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Abstract. In recent years there has been much focus on the development
of core cryptographic primitives based on lattice assumptions. This has
been driven by the NIST call for post-quantum key encapsulation and
digital signature specifications. However, there has been much less work
on efficient privacy-preserving protocols with post-quantum security.
In this work we present an efficient electronic voting scheme from lattice
assumptions, ensuring the long-term security of encrypted ballots and
voters’ privacy. The scheme relies on the NTRU and RLWE assumptions.
We begin by conducting an extensive analysis of the concrete hardness of
the NTRU problem. Extending the ternary-NTRU analysis of Ducas and
van Woerden (ASIACRYPT 2021), we determine the concrete fatigue
point of NTRU to be q = 0.0058 · σ2 · d 2.484 (above which parameters
become overstretched) for modulus q, ring dimension d, and secrets drawn
from a Gaussian of parameter σ. Moreover, we demonstrate that the
nature of this relation enables a more fine-grained choice of secret key
sizes, leading to more efficient parameters in practice.
Using the above analysis, our second and main contribution is to signifi-
cantly improve the efficiency of the state-of-the-art lattice-based voting
scheme by Aranha et al. (ACM CCS 2023). Replacing the BGV encryp-
tion scheme with NTRU we obtain a factor ×5.3 reduction in ciphertext
size and ×2.6 more efficient system overall, making the scheme suitable
for use in real-world elections.
As an additional contribution, we analyse the (partially) blind signature
scheme by del Pino and Katsumata (CRYPTO 2022). We note that the
NTRU security is much lower than claimed and propose new parameters.
This results in only a minor efficiency loss, enabled by our NTRU analysis
where previous parameter selection techniques would have been much
more detrimental.
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1 INTRODUCTION

With the advent of quantum computers, all public key primitives based on the
hardness of factoring or computing discrete logarithms will be deemed insecure.

To mitigate this there is an international effort to replace these primitives with
others based on hardness assumptions that are conjectured to be secure against
quantum adversaries, and some of the most promising candidates are the lattice-
based assumptions (Ring)-Short Integer Solution (RSIS) [Ajt96], (Ring)-Learning
With Errors (RLWE) [Reg05], and NTRU [HPS98]. In fact, in the final round
before standardization of post-quantum Key Encapsulation Mechanisms (KEMs)
and Digital Signatures (DSs), the National Institute of Standards and Technology
(NIST) settled upon seven candidate schemes, five of which are based on lattices.
In the end, they decided on the RLWE-based KEM Crystals Kyber [SAB+20],
the RSIS/RLWE-based DS Crystals Dilithium [LDK+20], and NTRU-based DS
Falcon [PFH+20], in addition to the hash-based DS SPHINCS+ [HBD+20].

The security of RSIS and RLWE is relatively well understood today.The
RSIS problem is believed to be hard when the logarithm of the ℓ2 norm of the
secret vector is less than 2

√
d log2 q log2 δ for lattice dimension d, modulus q,

and root Hermite factor δ [MR09]. Current literature adopts the notion that
δ = 1.0045 or smaller gives rise to 128 bits of security. Furthermore, Albrecht et
al. have collated a long line of algorithmic cryptanalysis into a publicly available
estimator [APS15] used to estimate the hardness of a given RLWE instance based
on the dimension, modulus, and norm of the secrets. However, the hardness of
the NTRU problem is less understood and the most up-to-date security estimates
are either asymptotic or only computed for very particular instances, for example
when the secret vectors are ternary.

We briefly recall the NTRU problem. Let Rq be a polynomial ring Rq =
Z[x]/(xd + 1) of dimension d and modulus q and let Dσ be a discrete Gaussian
distribution with standard deviation σ over Z. Then, informally, the NTRU
problem defined by Hoffstein et al. [HPS98] is the following: given h ∈ Rq,
determine whether h is constructed as h = g/f ∈ Rq for g and f sampled from
Dd

σ or is in fact sampled from the uniform distribution over Rq. Existing NTRU
encryption and signature schemes use h as the public key and f as the secret key.

Intuitively, a key recovery attack (find σ-bounded g, f given h) is by definition
to find vectors with small norm in the corresponding NTRU lattice, similar to
breaking the RSIS problem above. In general, the hardness of the lattice problems
grows exponentially with the dimension d. However, a more in-depth analysis
of this problem has led to an algebraic attack against so-called overstretched
NTRU [ABD16, CJL16a]. This attack does not apply to RSIS/RLWE (where
the general strategy is sieving [ADH+19] or enumeration [ABLR21] to find short
vectors in these lattices), revealing that the NTRU problem gets substantially
easier to solve when σ is small and q is much larger than d. Herein, we will
refer to the point at which this complexity improvement begins as the fatigue
point. We note that, in contrast, the RSIS problem gets much harder to solve
when q grows compared to σ. The work of Kirchner and Fouque [KF17] shows
that the overstretched attack is noticeably more efficient than the general lattice
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reduction attacks when g and f are polynomials with ternary coefficients and q
is (asymptotically) larger than d 2.783+o(1). A recent analysis by Ducas and van
Woerden [DvW21] decreases the exponent here to 2.484 in the asymptotic case
and fixes the constant in front of d to be 0.004 in the concrete, ternary setting.

On the other hand, we have provable hardness bounds for NTRU when σ
is large. Stehlé and Steinfeld [SS11] proved that when σ is roughly of size q1/2

then h is statistically close to uniform and the NTRU problem enjoys worst-
case hardness. This result is similar to that of RLWE, where the problem gets
harder when Dσ is a discrete Gaussian distribution and σ increases towards the
square root of the moduli and eventually results in a reduction to worst-case
problems over general lattices [Reg05]. While the hardness estimates for RSIS
and RLWE secrets of various norms are easily available, an understanding of
NTRU’s hardness for secret sizes between these two aforementioned extremes
essentially ends here.

Let σ1 be the standard deviation for sampling ternary values and let σstat be
roughly q1/2. The natural research question to ask is then:

What is the concrete hardness of the NTRU problem when secrets are
sampled with standard deviation σNTRU for σ1 < σNTRU < σstat?

Understanding such behaviour for RSIS and RLWE has already received much
attention. The norm of the secrets used in Crystals Dilithium [LDK+20] are not
ternary but are instead sampled with absolute norm 2 (NIST level 2 and 5) or 4
(NIST level 3) as this is needed to give the appropriate security level for the given
dimension and modulus of the system. Here, a smaller norm of the secret would
lead to larger parameters overall to compensate for the security loss. To further
illustrate the importance of secret size when it comes to setting parameters,
recall that an element in Rq takes d · log2 q bits to represent, where d is a power
of two. If the secret NTRU vector is ternary and a given pair (d, q) does not
yield sufficient security, one remedy is to increase d, leading to a doubling in
communication cost. Alternatively, one can increase the norm of the secrets, if
possible, without changing d. This provokes the natural question:

Can a carefully chosen non-ternary NTRU secret bound lead to more
efficient instantiations of lattice-based protocols in practice?

1.1 Our Contribution

In this work, we answer both of the above questions comprehensively; we deter-
mine a concrete relation for the fatigue point of general NTRU (parametrised
not only by d and q, but also by σ) and show how a careful choice of secret size
yields optimal parameter selection in practice.

We begin by building upon the work of Ducas and van Woerden [DvW21],
which considers ternary NTRU, to analyse the overstretched attack against NTRU
when the norm of the secrets grows with respect to the dimension and modulus.
We stress that [DvW21] does give an asymptotic fatigue point for general NTRU
but only a concrete relation for ternary secrets. Our aim is to better understand

3



the point at which parameters are overstretched, meaning that the traditional
key-recovery lattice reduction attacks are outperformed by ones that exploit the
existence of a dense sublattice of the NTRU lattice. Our analysis shows that when
we increase the standard deviation, the modulus can be increased roughly with
the square of this increase before reaching the fatigue point again. We analyse
the security and efficiency of some recent lattice-based protocols in the literature,
and find that the (partial) blind signatures by del Pino and Katsumata [dK22]
can be instantiated more efficiently when choosing secure parameters based on
our analysis.

Secondly, we analyse the framework of the recent lattice-based cryptographic
voting system by Aranha et al. [ABGS23]. The protocol uses the RLWE-based
BGV encryption scheme [BGV12], inherently requiring two ring elements per
ciphertext, while the NTRU encryption scheme requires only one. Moreover, by
using a variant of the NTRU cryptosystem that relies both on RLWE and NTRU,
we are able to optimise parameters to reduce the ring dimension by a factor of
two and slightly decrease the modulus, reducing ciphertext sizes by a factor of
five. Furthermore, this leads to ×2.6 smaller communication in the voting system
overall. This effort is an important step to push more advanced quantum secure
primitives closer to practicality and real-world deployment.

We expand upon some of the more technical details of our results:

NTRU Security Analysis. Our starting point here is the work of Ducas and
Woerden [DvW21]. Through asymptotic analysis, they narrow in on a lower
bound for the fatigue point of NTRU. Next, through a combination of predictive
modeling of lattice volumes and concrete experiments on low-dimensional NTRU
instances, they give an average-case concrete fatigue point for NTRU with ternary
secrets.

Using the scripts provided in [DvW21] we analyse the behaviour of the
predicted fatigue point for NTRU with general secrets. That is, for secrets
sampled from a Gaussian of variable parameter σ. This suggests, with strong
correlation, that the concrete fatigue point of NTRU is described by

q = 0.0058 · σ2 · d 2.484.

Note, by following a similar asymptotic analysis to that in [DvW21], we confirm
that the influence of σ on the fatigue point must indeed manifest only in the
leading constant and not in the exponent of d.

We verify this prediction with extensive experiments over a range of σ for
computable ring dimensions, mirroring the process of [DvW21] in the ternary
case. These experiments confirm the accuracy of the estimator. Moreover, the
small error discrepancy in the predictive model remains constant and continues
to have an insignificant impact on the predicted hardness of NTRU. Thus, our
results also serve to support the use of Ducas and Woerden’s estimator for general
NTRU instances.
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Electronic Voting. We present a new electronic voting scheme based on the
RLWE and NTRU lattice assumptions. The first major design choice is to use
the NTRU cryptosystem [SS11] in place of BGV encryption [BGV12]. Crucially,
NTRU ciphertexts consist of only a single ring element as opposed to two in
BGV. In privacy-preserving constructions where zero-knowledge proofs (ZKPs)
are deployed to verify the honest actions of parties, one often wants to minimize
the number of relations to be proven in zero-knowledge since ZKPs usually
dominate the communication cost. Using ciphertexts of a single element thus
yields significant savings over their two-component counterparts when combined
with ZKPs.

We then employ our NTRU analysis above to make a fine-tuned parameter
selection for our voting scheme. Crucially, when choosing the size of NTRU secret
keys just right, we are able to drop the ring dimension down to 2048 from 4096
as used in [ABGS23] whilst maintaining a 128-bit security level.

