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Abstract

In MPC, we usually represent programs as circuits. This is a poor fit for programs that use
complex control flow, as it is costly to compile control flow to circuits. This motivated prior work
to emulate CPUs inside MPC. Emulated CPUs can run complex programs, but they introduce
high overhead due to the need to evaluate not just the program, but also the machinery of the
CPU, including fetching, decoding, and executing instructions, accessing RAM, etc.

Thus, both circuits and CPU emulation seem a poor fit for general MPC. The former cannot
scale to arbitrary programs; the latter incurs high per-operation overhead.

We propose variable instruction set architectures (VISAs), an approach that inherits the
best features of both circuits and CPU emulation. Unlike a CPU, a VISA machine repeatedly
executes entire program fragments, not individual instructions. By considering larger building
blocks, we avoid most of the machinery associated with CPU emulation: we directly handle
each fragment as a circuit.

We instantiated a VISA machine via garbled circuits (GC), yielding constant-round 2PC
for arbitrary assembly programs. We use improved branching (Stacked Garbling, Heath and
Kolesnikov, Crypto 2020) and recent Garbled RAM (GRAM) (Heath et al., Eurocrypt 2022).
Composing these securely and efficiently is intricate, and is one of our main contributions.

We implemented our approach and ran it on common programs, including Dijkstra’s and
Knuth-Morris-Pratt. Our 2PC VISA machine executes assembly instructions at 300Hz to
4000Hz, depending on the target program. We significantly outperform the state-of-the-art
CPU-based approach (Wang et al., ESORICS 2016, whose tool we re-benchmarked on our
setup). We run in constant rounds, use 6× less bandwidth, and run more than 40× faster on
a low-latency network. With 50ms (resp. 100ms) latency, we are 898× (resp. 1585×) faster on
the same setup.

While our focus is MPC, the VISA model also benefits CPU-emulation-based Zero-Knowledge
proof compilers, such as ZEE and EZEE (Heath et al., Oakland’21 and Yang et al., EuroS&P’22).
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1 Introduction

Secure multi-party computation (MPC) allows mutually untrusting parties to execute programs
on their private inputs while revealing only the output. MPC has become relevant in academia
and industry. It has been commercially deployed in online auctions, electronic voting, financial
technology, and has found many use cases in medicine, privacy-preserving machine learning, and
distributed databases.

Typically in MPC, we encode programs as circuits. While any bounded program can be compiled
to a circuit, the compiled circuit is oftenmuch larger than the source program. Real world programs
(1) access large arrays of data and (2) use complex control flow. Compiling these two program
features often results in huge circuits, and MPC cost scales with the size of the circuit. If we wish
to enable secure computation of real-world programs, we must circumvent the cost imposed by
compiling these features to circuits.

While the issue of array access can be resolved via oblivious RAM (ORAM) [GO96] or garbled
RAM (GRAM) [LO13], complex control flow has gone largely unaddressed.

Straight-line execution Indeed, most existing MPC tools “solve” the control flow problem by
disallowing complex control flow. Most existing MPC toolchains require that the programmer hand-
annotate each loop with a hard-coded upper bound on the number of loop iterations [HHNZ19].
With these annotations, the program becomes a simple straight-line program, compatible with the
circuit model. A compiler can now unroll each loop precisely the specified number of times, then
compile each iteration into gates.

This approach is problematic. At best, annotating programs is an annoyance. At worst, hard-
coded loop bounds ruin performance, since we must execute each loop iteration, even if the loop
should terminate early. Many programs are awkward to write and will have wildly wrong asymptotic
complexity. In other words, the programmer is left with an incomplete programming environment
where she cannot write every program she might need.

CPU Emulation There is another approach that addresses the control flow problem. Instead of
evaluating the program directly, use MPC to emulate a CPU, then run the program on that CPU.
To achieve this, we must fully emulate a CPU, including its program counter, register file, ALU,
and main memory. At each step, the CPU will look up and decode the next instruction, load/store
registers, run arithmetic operations, and read/write main memory. In this way, the parties can
securely evaluate one instruction at a time.

CPU emulation can securely evaluate arbitrary programs, but at a cost. When we emulate
a CPU, we pay to evaluate not just the program, but also the machinery inside the CPU. In
comparison to straight-line execution, CPU emulation incurs very high per-operation cost. In
straight-line execution, the arguments to each program operation are decided statically; in a CPU,
the arguments are dynamic and must be moved into and out of the register file. Similarly, in
straight-line execution, the operation to be performed at each step is decided statically; in a CPU,
we must look up the next instruction from a large memory, then conditionally dispatch over each
operation in the ISA. In short, while CPU emulation solves the control flow problem, it introduces
high overhead.
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1 #define MAX 100

2 #define MAX_INT 1000000

3 int dijkstra(int *a, int *b) {

4 int n = a[0];

5 int e = a[1];

6 int * node = a + 2;

7 int * edge = a + 2 + 101;

8 int * weight = a + 2 + 401;

9 int vis[MAX];

10 int dis[MAX];

11 dis[b[0]] = 0;

12 int i = 0;

13 while (i < n) {

14 int bestj = -1, bestdis = MAX_INT;

15 int j = 0;

16 while (j < n) {

17 if( vis[j] == 0 && dis[j] < bestdis ) {

18 bestj = j;

19 bestdis = dis[j];

20 }

21 j++;

22 }

23 vis[bestj] = 1;

24 j = node[bestj];

25 int bound = node[bestj+1];

26 while (j < bound) {

27 int newDis = bestdis + weight[j];

28 if(newDis < dis[edge[j]])

29 dis[edge[j]] = newDis;

30 j++;

31 }

32 i++;

33 }

34 return dis[b[1]];

35 }

Figure 1: Dijkstra’s algorithm written in C. Each vertical line on the left denotes a contiguous
string of instructions that are grouped into a fragment. I.e., this program has seven fragments.

1.1 Case study: Dijkstra’s algorithm

We illustrate the challenge of handling general programs in MPC. Consider Dijkstra’s algorithm1

(Figure 1).

1For performance, Dijkstra’s algorithm may be implemented with a priority queue containing partial solutions
sorted by distance from the start node. Standard Dijkstra is based on a simple array, as is also done in [WGMK16].
We use standard Dijkstra for illustration and direct performance comparison with [WGMK16].
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Dijkstra’s is a graph algorithm that computes the shortest path between a source node (b[0])
and a target node (b[1]). Assume that the graph, the source, and the target are private inputs
(e.g., secret-shared between the parties). Both straight-line execution and CPU emulation struggle
with this small program.

Straight-line execution Straight-line execution-based tools will generally achieve the wrong
cost for the algorithm. Consider a graph (V,E). Even if we suppose that |V | and |E| are public,
this simple program presents a challenge to straight-line execution. The problem is that the loop
on lines 26–31 dynamically accesses each edge from a graph node. The number of edges from this
node is private, so the loop must be unrolled |E| times to accommodate the maximum possible
number of edges. In a cleartext execution of Dijkstra’s, this inner loop will in total iterate only
O(|E|) times; in this unrolled version, the inner loop will iterate O(|E| · |V |) times.

Even worse, suppose that Dijkstra’s is not the full program, but rather is a subprocedure
of a larger program. Here, |V | and |E| are likely dynamic and should be kept secret. In this
case, straight-line execution-based tools must pessimistically assume that |V | and |E| are maximal,
ruining performance.

ObliVM [LWN+15] showed that for Dijkstra’s algorithm and if |V | and |E| are public, the
straight-line approach can reclaim the loop asymptotics via loop coalescing. Using loop coalescing,
we can flatten the nested loop on lines 13–33 into a single loop with an internal conditional. Then,
the number of iterations of this top level loop is a function of |V | and |E|, so it is possible to
properly bound the loop. See further discussion in Section 3.

While loop coalescing can solve this particular problem, it places a significant burden on the
programmer: the programmer must now reason about and properly specify upper bounds on co-
alesced loops. This may be expensive if |V | and |E| are secret, such as if Dijkstra’s is nested
inside another data-dependent loop, requiring costly further coalescing or excessive padding. This
syntactic transformation produces expensive code that is difficult to further optimize.

