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Abstract. Succinct arguments that rely on the Merkle-tree paradigm introduced
by Kilian (STOC 92) suffer from larger proof sizes in practice due to the use
of generic cryptographic primitives. In contrast, succinct arguments with the
smallest proof sizes in practice exploit homomorphic commitments. However
these latter are quantum insecure, unlike succinct arguments based on the Merkle-
tree paradigm.
A recent line of works seeks to address this limitation, by constructing quantum-
safe succinct arguments that exploit lattice-based commitments. The eventual goal
is smaller proof sizes than those achieved via the Merkle-tree paradigm. Alas,
known constructions lack succinct verification.
In this paper, we construct the first interactive argument system for NP with
succinct verification that, departing from the Merkle-tree paradigm, exploits the
homomorphic properties of lattice-based commitments. For an arithmetic circuit
with N gates, our construction achieves verification time polylog(N) based on
the hardness of the Ring Short-Integer-Solution (RSIS) problem.
The core technique in our construction is a delegation protocol built from commit-
ment schemes based on leveled bilinear modules, a new notion that we deem of
independent interest. We show that leveled bilinear modules can be realized from
pre-quantum and from post-quantum cryptographic assumptions.
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1 Introduction

Succinct arguments enable an untrusted prover to convince a skeptical verifier that a
given computation is correctly executed, while incurring communication complexity,
and sometimes also verification time, that is much smaller than the computation size.
Succinct arguments were first constructed by Kilian in [47], and since then much research
has been devoted to improving their efficiency and security. Kilian shows how to compile
a PCP into a succinct argument by using a Merkle tree, given any collision-resistant hash
function. This “Merkle-tree paradigm” can also be used to construct succinct arguments
from IOPs [10, 62], which are more efficient generalizations of PCPs (and, in particular,
are used in practice).



In anticipation of the threat of quantum computers, cryptographers have started
investigating quantum-safe constructions of succinct arguments. Kilian’s construction is
such a construction: recent work [30] establishes that Kilian’s interactive argument is
quantum-safe if the used hash function is quantum-safe.
Split-and-fold techniques in the pre-quantum setting: a success story. Departing
from the Merkle-tree paradigm, an approach based on split-and-fold techniques [25, 27,
48, 26, 50] has led to succinct arguments that are remarkably efficient and successful
in practice. Even though asymptotically these constructions have similar proof sizes to
constructions based on Merkle trees, in practice, they obtain smaller proofs by exploiting
the algebraic structure of homomorphic commitment schemes.

This approach has several advantages over Merkle-tree constructions beyond smaller
communication complexity. For example, the sumcheck protocol [52] underlies split-
and-fold techniques [22], which facilitates space-efficient constructions [16, 17]. In
contrast, no space-efficient constructions are known for succinct arguments based on
Merkle trees.

Unfortunately, the required homomorphic commitment schemes are known only
from pre-quantum cryptography that relies on groups and bilinear groups.
What happens in the post-quantum setting? The success story of split-and-fold
techniques in the pre-quantum setting has motivated a line of work studying similar
approaches in the post-quantum setting using lattices [24, 22, 7, 5]. The eventual goal
is to achieve succinct arguments from lattice-based split-and-fold techniques that have
better efficiency compared to their Merkle-tree-based counterparts (and possibly have
other benefits such as space efficiency). In the meantime, the cited works have laid initial
foundations for such succinct arguments, but more work is needed to achieve this goal.

The inspiration comes from quantum-safe constructions of signature schemes, where
using the algebraic structure of lattices eventually led to shorter signatures compared to
using hash functions. For instance, among the standardization candidates in the NIST
Post-Quantum Competition [57], lattice-based signature schemes such as Falcon [1]
and Dilithium [2] offer shorter signatures compared to hash-based signatures such as
SPHINCS+ [3] and Picnic [4].
Succinct verification. The above lattice-based succinct arguments lack succinct verifi-
cation (the time complexity of the verifier is at least the time of the proved computation).
This is in contrast to constructions based on Merkle trees (and some pre-quantum con-
structions based on split-and-fold techniques [26, 50]), which offer succinct verification.
This leads to the main question motivating our work:

How to construct interactive arguments with succinct verification
from split-and-fold techniques based on lattices?

1.1 Our results

We answer this question in the affirmative, achieving succinct verification for R1CS, a
popular circuit-like NP problem, in the preprocessing setting.

Definition 1 (informal). The R1CS problem over a ring R• asks: given coefficient
matrices A,B,C ∈ RN×N

• each containing at most M = Ω(N) non-zero entries,
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and an instance vector x over R•, is there a witness vector w over R• such that
z := (x,w) ∈ RN

• and Az ◦Bz = Cz? (Here “◦” is the entry-wise product.)

In the preprocessing setting, an indexer algorithm performs a public computation
that depends on the coefficient matrices A,B and C (the “circuit description”), leading
to a long proving key and a short verification key. Thereafter, anyone can use the
proving/verification key to prove/verify statements for the preprocessed coefficient
matrices. The argument verifier may achieve succinct verification because it only needs
the verification key and the instance vector x, with no need to read the (much larger)
coefficient matrices. (Non-uniform computations require some form of preprocessing to
enable succinct verification.)

We construct a succinct interactive argument with preprocessing for the R1CS
problem over rings.

Theorem 1 (informal). Let R := Z[X]/⟨Φd(X)⟩ where Φd is the d-th cyclotomic
polynomial and d is a prime power. Let p, q be primes such that p≪ q. If the SIS problem
is hard over R/qR then there is a preprocessing interactive argument of knowledge
(with a transparent setup algorithm) for R1CS over R• := R/pR with the following
efficiency:

– round complexity O(log2(M +N));
– communication complexity O(log2(M +N)) elements of R/qR;
– indexer complexity O(M +N) operations in R/qR;
– prover complexity O(M +N) operations in R/qR;
– verifier complexity O(log2(M +N)) operations in R/qR.

In fact, we construct a preprocessing succinct interactive argument for R1CS based
on leveled bilinear modules, a new abstraction with multiple instantiations that we deem
of independent interest. Theorem 1 follows by instantiating this abstraction using lattices,
as we now outline.

An (unleveled) bilinear module [22] consists of modules ML,MR,MT over a ring
R with an R-bilinear map e : ML ×MR → MT. Example instantiations include the
following.

– Bilinear groups: (R,ML,MR,MT, e) = (Fp,G0,G1,GT, e), where |G0| = |G1| =
|GT| = p and e : G0 ×G1 → GT is a bilinear (pairing) map.