The resulting voting scheme thus represents a significant efficiency improve-
ment over the state-of-the-art. This is displayed by the communications costs
shown in Table 1. Whilst we do not implement our scheme in code, we expect the
running times to also improve on those given in [ABGS23] due to the reduction in
ring dimension and modulus for the ring over which computations are performed.

Finally, we think it interesting to observe that when classical encryption
schemes like ECDH are compared to their optimized post-quantum counterparts
like Kyber, the lattice-based scheme usually comes with a communication cost
increase of roughly ×30. Comparing our voting scheme to the classical one based
on finite field ElGamal, we incur a cost of ×20 in ciphertext size suggesting that
the penalty of our post-quantum security design is somewhat inherent in the
lattice structure and that our design may be approaching what can be optimally
achieved.

Scheme Ciphertexts Shuffle Output πSi Dist. Dec. Output πDj Total Size
[ABGS23] 80τ KB 370τ KB 157τ KB 607τ KB

Ours 15τ KB 130τ KB 85τ KB 230τ KB

Table 1. Sizes of ciphertexts, shuffle proofs, decryption proofs, and total size as
compared to [ABGS23]. Here, τ denotes the number of ballots cast.

1.2 Related Works

NTRU Cryptanalysis. The most relevant work in the area of NTRU fatigue is
that of Ducas and Van Woerden [DvW21] as mentioned in the previous section.
It is important to acknowledge that this sits atop a line of work in recent years.
The concurrent works [ABD16,CJL16b] showed, for the first time, that NTRU
security is more subtle than simply finding a notably short vector in a lattice.
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These works exploit the specific algebraic structure of the NTRU lattice to gain an
advantage on standard lattice reduction for so-called “overstretched” parameter
regimes.

This work was closely followed by Kirchner and Fouque [KF17] who showed
that improved attacks were, in fact, only due to the geometric existence of an
unusually dense sublattice of large dimension within the NTRU lattice. More-
over, their analysis concludes that q larger than d 2.783+o(1) already lie in the
overstretched range (for ternary secrets). This bound was improved upon by the
work of [DvW21] as we discuss in Section 3.

Electronic Voting. In [ABGS23], the authors provide a verifiable mix-net and
verifiable distributed decryption protocol based on RLWE and RSIS, showing
for the first time that lattice-based electronic voting can be practical for real-
world systems. We build directly upon their framework and conduct a more
detailed comparison in Section 5. This work utilises the verifiable shuffle of known
commitment openings by [ABG+21]; a building block we also adopt. The work of
del Piño et al. [dLNS17] gives a practical voting protocol based on homomorphic
counting but this system does not scale well for voting systems with more complex
ballots.

Another work worth mentioning is the shuffle by [CMM19] which was imple-
mented in [FWK21], however, it is less efficient than [ABGS23]. More theoretical
works include [HMS21], [Str19], and [CGGI16], but none of these are efficient
enough to likely be considered for practical deployment.

Recently, the authors of [HMS21] gave a new proof of correct shuffle based on
Beneš networks and sub-linear lattice-based proofs for arithmetic circuit satisfia-
bility. However, the scheme is not implemented and the example parameters do
not take the soundness slack of the amortised zero-knowledge proofs into account.
Moreover, [CMM19, FWK21, HMS21, HMS21] do not consider the decryption
of ballots, which would heavily impact the parameters of the protocols in prac-
tice. [BHM20] gives a fast decryption mix-net, but it cannot achieve universal
verifiability and is thus not suitable for real-world elections.

1.3 Organisation

The paper is organised as follows: We give some mathematical background in
Section 2, followed by our analysis of the NTRU problem in Section 3. Next,
we present the improved voting scheme in Section 4 and detail the performance
improvements for our voting instantiation in Section 5.

2 PRELIMINARY

Notation. For a set S and distribution (or algorithm) D, “← S[ρ]” and“← D[ρ]”
denote the processes of uniformly sampling from S with randomness ρ and
sampling from (or executing) D with randomness ρ, respectively. We denote by
Perm[i] the set of permutations of the integers {1, ..., i}. For column vectors a
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and b, [a∥b] denotes the vertical concatenation. With an overload of notation,
for two strings s and r over some alphabet, s∥r denotes the concatenated string.

The Ring Z[x]/(xd +1). Consider the rings R = Z[x]/ϕ and Rq = Zq[x]/ϕ, where
ϕ = (xd + 1) for d an integer power of 2 and q a prime. Elements in both rings
are polynomials of degree at most d − 1 with those in the latter ring having
coefficients lying between −(q− 1)/2 and (q− 1)/2. We denote elements of Z and
R by lower-case letters, vectors in Rk by bold lower-case letters, and matrices in
R(k×ℓ) by bold upper-case letters.

Throughout this document we will view elements a ∈ R interchangeably as
both polynomials and vectors in Zd (in the coefficient embedding). For such
elements, we can thus consider their ℓ1, ℓ2, and ℓ∞-norms, extending their
definitions in the natural way for k-dimensional vectors a ∈ Rk. For an elements
a ∈ Rq, we may sometimes write a mod p to mean that a’s coefficients are
reduced modulo p so that (a mod p) ∈ Rp.

For a, b ∈ R, we have that ∥ab∥∞ ≤ ∥a∥1 · ∥b∥∞ and ∥ab∥∞ ≤ ∥a∥2 · ∥b∥2.
Furthermore, let Sν denote the set of all elements a ∈ R such that ∥a∥∞ ≤ ν.

2.1 Lattice Assumptions

We will need the following three computational problems over lattices. In Section 3
we will take a close look at the hardness of the NTRU problem whilst our voting
scheme in Section 4 additionally relies on the ring learning with errors (RLWE)
assumption and the ring short integer solutions (RSIS) assumption.

The NTRU Problem. We choose to give the historic presentation of the NTRU
problem as it is more convenient for our analysis in Section 3. We note that some
works refer the search/decisional variants of this problem as the ‘search/decisional
short polynomial ratio’ problems, (S/D)SPR. Furthermore, one can consider the
so-called ‘module’ NTRU problem [CPS+20] which considers the ratio of matrices
of polynomials F and G, (S/D)SMR. Our analysis and applications can naturally
be extended to the module setting so for ease of presentation we use the basic
(polynomial) NTRU formulation [HPS98].

Definition 1 (Search/Decision NTRU). Let q > 2 be a prime, d be the
ring dimension, and DσNTRU be a distribution over Rq. Sampling (f, g)← D2

σNTRU
with rejection if f is not invertible in Rq, define h = g/f ∈ Rq. The search-
NTRUq,d,σNTRU problem is, given h, to recover any rotation (Xif,Xig) of the pair
(f, g). The decision-NTRUq,d,σNTRU problem is, given h, to decide if h is computed
as h = g/f where (f, g)← D2

σNTRU
or if h is sampled uniformly from Rq.

Ring Learning With Errors and Ring Short Integer Solution. We define the
standard lattice-hardness problems over rings [Ajt96,Reg05,LPR10].

Definition 2 (Ring Learning With Errors). Let q > 2 be a prime, d be the
ring dimension, DσRLWE be a distribution over Rq, and A a PPT algorithm that
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makes at most Q oracle queries. Then the advantage of A in solving the ring
learning with errors RLWEd,q,Q,σRLWE problem is defined as AdvRLWE

d,q,Q,σRLWE
(A) =∣∣Pr[AORLWE(1λ)→ 1]− Pr[AO$(1λ)→ 1]

∣∣ , where oracles ORLWE and O$ are de-
fined as

- ORLWE : Samples a← Rq, (s1, s2)← σ2
RLWE, and output (a, as1 + s2);

- O$ : Samples (a, b)← Rq ×Rq and output (a, b).

Definition 3 (Ring Short Integer Solutions). Let q > 2 be a prime, d be the
ring dimension, ∥·∥ a norm, and β ∈ R+ a positive integer. The RSISd,q,β problem
is, given a uniformly random a ∈ Rq, find s1, s2 ∈ Rq such that as1 +s2 = 0 ∈ Rq

and ∥s1, s2∥ ≤ β.

2.2 NTRU Encryption

In this work we will use the provably-secure variant of the NTRU cryptosys-
tem first presented by Steinfeld and Stehlé in [SS13]. This scheme relies on the
hardness of both the RLWE and NTRU assumptions. Note we make two minor
modifications so as to ensure perfectly correct decryption; (1) encryption random-
ness is sampled from a bounded distribution and (2) the secret keys f and g are
rejected unless their ℓ2 norm is below a given bound. When sampled accordingly,
this limitation has only a negligible effect on the completion probability of the
key generation algorithm and the entropy of resulting keys.

Setup. Let p ≪ q be primes and d a power of two which define the rings Rp

and Rq. Messages lie in Rp. Let σNTRU ∈ R and DσNTRU a discrete Gaussian
distribution over R with standard deviation σNTRU, t ∈ (1, 2] and ν ∈ N. Let the
setup parameters be sp = (d, p, q, σNTRU, t, ν). The NTRU encryption scheme is
described in Figure 1.

Key Generation KeyGenNTRU(sp). Given input sp = (d, p, q, σNTRU, t, ν):
1. Sample f from DσNTRU ; if (f mod q) /∈ R×

q or f ̸≡ 1 ∈ Rp, resample.
2. Sample g from DσNTRU ; if (g mod q) /∈ R×

q , resample.
3. If ∥f∥2 > t ·

√
d · σNTRU or ∥g∥2 > t ·

√
d · σNTRU, restart.

4. Return the secret key sk = f , pk = h := g/f ∈ Rq.
Encryption EncNTRU(m, pk). Given message m ∈ Rp and public key pk = h:
1. Sample encryption randomness s, e← Sν .
2. Return ciphertext c = p · (hs + e) + m ∈ Rq.

Decryption DecNTRU(c, sk). Given ciphertext c and secret key sk = f :
1. Compute m = (f · c mod q) mod p.
2. Return the plaintext message m.

Fig. 1. The encryption scheme NTRUEncrypt adapted from [SS13].
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Lemma 1 (NTRUEncrypt Security). Let p ·d ·t ·σNTRU(2ν+1/2) < ⌊q/2⌋. Then
the encryption scheme in Figure 1 is (perfectly) correct. Moreover, assuming the
hardness of the NTRUq,d,σNTRU and RLWEd,q,Q,χ problems, the scheme is IND-CPA
secure.

2.3 The BDLOP Commitment Scheme

Challenge Set. Let κ be an integer such that
(

d
κ

)
· 2κ > 2λ and define the two

sets Cκ = {c ∈ Rq | ∥c∥∞ = 1 ∧ ∥c∥1 = κ} and C̄κ = {c− c′ | c, c′ ∈ Cκ ∧ c ̸= c′}.

Commitments. We can commit to elements in Rq using the BDLOP commitment
scheme [BDL+18]. For simplicity, we present the scheme instantiated over rings
instead of modules, committing to only one ring element at a time:

Setup(1λ) : On input a security parameter λ, samples uniformly random a1, a2, a3
from Rq and outputs the public commitment key pkC defined as:

pkC =
[
a1 0
a2 1

]
=

[
1 a1 a2 0
0 1 a3 1

]
.