CPU emulation CPU emulation correctly implements Dijkstra’s asymptotics2, but incurs sig-
nificant concrete cost.

The state-of-the-art CPU emulator implements a sufficient subset of the MIPS instruction
set [WGMK16] to handle Dijkstra’s. This CPU stores the compiled assembly program, the register
file, and the main memory in three separate RAMs. [WGMK16] implements RAM using either
Circuit ORAM [WCS15] or trivial linear scans, depending on the size of the needed array. Their
CPU proceeds by continually fetching and executing instructions.

Storing the program in RAM and applying the fetch-and-execute paradigm discards all useful
static information, some of which [WGMK16] manually reclaims by implementing various heuris-
tics, such as periodic (rather than per-instruction) RAM access. Even applying this heuristic,
their number of main memory accesses is suboptimal. Further, they must always access smaller
memories to fetch instructions and to read/write registers. Their ALU decodes the instruction
and conditionally executes the operation for each instruction type that is statically possible at a
given step. As a result, each CPU step is a large circuit that often improves on the circuit-based
computation only for problem instances where MPC is impractical.

2To be pedantic, the CPU emulation approach achieves the correct asymptotics modulo polylog factors imposed
by ORAM/GRAM. Neither CPU emulation nor straight-line execution, nor indeed our approach, can avoid polylog
overhead from ORAM/GRAM [LN18].
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Our approach, discussed next, systematically optimizes away many of the principal inefficiencies
of [WGMK16] and results in significantly improved performance. For instance, for Dijkstra’s with
100 nodes and 300 edges and when run on the same setup, our VISA machine uses 5.8× fewer
RAM accesses, consumes 7.3× less bandwidth, and runs 44.9× faster. We are 1585× faster on a
100ms-latency network.

Our Solution: VISA Machines The state of the art presents a dichotomy: CPU emulation or
straight-line programs.

In this work, we suggest and explore a hybrid approach to handling arbitrary programs inside
MPC. Our variable instruction set architecture machine, or VISA machine, handles programs with
arbitrary control flow, but avoids most of the overhead of the CPU emulation approach. It uses
the statically available context to optimize the scope (and hence the cost) of each execution step.

In short, a VISA machine is distinct from a CPU in that it does not repeatedly execute in-
structions, but rather repeatedly executes entire fragments of the source program. Each fragment
is an arbitrarily long straight-line portion of the source program text. The basic advantage of this
is that we can cheaply handle each fragment as a circuit. While we still need CPU-like machinery
to coordinate the execution of the fragments and ensure privacy, the amount of needed machinery
is substantially reduced.

1.2 Contribution

We propose variable instruction set architectures, a basic approach to evaluating arbitrary programs
inside MPC. We believe that VISAs are the sensible approach to executing arbitrary programs in
MPC. VISAs do not limit the programmer to straight-line programs, and they do not incur the
high overhead of a basic CPU. A VISA adapts to the target program of interest, an appropriate
choice for MPC where we generally assume that the parties agree on a program.

In more detail, we:

• Introduce and motivate the VISA model.

• Construct a complete VISA-based 2PC toolchain for assembly programs. Our toolchain is
implemented via garbled circuits (GC).

• Resolve technical issues needed to combine core components of a GC-based VISA machine:
GC conditional branching [HK20a, HK21b] and Garbled RAM [HKO21].

• Formalize our instantiation as a garbling scheme [BHR12] and prove the resulting formalism
secure. Our garbling scheme securely evaluates arbitrary assembly programs written in our
ISA. Using garbling schemes as the underlying mechanism has two key benefits.

– First, we dramatically decrease the number of communication rounds, resulting in orders
of magnitude improvement (see Section 7.4.3). Prior work [WGMK16, Kel17] used tens
of rounds per CPU step, while we require one message plus an OT for the entire 2PC.

– Second, our technique can be elevated to the covert, PVC, and malicious models using
standard techniques.

• We implemented VISA machine including, significantly, the first implementation of Garbled
RAM [HKO21].
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• Experimentally evaluate performance of our toolchain. We ran our VISA machine on a
number of assembly benchmarks, including Dijkstra’s, Knuth-Morris-Pratt, and a private set
intersection benchmark from [WGMK16]. Our results indicate significant improvement over
the prior best approach to arbitrary assembly programs [WGMK16]: we run in constant
rounds, use 4–7× less bandwidth, use 5–10× fewer RAM accesses, and run 40–70× faster
(up to 1585× with 100ms latency), yielding a machine that executes assembly instructions
at 300–4000Hz. We also experimentally show our work, as expected, overtakes circuit-based
2PC (EMP [WMK16]) even for small programs with non-trivial control flow.

• We plan to open source and maintain a cleaned version of our prototype toolchain.

• While our focus is on MPC, the VISA model also directly applies to CPU-emulation-based
Zero-Knowledge Proof (ZKP) compilers, such as ZEE and EZEE [HYDK21, YHKD22]. In-
deed, they face similar problems of more efficient CPU design (e.g., fragmentation and stack-
ing), ZK ORAM integration with branching, etc., and the VISA approach is similarly bene-
ficial to ZKP compiler work. We leave specific instantiations of ZKP VISA as exciting future
work.

Recent breakthrough GC and MPC improvements on free branching [HK20a, HK21b, HKP20,
HKP21] and efficient GRAM [HKO21] removed fundamental technical roadblocks needed to move
away from straight-line circuit execution. We believe that our hybrid approach – contextual
fragment-based execution engines – will underlie the next generation of 2PC and MPC toolchains.
This paper initiates this direction and sets the stage for future cryptographic and interdisciplinary
work that will likely involve programming language, static analysis, and compiler techniques, and
that will interface with high-level programming languages.

2 Overview

In this section we at a high level introduce our model and explain the fundamental benefits of our
approach. We then introduce lower-level technical challenges and briefly outline our approach to
solving them.

Our basic observation is that CPU emulation is a blunt generic mechanism: CPUs in cleartext
machines are static devices that can execute each step of any program. But in MPC, the program
is public, and there is no need to use a fixed generic set of instructions. Instead, we can derive our
machine’s ‘instruction types’, which we call fragments, from the target program itself.

Each fragment can be arbitrarily large and complex, so long as it does not contain data-
dependent loops. We can generate custom circuitry tailored to each fragment, avoiding the need
to mechanistically execute the fragment one instruction at a time. Thus, once our machine enters
a fragment, we pay essentially no overhead to execute that fragment. In this sense, we obtain the
benefit of straight-line execution.

At the same time, our machine dynamically dispatches over the fragments, so we can handle all
possible execution paths. In this sense, we obtain the benefit of CPU emulation.

Our execution engine does not necessarily need to dynamically dispatch over each program
fragment at each step. At each step it is sufficient to only guarantee execution of fragments that
may occur at this step. In many useful programs, this active set is much smaller and consists of
cheaper fragments than the full set.
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Program fragments are generated by a compiler. There are many choices for how to fragment
a program, and good fragmentation is crucial to performance. We discuss related trade-offs (see
Section 5.4).

2.1 Notation

Our execution engine repeatedly conditionally dispatches over varying sets of fragments chosen
from the target program. We call the specification of a machine that operates this way a variable
instruction set architecture (VISA). A VISA machine instantiates a VISA specification. Our VISA
machine, which we call GAR, is implemented via GC; of course, one could implement a VISA
machine from different primitives, such as a secret-sharing-based protocol and off-the-shelf ORAM.

At each step i, a VISA machine can execute any fragment in the active set of step i. We compose
each fragment from many base instructions in the program text. Note we thus consider two kinds
of instructions: base instructions are typical low-level assembly instructions, whereas fragments
are the instructions of a VISA and are composed from multiple base instructions. Fragments
are automatically chosen by a type of compiler that we call a fragmentation strategy ; our GAR
construction includes a built-in fragmentation strategy.

In the remainder of this section, we explain and motivate VISA machines in more detail. We
explain our advantages by referring to Dijkstra’s algorithm (Figure 1).