– Lattices: (R,ML,MR,MT, e) = (R,R,R/q,R/q, e), where R = Z[X]/⟨Φd(X)⟩,
q is a large prime, and e : R×R/q → R/q computes multiplication of ring elements
modulo q.

Prior work [22] constructs commitment schemes based on bilinear modules, with
messages defined over ML, keys defined over MR, and commitments defined over MT,
and gives interactive arguments of knowledge of commitment openings based on the
sumcheck protocol. These arguments have linear verification costs in the length of the
commitment key, which is the best one can hope for because they are not preprocessing
arguments (and so the verifier must receive the long commitment key as input).

In a leveled bilinear module, which we introduce, the key space is associated with
the message space of another bilinear module.
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Definition 2 (informal). A K-level bilinear-module system is a collection of K bilinear
modules

{(R,ML,i,MR,i,MT,i, ei)}i∈[K]

with the same ring R such that MR,i can be “embedded” inside ML,i+1 while preserving
arithmetic operations (possibly up to some correction factors).

Example instantiations of leveled bilinear modules include the following.

– Bilinear groups: (R,ML,i,MR,i,MT,i, ei) = (Fp,Gi mod 2,Gi+1 mod 2,GT, e), where
where |G0| = |G1| = |GT| = p and e : G0 ×G1 → GT is a bilinear (pairing) map.

– Lattices: (R,ML,i,MR,i,MT,i, ei) = (R,R,R/q,R/q, e), where R := Z[X]/⟨Φd(X)⟩
and e : R × R/q → R/q computes multiplication of ring elements modulo q. The
“embedding map” computes the bit decomposition of ring elements viewed as vectors
modulo q: it maps an element of MR,i := R/q viewed as a vector of polynomial
coefficients modulo q to log q elements in ML,i+1 := R with coefficients in {0, 1}.

We use leveled bilinear modules to construct delegation protocols for evaluating
polynomials over ML,1, which enables achieving succinct verification for commitment
openings. In turn, we obtain succinct verification for R1CS from leveled bilinear modules,
from which Theorem 1 follows as a special case.

Theorem 2 (informal). LetM be a leveled bilinear module with ℓ = O(log(M +N))
levels, for which the leveled bilinear relation assumption holds. Suppose that ML,1 is
a ring and I a suitable ideal of ML,1. There is a preprocessing interactive argument of
knowledge for R1CS over R• := ML,1/I ≃ Fk with the following efficiency:

– communication complexity O(log2(M +N)) elements of MT,ℓ;
– round complexity O(log2(M +N));
– indexer complexity O(M +N) operations in MT,ℓ and applications of eℓ;
– prover complexity O(M +N) operations in MT,ℓ and applications of eℓ;
– verifier complexity O(log2(M +N)) operations in MT,ℓ and applications of eℓ.

The interactive argument in Theorem 2 relies on the leveled bilinear relation as-
sumption. This is a falsifiable assumption on leveled bilinear modules implied by the
SXDH assumption in the bilinear group instantiation, and by the SIS assumption in the
lattice instantiation. For these instantiations, the interactive argument has a transparent
(public-coin) setup algorithm.

1.2 Related work

We summarize work on split-and-fold techniques, lattice-based arguments, and Merkle-
tree-based arguments.
Split-and-fold techniques over groups. [25, 27] construct succinct arguments in the
discrete logarithm setting, but lack succinct verification. [50] constructs succinct argu-
ments in the bilinear group setting, achieving succinct verification with preprocessing.
[26, 17] construct succinct arguments in the unknown-order group setting, achieving
succinct verification without preprocessing (they target uniform computations). Drawing
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inspiration from [26, 17] and [50], we achieve succinct verification with preprocess-
ing from an abstract algebraic structure (leveled bilinear modules), which in particular
specializes to lattices.
Lattice-based interactive arguments. [9] construct a lattice-based zero-knowledge
argument for NP with sublinear (specifically, square-root) communication complexity.
[24] use split-and-fold techniques to construct an interactive argument of knowledge for
commitment openings with polylogarithmic communication complexity; subsequently
[5] reduced the slackness of the openings. [7, 22] extend the approach to work for NP
statements. [5, 7] also provide complete security proofs for protocols in [24], while
[22] shows that split-and-fold techniques are related to the sumcheck protocol [52].
Our starting point is the protocol of [22]: we construct a delegation protocol (itself
also related to the sumcheck protocol) for the expensive computation of the verifier in
[22]. Finally, [14] uses a more complex recursive approach to achieve logarithmic proof
sizes with concrete estimates of communication complexity in the tens of kilobytes for
R1CS instances of size 220. All the aforementioned lattice-based argument systems lack
succinct verification.

Many other works aim to provide concretely efficient arguments for NP statements
[58] and specialized applications including group/ring signatures and proofs of knowl-
edge for lattice-based commitments [39, 60, 23, 61, 66, 8, 37, 54, 55, 38, 53].
Lattice-based non-interactive arguments. Several works construct succinct non-
interactive arguments (SNARGs) based on non-falsifiable assumptions (believed to be
necessary [43]) about lattices. [18, 19] construct designated-verifier SNARGs by follow-
ing a paradigm based on linear PCPs [15]. These works were subsequently optimized
[41, 59, 46], and a similar approach was used to obtain public-verifier SNARGs [6]. All
of these works rely on a private-coin setup algorithm that samples a structured reference
string with a trapdoor. This line of work is not directly comparable to our results (we
construct interactive arguments from falsifiable assumptions, and moreover the bilinear
group and lattice instantiations of our construction have a public-coin setup algorithm).
Merkle-tree-based interactive arguments. A long line of works [12, 13, 11, 29, 51, 44,
21, 63, 65] constructs preprocessing succinct arguments for general NP statements using
the Merkle-tree paradigm. These works offer transparent setup and succinct verification
with preprocessing. While some of these proof systems offer benefits such as reduced
prover complexity in theory [21, 63] and practice [51, 44, 65], the communication
complexity of these arguments is at present larger than split-and-fold-based proof systems
built from classical assumptions (e.g., [27]), which offers communication complexity on
the order of a few kilobytes.

2 Techniques

We summarize the main ideas behind our results.

2.1 Our approach

A common approach for constructing succinct arguments is to combine two ingredients:
(a) a polynomial interactive oracle proof (PIOP); and (b) a suitable polynomial commit-
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ment scheme. PIOPs are information-theoretic proof systems, in which the prover sends
polynomials in the form of oracle messages to the verifier, who then performs polynomial
evaluation queries to these oracles. The polynomial commitment scheme enables the
argument prover to commit to these polynomials and subsequently authenticate answers
to queries received from the argument verifier.

