaluate(H,[x,y,0]);

printf "By setting y=1, the equation %o=0",

Evaluate(H,[x,1,0]);

printf " does not have solution for N odd\n";

end procedure;

propertiesCurve();
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