2.2 VISA Advantages

VISA machines do not repeatedly execute instructions, but rather repeatedly execute entire frag-
ments of the source program. This leads to several important advantages:

Free register file As each fragment is a straight-line piece of code, we do not need to dynamically
store and access local variables from a register file. Instead, like the straight-line approach, a VISA
machine routes arguments to operations directly and without cryptographic cost.

We still pay to route the content of the register file between fragments, but within a single
fragment, the register file is free.

Example 1. Consider line 18 of Dijkstra’s (Figure 1). Under CPU emulation, this simple assign-
ment requires reading j from and writing bestj to the register file. In practice, these would be
implemented by linear scans of a modest array. Linear scans are expensive. As a reference point,
suppose the register file holds 16 32-bit registers. Using state-of-the-art GC, each linear scan of
this register file costs ≈ 16KB of communication. In the CPU emulation approach, this cost is paid
multiple times per CPU cycle. In our VISA machine, this overhead is erased: to handle line 18 the
parties may simply agree to name certain wires in the fragment circuit bestj.

No instruction memory Programs execute fewer fragments than they do base instructions.
Thus, when the VISA machine dynamically decides which fragment to execute next, the space of
choices is smaller. This means that the VISA machine does not need to store fragments in an
instruction memory. Instead, we conditionally dispatch over an integer that indicates which of the
small number of statically known fragments should be executed next. This eliminates many usages
of ORAM/GRAM.
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Example 2. In our ISA, Dijkstra’s has 56 instructions3 but only 7 fragments. (Our actual frag-
mentation is more nuanced; see Section 5.4.) At each step, we conditionally execute only those
fragments that are possible. As a simple example, on the first cycle of Dijkstra’s, our VISA ma-
chine unconditionally executes the fragment on lines 4–12, since this is statically the only fragment
possible. We track the fragments that are possible at each step by tracing the target program’s
control flow graph.

Fewer conditional choices Each fragment implements a larger portion of the overall execution
than does each instruction. This is significant because there is overhead associated with condi-
tionally executing code inside MPC, whether classically or by stacking [HK20a]. Since we execute
fewer fragments than CPU emulation executes instructions, we make fewer conditional decisions,
and hence pay the overhead of conditional branching fewer times. With SGC, this advantage man-
ifests in the fact that we need fewer SGC multiplexer gadgets [HK20a, HK21b]. Importantly, for
small branches, these gadgets dominate the cost of SGC.

Example 3. Running Dijkstra’s with |V | = 100 and |E| = 300 involves executing 198, 814 instruc-
tions, and hence making 198, 814 conditional decisions. In contrast, we need only execute 21, 800
fragments, and hence make only 21, 800 conditional decisions.

Fewer data RAM accesses Since each fragment is static, we know precisely how many times
each fragment must move data to/from main memory. This allows a VISA machine to access
memory less often than a CPU, since in a CPU it is possible that each instruction is a memory
access.

Example 4. Consider again line 18 of Dijkstra’s. Under CPU emulation, the CPU cannot statically
deduce that the current instruction is not a RAM access, so when emulating line 18, it must perform
a RAM access. Our VISA machine eliminates this access.

The sum advantage of our approach as compared to CPU emulation is well illustrated by again
considering line 18 of Dijkstra’s. Under CPU emulation, this instruction will involve fetching and
decoding the instruction, linearly scanning the register file multiple times, conditionally executing
the various instruction types, and accessing main memory. Each of these actions are expensive. In
our VISA-based approach, line 18 is free of cryptographic cost.

2.3 VISA Technical Challenges and Solutions

Our core contribution is the introduction of VISA-based MPC. Efficiently implementing an MPC
VISA machine presents crypto- and system-technical challenges; we discuss the main challenges
here.

Managing the active set Inside a fragment, we have full static knowledge of the straight-line
code, so we can directly and efficiently compile the code to a circuit. However, a VISA machine
must conditionally execute fragments in the active set at each step.

The cost of this conditional dispatch is greatly improved thanks to the recent line of work on
MPC conditional branching, in particular Stacked Garbling (SGC) [HK20a, HK21b]. By integrating

3For readability, Figure 1 is written in C; our machine manipulates low level assembly, and each line of C code
can correspond to multiple assembly instructions. See Appendix A for the corresponding assembly.
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SGC, we can conditionally dispatch over active set fragments with communication proportional to
a single (largest) fragment. Although SGC improves communication, it still requires computation:
for b fragments, the computational cost scales with O(b log b) [HK21b]. Thus, we must not allow
the active set to grow too large.

Further, SGC-based conditional branching incurs communication cost that scales with the size
of the conditional’s interface, i.e., the number of input/output wires, with additional factor de-
pendent on the number of branches b. This cost imposes constraints on the efficiency of using
small fragments, and impacts the utility of breaking down fragments, e.g., in alignment with RAM
accesses.

In this work, we do not significantly optimize fragments, leaving it as crucial and significant
future work. Our fragments are syntactically derived from the control flow structure of the assembly
program. This choice is sufficient for modest programs. We envision that future work can use
compiler techniques and static analysis to more intelligently select fragments. For example, a
fragment can be split into pieces, or multiple fragments can be combined into one. We emphasize
the complexity of this problem space: a good solution should simultaneously consider the size of
each active set, the size of fragments, the number of RAM accesses, the per-fragment overhead,
such as the size of the interface to SGC, etc.

Stacked Garbling with RAM Access Using SGC to conditionally evaluate fragments intro-
duces a subtle technical challenge in handling RAM accesses within fragments. For multiple tech-
nical reasons, it is not possible or desired to access RAM directly from inside an SGC conditional
branch. This is primarily because GRAM and ORAM reveal random-looking access patterns to
the parties. If an access comes from an inactive conditional SGC branch, then SGC’s optimization
will reveal information incompatible with the normal access pattern of the GRAM/ORAM. Thus,
this use is insecure, as it allows the GC evaluator to identify the active branch in a conditional. See
detailed discussion in Section 6. Other issues include the increased computational cost of process-
ing GRAM’s expensive access procedure in each branch. Similar concerns may apply to accessing
other types of resources, such as stacks, queues, expensive procedure calls (e.g. non-black-box
crypto primitives), or recent improved and unstackable GC techniques [HK21a].

In Section 6, we design a novel mechanism for efficiently and securely handling RAM accesses
from within SGC branches. In short, our mechanism allows us to cheaply escape the conditional
branch, access the resource, and then re-enter that same branch. Each branch can access a resource
multiple times. Our mechanism allows fragments to access RAM without paying high cost for SGC
gadgets.

We also note the following lower-level contributions:

Entire System and Security Proof We package our approach as a garbling scheme and prove
it secure.

Implementation Our system is a non-trivial systems-technical undertaking.

3 Related Work

In our review of related work, we focus on prior general purpose MPC tools.
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Straight-line execution tools The vast majority of MPC tools use straight-line execution,
e.g. [RHH14, ZE15, DSZ15, WMK16, ACC+22, LHS+14]. These tools require that each program
loop has a hard-coded upper bound. CBMC-GC goes one step further by trying to infer loop
bounds automatically, but still ultimately models the program as a straight-line circuit [FHK+14].

Straight-line execution cannot suitably support arbitrary programs where the number of loop
iterations depends on the data. We note that [HHNZ19] is an excellent systematization of knowledge
that explores the pros and cons of such tools.

CPU emulation tools We consider two works that operated in the CPU emulation
paradigm [Kel17, WGMK16]. [Kel17] used SPDZ to implement a CPU-emulation-based proto-
col for malicious adversaries. While their online efficiency is competitive with the total cost of
[WGMK16], their offline efficiency is ≈ 100× slower. In our evaluation (Section 7), we accordingly
focus our comparison on [WGMK16]. We described [WGMK16]’s approach in Section 1, and we
compare to their performance in Section 7.