The succinct argument that we construct follows this common approach, and our
contribution is to achieve a suitable realization of each ingredient. To obtain Theorem 2
it suffices to construct, in the preprocessing model, a PIOP for R1CS with succinct
verification (an information-theoretic object) and a polynomial commitment scheme
with succinct verification from leveled bilinear modules (a cryptographic object). Below
we briefly discuss each ingredient, and we elaborate further on them in later sections;
note that, for PIOPs, preprocessing is known as holography.

(a) Holographic PIOP for R1CS over product rings. We construct a holographic
PIOP for R1CS over product rings R• ≃ Fk, by extending prior constructions over
finite fields F. This is useful because cyclotomic rings commonly employed in lattice
cryptography can be expressed as product rings using facts from algebraic number theory.
See Section 2.6 for more details.

(b) Polynomial commitment scheme from bilinear modules. Prior constructions of
polynomial commitment schemes with succinct verifier based on split-and-fold tech-
niques [26, 17, 50] use delegation protocols and/or preprocessing. We similarly construct
a delegation protocol with preprocessing, leveraging an algebraic module-theoretic
abstraction called “leveled bilinear modules”; these can be obtained from lattices, for
example. Drawing inspiration from [50], this abstraction captures the ability to commit
to commitment keys. We explain our construction across several subsections.

– In Section 2.2, we review a polynomial commitment scheme whose proofs of polyno-
mial evaluation, which are based on the sumcheck protocol, have linear-time verifica-
tion.

– In Section 2.3, we describe a delegation protocol over bilinear groups that reduces
verification time to polylogarithmic.

– In Section 2.4, we introduce leveled bilinear modules, and instantiate them using
bilinear groups or lattice rings.

– In Section 2.5, we extend the delegation protocol to work over leveled bilinear mod-
ules.

Combining. In Section 2.7, we obtain our main result by combining the polynomial
commitment scheme with succinct verification and the PIOP over rings.

2.2 Polynomial commitments from sumcheck arguments

Sumcheck arguments [22] are a generalization of the sumcheck protocol and of split-and-
fold techniques for proving the correct opening of “sumcheck-friendly” commitments.
They are used to construct succinct interactive arguments for NP over an abstract alge-
braic structure, which can be instantiated with lattices. This gives a succinct interactive
argument for NP that exploits the structure of lattice-based commitment schemes.
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Sumcheck arguments reduce the task of proving knowledge of a commitment open-
ing to the task of evaluating a polynomial whose coefficients are derived from the
commitment key. The verifier has access to the commitment key and can perform this
evaluation on its own. The commitment key, however, has linear size, leading to linear
verification time.

We now describe how to obtain polynomial commitment schemes from sumcheck
arguments. We restrict our attention to deterministic commitment schemes (without a
hiding property) because these suffice for (non-zero-knowledge) interactive arguments.
First, we present the necessary background related to the sumcheck protocol. Then, we
focus on sumcheck arguments defined over finite fields F and discrete logarithm groups
G of prime order. Finally, we discuss sumcheck arguments defined over bilinear modules,
an abstract mathematical structure that we will use to express pairing and lattice-based
commitments.
Sumcheck protocol. The prover wants to convince the verifier that a given ℓ-variate
polynomial P sums to τ over the hypercubeHℓ. While the sumcheck protocol [52] was
introduced for polynomials over fields, it directly extends to work with polynomials over
modules as we describe below. The following construction is a reduction from the claim∑

ω∈Hℓ P (ω) = τ to a claim of the form P (r) = v.

Protocol 1: sumcheck protocol

The prover PSC and the verifier VSC receive an instance xSC = (R,M,H, ℓ, τ, C),
where

– R is a ring,
– M is a module over R,
– H is a subset of R,
– ℓ is a number of variables,
– τ ∈M is a claimed sum, and
– C ⊆ R is a sampling set (more about this below).

The prover PSC additionally receives a polynomial P ∈M [X1, . . . , Xℓ] such that∑
ω∈Hℓ P (ω) = τ . The protocol has ℓ rounds; in each round the prover sends a

univariate polynomial Qi(Xi) and the verifier responds with a challenge ri.

1. For i = 1, . . . , ℓ:
(a) PSC sends to VSC the polynomial

Qi(Xi) :=
∑

ωi+1,...,ωℓ∈H
P (r1, . . . , ri−1, Xi, ωi+1, . . . , ωℓ) ∈M [Xi];

(b) VSC sends to PSC a random challenge ri ← C.
2. VSC checks that

∑
ω1∈H Q1(ω1) = τ and, for i ∈ {2, . . . , ℓ}, that

∑
ωi∈H Qi(ωi) =

Qi−1(ri−1).
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3. If the checks pass, then VSC sets v := Qℓ(rℓ) ∈ M and outputs the tuple
((r1, . . . , rℓ), v).

If
∑

ω∈Hℓ P (ω) = τ , then at the end of Protocol 1, the verifier VSC will always output
((r1, . . . , rℓ), v) satisfying P (r1, . . . , rℓ) = v. On the other hand, if

∑
ω∈Hℓ P (ω) ̸= τ ,

then for any malicious prover P̃SC, the verifier’s output will only satisfy P (r1, . . . , rℓ) =

v with probability at most ℓ deg(P )
|C| . This follows from a strengthening of the analysis of

the sumcheck protocol over finite fields, relying on the additional requirement that C is a
“sampling set”, which guarantees that non-zero polynomials of a given degree d have at
most d roots. The sumcheck protocol over modules is discussed further in [22].
Polynomial commitment scheme. A polynomial commitment scheme enables a prover
to commit to a polynomial and later prove that a claimed polynomial evaluation at a
given point is correct. For concreteness, we consider multilinear polynomials whose
coefficients are defined by a vector of elements as follows.

Definition 1. We index the entries of a vector v of length n = 2ℓ via binary strings
(i1, . . . , iℓ) ∈ {0, 1}ℓ, and define the corresponding multilinear polynomial

pv(X1, . . . , Xℓ) :=
∑

i1,...,iℓ∈{0,1}

Xi1
1 · · ·X

iℓ
ℓ · vi1,...,iℓ .

We describe a polynomial commitment scheme based on Pedersen commitments for
committing to the polynomial pm(X1, . . . , Xlogn), where m ∈ Fn and F is a finite field
of prime order p. The commitment is an element of a group G of order p. In the proof of
polynomial evaluation, the prover wishes to convince the verifier of the following NP
statement:

Task 1. Given a commitment C ∈ G, a commitment key G ∈ Gn, an evaluation point
z ∈ Flogn, and a claimed evaluation u ∈ F, prove knowledge of the polynomial pm (i.e.,
of the coefficients m ∈ Fn) such that pm(z) = u and C = ⟨m,G⟩.