Com(pkC , x) : On input a public commitment key pkC and an element x in
Rq, samples a vector r ∈ R3

q such that ∥r∥∞ ≤ BCom, and computes the
commitment as:

com =
[
c1
c2

]
=

[
1 a1 a2 0
0 1 a3 1

] 
r1
r2
r3
x

 = [[x]].

It outputs the commitment com and the opening d = (x, r, 1).
Open(pkC , com, d) : On input a public commitment key pkC, the commitment

com and the opening d = (x, r,f) where f ∈ C̄. It verifies:

f · com ?=
[
1 a1 a2 0
0 1 a3 1

] 
r1
r2
r3
f · x

 and ∀i ∈ [3] : ∥ri∥2
?
≤ 4 · σCom

√
d.

It outputs 1 if the relations hold and 0 otherwise.

The BDLOP commitment scheme is hiding if the RLWE problem is hard for
vectors of ℓ∞ norm BCom over a lattice of dimension 2 · d. Furthermore, the
scheme is binding if the RSIS problem is hard for vectors of ℓ2 norm 16σCom

√
κd

over a lattice of dimension 2 · d [BDL+18].
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3 NTRU HARDNESS

Research on the security of the NTRU problem has revealed a significant im-
provement in the performance of lattice reduction algorithms when applied to
NTRU lattices for so-called overstretched parameters. More precisely, analysis
carried out over a series of works [ABD16,KF17,LW20] has shown this weakening
of the NTRU problem to occur when the modulus q is very large compared to
the ring dimension d and the secret vectors are small. Naturally, these works
seek to determine the turning point at which q becomes large enough for these
attacks to kick in and so security concerns arise. We herein refer to this point as
the fatigue point.

3.1 Extending the NTRU Analysis

Until recently, only an asymptotic result was known about the position of the
fatigue point. In particular, Kirchner and Fouque [KF17] determined this point
to be q = d 2.783+o(1).

Ducas-van Woerden Analysis. In their recent paper [DvW21], Ducas and van-
Woerden improve on the asymptotic result of Kirchner and Fouque, narrowing
down the fatigue point for ternary secrets to q = d 2.484+o(1). Building on this
result, the authors perform an average-case analysis (rather than a worst-case
bound) based on the volume of the relevant lattices and sublattices to arrive
at a concrete prediction of the fatigue point. To facilitate their analysis, they
identify two lattice reduction events used to distinguish standard regimes from
their overstretched counterparts.

– Secret Key Recovery (SKR): The event in which a vector as short as the
secret key is inserted into the lattice basis.

– Dense Sublattice Discover (DSD): The event in which a vector of the dense
sublattice is inserted into the lattice basis. Such an event has been shown to
shortly precede an SKR event by a cascading of further DSD events or to
enable decryption of fresh ciphertexts itself.

Through careful observation of the occurrence of these events, Ducas and van
Woerden use their predictive model to determine the concrete fatigue point of
NTRU with ternary secrets to be q = 0.004 · d 2.484 for d > 100. One can use the
scripts provided3 in their work to estimate the concrete hardness of NTRU. We
also affirm their predictive model by running real experiments on low-dimensional
instances to confirm this concrete relation4.
3 See github.com/WvanWoerden/NTRUFatigue for their code and experiments.
4 For the experiments to run without error for the highest dimensions d, larger vari-

ance σ2, and modulus q used in [DvW21] and our paper, a high-precision floating
point library such as QD is required, otherwise a vanilla fpylll installation should
suffice. Installation instructions for this are found in the fpylll documentation at
fpylll.readthedocs.io/en/latest.
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Beyond Ternary Secrets. The reader may have noticed that the discussion of the
fatigue point, thus far, only focuses on the modulus and dimension of the ring.
Recalling Definition 1 reminds us that f and g need not always be ternary. Indeed,
many NTRU-based constructions use secrets with non-ternary coefficients. Let us
consider f and g generated according to a Gaussian distribution Dσ of standard
deviation σ. For convenience, the analysis of [DvW21] models the ternary secret
case by sampling f, g ← Dσ with σ2 = 2/3. Observe that by varying σ one can
model any secret key size and thus we will herein consider that f and g are
always sampled according to some Gaussian Dσ. The natural question arises:

Does the choice of (secret size) σ influence the position of the fatigue
point and if so, what is its impact?

To get some intuition on this, we recall the work of Steinfeld and Stehlé [SS13] in
which the authors show how, selecting σ sufficiently large, gives rise to a public
key h = g/f that is statistically indistinguishable from uniform when f and g
are sampled from Dσ. Moreover, they show that using such parameters allows
one to remove the NTRU assumption from a proof of the NTRU cryptosystem
altogether. Crucially, the σ needed for statistical security depends on the size of
q and d. This suggests that fixing q and d and increasing σ makes the NTRU
problem harder.

This observation goes some way to answering the first part of our question
since it is clear that, for a sufficiently large σ, both the SKR and DSD events
become ineffective.

Whilst using statistically uniform public keys provides peace of mind, this
practice comes with significant efficiency losses. In addition to much larger
key sizes, conditions for a cryptosystem’s correctness can become much more
constraining. Note that for correct decryption of the NTRUEncrypt cryptosystem
defined in Figure 1, one needs the relation ∥p(gs+ fe) + fm∥∞ < q/2 to hold.
Clearly, using larger secrets f and g thus leads to less favorable parameters by
pushing up the modulus q.

We therefore have a balancing act that needs to be performed when setting
NTRU parameters; to keep parameters small whilst avoiding the attacks affecting
overstretched regimes. Fortunately, the script provided in [DvW21] also allows
for NTRU hardness estimations using any choice of σ though no analysis is
performed in their work outside the ternary case. Nevertheless, their estimator
provides a tool, much like the LWE estimator of Albrecht et [APS15], with which
to analyze the concrete hardness of any given NTRU parameter set.

A More General Fatigue Relation. In our analysis, we are interested in answering
the second part of the above question. In particular, we would like to know by
how much an increase in NTRU secret size affects the position of the fatigue
point for a given ring dimension.

A simple calculation, following the analysis of [DvW21], Section 3.2, confirms
that the asymptotic relation q = d 2.484+o(1) holds regardless of the value of σ.
This suggests that if the value of σ does play a role in the concrete, average case,
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relation then it manifests in the leading constant. We can thus infer that, for
some function ψ and constant c, the fatigue point is given by

q = c · ψ(σ) · d 2.484.

In order to determine the nature of ψ, we consider a range of σ ∈ [2, 22, . . . , 220].
For each σ, we perform a loglog-linear regression on the estimated fatigue points
overall prime ring dimensions 199, . . . , 499. This mimics the calculations of
[DvW21] used in the ternary case. For a full explanation of why this is a sensible
range to examine, we refer the reader to Section 5.5 of that work.

Next, we consider the predicted fatigue points as a geometric series. This
reveals the predicted average-case fatigue point to be

q = 0.0058 · σ2 · d 2.484. (1)

Moreover, the precision of this relation across all σ considered is very high. Whilst
we could extend this part of our analysis to larger σ, it is highly unlikely that,
for cryptographic applications, one would need to take σ higher than 220. We
note also that, setting σ2 = 2/3 we recover the fatigue point determined for the
ternary case in [DvW21].

This gives a definitive answer to our question as to the impact of σ on the
fatigue point. To give more gravity to this prediction, we also run a series of
experiments, for computable ring dimensions, to validate this estimated trend.
These results are displayed in Figure 2. We also give a second figure (Figure 3)
in which we plot q/σ2 along the vertical axis. This reveals the accuracy of
the preceding constant by revealing how closely bunched the estimations and
experiments are when normalised across varying σ. As was observed by Ducas
and Woerden in the ternary case, the estimator is slightly pessimistic, predicting
a fatigue point roughly 15% lower than the one suggested by real experiments.
They give some potential explanations for this discrepancy, pointing to the slope
parameter used in the estimator which is perhaps not well calibrated for such
small blocksizes. In practice though, this small error only translates to a difference
of 2 or 3 in the blocksize needed to run BKZ and thus hardly affects the predicted
bit security at all. Importantly, our experiments show that this error remains
constant even at larger moduli.

The Significance of σ2. Having determined the impact of σ on the concrete fatigue
point for NTRU we reflect on the structure of Equation (1). As an illustrating
example, let us return to the decryption correctness constraint for the NTRU
cryptosystem. This can be written as σ · F(p, d, ν) < q for some function F .
Suppose for a given parameter set (d, q, σ), this constraint is satisfied but the
corresponding NTRU instance does not provide adequate security. Let us then
increase q by a constant factor δ, say. According to the constraint, this gives
room for an increase in σ to δ · σ. Then Equation (1) tells us that the new
fatigue point for the set (d, δ · q, δ · σ) increases by a factor of δ2. The important
observation here is that, while increasing q in the first move might weaken the
NTRU instance, the same increase permitted for σ actually gives rise to a net
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Fig. 2. Average experimental fatigue point q values plotted against estimated fatigue
point using progressive BKZ with 8 tours on matrix NTRU instances with variance
σ2 ∈ {2/3, 4, 16, 64, 256}. The straight colored lines show the estimated values using the
(modified) estimator from [DvW21]. The colored dots show the experimental results,
where a DSD event has a 50% chance of triggering before an SKR event. The plot is
scaled to log q and log d.

increase in the hardness of the instance. In summary, Equation (1) tells us that
it is possible to ‘win’ this cat-and-mouse game for NTRU that so often arises
when setting lattice parameters.

We now consider how our analysis might be applied to existing works to refine
parameter choices.

3.2 Implications for Existing Work

While the authors of [DvW21] note that parameters used in the NTRU-based
NIST finalists are still secure to the degrees claimed, many works in the literature
use different sets. It is our belief that some parameters may fall into the range
where the dense sublattice attack begins to kick in and thus one needs to use the
techniques described in the previous section to set parameters.
Here, we revisit some NTRU-based schemes in the literature, applying the
estimator of [DvW21] to determine their concrete NTRU security. In the cases
we examine, the parameters chosen fall short of providing the security levels
claimed. However, as suggested by Equation (1), we are able to carefully re-select
parameters so that a small increase in the size of NTRU secrets yields the security
bump-up needed.
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Fig. 3. Average experimental values for q/σ2 illustrate that the fatigue point, when
adjusted for σ, is modeled by q/σ2 = 0.0058 · d 2.484. The plot is scaled to log2(q/σ2)
and log2 d.

Blind Signatures [dK22]. del Pino and Katsumata present a lattice-based (par-
tially) blind signature using trapdoor sampling. In the (round optimal) construc-
tion given, a user passes the message to be signed in a blind way so that the
signer does not learn the message they sign. This is done by committing to the
message and then proving the well-formedness of this commitment. We will call
this the first flow. The signer then creates an output that is passed back to the
user (second flow). Finally, the user computes a signature for its original message
using this response message from the signer.