[WGMK16]’s uses Circuit ORAM [WCS15], which could be modularly swapped for a different
ORAM, such as [Ds17], correspondingly affecting (improving) performance. We only compare
to the existing system [WGMK16]. Constant-round complexity (and hence using EpiGRAM) is
essential for CPU-emulation and VISA MPC due to the sequential nature of RAM accesses in
these models. Interactive ORAMs incur latency cost proportional to the (large) number of steps
of a typical program (cf. discussion in Section 7.4.3). Further, GRAM can be easily and cheaply
upgraded to stronger security models, e.g. covert or malicious, using existing techniques. Such an
upgrade for ORAM constructions, including [Ds17], is a challenge.

We note that TinyGarble implemented a MIPS ALU, but did not build on this to implement a
working CPU emulation tool [SHS+15]. For example, they do not integrate RAM support to their
prototype. Their main contributions are (1) better management of plaintext function by avoiding
unrolling it into a plaintext circuit, and (2) applying hardware synthesis tools to reduce the size of
the MIPS CPU, improving over näıve by up to 14.95%.

Loop Coalescing. Loop coalescing is a compiler technique explored in the MPC context
by [LWN+15] (and in the proof system context by [WSR+15]). The basic idea is to combine
the bodies of loops into a single loop with an internal conditional. [LWN+15, WSR+15] show
that this can improve MPC (resp. proof system) performance by reducing the number of hard-
coded loop bounds in the program (cf. Section 1.1). The technique does not suggest (nor do
[LWN+15, WSR+15] explore) further optimization, such as fragment design.

There are common characteristics of loop coalescing and VISA. Both techniques conditionally
dispatch over program fragments.

Crucially, VISA approaches MPC optimization holistically, providing a clean abstraction and
vocabulary for general optimization of oblivious programs (e.g. include stacking, GRAM, our
new gadgets, etc.) and for expressing optimization constraints. Indeed, VISA emphasizes fragment
design as a crucial optimization problem. VISA also provides a convenient vocabulary for discussing
low level details, such as the size of a register file and managing the active set. See further discussion
in Sections 5.3 and 5.4. In contrast, coalescing is a source code transformation, and is at the wrong
level of abstraction for fragmentation and low-level optimization.
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4 Preliminaries

We implement our VISA machine using garbled circuits (GC). GC allows for powerful protocols
that achieve secure computation in only a constant number of protocol rounds. We build on the
half-gates GC technique [ZRE15], which requires that the parties communicate two ciphertexts per
AND gate and zero ciphertexts per XOR gate [KS08].

We combine the basic [ZRE15] scheme with recent improvements in Garbled RAM [HKO21]
and with Stacked Garbling [HK20a, HK21b]. Garbled RAM is needed when accessing data from the
VISA machine’s main memory, and Stacked Garbling improves the communication consumption
incurred when conditionally handling fragments.

We use these GC improvements heavily, and we overcome technical problems needed to compose
them.

4.1 Garbled RAM

Compiling large arrays to Boolean circuits is infeasible. The problem is that on each array access,
the circuit must touch each element of the array. Hence, on each access we pay cost proportional
to the size of the array. Garbled RAM (GRAM) [LO13] equips GC with random-access arrays that
incur only sublinear cost. GRAM preserves GC’s important constant-round property.

A recent GRAM, called EpiGRAM, dramatically improved the concrete cost of the tech-
nique [HKO21]. We implemented EpiGRAM, and we use it to instantiate our VISA machine’s
main memory.

Our formalism manipulates GRAM directly by using two gates provided by EpiGRAM:

• An ARRAY gate takes as input public natural numbers n and w. It outputs a zero-initialized
size-n array of width-w elements. We initialize all of our arrays width w = 32.

• An ACCESS gate performs an array access. The gate accepts as input (1) an array A, (2)
log2 n bits that together encode an array index α, (3) a bit rw that indicates if this is a read
or a write, and (4) a w-bit value y that indicates what to store in the array if this is a write.
As output, the gate yields (1) A[α] and (2) the updated array where the content of index α
has been replaced by y iff rw = 1.

4.2 Stacked Garbling (SGC)

Until recent breakthrough work [HK20a, HK21b], GC techniques required communication pro-
portional to the computed program, including inactive branches. SGC [HK20a, HK21b] achieves
communication proportional to only the single longest execution path of the program.

This improvement is a boon to our approach, because we repeatedly conditionally evaluate
the target program’s fragments. SGC greatly improves the communication cost of fragments (see
Section 7).

4.3 Cryptographic Assumptions

Our garbling scheme (Section 6.2) is secure under a typical GC assumption: We assume that the
function H is a circular correlation robust hash function [CKKZ12, ZRE15].

As is standard in MPC (e.g., [GKK+12, WGMK16]), total runtime, i.e., the number of CPU
emulation steps, is public. If desired, the steps can be padded.
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We consider security in the presence of a semi-honest adversary. Since our construction is a
garbling scheme, its security can be extended into covert, public verifiable covert (PVC), malicious
models using standard techniques.

5 Our VISA

The general idea of a VISA is agnostic of low-level details. Of course, it is interesting to instantiate
and experiment with a specific architecture. We formalize our specific VISA here.

Our VISA is built on top of a base ISA. Our base ISA is indeed basic, providing primitive
instructions that (1) perform algebraic operations, (2) achieve dynamic control flow, and (3) read-
/write main memory. We first formalize this base ISA. We choose a custom base ISA for simplicity
of presentation and implementation; it may be desirable in future work to replace the base ISA
with an off-the-shelf ISA, such as MIPS.

Once we establish the base ISA, we formalize our VISA, which essentially aggregates base
instructions into fragments.

5.1 Base ISA

The base ISA specifies the instructions that can appear in our supported assembly programs.
We emphasize that we do not execute these instructions one by one; rather, our VISA groups
base instructions into fragments, and our VISA machine treats fragments as its atomic units of
computation.

The base ISA formalizes both the syntax and the semantics of instructions. Our instructions
each provide a simple mechanism for performing algebra, achieving control flow, or accessing mem-
ory. To define instruction semantics, we define an abstract machine that executes instructions. Our
ISA simultaneously defines our instruction set and the abstract machine that runs them.

Definition 1 (Base ISA). Our instruction set is formally defined in Figure 2. The semantics of
instructions are defined by reference to an abstract machine with a program counter pc, a register
file R, a main memory M, and a program P. pc is a 32-bit index that indicates which base
instruction to execute next. R is a length-m array of 32-bit integers. M is a length-n array of
32-bit integers. P is an array of instructions. Both n and m are configurable parameters of the
abstract machine. A machine is initialized with an arbitrary program. At initialization, pc, R,
and M are zero initialized. At each step, the machine updates itself based on the semantics of
instruction P[pc].

In our implementation, we instantiate a machine with a size-13 register file; we vary the size of
RAM depending on the requirements of the executed program.

We emphasize that while both the register file and the memory are key-value data structures,
our VISA machine handles them very differently. Our memory supports dynamic access and is
implemented using Garbled RAM. On the other hand, our register file does not need to implement
dynamic access: each usage of the register file is statically specified by an instruction, so each
register is essentially just a named collection of 32 circuit wires. Inside a fragment, accessing the
register file is free.
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Syntax Semantics

Algebra

COPY tar src R[tar ]← R[src]

CCOPY tar src0 src1 R[tar ]←

{
R[src1], if R[src0] = 1

R[tar ], otherwise

ADD tar src0 {src1} R[tar ]← R[src0] + val(src1)
SUB tar src0 {src1} R[tar ]← R[src0]− val(src1)
MUL tar src0 {src1} R[tar ]← R[src0] · val(src1)
XOR tar src0 {src1} R[tar ]← R[src0]⊕ val(src1)
AND tar src0 {src1} R[tar ]← R[src0] ∧ val(src1)

EQ tar src0 {src1} R[tar ]←

{
1, if R[src0] = val(src1)

0, otherwise

CMP tar src0 src1 R[tar ]← 2 · (R[src0]
u
< R[src1]) + (R[src0]

s
< R[src1])

SWAP src0 src1 R[src0],R[src1]← R[src1],R[src0]
RS1 dst R[dst ]← ⌊R[dst ]/2⌋
IMM dst imm R[dst ]← imm