Using Definition 1 we define the polynomial pG(X1, . . . , Xlogn). Here, pG(X)
defines a polynomial function pG : Flogn → G over G, where addition corresponds
to the group operation and multiplication with an element in F corresponds to scalar
multiplication with the same element. Observe that

∑
ω∈{−1,1}ℓ pm(ω)pG(ω) = 2ℓ · C.

Protocol 2 is a succinct interactive argument for Task 1 based on a sumcheck argu-
ment. The only non-succinct verifier operation is colored blue.

Protocol 2: sumcheck argument for polynomial evaluation

For n = 2ℓ, the prover and verifier receive as input a commitment key G ∈ Gn, a
commitment C ∈ G, an evaluation point z := (z1, z2, . . . , zℓ) ∈ Fℓ, and a claimed
evaluation u ∈ F. The prover also receives as input an opening m ∈ Fn such that
C = ⟨m,G⟩.
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The prover and verifier engage in a sumcheck protocol for the claim∑
ω∈{−1,1}ℓ

P ′(ω) = 2ℓ · (C, u) ,

where P ′(X) := (pm(X) · pG(X), pm(X) · pz̃(X)) and z̃ :=
⊗ℓ

i=1(1, zi) =
(1, z1, z2, z1z2, . . . , z1 · · · zℓ). As defined in Protocol 1, the sumcheck protocol
uses the instance

xSC := (R = F, M = G×F, H = {−1, 1}, ℓ = log n, τ = 2ℓ·(C, u), C = F) ,

and the prover additionally knows the polynomial P ′(X) ∈ (G× F)[X].
After the end of the sumcheck protocol, if the verifier’s checks pass, the

prover learns the randomness r ∈ Fℓ used in the protocol, and the verifier learns
(r, v) ∈ Fℓ×F. Then, the prover computes and sends w := pm(r) ∈ F; the verifier
computes pG(r) ∈ G and pz̃(r) ∈ F and checks that (w · pG(r), w · pz̃(r)) = v.

The task to delegate. The only expensive operation that the verifier has to compute is
the final multilinear polynomial evaluation pG(r); because z̃ :=

⊗ℓ
i=1(1, zi), it holds

that pz̃(r) =
∏ℓ

i=1(1 + rizi) which can be evaluated in O(ℓ) = O(log n) operations.
Our goal is to reduce the verifier complexity by delegating the polynomial evaluation
pG(r) to the prover. This means that the prover sends V ∈ G and has to prove the
following P statement to the verifier.

Task 2. Given a commitment key G ∈ Gn, an evaluation point r ∈ Flogn, and a claimed
evaluation V ∈ G, prove that pG(r) = V.

It is not known how to delegate this task over finite fields F and discrete logarithm
groups G of prime order. However, we will show a delegation protocol for bilinear
groups and lattices. First, we define bilinear modules, an algebraic abstraction that allows
us to instantiate Protocol 2 in these settings.

Generalization to bilinear modules. We need the commitment scheme and sumcheck
argument above to work over more general algebraic structures, specifically over bilinear
modules. A bilinear module BM = (R,ML,MR,MT, e) consists of a ring R, three
R-modules ML,MR,MT, and an R-bilinear map e : ML ×MR →MT.

In a generalized Pedersen commitment over a bilinear module BM, the commitment
key is a random vector G ∈ Mn

R and the commitment to the message m ∈ Mn
L is

C := ⟨m,G⟩ :=
∑n

i=1 e(mi,Gi) ∈ MT. The commitment scheme is binding for
messages of bounded norm if given a random vector G ∈Mn

R , it is hard to find m ∈Mn
L

with m ̸= 0 and ∥m∥ ≤ BC such that ⟨m,G⟩ = 0. We call this assumption bilinear
relation assumption.

The generalized Protocol 2 works exactly as before, except for a new check on the
norm of w to guarantee that the commitment opening is binding.

In the case of discrete logarithm groups, which is used in Protocol 2, we have
(R,ML,MR,MT, e) := (F,F,G,G, e), using group exponentiation for e. Other instan-
tiations of bilinear modules include bilinear groups and ideal lattices. In the bilinear
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group setting, (R,ML,MR,MT, e) := (F,G0,G1,GT, e) using the bilinear (pairing)
operation for e. In the lattice setting, (R,ML,MR,MT, e) := (R,R,R/qR,R/qR,×),
where R := Z[X]/⟨Φd(X)⟩, Φd is the d-th cyclotomic polynomial and × is polynomial
multiplication modulo q. The bilinear relation assumption for the three instantiations
corresponds to discrete logarithm, double pairing, and SIS assumptions respectively. In
the discrete logarithm and the bilinear group setting, the underlying norm is such that
all non-zero elements have norm 1, whereas in the ideal lattice setting we consider the
ℓ∞-norm.

2.3 Warmup: delegation over bilinear groups

Consider the setting of bilinear groups: there are three groups G0,G1,GT of prime size
p and a bilinear map e : G0 × G1 → GT. When the polynomial commitment scheme
and sumcheck argument from Section 2.2 are realized over this instantiation of bilinear
modules, Task 2 becomes the following.

Task 3. Given a commitment key G ∈ Gn
1 , an evaluation point r ∈ Flogn, and a claimed

evaluation V ∈ G1, prove that pG(r) = V.

We describe an interactive proof with succinct verification for this task that is based
on techniques from [50] (and variants [64]). Below we review the main ideas behind
these techniques, and then discuss the challenges that arise in extending them to work
for more general algebraic structures.

Review: delegation ideas from [50]. Consider an additional polynomial commitment
scheme whose message space is Gn

1 and whose key space is Gn
0 :

– a commitment key is a random H ∈ Gn
0 ;

– a message is G ∈ Gn
1 (which can be the commitment key from Task 3);

– C′ := ⟨H,G⟩ =
∑n

i=1 e(Hi,Gi) is a commitment to G using key H.
Since G and H are sampled during the setup phase, C′ can be computed during a
preprocessing phase. Then, Task 3 can be replaced by the following task.

Task 4. Given a commitment C′ = ⟨H,G⟩ ∈ GT computed in a preprocessing phase by
the (honest) indexer, an evaluation point r ∈ Flogn, and a claimed evaluation V ∈ G1,
prove that pG(r) = V.

This opens up the possibility of succinct verification because the verifier receives as
input C′ ∈ GT rather than G ∈ Gn

1 . In fact, Task 4 is similar to the original task (Task 1)
defined in the setting of bilinear groups. A difference is that in Task 1 the verifier is also
given the commitment key. However, to achieve succinct verification the verifier here
cannot receive H ∈ Gn

0 as input.