In the first flow, Pino and Katsumata employ the NTRU-based linear ho-
momorphic commitment scheme (LinHC) of [Kat21] to ensure the soundness
and overall QROM security of the well-formedness proof. One must therefore
choose parameters so that the relevant NTRU instance is hard. The choice of
d = 2048, q = 266 and ternary NTRU secrets is informed by the constraint
requiring straight-line extractability of the proof system. However, as we have
observed, such large moduli run the risk of taking a parameter set into over-
stretched territory. Moreover, these values give rise to only 63 bits of security
when run through the estimator of [DvW21] rather than the claimed 128.

To rectify this situation, there are two common strategies; either one can
increase the ring dimension used throughout the scheme or use sufficiently large
NTRU secrets that the corresponding public key is statistically indistinguish-
able from uniform. The latter strategy removes the dependence on the NTRU
assumption altogether and follows from the regularity lemma in [SS11]. Let us
consider the impact of these strategies in turn.

Suppose we begin by increasing the ring dimension in [dK22] from 2048
to 4096 (for security and implementation benefits d should be a power of 2).
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After computing the other parameters accordingly, 128 bits of security is reached
at the cost of doubling the sign-request flow (69.2MB), doubling the returned
‘pre-signature’, and doubling the user’s final signature size to 200 KB.

Alternatively, one could try creating a statistically uniform public commitment
key. This can be done, as shown in [SS11], by using Gaussian NTRU secrets with
σNTRU > q1/2 5. Then, as dictated by the parameter constraints in [dK22], one
must take (in simplified terms) the decryption parameter p > σNTRU and then
q > p · σNTRU > q. Thus, it is not possible to set parameters (of any size) using
statistically uniform NTRU public keys.

The above approaches are the two standard ones taken in the literature for
ensuring NTRU hardness. We now exhibit the benefits of the relation Equation (1),
as revealed by our analysis, when applied to the problem of setting NTRU
parameters. With the same ring dimension d = 2048, we increase σNTRU (secret
size). This has the effect of pushing up the modulus needed to facilitate the
straight-line extraction condition. The reader might observe that increasing
q reduces the hardness of the problem again. However, Equation (1) reveals
that it is possible to ‘win’ this cat-and-mouse game since the fatigue point
increases quadratically with the size of the secrets. We thus propose the following
parameters to ensure the 128 bit security threshold is reached:

q ≈ 274, p ≈ 241, σNTRU = 13,

where p is the prime used to commit to the witness in the LinHC protocol.
Fortunately, this change only has a small effect on the total communication cost.
In the first flow, the user signing query increases from 34 MB to 35.4 MB, and
the sizes of the user’s pre-signature and final signature output are unchanged.
This significantly improves the sizes that arise from changing the ring dimension
and avoids the doubling of the final signature altogether. Note that without these
changes, the scheme would not satisfy the blinding property of the protocol since
the signer could extract the message to be signed from the LinHC commitment.

Linear Homomorphic Commitments [Kat21]. As demonstrated by the scheme
in [dK22], the LinHC protocol of [Kat21] is a useful tool for bootstrapping an
existing NIZK to one allowing straight-line extraction. This enables one to avoid
rewinding techniques that cause difficulties in settings like the QROM and CCA-
security. Therefore, this technique is being adopted by many schemes. However,
since the most efficient instantiation of LinHC relies on the NTRU assumption,
we wish to highlight the importance of setting parameters here according to the
analysis of [DvW21].

Summary. We note that simply increasing the size of the NTRU secrets may be
all that is needed to ensure the correct security threshold is reached. In other
settings, this might also push up the modulus of the ring over which a scheme is
defined as in the examples above. However, in some situations, the scheme may
5 In fact one must take σNTRU >

√
d log(2d(1 + 2q))/π · q1/2 but the simplified bound

suffices for the purposes of our argument.
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also rely on the hardness of other computational problems such as RLWE, as in
our voting scheme, which is defined over the same ring. In this case, the RLWE
problem may no longer be hard for the adjusted parameters and one may need
to increase the ring dimension in order to find a parameter set for which both
problems are hard. This could make what was an efficient scheme into one that
cannot be deployed in practice.

Clearly, such balancing acts must be approached with a good understanding
of the hardness of NTRU instances. We aim to demonstrate the advantages of this
approach when presenting our voting scheme in Section 4 where our fine-grained
analysis allows us to dramatically bring down the overall communication cost.

4 THE VOTING SCHEME

A cryptographic voting scheme is usually defined in terms of the algorithms
for the tasks of election setup, casting ballots, and counting cast ballots. To
accurately model the counting process, we need algorithms for shuffling and
distributed decryption. To make such a scheme verifiable (actively secure), we
additionally need a mechanism by which to verify that the encryption, shuffling,
and decryption algorithms are computed honestly, to ensure that the election
output is correct. In this paper we follow the approach of Aranha et al. [ABGS23]
and show how their protocol can be improved in terms of efficiency by replacing
the underlying BGV encryption scheme with the NTRU encryption scheme and
setting parameters based on our prior NTRU hardness analysis.

To ease the presentation of our construction, we give a passively secure voting
scheme in Section 4.2 and then show how this can be lifted to yield a verifiable
voting scheme in Section 4.3. We begin with an overview of the voting system
structure.

4.1 Voting Overview

Setup Phase. A trusted set of players run the key generation algorithm for the
PKE scheme with distributed decryption. In this work, we will assume a trusted
key generation and leave the design of a distributed key generation algorithm for
NTRU to future work. The generated public parameters sp are given to every
participant, while the decryption key shares dkj are distributed amongst the
decryption servers.

Casting Phase. Each voter instructs their voting device to cast their chosen ballot.
The device encrypts the ballot under the public key pk to create a ciphertext c
and it computes a ballot proof. The standard way to do this is to use a verifiable
encryption scheme such as the one presented in [LNP22] which proves, in zero-
knowledge, that the submitted ciphertext contains a genuine ballot.

16



Counting Phase. This is divided into three sequential processes. First, the set of
encrypted ballots is passed through a series of shuffle servers.

The ξ1 shuffle servers S1, ...,Sξ1 consecutively run the shuffle algorithm of the
set of encrypted ballots {c(k−1)

i }, passing the shuffled and re-encrypted ballots
{c(k)

i } to the next shuffle server. They also generate a shuffle proof which can be
verified by anyone. We may refer to this whole shuffle process as the mix-net.

Each of the ξ2 decryption servers Dj receives the output of each shuffle server
and verifies the corresponding shuffle proofs. Only after verifying each proof
does a decryption server begin decryption. Dj then computes a set of partial
decryption shares {dsij}, one for each of the ciphertexts. Finally, it creates a
proof of decryption to guarantee that it computed its decryption shares correctly.
Each decryption server then passes its shares to the combining algorithm Comb.

The Comb algorithm performs the task of recovering the ballots. Having
received all decryption shares from decryption servers, the Comb algorithm
verifies the decryption proofs. If all decryption proofs verify, it then recovers the
ballots originally cast by combining the decryption shares.
A schematic of these processes, in the actively secure setting, is shown in Figure 4.
This figure is taken from [ABGS23, Figure 1] and shows the full voting protocol
beginning with input a set of encrypted ballots and finishing with a set of ballots
in plaintext. We note that some works consider an auditor whose role is to verify
the processes at each step by checking to proofs provided. This is somewhat of
a stylistic design choice. For the purposes of this paper, it is useful to think of
the proofs as providing verifiability of each phase by any third party and by the
component servers before carrying out their roles.

S1 S2 . . . Sξ1

{c(0)
i } {c(1)

i } {c(2)
i }

πS1 πS2 πSξ1

D1

...

Dj

...

Dξ2

{mi}

{c(ξ1)
i }

{c(ξ1)
i }

{c(ξ1)
i }

({dsi,1}, πD1 )

({dsi,j}, πDj )

({dsi,ξ2}, πDξ2
)

Fig. 4. The voting protocol with verifiable mix-net and distributed decryption, taken
from [ABGS23, Figure 1] and adapted with our notation.
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4.2 Passively Secure Scheme

Here we present our passively secure voting scheme. Whilst our ultimate goal
is to give a verifiable (actively secure) voting scheme, we first isolate the core,
passively secure skeleton for clarity of presentation. We begin by defining the
algorithms and syntax of this construction.

Definition 4 (Passively Secure Voting Scheme). Let τ be the number of
voters, ξ1 the number of shuffle servers, and ξ2 the number of decryption servers.
A passively secure cryptographic voting scheme ΠPVote consists of five PPT
algorithms (KeyGen,Cast,Shuffle,DDec,Comb).

KeyGen(sp)→ (pk, sk, {dkj}j∈[ξ2]) : On input setup parameters sp, it returns a
public encryption key pk, a secret key sk and a set of ξ2 secret decryption key
shares {dkj}j∈[ξ2].

Cast(pk, v)→ c : On input a public key pk and vote v it returns an encrypted
ballot c.

Shuffle({ci}i∈[τ ]) → {ĉi}i∈[τ ] : On input a set of encrypted ballots {ci}i∈[τ ] it
returns another set of encrypted ballots {ĉi}i∈[τ ].

DDecj({c}i∈τ , dkj)→ {dsi,j} : On input a set of encrypted ballots {c}i∈[τ ] and
a decryption key dkj, it returns a set of decryption shares dsj = {dsi,j}i∈[τ ].

Comb({ci}i∈[τ ], {dsj}j∈[ξ2]) → {v}i∈[τ ] : On input a set of encrypted ballots
{ci}i∈[τ ] and a set of decryption shares {dsj}j∈[ξ2], it outputs a set of votes
{v}i∈[τ ].

We now instantiate the above algorithms, present our passively secure voting
scheme, and give an overview in Figure 5.

Setup. Let p≪ q be primes and d a power of two which define the rings Rp and
Rq. Votes lie in Rp. Let σNTRU, BDec, BDrown ∈ R+, t ∈ (1, 2], and ν, τ, ξ1, ξ2 ∈ N.
Let sp = (d, p, q, σNTRU, t, ν, τ, ξ1, ξ2).

4.3 Actively secure scheme

Here we present the actively secure (verifiable) voting scheme. In brief, the
construction utilities the zero-knowledge proofs of Section 4.4 and applies them
to the passive scheme ΠPVote presented in Figure 5. In particular, any third party
can now verify that the processes of shuffling and distributed decryption were
carried out correctly without compromising the privacy or integrity of the voting
system. We assume a trusted dealer for key generation and leave the construction
of an NTRU-based distributed key generation to future work. See Figure 6.

We note that this construction implicitly defines both a verifiable mix-net and
PKE with distributed decryption from NTRU. We consider these of independent
interest and thus now give an overview of their workings as stand-alone protocols.