Control Flow

J imm pc← imm

JE src imm pc←

{
imm, if R[src] ̸= 0

pc+ 1, otherwise

JNE src imm pc←

{
imm, if R[src] = 0

pc+ 1, otherwise

JL src imm pc←

{
imm, if R[src]&1 ̸= 0

pc+ 1, otherwise

JB src imm pc←

{
imm, if R[src]&2 ̸= 0

pc+ 1, otherwise

HALT – no effect, pc unchanged –

Memory
LOAD tar src R[tar ]←M[R[src]]
STORE tar src M[R[tar ]]← R[src]

val(x) ≜

{
x, if x is an immediate

R[x], if x is a register id

Figure 2: Our base ISA. Each instruction type handles between zero and three arguments. In
general, arguments refer to registers, but some arguments, denoted {·}, can also optionally be
immediates (i.e., compile-time constants). val is a helper function that resolves an argument that
can be either a register or an immediate. Unless the semantics otherwise mention an effect on the
pc, each instruction also increments the pc. The symbol < with an overset u (resp. s) denotes a
comparison where the arguments are treated as an unsigned (resp. signed) integers.
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5.2 Fragments

As discussed and motivated in Section 2, batching multiple instructions by creating fragments
resolves the bulk of the cost of the CPU emulation approach.

Definition 2 (Fragment). A fragment is a straight-line sequence of base ISA instructions where
only the final instruction may be a Control Flow instruction (c.f. Figure 2).

Definition 2 coincides with the notion of a program basic block. We still elect to use new termi-
nology because the notion of a fragment can be (and, we expect, will be) generalized, for example by
allowing intra-fragment control flow. The only limitation in extending the above definition is that
a fragment should never contain a data-dependent loop, since this would break the straight-line
nature of the fragment. For simplicity, we do not explore this direction here, but we believe that
this can be exploited heavily in future work.

We now define the syntax/semantics of our VISA.

Definition 3 (Our VISA). Like our base ISA, a VISA is a set of instructions together with the
abstract machine that executes them. A VISA instruction is a fragment (Definition 2). The
VISA abstract machine is identical to the base ISA machine, except that the program P consists of
fragments, and at each step the machine executes the semantics of the current fragment P[pc].

Remark 1. Note, a VISA program is thus viewed as including the corresponding variable instruc-
tion set. A VISA then specifies the interpretation of the program. A VISA machine instantiates
the (secure) execution of the program. While a full toolchain starts from programs written in a
base ISA, the VISA definition is about programs that have been fragmented. In practice, the VISA
machine toolchain will generate the fragmentation and hence the program’s instruction set.

While the above specification indicates an array lookup P[pc], our instantiation dispatches
fragments via conditional branching. Note that to achieve the prescribed semantics, we do not
need to conditionally dispatch over each fragment at each step. In general, not all fragments
will be possible at a given step. We reduce the number of conditionally dispatched fragments by
considering a control flow graph (CFG) representation of the target program. We maintain a set of
pointers into the CFG that indicates the set of possible pc values. At each step, our VISA machine
only dispatches over those fragments that are currently pointed to.

5.3 Memory Hierarchy

A VISA introduces the opportunity to distinguish three types of memory:

• Main memory. Most program state is stored in a large main memory that is accessed
dynamically at high cost.

• Persistent Registers. The local state of a VISA machine is held in persistent registers. In-
side the fragment, these registers are free. However, to conditionally dispatch over fragments,
this local state must be passed to each branch. SGC imposes cost for each bit that crosses
the interface to/from the conditional. It is sensible to store frequently used data in persistent
registers, but the number of these registers should be kept in check.
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• Local Registers. Since register access is free inside a fragment, a VISA program can intro-
duce arbitrary numbers of local registers, allowing the fragment to store a large state without
paying for it. At the exit of the fragment, the content of local registers is lost.

Allocating data to these levels of memory is a large and interesting optimization space. We use 13
persistent registers and a RAM of size up to 213 32-bit words in our experiments.

5.4 Fragment Generation

As discussed in Section 2, the choice of strategy for breaking a program into fragments can dramat-
ically affect performance. In this work, we align fragments with program basic blocks (i.e., each
control flow instruction maps to a fragment), with one exception: we introduce extra fragments
for RAM accesses such that each fragment has at most one RAM access. We found that this
simple strategy reduces the overall number of RAM accesses4, which we found is the performance
bottleneck.

Note that for simplicity of presentation, Figure 1 does not show the extra fragments resulting
from RAM accesses. Our actual fragmentation has 14 fragments.

While we leave further in-depth exploration of intelligently selecting fragments as significant fu-
ture work, we outline several guidelines for such strategies. We note that these guidelines sometimes
contradict one another, as fragment optimization is a challenging problem.

Generate fragments such that each conditional dispatch is over fragments of similar
size and with a similar number of RAM accesses SGC, and other approaches to MPC free
branching [HKP20, HKP21], achieves communication cost proportional to the single most expensive
branch. To best take advantage of free branching, ensure that branches have similar cost. This can
be achieved, e.g., by splitting large program basic blocks into more than one fragment and/or by
merging multiple basic blocks into a single fragment.

RAM access is an expensive resource; an unbalanced allocation across dispatched fragments
misses an opportunity to amortize accesses.

Prefer larger fragments This reduces the number of VISA machine steps. Hence, larger frag-
ments further reduce the amount of CPU-emulation-style machinery.

Compress the interface to each fragment As explained in Section 5.3, we pay to transport
the content of persistent registers into and out of branches. Using compiler techniques to reduce
the number of needed persistent registers will reduce cost.

Prefer fragmentation that leads to smaller active sets SGC computational and interface
costs scale with the number of branches, so we should seek to reduce the number of branches per
step (i.e., to shrink each active set). One way this guideline might be achieved is by artificially
introducing periodicity into a program’s execution. For instance, we can split each loop into a
number of fragments that is a power of two. Without periodicity in consecutive loops the active set
will tend to grow with each step until it includes each program fragment. Artificially introducing
periodicity groups fragments into “congruence classes” and ensures that most fragments never

4I.e., all active set fragments will have a same number of accesses.
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coincide in the same active set. [WGMK16] considered a similar technique in their MIPS processor.
Introducing periodicity for fragments introduces further opportunities to align code and amortize
cost.

6 GAR: Our VISA Machine

This section introduces GAR (Garbled Assembly with RAM) our implementation of the VISA ma-
chine. GAR is formalized as a garbling scheme [BHR12]. As already mentioned, GAR conditionally
dispatches fragments using SGC and implements main memory via GRAM.

We first discuss technical issues and our solution in combining our two main building blocks,
SGC and GRAM. Then, in Section 6.2 we present the GAR scheme and state the main security
theorem (proofs are presented in the Appendix).

6.1 SGC with GRAM

The incompatibility of SGC and GRAM SGC is compatible with many, but not all GC
techniques. SGC requires that the string of material encoding each branch be indistinguishable
from a uniform string. This restriction is needed to mask from the GC evaluator the identity of
the conditional’s active branch: if a branch is inactive, SGC arranges that the evaluator obtains
uniform garbage material.

Unfortunately, GRAM’s material is distinguishable from a uniform string. In short, GRAM
will one-by-one reveal to the evaluator RAM indices that are randomly generated without replace-
ment [HKO21]. These revealed indices are indistinguishable from a uniform permutation, but
not from a uniform string. Thus it is not secure to use GRAM’s ACCESS gate inside an SGC
conditional.

SGC’s uniform string requirement and GRAM’s revealed uniform permutations seem somewhat
inherent to the techniques, and it is not clear that we can revise these techniques to make them
compatible with one another. Even if it were possible to make the two techniques compatible, it
would not be desirable. SGC requires that each party garble each branch multiple times, introducing
added computational cost. Since the GRAM access procedure is large, we would like to avoid
repeatedly garbling it. It is more pragmatic to simply garble each access once, as we end up doing.