Reducing the key size. With further ideas from [50], one can reduce to a smaller
commitment key over Gn/2

0 , and then apply the same technique with the roles of G0 and
G1 reversed. One can repeat this until the verifier need only perform a computation on a
constant-size commitment key.

Instead of committing to G using a commitment key of length n, split G into two
halves: G := (G[L],G[R]) ∈ Gn/2

1 ×Gn/2
1 . During the preprocessing phase, the indexer
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computes the commitments CL := ⟨H,G[L]⟩ ∈ GT and CR := ⟨H,G[R]⟩ ∈ GT using
the commitment key H ∈ Gn/2

0 .
Instead of C′, which is a commitment to G, the verifier now has CL and CR, so we

can no longer apply the sumcheck argument for polynomial evaluation (Protocol 2) to
Task 4. To remedy this, we use the fact that the verifier can compute a commitment to
any linear combination of G[L] and G[R]. Then, it suffices to find a linear combination
G′ ∈ Gn/2

1 and an evaluation point r′ ∈ Flogn−1 such that pG(r) = pG′(r′).
From Definition 1, pG(X) :=

∑
i1,...,ilog n∈{0,1} X

i1
1 · · ·X

ilog n

ℓ · Gi1,...,ilog n
where

G := (G1, . . . ,Gn). Hence, pG(X) = pG[L]+X1G[R](X2, . . . , Xlogn) and Task 4 reduces
to the following task.

Task 5. Given a commitment C′ := CL + r1CR, where CL := ⟨H,G[L]⟩ ∈ GT and
CR = ⟨H,G[R]⟩ ∈ GT are computed in a preprocessing phase, an evaluation point
r′ ∈ Flogn−1, and a claimed evaluation V ∈ G1, prove that pG′(r′) = V, where
G′ := G[L] + r1G[R] ∈ Gn/2

1 .

Challenge: what happens over bilinear modules? The ideas described above work
over bilinear groups due to two fortunate coincidences.

– There are two bilinear modules (F,G0,G1,GT, e) and (F,G1,G0,GT, e) that lead to
two commitment schemes with opposite message space and key space.

– The output claim produced by a sumcheck argument over the first bilinear module is a
claim that can be proved using a sumcheck argument over the second bilinear module,
and vice versa.

Unfortunately, the situation with general bilinear modules is not so straightforward.
Even if the first property is satisfied (namely, both BM1 = (R,ML,MR,MT, e) and
BM2 = (R,MR,ML,MT, e) are bilinear modules), the second property is not. Since
G ∈Mn

R is random (so to act as a commitment key over BM1), G may not have bounded
norm. The norm bound is required in order to make a binding commitment to G, when it
acts as a message for BM2! This precludes using the same repeated reduction idea over
BM1 and BM2.

2.4 Leveled bilinear modules

In order to build a delegation protocol for general bilinear modules and prove Theorem 2
(and thus Theorem 1), we want the ability to commit to commitment keys from successive
reductions using new bilinear modules. To this end, we consider multiple levels of
compatible bilinear modules, capable of mapping statements about commitment keys
for “lower-level” commitment schemes to statements about messages in “higher-level”
commitment schemes. We formalize this new abstract algebraic structure and call it a
leveled bilinear module system. We also give post-quantum instantiations based on ideal
lattices.
Defining leveled bilinear modules. A K-level bilinear module system is a list of
K bilinear module systems over the same ring R, each satisfying the bilinear relation
assumption:

{BMi}i∈[K] = {(R,ML,i,MR,i,MT,i, ei)}i∈[K] .
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Further, to allow commitments to Pedersen commitment keys, successive levels are
connected by two maps:

– an upward map upi : MR,i → M
δi+1
L,i+1 that lifts keys at level i to δi+1 small-norm

messages at level i+ 1; and
– a downward map dni : M

δi+1
L,i+1 →MR,i that projects messages at level i+ 1 to keys at

level i.

The two maps upi and dni cancel each other out: dni ◦ upi is the identity map on MR,i.
Messages produced by upi are within the binding space of the commitment scheme at
level i+ 1. For each level i ∈ [K − 1], the upward map upi (and hence also dni) must
satisfy some homomorphic properties:

– for every m1,m2 ∈MR,i, upi(m1 +m2) = upi(m1) + upi(m2) mod ker dni;
– for every r ∈ R and m ∈MR,i, upi(r ·m) = r · upi(m) mod ker dni.

In fact, these conditions imply that MR,i and M
δi+1
L,i+1/ ker dni are isomorphic as R-

modules via upi and dni. Note that if “mod ker dni” was removed from the two con-
ditions above, then MR,i and M

δi+1
L,i+1 would be isomorphic as R-modules. This would

be too rigid for lattice instantiations, in which for every i ∈ [K − 1] the upward map
upi takes statements about commitment keys modulo a prime q to multiple statements
about integers of bounded norm, which can be messages for higher-level commitment
schemes. Also, equations modulo q may not hold exactly over the integers, and working
mod ker dni allows for correction factors.

Using upi, claims about polynomial evaluations over commitment key elements can
be lifted from MR,i to ML,i+1 to act as inputs for proof systems over BMi+1. Conversely,
using dni, statements proved about lifted polynomial evaluations reduce to similar
statements about polynomial evaluations over the commitment keys. Leveled bilinear
module systems neatly encapsulate the algebraic requirements for interactive arguments
like [50], and facilitate extending those ideas to other cryptographic settings.

Instantiations. We describe three instantiations of leveled bilinear-module systems.

– A “2-cycle” based on bilinear groups. Given a bilinear group (F,G0,G1,GT, e),
we set ML,i := Gi mod 2, MR,i := Gi+1 mod 2, MT,i := GT, δi = 1, and ei := e.
Hence MR,i and ML,i+1 are equal. For each level i ∈ [K − 1], the upward map
upi : Gi mod 2 → Gi+1 mod 2 and downward map dni : Gi+1 mod 2 → Gi mod 2 are
the identity map. At each level, the bilinear relation assumption is implied by the
SXDH assumption. This instantiation works for any number of levels.