Definition 5 (Actively secure voting scheme). Let τ be the number of voters,
ξ1 the number of shuffle servers, and ξ2 the number of decryption servers. An
actively secure (verifiable) cryptographic voting scheme ΠAVote consists of five
PPT algorithms (KeyGen,Cast,Shuffle,DDec,Comb) with the following syntax:
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KeyGen(sp). On input system parameters sp:
1. Run (sk = f, pk = h)← KeyGenNTRU(d, p, q, σNTRU, t).
2. For j ∈ [ξ2 − 1], sample dkj ← U(Rq) and set dkξ2 = sk−

∑ξ2−1
j=1 dkj mod q.

3. Return public key pk, secret key sk, and decryption key shares {dkj}j∈[ξ2].
Cast(pk, v). On input the public key pk and a vote v ∈ Rp:
1. Compute c← EncNTRU(pk, v).
2. Return encrypted ballot c.

Shuffle({ci}i∈[τ ]). On input a set of encrypted ballots {ci}i∈[τ ]:
1. For each i ∈ [τ ], compute c′

i ← EncNTRU(pk, 0).
2. For each i ∈ [τ ], compute ĉi = ci + c′

i mod q.
3. Sample a random permutation π ← Perm[τ ].
4. Return re-encrypted ballots {ĉπ(i)}i∈[τ ].

DDecj({ci}i∈τ , dkj). On input a set of encrypted ballots {c}i∈τ and a decryption key
share dkj :
1. For each i ∈ [τ ], sample noise drowning term Eij ← SBDrown .
2. For each i ∈ [τ ], compute share dsij = dkj · ci + p · Eij mod q.
3. Return the set of decryption shares dsj = {dsij}i∈[τ ].

Comb({ci}i∈[τ ], {dsj}j∈[ξ2]). On input a set of encrypted ballots {ci}i∈[τ ] and decryption
shares {dsj = {dsij}i∈[τ ]}j∈[ξ2]:

1. For each i ∈ [τ ], compute vi =
(∑

j∈[ξ2] dsij mod q
)

mod p.
2. Return the set of votes {vi}i∈[τ ].

Fig. 5. The passively-secure voting scheme ΠPVote.

KeyGenA(sp) → (pkA, skA, {dkA,j}j∈[ξ2]) : On input setup parameters sp, it re-
turns a public encryption key pkA, a secret key skA and a set of ξ2 secret
decryption key shares {dkA,j}j∈[ξ2].

CastA(pkA, v)→ c : On input a public key pkA and vote v it returns an encrypted
ballot c.

ShuffleA({ci}i∈[τ ])→ ({ĉi}i∈[τ ], πS) : On input a set of encrypted ballots {ci}i∈[τ ]
it returns another set of encrypted ballots {ĉi}i∈[τ ] and a shuffle proof πS .

DDecA,j({c}i∈τ , dkA,j) → (dsj = {dsi,j}i∈[τ ], πD) : On input a set of encrypted
ballots {c}i∈[τ ] and a decryption key dkA,j, it returns a set of decryption shares
dsj = {dsi,j}i∈[τ ] and a decryption proof πD.

CombA({ci}i∈[τ ], {dsj}j∈[ξ2]) → {v}i∈[τ ] : On input a set of encrypted ballots
{ci}i∈[τ ] and a set of decryption shares {dsj}j∈[ξ2], it outputs a set of votes
{v}i∈[τ ].

We continue by giving a high-level description of the verifiable shuffle and verifiable
distributed decryption procedures.

Verifiable Shuffle. Our aim here is, given a set of input ciphertexts, to generate
a new set of ciphertexts that decrypts to the same set of plaintexts. Crucially,
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input-output ciphertext correspondence must be obscured. Additionally, we would
like that any third-party can verify that this process has been performed correctly
without compromising the privacy of the mix.

To add this verifiability, we apply the scheme of [ABG+21] which allows one
to prove a shuffle of openings of the lattice commitments in Section 2.3. We
denote this proof system ΠShuf. Since NTRU ciphertexts only consist of a single
element, we can import their scheme without modification where the committed
messages are ciphertexts. We also employ the ΠSmall proof systems described in
Section 4.4 to prove that the new ciphertext noise is sufficiently bounded. At a
high level, our verifiable shuffle of NTRU ciphertexts c1, ..., cτ follows the same
framework as [ABGS23]:
1. The shuffle server creates encryptions c′1, ..., c′τ of 0 and commits to these as

[[c′i]] for each i ∈ [τ ]. Run the ΠSmall protocol to prove that each committed
ciphertext is honestly computed.

2. Adding the original ciphertexts ci to these commitments homomorphically
yields commitments [[ĉi]] to ciphertexts with the same plaintext as in c1, ..., cτ ,
now with fresh randomness.

3. The server now reveals the openings ĉi in a randomly permuted order and
runs the ΠShuf protocol to prove that these are indeed a permutation of the
correct openings of the commitments.

We note that verification of the shuffle proof should be done before any ballot
decryption begins. This can be seen as a first step of the DDec algorithm or as
part of a global verification process carried out by an auditor. For simplicity of
presentation and since this is covered in [ABGS23], we omit this from the full
protocol.

Verifiable Distributed Decryption. Our aim here is, given a set of input ciphertexts,
to generate a set of decryption shares so that we can extract the encrypted
plaintexts when all the shares are combined. Furthermore, each decryptor must
prove that they decrypted their decryption share correctly using their secret key
share. Therefore, in the active setting, the public key additionally contains a
commitment [[dkj ]] to each secret key share dkj , and each decryptor holds an
opening to exactly one of the commitments. The verifiable distributed decryption
protocol works as follows:
1. For each i ∈ [τ ], the decryptor samples a noise value Eij ← SBDrown , computes

a decryption share dsij = dkj · ci + p ·Eij and commits to the noise as [[Eij ]].
2. For each i ∈ [τ ], it uses the ΠLin protocol to prove that the linear decryption

equation above is computed honestly with respect to [[dkj ]] and [[Eij ]].
3. For each i ∈ [τ ], it uses the ΠBnd protocol to prove that [[Eij ]] is an honestly

created commitment and the committed value is bounded by BDrown.
We note that this framework closely follows the decryption protocol in [ABGS23],
but for the decryption protocol we use a proof system that yields an exact upper
bound on the noise values, instead of a relaxed bound, to be able to keep the
system parameters smaller when ensuring correct decryption. We now detail the
complete verifiable voting scheme in Figure 6.
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Setup. Let p≪ q be primes and d a power of two which define the rings Rp and
Rq. Votes lie in Rp. Let σNTRU, BDec, BDrown, BCom, BSmall ∈ R+, t ∈ (1, 2], and
ν, τ, l, ξ1, ξ2 ∈ N. Let sp = (d, p, q, σNTRU, t, ν, τ, l, ξ1, ξ2, BDec, BDrown, BCom).

4.4 Zero-Knowledge Proofs

Here we present the proof systems needed in the actively secure voting protocol.
These proofs

Rejection Sampling. To ensure that the proofs do not leak any information about
the secret values, we use rejection sampling to force the output to be independent
of the secrets [Lyu09,Lyu12]. For an overview of rejection sampling techniques,
see Appendix A.2.

Proof of Linearity. The protocol ΠLin produces a proof that a committed value
v is a multiple of another committed value u with respect to a public scalar g.
The exact relation for the proof system is:

RLin :=
{

(x,w)
∣∣∣∣x := (pkC , comu, comv, g) ∧ w := (du = (u, ru, fu), dv = (v, rv, fv)) :

u = g · v ∧ Open(pkC , comu, du) ∧ Open(pkC , comv, dv)

}
.

The proof of linearity πLin is computed as follows [BDL+18]:

1. Sample vectors yu and yv of length k over Rq according to DσLin and compute
wu = a1 · yu and wv = a1 · yv and t = g · a2 · yu − a2 · yv.

2. Hash (wu,wv, t) to c in Cκ, and compute zu = yu + c · ru, zv = yv + c · rv.
3. Rejection sample with respect to (yu, zu), and (yv, zv). If it outputs 1 then

output πLin = (c, zu, zv) and otherwise restart by sampling new (yu,yv).

The verifier checks if ∥zu, zv∥2 ≤ 2σLin
√
k · d and if the hash of (a1 · zu − c ·

cu,1,a1 · zv − c · cv,1, g · a2 · zu − a2 · zv + cv,2 + g · cu,2) equals c. It outputs 1 if
all checks verify, and otherwise it outputs 0.

Using the improved rejection sampling techniques from [LNS21], we can set
σLin = BCom · κ

√
d. The size of the proof πLin is 2kd log2(4σLin) bits.

Proof of Shuffle. The protocol ΠShuf produces a proof that a set of committed
values is a permutation of a set of public values. The exact relation for the proof
system is:

RShuf :=
{

(x,w)
∣∣∣∣ x := ({(comi, ūi)}i∈[τ ]) ∧ w := ({di = (ui, ri, fi)}i∈[τ ], ρ) :
ρ ∈ Perm[τ ] ∧ ∀i ∈ [τ ] : ui = ūρ(i) ∧ Open(pkC , comi, di)

}
.

The proof of shuffle πShuf is computed as follows [ABG+21, Section 4]:

1. Hash the statement to get a uniform value and then shift all commitments
and messages to u′i and ū′i (the commitments are additionally homomorphic).

2. For all i ∈ [τ − 1], sample random values θi and commit to random linear
combinations of the form [[Di]] = [[θi−1 · u′i + θi · ū′i]] (where θ0 = θτ = 0).
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KeyGenA(sp). On input system parameters sp:
1. Run (sk = f, pk = h)← KeyGenNTRU(d, p, q, σNTRU, t).
2. For j ∈ [ξ2 − 1], sample dkj ← U(Rq) and set dkξ2 = sk−

∑ξ2−1
j=1 dkj mod q.

3. For all j ∈ [ξ2], compute the commitments and openings ([[dkj ]], rdkj )← Com(dkj).
4. Return public key pkA = (pk, [[dk1]], ..., [[dkξ2 ]]), secret key skA = sk, and decryption

key shares {dkA,j =
(
dkj , rdkj

)
}j∈[ξ2].

CastA(pkA, v). On input a public key pkA and a vote v in Rp, retrieving pk from pkA:
1. Compute c← EncNTRU(pk, v), and return encrypted ballot c.

ShuffleA({ci}i∈[τ ]). On input a set of encrypted ballots {ci}i∈[τ ] :
1. For each i ∈ [τ ], compute c′

i ← EncNTRU(pk, 0) using encryption randomness (s′
i, e′

i).
2. For each i ∈ [τ ], commit to c′

i as com′
i := [[c′

i]] ← Com(pkC, c′
i) where rc′

i
is the

commitment randomness used. Then denoting

AM =
[

1 a1,1 a1,2 0 0
0 1 a2,2 ph p

]
,

and sc′
i

= [rc′
i
, s′

i, e′
i]T compute πSmall,i ← ΠSmall, for matrix AM, input vector sc′

i
,

targets comi, and bound BSmall. Set πSmall, := {πSmall,i}i∈[τ ].
3. For each i ∈ [τ ], compute ĉi = ci + c′

i mod q. Sample π ← Perm([τ ]), and com-
pute πShuf ← ΠShuf with input commitments {[[ĉi]]}i∈[τ ], randomness {rc′

i
}i∈[τ ],

ciphertexts {ĉi}i∈τ ], and permuted ciphertexts {ĉπ(i)}i∈[τ ].
4. Return

(
{ĉπ(i)}i∈[τ ], πS

)
, where πS =

(
{com′

i}i∈[τ ], πSmall,,πShuf
)
.