Our Approach One way we could handle RAM access in a VISA machine would be to place
each RAM access instruction in its own single-instruction fragment. While correct and secure,
the approach violates several of our guidelines for program fragmentation (Section 5.4), and is
undesirable for a number of performance reasons. In particular, the resulting fragments are smaller,
more numerous, and each RAM access will service a smaller fragment. Ultimately, this discards
many of the VISA’s benefits.

A much better way would be to temporarily escape a fragment just to perform the RAM access,
then re-enter that fragment. This is the approach we take. We design a new scheme that allows
us to temporarily escape an SGC conditional branch (i.e., a fragment), perform the access, then
re-enter that same branch. Because we escape the SGC branch before accessing RAM, we avoid
SGC’s uniform string requirement. Thus, RAM access is simulatable. Crucially for performance,
our gadgets escape, and not fully exit SGC, and transfer across the SGC interface only those specific
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bits that are directly related to the RAM access. Thus, we do not, for example, pay to transfer the
full register file on each RAM access.

Instrumenting GRAM access in SGC SGC uses two garbled gadgets, the demux and themux,
to enter and exit a conditional, respectively. Each of these gadgets handles branch input/output
wire-by-wire, where each wire is (indirectly) connected from the outside of the conditional to
the internal circuit of each branch. We refer to each of these wire connections as a port of the
demux/mux. There is one port per external wire.

Our observation is that, in contrast with standard SGC, the demux/mux need not be evaluated
in one shot at the very beginning/end of the conditional. Instead, the GC evaluator can process
ports of the gadgets in an arbitrary order, so long as data dependencies in the circuit are satisfied.

This in particular means that the evaluator can (1) process input to a branch by handling only
some ports of the demux, (2) evaluate some gates in that branch, generating input to a RAM query,
(3) feed the RAM query through ports in the mux to temporarily escape the branch, (4) execute
the RAM access outside of SGC, in plain GC, (5) feed the RAM result through ports of the demux
back into the branch, and (6) continue evaluation of the branch.

Interestingly, the GC generator’s order of building the corresponding GC material is different.
Because each branch must be generated from a seed (this is a key trick behind SGC’s improvement),
the generator garbles each branch all at once, before any RAM accesses are handled. As part of
doing so, he assigns uniformly random GC labels to the branch side of each demux port. Only
once each branch is fully generated, does he generate GC for RAM access(es). Labels of these GCs
match the labels of the ports of the SGC conditional. Finally, he generates the GC material for
the demux and mux.

We include a diagram illustrating this process in additional detail in Appendix C (Figure 14).
Our modification to SGC still uses the main ideas of Stacked Garbling [HK20a]: our GC gener-

ator garbles each branch starting from a distinct PRG seed and then stacks the material together
using XOR. Our GC evaluator can decrypt the seed for each inactive branch and hence can recon-
struct their garblings, unstack the material for the active branch, and evaluate. I.e., our scheme
retains the important communication advantage of SGC.

Next, we formalize our full garbling scheme GAR, which includes the above trick.

6.2 Our Scheme: Formalization and Theorems

We formalize our VISA machine as a garbling scheme [BHR12]. SGC [HK21b] and GRAM [HKO21]
are also formalized as garbling schemes; our scheme reorganizes and adjusts their procedures,
making them compatible with each other and with our VISA (Section 5).

At a high level, our scheme should be understood as a new SGC scheme equipped with black-
box GRAM. As an aside, it is possible to replace black-box GRAM with other garbled resources,
for example a stack or queue [ZE13].

Program Description A garbling scheme securely handles any program from some specified lan-
guage. Our goal is to support programs expressed in our base ISA (Figure 2). At the lowest level, we
have primitive support for AND gates [ZRE15], XOR gates [KS08], SWITCH statements [HK21b],
and ARRAY and ACCESS gates [HKO21]. The semantics of XOR and AND gates are natural;
ARRAY and ACCESS gate semantics are specified in Section 4.1. A SWITCH executes only the
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indicated branch and outputs the result. We group instructions from our base ISA, then compile
these to our low level primitives. Thus, our formal garbling scheme consists of three major steps:

• Compile base ISA program to VISA program. Our scheme first groups base ISA
instructions into fragments using the strategy described in Section 5.4.

• Compile VISA program to primitives. We compile each fragment primitive operation
using standard techniques. Each basic instruction has a corresponding straight-line circuit,
and our scheme stitches together each of the circuits in the fragment. To conditionally
dispatch, the scheme wraps the fragment circuits in a SWITCH.

• Evaluate primitives via GC. The most interesting step is the evaluation of primitives,
which is explained below.

Note that the first two steps of our handling are quite modular. It is easy to replace the ISA to
VISA compiler with one that, for example, more intelligently selects fragments. Similarly, we could
replace the compiler from fragments to circuits with more sophisticated techniques. From here, our
scheme focuses on the handling of primitives, which is its crypto-technical component.

Definition 4 (Primitive Circuit Program). A primitive circuit program is a circuit consisting of
AND gates, XOR gates, ARRAY gates, ACCESS gates, and SWITCH statements. ARRAY and
ACCESS gates are defined in Section 4.1. A SWITCH statement is recursively parameterized over
b primitive circuit programs and ⌈log2 b⌉ wires that indicate which branch to execute. Note that an
ACCESS gate is allowed inside a SWITCH statement.

Our GAR scheme handles arbitrary assembly programs by appropriately implementing the
above circuit primitives. We note that our assembly compiler generates restricted classes of circuit
programs, and we need not handle them in full generality of Definition 4. For example, the resulting
primitive program will not feature nested conditionals, and the ARRAY gate will be used exactly
once to initialize main memory MEM at the start of the program. Furthermore, each ACCESS
gate will be parameterized by the specific array MEM . Looking ahead, our formalism will handle
only the relevant special forms of primitive circuit programs.

We are now ready to present our main construction, the GAR5 (Garbled Assembly with RAM)
garbling scheme [BHR12].

Construction 1 (GAR). GAR consists of three components:

• A fragmentation strategy that specifies how to convert a base ISA program into a VISA
program. GAR uses the strategy discussed in Section 5.4; we do not formally specify further.

• A compiler that transforms a VISA program (Definition 3) into a primitive circuit program
(Definition 4); because each fragment has no data-dependent control flow, compiling each
fragment to a primitive circuit program is straight-forward, and we do not specify further.

• A garbling scheme that securely executes primitive circuit programs (Definition 4).

The GAR garbling scheme is the tuple of procedures:

(GAR.ev ,GAR.Ev ,GAR.Gb,GAR.En,GAR.De)
5A gar is a predatory and particularly menacingly looking fish.
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Note, GAR’s functionality goes beyond simply instantiating a VISA machine; in particular GAR
fragments programs written in base ISA and generates VISA programs. We could have treated this
functionality separately as part of our toolchain.

We formally present procedures of the GAR garbling scheme in Appendix B, see Figures 10
to 13. Here, we review them at a high level.

GAR.ev This procedure defines the semantics of primitives (Definition 4). The semantics of AND
gates and XOR gates are natural. ARRAY and ACCESS gate semantics are specified in Section 4.1.
A SWITCH executes only the indicated branch and outputs the result.

GAR.Ev This procedure specifies the GC evaluator’s handling. In short, the handling of primitives
is inherited from prior work [ZRE15, HKO21]. The exception is our new SWITCH primitive, which
supports RAM ACCESS inside its branches. We discussed our method for handling ACCESS gates
from within a SWITCH in Section 6.1.

GAR.Gb This procedure specifies the GC generator’s handling. Again, the handling of primitives
is inherited from prior work [ZRE15, HKO21]. See Section 6.1 for the handling of our SWITCH
primitive.

GAR.En This procedure specifies how cleartext GC inputs are mapped to GC labels. The pro-
cedure is standard: on each input wire, a zero maps to one label and a one maps to a different
label.

GAR.De This procedure specifies how output GC labels are mapped to cleartext outputs. The
procedure is standard.