– A first instantiation based on ideal lattices. Let d be a prime power, Φd(X) the d-th
cyclotomic polynomial, R = Z[X]/⟨Φd(X)⟩ the corresponding cyclotomic ring, and
q1, . . . , qK ∈ N. Let ML,i := R, MR,i := R/qiR, MT,i := R/qiR, and ei be the
multiplication of ring elements modulo qi.
We “lift” an element m of MR,i = R/qiR to an element of ML,i+1 = Z[X]/⟨Xd+1⟩
with norm at most qi by viewing it as a polynomial over the integers rather than modulo
qi. For each level i ∈ [K − 1], the upward map upi : R/qR → R lifts polynomials
modulo q to integer polynomials, and the downward map dni : R→ R/qiR performs
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the reverse operation, i.e., reduction modulo qi. At each level, the bilinear relation
assumption follows from the ring SIS assumption modulo qi.
Unfortunately, this first instantiation is somewhat inefficient, and insecure when K
is super-constant. This is because in order for the ring SIS assumption modulo qi to
be hard with respect to messages of norm up to qi−1, we require qi ≫ qi−1, so that
qK ≫ · · · ≫ q1. Moreover, based on the parameters required by the proof system
that we use, the gap between each modulus can force qK to be exponentially large
when K = ω(1), which poses problems for the hardness of ring SIS.
This motives the following improved instantiation.

– A “1-cycle” based on ideal lattices. Let d be a prime power, Φd(X) the d-th cyclotomic
polynomial, R = Z[X]/⟨Φd(X)⟩ the corresponding cyclotomic ring, and q ∈ N. Let
ML,i := R, MR,i := R/qR, MT,i := R/qR, and ei be the multiplication of ring
elements modulo q.
An element in R can be viewed as a polynomial with d coefficients. We “lift” an
element m of MR,i = R/qR to log q elements of ML,i+1 = Z[X]/⟨Xd+1⟩with norm
at most 1 by computing the bit decomposition of the coefficients of m. For each level
i ∈ [K − 1], the upward map upi : R/qR→ R lifts polynomials modulo q to integer
polynomials using bit decomposition, and the downward map dni : R → R/qR
performs the reverse operation, i.e., bit composition modulo q. At each level, the
bilinear relation assumption follows from the ring SIS assumption modulo q. This
instantiation works for any number of levels.

2.4.1 Comparison with prior algebraic structures

Tiered commitment schemes. Some prior works also use leveled algebraic structures
to construct argument systems. [45] constructs two-tiered commitment schemes, in
which commitments in G0 (to messages in F) are themselves treated as messages and
used to produce “commitments to commitments” in GT. [24] uses a lattice construction
to “commit to commitments” over multiple levels. In contrast to our work, the focus in
these works is committing to commitments, which would lead to an abstraction that is
different from ours (MT,i, rather than MR,i, is identified with ML,i+1).4

Graded encodings (a.k.a. multilinear maps). Leveled modules may be reminiscent
of graded encoding schemes, in which elements of groups can be multiplied together up
to a certain number of multiplications. We explain the main differences between graded
encoding schemes and leveled bilinear-module systems.

Graded encodings of different levels usually consist of elements of the same ring,
with homomorphic properties when combining encodings at different levels. By contrast,
leveled bilinear modules feature different modules at each level, and the embedding
maps between levels do not fully preserve homomorphism. This means that only objects
at the same level can be multiplied together, and since homomorphism is limited, leveled
bilinear modules cannot be used to construct a multilinear map.

Constructions of graded encoding schemes typically rely on lattice assumptions [40,
49, 42] or integer assumptions (e.g., the approximate GCD problem) [33, 32, 56] that have
been subject to many attacks [36, 28, 34, 35]. By contrast, we give comparatively simple
instantiations of leveled bilinear modules based on bilinear groups and ideal lattices,

4 Of course, in our lattice instantiation, MR,i and MT,i happen to be the same.
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providing the relevant security properties under standard cryptographic assumptions
(SXDH and SIS respectively).

2.5 Delegation over leveled bilinear-module systems

The polynomial commitment scheme and the sumcheck argument from Section 2.2
can be defined over a bilinear module, and in particular over the first level of a leveled
bilinear-module system. In this case, the prover’s goal is to convince the verifier of the
following NP statement.

Task 6. Given a commitment C ∈ MT,1, a commitment key G ∈ Mn
R,1, an evaluation

point z ∈ Rlogn, and a claimed evaluation u ∈ ML,1, prove knowledge of m ∈ Mn
L,1

such that pm(z) = u and C = ⟨m,G⟩.

The succinct interactive protocol for the above task is a generalization of Protocol 2
over bilinear modules. Even though for certain settings (e.g., lattices) norm manipulations
and selecting appropriate challenge spaces C ⊆ R are important, for simplicity in this
overview we ignore these issues.

Protocol 3: sumcheck argument for polynomial evaluation overM

For n = 2ℓ, the prover and verifier receive as input a commitment key G ∈Mn
R,1,

a commitment C ∈ MT,1, an evaluation point z := (z1, z2, . . . , zℓ) ∈ Rℓ, and
a claimed evaluation u ∈ ML,1. The prover also receives as input an opening
m ∈Mn

L,1 such that C = ⟨m,G⟩.
The prover and verifier engage in a sumcheck protocol for the claim∑

ω∈{−1,1}ℓ

P ′(ω) = 2ℓ · (C, u),

where P ′(X) := (pm(X) · pG(X), pm(X) · pz̃(X)) and z̃ :=
⊗ℓ

i=1(1, zi) =
(1, z1, z2, z1z2, . . . , z1 · · · zℓ). As defined in Protocol 1, the sumcheck protocol
uses the instance

xSC := (R, M = MT,1×ML,1, H = {−1, 1}, ℓ = log n, τ = 2ℓ·(C, u), C ⊆ R) ,

and the prover additionally knows the polynomial P ′(X) ∈ (MT,1 ×ML,1)[X].
After the end of the sumcheck protocol, if the verifier’s checks pass, the prover

learns the randomness r ∈ Cℓ used in the protocol, and the verifier learns (r, v) ∈
Cℓ × (MT,1 ×ML,1). Then, the prover computes and sends w := pm(r) ∈ML,1;
the verifier computes pG(r) ∈MR,1 and pz̃(r) ∈ R and checks that (w · pG(r), w ·
pz̃(r)) = v.

Delegation using the leveled bilinear-module system. The above protocol reduces
proving that pm(z) = u ∈ ML,1 to checking the polynomial evaluation pG(r) = V ∈
MR,1. Using the maps of the leveled bilinear-module system, we compute up1(G) ∈
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(M δ2
L,2)

n, where up1 is applied to each coordinate of G, and V′ ≡ up1(V) mod ker(dn1) ∈
Mδ2

L,2. Then, we transform the evaluation pG(r) = V ∈MR,1 to δ2 evaluations over ML,2:

pup1(G)(r) = V′ .