DDecA,j({ci}i∈[τ ], dkA,j). On input a set of ciphertexts {ci}i∈[τ ] and decryption key
share dkA,j =

(
dkj , rdkj

)
:

1. For each i ∈ [τ ], sample Eij ← SBDrown , and compute dsij = dkj · ci + p · Eij .
2. For each i ∈ [τ ], compute

(
[[Eij ]], rEij

)
← Com(Eij , pkC) and use the ΠLin protocol

to compute a proof πLinij for the linear relation dsij = dkj · ci + p · Eij .
3. Each commitment is of the form

[[Eij ]] =
[

1 a1,1 a1,2 0
0 1 a2,2 1

]
︸ ︷︷ ︸

AD

[
rEij

Eij

]
︸ ︷︷ ︸

sij

,

where ∥rEij∥∞ ≤ BCom. Now, applying the amortized proof ΠBnd from Section 4.4,
create a proof πBnd that, for all i ∈ [τ ], the noise ∥Eij∥∞ ≤ BDrown.

4. Return dsj :=
(
{dsij}i∈[τ ], πD

)
, where πD =

(
{[[Eij ]]}i∈[τ ], {πLinij}i∈[τ ], πBnd

)
.

CombA({ci}i∈[τ ], {dsj}j∈[ξ2]). On input a set of encrypted ballots {ci}i∈[τ ] and decryp-
tion shares {dsj}j∈[ξ2]:

1. Parse dsj as
(
{dsij}i∈[τ ], πDj

)
, and verify the proofs πLinij and πBnd,ij .

2. If any verification protocol returns 0 then output ⊥. Otherwise, compute

vi = (
∑

j∈[ξ2]

dsij mod q) mod p.

3. Return the set of votes {vi}i∈[τ ].

Fig. 6. The verifiable voting scheme ΠAVote.
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3. Hash the commitments to get a uniform challenge β. Then for all i ∈ [τ ]
compute si so that it solves the linear system with respect to β.

4. For all i ∈ [τ ], compute proofs of linearity for the commitment equations of
the form [[Di]] = si−1[[u′i]] + si · ū′i (where s0 = β and sτ = (−1)τβ).

The verifier accepts if all proofs of linearity are valid. This proof πShuf
consists of one ring element, one commitment and one proof of linearity per
shuffled element. Using the proof of linearity πLin from above, the size of πShuf is
τd(2k log2(4σLin) + 3 log2 q) bits.

Amortized Proof of Shortness. The protocol ΠSmall, produces a proof that a
batch of equations Asi = ti for i ∈ [ℓ] is satisfied for a set of secret vectors si

with ℓ∞ norm bounded by ν. The exact relation for the proof system is:

RSmall :=
{

(x,w)
∣∣∣∣x := (pkC , {comi}i∈[ℓ]) ∧ w := ({di = (ui, ri, fi)}i∈[ℓ]) :

∀i ∈ [ℓ] : ∥ui∥∞ ≤ ν ∧ Open(pkC , comi, di)

}
.

The proof of shortness πSmall is quite involved, combining error-correcting
codes, Merkle trees, Lagrange interpolation and proximity testing, and we refer
to [ABGS23] for details. The size of the proof, for batch size ℓ of ternary secret
vectors, is given in [ABGS23, Equation (1)] as

(3vd+ (3ℓ+ 2)η) log2 q + 2λη(1 + log2 γ) bits,

using an [γ, µ, ι] Reed-Solomon Code with code-length γ, message length µ and
minimal distance ι where µ = d(k + 2) + η ≤ γ < q for encoding randomness of
length η. λ is the security parameter. The soundness of the proof is given as

2 ·max
{

2
(

µ′

γ − η

)η

,
1

q − ℓ
+

(
1− µ′ − µ

6γ

)η

, 2 ·
(

1− 2(µ′ − µ)
3γ

)η

,
18ℓ
q − ℓ

}
,

for some choice of message length µ′ such that µ ≤ µ′ ≤ γ < q.

Amortized Proofs of Boundedness. We define ΠBnd to be a slightly adapted
version of the ΠSmall, protocol. The previous work by Aranha et al. [ABGS23]
used the amortised relaxed proofs by Baum et al. [BBC+18] to get smaller proof
sizes of the cost of slightly increasing the general parameters in the voting scheme
because of the slack inherent in the proof system. In practice this lead to a
slightly larger modulus q but no impact on the ring dimension d. However, in our
setting, we get better parameters in practice for the whole scheme when giving
exact proofs of boundedness, even though the proofs themselves are larger. The
exact relation for the proof system, with batch size ℓ′ and secret vectors bounded
in the ℓ∞ norm by BDrown, is:

RBnd :=
{

(x,w)
∣∣∣∣x := (pkC , {comi}i∈[ℓ′]) ∧ w := ({di = (ui, ri, fi)}i∈[ℓ′]) :

∀i ∈ [ℓ′] : ∥ui∥∞ ≤ BDrown ∧ Open(pkC , comi, di)

}
.

Since ΠSmall, is a proof system that scales with the number of possible values
of the secret vectors, we use bit decomposition techniques to limit a blow-up
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in terms of running time, memory usage and proof size, to the cost of proving
knowledge of longer secret vectors.

Any integer E between 0 and q can be represented in base b as E =
[b0 b1 ... bζ ] ◦ [1 b ... bζ ] for unique coefficients bi between 0 and b − 1 and
ζ = ⌈logb q⌉ − 1 where ◦ is the dot product. This can be naturally extended to
vectors, matrices and modules, particularly for our commitment matrix A. Since
the commitment randomness is already short, we only need to decompose the
last element in the secret vector, and we can do so in the following way (note
that we abuse notation, where after (∗) the elements before | are in Rq and the
elements after are in Zq, but any element in Rq can be represented in Zd

q):

Aijsij =
[
1 a1,1 a1,2 |0
0 1 a2,2 |1

] [
rEij

Eij

]
(∗)=

[
1 a1,1 a1,2 |0 . . . 0
0 1 a2,2 |1 . . . bζ

] 
rEij

E0ij

...
Eζij

 = Āij s̄ij .

Here, the ring element Eij is decomposed, and all elements E0ij , . . . , Eζij have
integer values between 0 and b− 1. We note that these statements are equivalent
to prove, and that the length of Āij is d(k + ζ + 1) over Zq instead of d(k + 2).

Finally, we use the ΠSmall, protocol to prove ternary secret values as above
but with a tweak: the public matrix input to the protocol is Āij instead of Aij ,
and we change the coefficient values that we are checking for in the proof. For
the first d · k values we are checking for (0, 1,−1) coefficients but for the next
d(ζ + 1) values we are checking for (0, 1, 2) coefficients instead (this is a small
tweak of line 3 in [ABGS23, Figure 5] that does not impact the performance of
the protocol in any way, these values are initially arbitrary to the proof system).
Since the other secret parts are ternary, we have that ζ = ⌈log3 q⌉ − 1.

4.5 Security Analysis

Here we analyze the security of our (verifiable) voting scheme presented in
Figure 6. We begin by examining the implicit shuffle and distributed decryption
protocols and prove their security. Then, we will consider the security of the
overall voting scheme, showing how the security of the two aforementioned sub-
protocols gives rise to the notions of integrity and privacy as required by an
electronic voting scheme.

We begin by examining the security of the verifiable shuffle protocol implicitly
defined by the tuple of algorithms ΠAShuf := (KeyGenA,CastA,ShuffleA,DecNTRU).
We say that ΠAShuf is secure if it satisfies the properties of shuffle completeness,
shuffle soundness, and shuffle simulatability. We refer the reader to Appendix A.3
for formal definitions of these notions.

Lemma 2 (ΠAShuf Security). Suppose the protocols ΠSmall, and ΠShuf are
complete, knowledge sound, and HVZK and that Com is hiding. Furthermore,
suppose that NTRUEncrypt is IND-CPA secure and let the total noise, BMix,
added to ciphertexts in the shuffle be such that BDec + BMix ≤ ⌊q/2⌋. Then the
verifiable shuffle ΠAShuf is secure.
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Proof sketch. Since ΠSmall, and ΠShuf are complete, the protocol will finish and
the shuffle will verify correctly. Moreover, since BMix +BDec ≤ ⌊q/2⌋, decryption
will be correct. Thus, ΠAShuf is complete.

Now assume we have an adversary Adv breaking the knowledge soundness
of the shuffle. That is, given a set of input ciphertexts, Adv can produce a new
set of ciphertexts and a shuffle proof which verifies but the new ciphertexts do
not decrypt to the original plaintexts. Without loss of generality, assume that
ciphertext ĉi decrypts incorrectly. By the knowledge soundness of πSmall,, one
can extract commitment randomness sc′

i
= [rc′i, s′i, e′i]T such that AMsc′

i
= t′i. By

knowledge soundness of πShuf , it is easy to check that one can extract a second
vector s̃c′

i
= [r̃c′i, s̃′i, ẽ′i]T satisfying AMs̃c′

i
= t′i. Then incorrect decryption of ĉi

corresponds to either s̃′i ̸= s′i or ẽ′i ≠ e′i. In either case, we break the binding
property of the BDLOP commitment scheme.

Finally, we can argue the shuffle simulatability in the standard way. We
construct a simulator that, given a set of input ciphertexts and output ciphertexts
from an honest shuffle, simulates the proofs πSmall, and πShuf using the HVZK
property of those systems and replaces the commitments to ciphertexts with
commitments to zero. Simulatability then follows from the hiding property of
the commitment scheme and IND-CPA security of NTRUEncrypt .
We now analyse the security of the PKE with distributed decryption implicitly
defined by the tuple of algorithms ΠADDec := (KeyGenA,CastA,DecNTRU,
DDecA,,CombA). We say that ΠADDec is secure if it satisfies the properties of
IND-CPA security, threshold correctness, threshold verifiability, and distributed
decryption simulatability. For completeness, we give the full definitions of these
notions in Appendix A.4. Since many of these properties rely on building blocks
used in previous works, we provide a proof sketch here and refer the reader
to [ABGS23] for the full arguments. We will however make parameter constraints
explicit to aid in the performance analysis of Section 5.

Lemma 3 (ΠADDec Security). Let BDrown = 2sec(BDec/pξ2) < ⌊q/2⌋. Further-
more, assume NTRUEncrypt is IND-CPA secure and the protocols ΠLin and
ΠBnd are complete, HVZK, and sound. Then the verifiable, distributed decryption
protocol ΠADDec is secure.