GAR meets the standard garbling scheme definitions of correctness, authenticity, obliviousness
and privacy [BHR12]. Meeting these is sufficient to instantiate 2PC/MPC protocols. We state
the definitions and prove that GAR meets them in Appendix B.2. Theorems and lemmas in
Appendix B.2 imply the following:

Theorem 1 (Main). Assuming a circular correlation robust hash function, GAR’s garbling scheme
is correct, authentic, oblivious, and private.

7 Evaluation

7.1 Implementation and Testing Environment

We implemented GAR and used it to instantiate a semi-honest 2PC protocol in ≈ 5200 lines of
C/C++. We instantiated Oblivious Transfer and Network I/O using the EMP Toolkit [WMK16].
We ran our experiments on two m6i.16xlarge6 machines in the same region of an Amazon EC2
cluster. One machine ran the GC generator and the other ran the GC evaluator. We also
ran [WGMK16]’s implementation on the exact same setup to establish our baseline.

We configured both systems with the same inputs and with RAM of the same size. GAR handles
the program written in our assembly language. [WGMK16] takes a MIPS binary compiled by an
off-the shelf compiler, thus placing them somewhat at a disadvantage.

6Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz, 256GiB Memory, 25Gbps Network
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Program # Mem Ent Time (s) Comm. (GB) # RAM Accesses
[WGMK16] Ours Impr. [WGMK16] Ours Impr. [WGMK16] Ours Impr.

PSI
64 128 29.4 0.6 49.0× 0.7 0.1 6.0× 2455 256 9.6×

256 512 311.7 7.1 43.9× 7.1 1.8 3.9× 9755 1024 9.5×
1024 2048 4378.6 61.9 70.7× 102.0 17.1 6.0× 38855 4096 9.5×

Dijkstra’s

40

1024

2601.3 62.6 41.6× 58.5 9.5 6.2× 21579 3902 5.5×
60 5462.7 127.3 42.9× 127.0 18.5 6.9× 46679 8302 5.6×
80 9723.0 216.5 44.9× 221.0 30.5 7.2× 81379 14202 5.7×

100 14910.0 332.2 44.9× 341.0 47.0 7.3× 125779 21802 5.8×

Figure 3: Comparison of our GAR system with [WGMK16]. We run PSI and Dijkstra’s for a range
of input sizes. We ran both GAR and [WGMK16] on the same hardware setup. Our approach
substantially improves wall-clock time, communication consumption, and RAM usage. Our count
of [WGMK16]’s RAM accesses does not include instruction fetching; We list them separately in
Figure 5.

G’s Pattern E’s String GRAM Size # Executed Gb. Trans. Ev. Total #Inst. Speed #Mem Comm.
Length Length (32-bits) Fragments Time(s) Time(s) Time(s) Time(s) #Inst/s Access (GB)

50 400 512 1400 9.7 5.3 4.4 19.4 12535 646Hz 1401 2.53
150 700 1024 2700 21.2 15.4 9.8 46.4 23635 509Hz 2701 7.44
250 1500 2048 5500 49.6 47.1 23.1 119.8 48735 407Hz 5501 22.70
500 7000 8192 23000 275.3 358.7 131.3 765.3 209485 274Hz 23001 173.00

Figure 4: GAR’s evaluation on KMP with different inputs and GRAM sizes.

7.2 Benchmarks and Metrics

As explained in Section 1 and further demonstrated in Section 7.4.5, straight-line execution is not
feasible for programs with complex control flow. Accordingly, we focus comparison on [WGMK16]’s
CPU emulation approach. We demonstrate significant improvement on three programs.

• Private Set Intersection (PSI): Two parties each hold a sorted integer array and wish to
compute the number of common elements. While fast tailored PSI protocols exist, we use
this benchmark for direct comparison with prior work [WGMK16].

• Dijkstra’s Shortest Path (Dijkstra): One party holds a directed graph while the other holds a
pair of source and destination nodes (This is the setting of [WGMK16]; other input configura-
tions, e.g., all inputs secret-shared, incur no extra cost). Parties wish to compute the shortest
path between the two nodes. This benchmark was used by [WGMK16] and [LWN+15].

• Knuth–Morris–Pratt String Search (KMP): One party inputs a pattern string and the other
inputs a search string. They wish to compute the number of occurrences of the pattern in
the search string. This benchmark was suggested by [LHS+14].

We note that our reported runtimes for [WGMK16] are in some cases slower than what was
reported in [WGMK16] itself. We believe this is due to the fact that program runtime is variable and
depends on the program input. Crucially, we ran our GAR system on the same input as [WGMK16],
and thus our reported numbers are directly comparable.

Assembly code for each benchmark is included in Appendix A.
We report the following metrics:

• Wall-clock Time: Wall-clock time includes the time needed for the GC generator to garble,
for network transmission, and for the GC evaluator to evaluate. Figure 6 provides a breakdown
of these three metrics.
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PSI Dijkstra

Input Size 64 256 1024 40 60 80 100

Thousands of Fetches 2.5 9.8 38.9 21.6 46.7 81.4 125.8

Figure 5: [WGMK16]’s number of instruction fetch RAM accesses.

• Communication: Both [WGMK16] and GAR communicate through one TCP/IP connec-
tion. We directly measure communication from the TCP port and report the amount of
transmitted data.

• # RAM accesses: RAM accesses are the most expensive operation in our approach. Recall
that [WGMK16] uses ORAM while GAR uses GRAM. We report the number of times we
and [WGMK16] access RAM. Recall that [WGMK16] uses RAM to fetch instructions; we
do not. Figure 3 does not include [WGMK16]’s RAM accesses to fetch instructions. We list
them separately in Figure 5.

7.3 Overall Improvement

Figure 3 tabulates GAR’s improvement over [WGMK16] for PSI and Dijkstra’s.

PSI We ran the PSI benchmark on three different pairs of input arrays: two 64-element arrays,
two 256-element arrays, and two 1024-element arrays. The PSI program primarily consists of a
loop that compares a single element from each array. Our VISA approach captures PSI’s loop in
a single fragment. This results in simple control flow and high performance. In total, we use only
three fragments: one that initializes state before the loop, one that implements the body of the
loop, and one that handles the end of the program. Because the loop is captured by one fragment,
our approach uses precisely the number of RAM accesses that are prescribed by the program’s
execution path.

GAR is 44–70× faster than [WGMK16] on each input, uses 4–6× less bandwidth, and uses
≈ 10× fewer RAM accesses.

Dijkstra’s We ran Dijkstra’s (Figure 1) on a graph with 40, 60, 80, and 100 nodes. For a graph
with n nodes, we set the number of edges |E| = 3n. The sparse graph is stored in the adjacency
list. Our program is split into 14 fragments.

For each input, GAR is 42–45× faster than the baseline [WGMK16], uses 6–7× less bandwidth,
and uses 5–6× fewer RAM accesses.

7.4 Performance Breakdown and Discussion

7.4.1 Breakdown of Wall-Clock Time

Figure 6 breaks down the wall-clock-time for each of our runs of PSI and Dijkstra. No one cost
clearly stands out as the bottleneck. We note that we did not stream the GC from the generator
to the evaluator; we expect that proper streaming would allow to overlap garbling and evaluation
with transmission, essentially eliminating the separate cost of garbling and evaluation. We also
include detailed GAR costs in Figure 4.
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Bench. Gb. Trans. Ev. Total
Time(s) Time(s) Time(s) Time(s)

PSI
64 0.2 0.3 0.1 0.6

256 2.3 3.7 1.1 7.1
1024 18.3 35.9 7.7 61.9

Dijkstra

40 29.4 19.5 13.7 62.6
60 61.0 38.3 28.0 127.3
80 103.6 62.9 50.0 216.5

100 159.1 97.0 76.1 332.2

Figure 6: Breakdown of our total wall-clock time into the time needed to (1) garble the circuit, (2)
transmit the GC across the network, and (3) evaluate the GC.