The function up1 maps an element in MR,1 to multiple elements in ML,2. We reduce to
a single element of ML,2 by computing a random linear combination using challenges
sent by the verifier. For the rest of this section, we ignore this issue and focus on the case
where upi maps an element of an MR,i to a single element of ML,i+1 (i.e., δi+1 = 1).

We can apply the key reduction idea presented in Section 2.3 to reduce to a state-
ment of smaller size. During the preprocessing phase, the indexer computes the com-
mitments CL = ⟨up1(G[L]),H⟩ ∈ MT,2 and CR = ⟨up1(G[R]),H⟩ ∈ MT,2, where
G := (G[L],G[R]) ∈M

n/2
R,1 ×M

n/2
R,1 . Task 6 reduces to the following.

Task 7. Given a commitment C′ := CL + r1CR, where CL := ⟨up1(G[L]),H⟩ ∈MT,2

and CR = ⟨up1(G[R]),H⟩ ∈MT,2 are computed in a preprocessing phase, an evaluation
point r′ ∈ Rlogn−1, and a claimed evaluation V′ ∈ ML,2, prove that pG′(r′) = V′,
where G′ := up1(G[L]) + r1 · up1(G[R]) ∈M

n/2
L,2 .

Final protocol: delegation of polynomial evaluations with succinct verifier. Below
we sketch the final protocol. There are ℓ := log n iterations of Protocol 3. In the i-th
iteration the instance has size n/2i and is defined over the i-th level of the leveled
bilinear module. After ℓ iterations of Protocol 3, the verifier checks the evaluation of a
constant polynomial, which can be done without help from the prover.

Protocol 4: delegation of polynomial evaluations overM

Setup. Given an upper bound n on the size of m (the number of polynomial
coefficients), the setup algorithm samples a leveled bilinear-module system with
log n levels and commitment keys Gi ∈M

n/2i−1

R,i for i ∈ {1, . . . , log n+ 1}.
Indexer. In a preprocessing phase (i.e., before receiving m), the indexer computes

CL,i := ⟨upi(Gi[L]),Gi+1⟩ ∈MT,i+1 , andCR,i = ⟨upi(Gi[R]),Gi+1⟩ ∈MT,i+1

for i ∈ {1, . . . , log n}. Finally, the indexer sets outputs the proving key ipk :=

(Gi)
logn+1
i=1 and verification key ivk := ((CL,i,CR,i)

logn
i=1 ,Glogn).

Interactive phase. For n = 2ℓ, the prover and verifier receive as input a com-
mitment C ∈MT,1, an evaluation point z := (z1, z2, . . . , zℓ) ∈ Rℓ, and a claimed
evaluation u ∈ML,1. The prover also receives as input the proving key ipk and an
opening m ∈ Mn

L,1 such that C = ⟨m,G⟩. The verifier also receives as input the
verification key ivk.

The prover and verifier engage in log n iterations of Protocol 3. The first
iteration reduces the claim pm(z) = u to proving that pG1

(r1) = V1, which
can be reduced to the claim pG′

1
(r′1) = V′

1 ∈ ML,2 as in Task 7. Similarly, the
i-th iteration reduces the claim pG′

i−1
(r′i−1) = V′

i−1 ∈ ML,i to proving that
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pG′
i
(r′i) = V′

i ∈ ML,i+1. Finally, the last claim is pGlog n
(rlogn) = Vlogn, which

the verifier can check directly using the key Glogn.

The indexer performs O(n) operations. Subsequently, the prover and verifier interact
over O(log2 n) rounds. The communication complexity is O(log2 n) elements of the
ring and modules of the leveled bilinear-module system: each iteration of the O(log n)
iterations of Protocol 3 has communication complexity O(log n) elements of a bilinear
module. The prover performs O(n) operations over the ring and modules of the leveled
bilinear-module system; and the verifier performs O(log2 n) such operations. (Indeed,
in the i-th sumcheck argument the prover performs O(n/2i) operations and the verifier
performs O(log n− i) operations.)

Completeness of the protocol is straightforward, since the i-th iteration reduces a true
statement about a polynomial evaluation over the i-th level into a true statement about
a polynomial evaluation over the (i + 1)-th level, using the embedding map upi. The
verifier accepts because each iteration is a sumcheck argument for a valid polynomial
evaluation. In contrast, establishing soundness requires more care, as we now explain.

Soundness. The protocol consists of log n sumcheck arguments, so a starting point for
arguing soundness is to follow the approach in [22]. There, a valid witness is extracted
from an extraction tree (a collection of accepting transcripts with a special tree-like
structure). For instance, in the case of polynomial commitments as in Protocol 2, the
extraction tree is a ternary tree of depth log n. An extraction tree can be obtained, from a
suitable malicious prover, in time exponential in its depth (e.g. see the forking lemma
in [7, Lemma 5]). While this technique works in a single iteration of Protocol 3 to
prove knowledge soundness, it fails when applied in the final delegation protocol which
consists of log n iterations. This is because now we would need an extraction tree of
depth log2 n, and producing such a tree takes quasi-polynomial time.

An alternative approach is to start from the knowledge soundness of each iteration
of Protocol 3, which is based on an extraction tree of depth only log n. Informally, the
soundness of the final delegation protocol then follows by a union bound on the log n
iterations. This approach is used, e.g., to establish the soundness of the O(log2 n)-round
version of [50] presented in [64]. However, in our case, which also captures the lattice
setting, this has a negative impact in the parameters.

For example, in the lattice setting, it is only known how to prove knowledge sound-
ness of Protocol 3 for a relaxed statement [22]. More precisely, if the verifier accepts in
Protocol 3, then we can extract a relaxed opening m ∈Mn

L,1 to C such that c ·C = ⟨m,G⟩
and pm(z) = u, where c is called the slackness. Then, establishing soundness by simply
applying the knowledge soundness property of Task 6 recursively ℓ times causes the
slackness to accumulate at each extraction step. This approach can only prove that the
final delegation protocol has slackness exponential in log n.

We avoid the accumulation of slackness by leveraging the fact that the statement to
be proved is a deterministic computation: if the prover does not send a correct evaluation
of the key polynomial at the end of each iteration, then the verifier rejects (with some
good probability). There is no witness to extract, since the commitment keys are part of
the public parameters. In the security proof we can check whether the prover sends an
incorrect evaluation in each iteration of Protocol 3. If any of the evaluations is incorrect,
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then we extract a message that breaks the binding property of the commitment of this
iteration. The i-th iteration of Protocol 3 has soundness error O( logn−i

|C| ); hence, the

soundness error of the entire protocol is O( logn2

|C| ). The final slackness remains c.