Proof sketch. IND-CPA security of ΠADDec follows trivially from the IND-CPA
security of the underlying NTRU encryption scheme and the HVZK property of
the proof systems ΠLin and ΠBnd.

Examining the threshold correctness, let us define the predicate PskA(·) so that
PskA(c) = 1 if and only if ∥skA · c∥∞ < BDec. Then given a set of adversarially
generated ciphertexts {c}i∈[τ ] satisfying PskA(ci) = 1 for all i ∈ [τ ], we have
that

∥∥∥∑
j∈[ξ2] dsij

∥∥∥
∞
< q/2 and so the Comb algorithm will return the correct

decryption of ci. Finally, the completeness of ΠLin and ΠBnd ensure that the
arguments will be accepted. Thus, ΠADDec is threshold correct.

For threshold verifiability we also consider only ciphertexts such that PskA(c) =
1. Note that if Comb accepts a ciphertext for which decryption is incorrect then,
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for some j, no relation dsij = dkj · ci + pEij holds for an Eij of norm at most
BDrown. This implies either an adversary against the soundness of ΠLin or one
against the soundness of ΠBnd.

Finally, we describe a simulator for our distributed decryption. Firstly, let us
replace commitments to Eij with commitments to zero. This change is indistin-
guishable by the hiding property of the BDLOP commitment scheme. Next, one
can simulate the proofs πLinij and πBnd, else a distinguisher breaks the HVZK of
the respective proof systems. Lastly, the simulatability of the dsij follows from
the choice of sec which is chosen so that dsij is statistically indistinguishable
from uniform.

We now argue our voting protocol’s overall security by discussing its integrity
and privacy properties. We give a very high-level overview of the security proper-
ties a voting system requires and how our design achieves these properties. For a
detailed overview and the formal proofs, we refer the reader to [ABGS23]. Whilst
some building blocks are different in our work, they are combined in much the
same way as the aforementioned work.

Integrity. This property ensures that no adversary is able to cause inconsistent
decryption or non-unique decryption, even if the adversary obtains all of the
key material. It can be shown that an adversary succeeding in causing one of
these events can be used to construct an adversary against either the threshold
verifiability of the distributed decryption protocol ΠADDec or the soundness of
the shuffle protocol ΠAShuf .

Privacy. Privacy dictates that an adversary seeing the contents of the ballot
box, the intermediate shuffles, and the decrypted ballot shares should not be
able to determine who cast which ballot. This should hold even if the adversary
learns some decryption key shares, inserts adversarially generated ciphertexts
into the ballot box, introduce adversarially generated intermediate shuffles, and
publish adversarially chosen decrypted ballot shares. This reduces to the NTRU
cryptosystem’s CPA-security, commitments hiding, and zero-knowledge properties
of the underlying proofs.

5 PERFORMANCE

We analyse the practical performance of our voting scheme. We begin by iden-
tifying all system parameters and any constraints that apply to them. These
are displayed in Table 2. Next, we compute a sample set of parameters that
satisfy the necessary constraints and give rise to a minimum of 128 bits of secu-
rity. Table 3 displays these values. Finally, using these parameters, we compute
the concrete communication cost of our voting system. The resulting sizes are
compared to the previous work of [ABGS23], revealing a significant improvement
in the state-of-the-art for cryptographic voting from quantum-safe assumptions.
These results are displayed in Table 4.
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5.1 Setting Parameters

We begin by collecting all parameters of the scheme and noting any constraints
applying to them. These are displayed in Table 2.

Next, we closely examine the constraint needed for the correct (perfect)
decryption of votes as performed by the Comb algorithm. This turns out to be the
most influential constraint on the overall efficiency of the scheme. In particular,
this constraint informs our choice of the global ring dimension d and modulus q
which most directly affect the communication sizes. Let us examine this relation
in more depth.

Decryption Correctness. After passing through the mix-net of ξ1 shuffle servers,
a ciphertext is of the form

c = p

h ∑
k∈[ξ1]

sk +
∑

k∈[ξ1]

ek

 +m,

where the encryption randomness terms sk and ek are sampled from Sν . Next,
this ciphertext is passed to a decryption server which computes a decryption
share of the form dsj = fj · c + pEj . Then the Comb algorithm, on collecting
{dsj}j∈[ξ2], outputs

v′ =

 ∑
j∈[ξ2]

dsj mod q

 mod p.

In order for the result of this process to yield the original ballot cast, we require
the infinity norm of the sum here to be bounded by ⌊q/2⌋. A simple calculation
shows that a sufficient constraint for this correct decryption is the following

p · d · t · σNTRU · (2ξ1 · ν + 1/2)(1 + 2sec) < ⌊q/2⌋, (2)

where t is the rejection parameter in the KeyGenNTRU algorithm.

Computational Security . Having chosen parameters satisfying the constraints of
Table 2, we must ensure that the underpinning lattice problems are sufficiently
hard for these parameters.

For RLWE we follow standard convention by using the estimator [APS15].
This estimates the cost of BKZ conservatively by focusing only on the cost of
a single uSVP oracle call, a core operation in BKZ. The number of such calls
required has been estimated to be 8d for a lattice dimension d and we follow this
estimate.

To determine the NTRU problem’s hardness, we use the analysis of Section 3.
Having settled on a ring dimension d and modulus q giving sufficient hardness
of the RLWE problem, we use (2) to determine the maximum standard devia-
tion permissible for generating the NTRU secrets (f, g). Finally, following the
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Parameter Explanation Constraints

λ Computational security parameter ≥ 128
sec Statistical security parameter ≥ 40
d Ring dimension of Rp and Rq d a power of two
p Plaintext modulus p a small prime
q Ciphertext and commitment modulus Prime q = 1 mod 2d s.t. ∥

∑
j∈ξ2

dsj∥∞
≤ ⌊q/2⌋

t KeyGenNTRU rejection parameter Set for rej. prob. < 1/1000.
k Length of binding vector in BDLOP commitment > 2
C Challenge space for linear ZK proofs of commitments C =

{
c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = κ

}
κ Maximum ℓ1-norm of elements in C 2κ ·

(
d
κ

)
> 2λ

BCom Bound on the commitment noise So that SIS is hard
BDrown Infinity norm of noise drowning term Eij BDrown = 2sec(BDec/pξ2)
σNTRU Standard deviation for encryption secret key So that NTRU is hard

ν Bound on encryption randomness So that LWE is hard
σCom Standard deviation in ZK proofs of linear relations Chosen to be σCom = κ ·BCom ·

√
kd

ξ1, ξ2 Number of shuffle and decryption-servers At least two servers
τ Total number of messages/number of voters For soundness we need (τ δ + 1)/|Rq| < 2−λ

η Reed-Solomon encoding randomness length Make soundness ≥ 2−λ in ΠSmall, and ΠBnd

ℓSmall Proof batch size in ΠSmall, Same secret length as in [ABGS23]
ℓBnd Proof batch size in ΠBnd Same secret length as in [ABGS23]

µSmall Reed-Solomon message length in ΠSmall, µSmall = (k + 2) · d + η

µBnd Reed-Solomon message length in ΠBnd µBnd = (k + 1) · d + η

µ′
Small Reed-Solomon message dimension in ΠSmall, µSmall ≤ µ′

Small ≤ γ < q

µ′
Bnd Reed-Solomon message dimension in ΠSmall, µBnd ≤ µ′

Bnd ≤ γ < q

γSmall Reed-Solomon code length in ΠBnd µSmall ≤ µ′
Small ≤ γ < q

γBnd Reed-Solomon code length in ΠBnd µBnd ≤ µ′
Bnd ≤ γ < q

Table 2. System parameters and constraints.

procedure described in Section 3, one can calculate the estimated computational
complexity of the given NTRU instance. Again, we employ the conservative for-
mula 0.292β+ 16.4 + log2(8d) used in works such as [DTGW17,SPL+17,BIP+22]
to compute bit-security from an estimated blocksize β.

Finally, in order to ensure the binding property of the BDLOP commitment
schemes we use, the RSIS problem must be hard. We use the relation due to
Micciancio and Regev [MR09] which states that LLL will recover a short vector
a vector of 2-norm 2(2

√
d log2 q log2 δ). Here, δ is the root Hermite factor and

δ < 1.0045 gives rise to at least 128 bits of security. Owing to the horizontally
long nature of the commitment matrix used, the hardness of the corresponding
RSIS instance meets this threshold by far.

5.2 Sample Parameter Set and Total Size

Table 3 gives a sample set of parameters generated by following the process
described in the previous section.
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Parameter Explanation Value
λ Computational security parameter 128
d Ring dimension 2048
q Ciphertext and commitment modulus ≈ 259

sec Statistical security parameter 40
p Plaintext modulus 2
t KeyGenNTRU rejection parameter 1.058
ν Infinity norm of encryption randomness 1

BCom Infinity norm of commitment randomness 1
ξ1, ξ2 Number of shuffle and decryption servers 4
σNTRU Standard deviation for encryption secret key 7.12

η Reed-Solomon encoding randomness length 325
ℓSmall Proof batch size in ΠSmall, 9830
ℓBnd Proof batch size in ΠBnd 12288

µSmall Reed-Solomon message length in ΠSmall, 10565
µBnd Reed-Solomon message length in ΠBnd 8517
µ′

Small Reed-Solomon message dimension in ΠSmall, 23988
µ′

Bnd Reed-Solomon message dimension in ΠBnd 181550
γSmall Reed-Solomon code length in ΠSmall, 26616
γBnd Reed-Solomon code length in ΠBnd 198668

Table 3. Sample parameter set.

In Table 4 we present the total sizes of objects in our voting scheme and
compare them with those of [ABGS23]. We denote the output of each shuffle
node by πSi including ciphertexts, commitments, proofs of shortness, and shuffle
proofs. Similarly, we denote the total output of each decryption node as πDj

which comprises decryption shares, commitments, linearity proofs, and proofs of
boundedness.

Our scheme achieves a reduction in ciphertext size by over a factor of five.
Moreover, the reduction in commitment sizes and constituent proofs leads to
shuffle server outputs which are three times smaller and decryption server outputs
which are half of those in [ABGS23]. Overall this represents a significant efficiency
gain over previous works as summarized in Table 1.

5.3 Future Improvements

We provide some directions for future work to potentially improve our results:

1. Return codes. To extend our scheme and ensure voter verifiability we need
to add return codes to our scheme. This can be done by extending the work
of [HS22] from BGV to NTRU. This also includes verifiable encryption.
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Scheme ci [[Rq]] πShuf πLinij πSmall, πBnd πSi πDj

[ABGS23] 80 KB 80/120 KB 150τ KB 35 KB 20τ KB 2τ KB 370τ KB 157τ KB
Ours 15 KB 30 KB 63τ KB 18 KB 22τ KB 22τ KB 130τ KB 85τ KB

Table 4. Sizes of ciphertexts, commitments, and proof for our scheme and the previous
work in [ABGS23]. Note, the two commitment sizes in [ABGS23] reflect the commitments
to the noise-drowning terms and ciphertexts respectively.