From relaxed to exact openings. Relaxed openings prove approximate statements
about polynomial evaluations. This is a problem when we wish to reason about exact
satisfiability of algebraic relations, such as R1CS. We modify the polynomial commit-
ment scheme to allow us to divide out the slackness, and hence to extract exact openings.
Specifically, we consider ML,1 to be a ring and I an ideal of ML,1 in which multiplication
by slackness c is invertible. Then, intuitively, an opening of a commitment c · C to mes-
sage m ∈Mn

L,1 can be viewed as an opening of C to c−1m ∈ (ML,1/I)
n. The message

space for the modified commitment scheme is ML,1/I . To commit to a polynomial
with coefficients in ML,1/I , we first lift them to elements in ML,1 and then apply the
original, unmodified commitment scheme. Specifically, our lattice-based instantiation of
the leveled modules and rings leads to a polynomial commitment scheme over a ring
R/pR.

2.6 Polynomial IOP for product rings

As described in Section 2.1, our succinct argument is obtained by combining the poly-
nomial commitment scheme described in Section 2.5 and a polynomial IOP (PIOP).
In a PIOP, the prover can send polynomials to the verifier as oracle messages, and the
verifier’s queries request evaluations of these polynomials.

While there are PIOPs that work over finite fields F, to prove Theorem 2 we need
a PIOP that works over rings satisfying R• ≃ Fk. This suffices to prove Theorem 1
as a special case of Theorem 2 because the cyclotomic rings that arise from the lattice
instantiation can be expressed as product rings using facts from algebraic number theory.5

PIOPs over product rings. We obtain a holographic PIOP for R1CS over product
rings R• ≃ Fk by using k times “in parallel” an existing PIOP construction over F,
as we now explain. First, we apply the isomorphism between R• and Fk to an R1CS
instance defined over R•, producing k R1CS instances defined over F. Observe that the
non-zero entries in each of the k R1CS instances over F are a subset of the non-zero
entries in the instance over R•. Second, we use the holographic PIOP with succinct
verification for R1CS instances over F from prior work [20]. More precisely, we run this
PIOP for the k R1CS instances over F using the same random verifier challenges (which
are sampled from F). This gives a PIOP with similar complexity parameters defined over
R• by mapping all of the prover and verifier messages back into R•.

This approach works because the PIOP in [20] has the following special property:
the indexer, prover, and verifier can be modeled as arithmetic circuits which have hard-
coded the positions of non-zero entries in the R1CS instance6. Since the set of non-zero

5 In more detail, consider a cyclotomic ring of the form R := Z[X]/⟨Φd(X)⟩ where Φd(X) is
the d-th cyclotomic polynomial. The polynomial Φd(X) modulo a prime p with gcd(p, d) = 1
factors into irreducible polynomials of the same degree t for some t ∈ N (e.g., from [31,
Theorem 5.3]). This means that R/pR is isomorphic to k := ϕ(d)/t copies of Fpt .

6 This is despite the fact that the PIOP construction in full generality sometimes uses non-algebraic
operations such as linear scans.
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entries in the R1CS instance over R• is a superset of the non-zero entries in the k R1CS
instances over F, the arithmetic circuits for the indexer, prover, and verifier are the same
for the k instances over F. Thus, a PIOP for R1CS over F can be converted into a PIOP
over R• with the same proof size and computational complexity as the original PIOP,
but measured as elements and operations over R•.

In sum, we obtain a ring-based PIOP with linear prover time and logarithmic verifier
time.

Lemma 1 (informal). For every ring R• such that R• ≃ Fk, there is a holographic
polynomial IOP for R1CS over the ring R• with instances of size N with M non-zero
entries, with the following properties:
– the round complexity is O(log(M +N));
– the proof length is O(M +N) elements in R•;
– the query complexity is O(1);
– the communication complexity is O(log(M +N)) messages in R•;
– the indexer uses O(M) operations in R•;
– the prover uses O(N +M) operations in R•;
– the verifier uses O(logM) operations in R•.

Here, “proof length” refers to the total number of elements of R• in oracle messages,
while “communication complexity” refers to the total number of (non-oracle) message
elements received by the verifier.

2.7 Final protocol: combining polynomial commitments and PIOP

To obtain Theorem 2, we combine the polynomial commitment scheme described in
Section 2.5 and the PIOP over product rings of Section 2.6. Then, Theorem 1 follows as
a special case by using the lattice-based instantiation of a leveled bilinear module.

Protocol 5: succinct interactive argument for R1CS overM

Setup. On input N ∈ N, the setup algorithm runs the setup algorithm for the
polynomial commitment scheme to generate public parameters for committing to
messages of length N . As part of this algorithm, the setup algorithm samples a
levelled bilinear module withM, containing the description of a ring ML,1, an
ideal I1, and a module MT,ℓ, where ℓ = log(N).
Indexer. On input an R1CS instance of size N with M non-zero entries defined
over the ring R• = ML,1/I1 ≃ Fk, the indexer algorithm runs the indexer algo-
rithm for the PIOP for R• of Section 2.6, producing polynomial oracle messages
defined over R•. Then the indexer runs the indexer of the polynomial commitment
scheme of Section 2.5, and computes commitments to each of the polynomials. The
indexer computes a proving key ipk consisting of the polynomials, their commit-
ments, and the proving key for the polynomial commitment scheme. The indexer
computes a verification key ivk consisting of the commitments and the verification
key for the polynomial commitment scheme. Finally, the indexer outputs ipk and
ivk.
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Prover and verifier. The prover receives ipk, while the verifier receives ivk.
The prover and verifier run the prover and verifier algorithms for the PIOP of
Section 2.6, forwarding messages between the PIOP prover and verifier. Whenever
the PIOP prover produces a polynomial oracle message over R•, the prover
commits to it using the polynomial commitment scheme and sends the result to
the verifier. Whenever the PIOP verifier makes a polynomial evaluation query, the
verifier forwards it to the prover, who evaluates the polynomial, and sends the
evaluation back to the verifier. The prover and verifier then use the polynomial
commitment scheme to prove that the evaluation is consistent with the correct
committed polynomial. The verifier accepts if all evaluations are consistent, and
the PIOP verifier acccepts.

The verifier must perform O(logM) operations over R• as part of the PIOP, and
O(log2(M + N)) operations over MT,ℓ to use the polynomial commitment scheme
to verify each of the O(1) PIOP query responses. The communication complexity of
the argument is dominated by the O(log2(M +N)) elements of MT,ℓ sent when using
the polynomial commitment scheme. This yields a succinct argument with efficient
verification for NP over a leveled bilinear-module system.
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