2. Improved noise analysis. Our results can possibly be improved using tech-
niques in [AKSY22,BS23,CSS+22]. We use 40 bits of statistical noise drowning
to protect the secret key in the distributed decryption protocol. This can
possibly be improved if we choose parameters based on how many ciphertexts
we will decrypt or change noise drowning techniques to Gaussian and compute
the Rényi divergence to estimate the leakage.

3. Implementation of our scheme. We have not implemented the scheme with
our improved parameters but we expect an improvement of more than ×2 in
performance because of the halved ring dimension as well as the modulus
that decreases from two words to only one compared to [ABGS23].

4. Improved parameters in other schemes. Our extended NTRU analysis might
lead to more efficient FHE parameters in [BIP+22] and [Klu22] using the
same methodology that led to a more efficient instantiation of NTRUEncrypt .
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A Omitted Preliminary

In this section, we provide the omitted preliminaries.

A.1 Tail Bounds.

We use the following standard results for Gaussian-sampled vectors.

Lemma 4 ( [MR04, Lyu12]). For any real t > 0 and t′ > 1, we have

Pr[x← DZn,σ : ∥x∥∞ > tσ] < 2n · 2−
log e

2 ·t
2
,

Pr[x← DZn,σ : ∥x∥2 > t′σ
√
n] < 2n·( log e

2 (1−t′2)+log t′).
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A.2 Rejection Sampling

In lattice-based cryptography in general, and in our zero-knowledge protocols in
particular, we would like to output vectors z = y + v such that z is independent
of v, and hence, v is masked by the vector y. Here, y is sampled according to
a Gaussian distribution N k

σ with standard deviation σ and we want the output
vector z to be from the same distribution. The procedure is shown in Figure 7.

Here, 1/M is the probability of success, and M is computed as

max N
k
σ (z)

N k
v,σ(z) ≤ exp

[
24σ∥v∥2 + ∥v∥2

2
2σ2

]
= M (3)

where we use the tail bound from Appendix A.1, saying that |⟨z,v⟩| < 12σ∥v∥2
with probability at least 1− 2−100. Hence, for σ = 11∥v∥2, we get M ≈ 3. This
is the standard way to choose parameters, see e.g. [BLS19]. However, if the
procedure is only done once for the vector v, we can decrease the parameters
slightly, to the cost of leaking only one bit of information about v from given z.

In [LNS21], Lyubashevsky et al. suggest to require that ⟨z,v⟩ ≥ 0, and hence,
we can set M = exp(∥v∥2/2σ2). Then, for σ = 0.675∥v∥2, we get M ≈ 3. In
Figure 7, we use the pre-determined bit b to denote if we only use v once or
not, with the effect of rejecting about half of the vectors before the sampling of
uniform value µ in the case b = 1 but allowing a smaller standard deviation.

Rej(z, v, b, M, σ)

1. if b = 1 and ⟨z, v⟩ < 0, return 1
2. µ

$← [0, 1)
3. if µ > 1

M
· exp

[
−2⟨z,v⟩+∥v∥2

2
2σ2

]
, return 1

4. return 1

Fig. 7. Rejection Sampling.

A.3 Security of Mixing (Shuffle)

First, we define completeness, soundness and simulatability for a mixing protocol
ΠMix executed by a prover Prover, with respect to a generic encryption scheme
E = (KeyGen,Enc,Dec) [ABGS23].
Definition 6 (Mixing Completeness). We say that the mixing protocol ΠMix
is complete if for honest PPT parties Prover and Verifier that follows the protocol
then Prover on input a set of honestly generated ciphertexts will output a new set
of ciphertexts together with a proof such that Verifier accepts the proof and the
output ciphertexts decrypt to the same set of messages as the input ciphertexts.
Hence, we want that

Pr

[
{mi}i∈[τ] = Dec(sk, {ĉi}i∈[τ]

1← Verifier(pp, pk, {ci}i∈[τ], {ĉi}i∈[τ], π) :
(pp, pk, sk)← KeyGen(1κ)

{ci}i∈[τ] ← Enc(pk, {mi}i∈[τ])
({ĉi}i∈[τ], π)← Prover(pp, pk, {ci}i∈[τ])

]
≤ 1− ϵ(λ),
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where the probability is taken over KeyGen, Enc and Prover.

Definition 7 (Mixing Soundness). We say that the mixing protocol ΠMix is
sound if a dishonest PPT adversary Adv that can behave arbitrarily on input
a set of honestly generated ciphertexts will not be able to output a new set of
ciphertexts together with a proof such that an honest Verifier accepts the proof
but the output ciphertexts decrypt to a different set of messages than the input
ciphertexts. Hence, we want that

Pr

[
{mi}i∈[τ] ̸= Dec(sk, {ĉi}i∈[τ]

1← Verifier(pp, pk, {ci}i∈[τ], {ĉi}i∈[τ], π) :
(pp, pk, sk)← KeyGen(1κ)

{ci}i∈[τ] ← Enc(pk, {mi}i∈[τ])
({ĉi}i∈[τ], π)← Adv(pp, pk, {ci}i∈[τ])

]
≤ ϵ(λ),

where the probability is taken over KeyGen, Enc and Adv.

Definition 8 (Mixing Simulatability). We say that the mixing protocol ΠMix
is simulatable if a PPT adversary A that on input a set of honestly generated
ciphertexts can not distinguish between a real execution of the mixing protocol
with accepting output and a protocol execution from a PPT simulator S (given a
set honestly mixed output ciphertexts) producing a simulated mixing proof. Hence,
we want that∣∣∣∣∣∣∣∣Pr

b = b
′ :

(pp, pk, sk)← KeyGen(1κ); b
$← {0, 1}

{ci}i∈[τ] ← Enc(pk, {mi}i∈[τ])
({ĉi}i∈[τ], π(0))← Prover(pp, pk, {ci}i∈[τ])

(π(1))← S(pp, pk, {ci}i∈[τ], {ĉi}i∈[τ])
b′ ← Adv(pp, pk, {ci}i∈[τ], {ĉi}i∈[τ], π(b))

− 1
2

∣∣∣∣∣∣∣∣ ≤ ϵ(λ),

where the probability is taken over KeyGen, Enc, Prover, S and Adv.

A.4 Security of Distributed Decryption

Here we define the syntax and security properties for a PKE with distributed
decryption [ABGS23].

Definition 9 (PKE with Distributed Decryption). A PKE scheme with
distributed decryption consists of five algorithms: key generation (KeyGen), en-
cryption (Enc), decryption (Dec), distributed decryption (DDec), and combine
(Comb), where

KeyGen On input security parameter 1λ and number of key-shares ξ2, outputs
public parameters pp, a public key pk, a secret key sk, and key-shares {skj},

Enc On input pk and messages {mi}, outputs ciphertexts {ci},
Dec On input sk and ciphertexts {ci}, outputs messages {mi},
DDec On input a secret key share skj∗ and ciphertexts {ci}, outputs decryption

shares {dsi,j∗},
Comb On input ciphertexts {ci} and decryption shares {dsi,j}, outputs either

messages {mi} or ⊥,

and pp are implicit inputs to Enc, Dec, DDec and Comb.
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Definition 10 (Chosen Plaintext Security). We say that the public key
encryption scheme is secure against chosen plaintext attacks if an adversary
Adv, after choosing two messages m0 and m1 and receiving an encryption c of
either m0 or m1 (chosen at random), cannot distinguish which message c is an
encryption of. Hence, we want that∣∣∣∣∣∣Pr

b = b
′ :

(pp, pk, sk)← KeyGen(1κ)
(m0, m1, st)← Adv(pp, pk)

b
$← {0, 1}, c← Enc(pk, mb)

b′ ← Adv(c, st)

− 1
2

∣∣∣∣∣∣ ≤ ϵ(λ),

where the probability is taken over KeyGen and Enc.

Definition 11 (Threshold Correctness). We say that the public key dis-
tributed encryption scheme is threshold correct with respect to Psk(·) if the
following probability equals 1:

Pr

Comb({ci}i∈[τ], {dsi,j}
j∈[ξ2]
i∈[τ] )

=
Dec(sk, {ci}i∈[τ])

:
(pp, pk, sk, {skj}j∈[ξ2])← KeyGen(1λ, ξ2)

{c1, . . . , cτ} ← A(pp, pk)
∀i ∈ [τ ] : Psk(ci) = 1, ∀j ∈ [ξ2] :
{dsi,j}i∈[τ] ← DDec(skj , {ci}i∈[τ])

 ,

where the probability is taken over KeyGen and DDec.

Definition 12 (Threshold Verifiability). A PKE scheme with distributed de-
cryption is threshold verifiable with respect to Psk(·) if an adversary A corrupting
J ⊆ [ξ2] secret key shares {skj}j∈J cannot convince Comb to accept maliciously
created decryption shares {dsi,j}i∈[τ ],j∈J . More concretely, the following probabil-
ity is bounded by a negligible ϵ(λ):

Pr


Dec(sk, {ci}i∈[τ])

̸=
Comb({ci}i∈[τ], {dsi,j}

j∈[ξ2]
i∈[τ] )

̸=
⊥

:

(pp, pk, sk, {skj}j∈[ξ2])← KeyGen(1λ, ξ2)
({c1, . . . , cτ})← A(pp, pk, {skj}j∈J )
∀i ∈ [τ ] : Psk(ci) = 1, ∀j ̸∈ J :

{dsi,j}i∈[τ] ← DDec(skj , {ci}i∈[τ])
{dsi,j}i∈[τ],j∈J ← A({dsi,j}i∈[τ],j ̸∈J )

 ,

where the probability is taken over KeyGen and DDec.

Definition 13 (Distributed Decryption Simulatability). A PKE scheme
with distributed decryption is simulatable with respect to Psk(·) if an adversary A
corrupting J ⊊ [ξ2] secret key shares {skj}j∈J cannot distinguish the transcript
of the decryption protocol from a simulation by a simulator Sim which only gets
{skj}j∈J as well as correct decryptions as input. More concretely, the following
probability is bounded by a negligible ϵ(sec):∣∣∣∣∣∣∣∣∣

Pr

b = b
′ :

(pp, pk, sk, {sk}j∈[ξ2])← KeyGen(1λ, ξ2)
({c1, . . . , cτ})← A(pp, pk, {skj}j∈J )

∀i ∈ [τ ] : Psk(ci) = 1
{ds0

i,j} ← DDec({skj}j∈[ξ2], {ci}i∈[τ])
{ds1

i,j} ← Sim(pp, {skj}j∈J , {ci, Dec(sk, ci)}i∈[τ])

b
$← {0, 1}, b′ ← A({dsb

i,j}i∈[τ],j∈[ξ2])

− 1
2

∣∣∣∣∣∣∣∣∣
,

where the probability is taken over KeyGen,DDec,Sim.
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