Program #Inst. #Fragments Impr. Speed
#Inst/s

PSI
64 2419 129 18.8× 4032Hz
256 9715 513 18.9× 1368Hz

1024 38899 2049 19.0× 628Hz

Dijkstra’s

40 33914 3900 8.7× 542Hz
60 73714 8300 8.9× 579Hz
80 128614 14200 9.1× 594Hz
100 198814 21800 9.1× 598Hz

Figure 7: Comparison of the number of fragments with the number of base ISA instructions for
PSI and Dijkstra’s with different input sizes. The improvement (#instructions

#fragments ) illustrates that we
reduce the number of execution steps by an order of magnitude. Our Hz rate is base instructions
per second.

7.4.2 SGC Savings

Recall that we use SGC to stack GC material from fragments in the active set. In our Dijkstra
experiments, we observed that SGC improved communication by roughly 3×, excluding the cost of
GRAM access. We expect that this improvement will become more significant for larger and more
complex programs where the total number of fragments and likely the size of the active set will be
larger.

7.4.3 Communication Rounds and Latency Impact

GAR is implemented via a garbling scheme, and our instantiation in the semi-honest model only
requires performing (parallel) OTs and sending a single message from the generator to the evaluator.
In contrast, [WGMK16]’s ORAM-based CPU uses multiple rounds of communication per RAM
access.

This distinction is not significant in the ultra-low latency setup we have explored so far, but even
modest latency harshly penalizes multi-round approaches. We evaluate the impact by executing
one program (PSI-256) with various latencies. We used the Linux traffic control tool tc to configure
a network with 2Gbps bandwidth and 0/50/100ms latencies. Figure 8 tabulates wall-clock time

21



Round-trip Delay

0ms 50ms 100ms

[WGMK16] (s) 314.5 11495.4 (+11180.9) 22984.8 (+22670.3)

GAR (s) 11.5 12.8 (+1.3) 14.5 (+3.0)

Improvement 27.3× 898.1× 1585.2×

Figure 8: Runtime comparison of GAR and [WGMK16] when solving PSI-256 for different latency
settings. To tightly control latency, we ran these experiments on a single machine with a simulated
(via the Linux tc command) 2Gbps network. For clarity, we note the added cost of latency in
parentheses. Note, the sliding window in TCP implicitly forces latency-like delays on GAR.

G’s E’s EMP EMP GAR Impr.
Pattern String #AND Total Total
Length Length Gates (×109) Time(s) Time(s)

50 400 0.142 7.4 19.4 0.4×
150 700 2.264 120.0 46.4 2.6×
250 1500 13.11 732.7 119.8 6.1×
500 7000 233.0 12843.3 765.3 16.8×

Figure 9: Comparison of GAR with EMP’s straight-line execution on KMP. Our improvement
over EMP increases with larger inputs. Note, EMP implements array lookup with linear scans,
not GRAM. For very small arrays, linear scans outperform EpiGRAM, which explains EMP’s
performance in the smallest instance.

performance. (In this experiment we run both parties on a single machine, so measurements in
Figure 8 are not identical to our other experiments.) With higher latency, GAR’s execution speed
is almost unchanged, but [WGMK16] becomes significantly slower; GAR’s advantage grows from
27× on a 0ms latency network to 898× (resp. 1585×) with 50ms (resp. 100ms) latency.

7.4.4 Active Set Sizes

GAR (and VISA) performance declines with the increase of sizes of active sets (i.e., sets of fragments
that can be possibly executed in the corresponding step). Let M be the total number of fragments.
In our experiments we observe that the active set size starts with 1 and quickly grows to M − 1 as
execution proceeds: M = 4 (resp. 15 and 11) for PSI (resp. Dijkstra and KMP). We view active
set optimization as crucial future work.

7.4.5 Comparison with Straight-Line Circuit Evaluation

Finally, we illustrate the advantage of the VISA approach over straight-line circuit evaluation by
comparing with the semi-honest 2PC of the widely adopted EMP Toolkit [WMK16]. We imple-
mented the Knuth-Morris-Pratt (KMP) string-searching algorithm in both GAR and EMP. (We do
not include [WGMK16]’s performance, because their repository did not include this benchmark.)
Figure 9 tabulates the results, and Figure 4 presents a fine-grained analysis of GAR’s performance
results.
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KMP searches for occurrences of a length-k pattern held by G in a length-m string held by
E and outputs the number of occurrences. An important feature of KMP is its O(m + k) time
complexity, rather than the naive O(m · k). Circuits are not a suitable representation as KMP
contains an inner loop that must be pessimistically unrolled a total of O(m · k) times when in fact
only O(m+ k) total iterations are needed.
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SUPPLEMENTARY MATERIAL

A Assembly Benchmarks

A.1 PSI

1 BB_BEGIN:

2 IMM %GR0, 0

3 IMM %GR1, 64 (resp. 256, 1024)

4 IMM %GR2, 0

5 BB0:

6 LOAD %GR3, %GR0

7 LOAD %GR4, %GR1

8 CMP %GR5, %GR3, %GR4

9 RS1 %GR5

10 ADD %GR0, %GR0, %GR5

11 CMP %GR5, %GR4, %GR3

12 RS1 %GR5

13 ADD %GR1, %GR1, %GR5

14 EQ %GR5, %GR3, %GR4

15 ADD %GR0, %GR0, %GR5

16 ADD %GR2, %GR2, %GR5

17 EQI %GR5, %GR0, 64 (resp. 256, 1024)

18 EQI %GR6, %GR1, 128 (resp. 512, 2048)

19 XOR %GR5, %GR5, %GR6

20 JNE %GR5, BB0

21 BB_END:

22 HALT

23

A.2 Dijkstra’s

1 BB_BEGIN:

2 IMM %GR5, 2

3 LOAD %GR5, %GR5

4 IMM %GR6, 3

5 LOAD %GR6, %GR6

6 IMM %GR4, 0

7 LOAD %GR4, %GR4

8 ADDI %GR4, %GR4, 900

9 IMM %GR0, 0

10 STORE %GR4, %GR0

11 BB_0:

12 IMM %GR2, 4294967295

13 IMM %GR3, 2147483647

14 IMM %GR1, 0

15 BB_1:

16 ADDI %GR4, %GR1, 800

17 LOAD %GR8, %GR4

18 EQI %GR8, %GR8, 0

19 BB_SP0:

20 ADDI %GR4, %GR1, 900
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21 LOAD %GR4, %GR4

22 CMP %GR7, %GR4, %GR3

23 RS1 %GR7

24 ADD %GR7, %GR7, %GR8

25 RS1 %GR7

26 CCOPY %GR2, %GR7, %GR1

27 CCOPY %GR3, %GR7, %GR4

28 ADDI %GR1, %GR1, 1

29 EQ %GR4, %GR1, %GR5

30 JNE %GR4, BB_1

31 BB_2:

32 ADDI %GR4, %GR2, 800

33 IMM %GR7, 1

34 STORE %GR4, %GR7

35 BB_SP1:

36 ADDI %GR4, %GR2, 4

37 LOAD %GR1, %GR4

38 BB_SP2:

39 ADDI %GR2, %GR2, 5

40 LOAD %GR2, %GR2

41 BB_3:

42 ADDI %GR4, %GR1, 405

43 LOAD %GR4, %GR4

44 BB_SP3:

45 ADD %GR4, %GR4, %GR3

46 ADDI %GR7, %GR1, 105

47 LOAD %GR7, %GR7

48 BB_SP4:

49 ADDI %GR8, %GR7, 900

50 LOAD %GR8, %GR8

51 CMP %SP0, %GR4, %GR8

52 RS1 %SP0

53 CCOPY %GR8, %SP0, %GR4

54 ADDI %GR7, %GR7, 900

55 BB_SP5:

56 STORE %GR7, %GR8

57 ADDI %GR1, %GR1, 1

58 EQ %GR4, %GR1, %GR2

59 JNE %GR4, BB_3

60 BB_4:

61 ADDI %GR0, %GR0, 1

62 EQ %GR4, %GR0, %GR5

63 JNE %GR4, BB_0

64 BB_END:

65 IMM %GR0, 1

66 LOAD %GR0, %GR0

67 BB_SP6:

68 ADDI %GR0, %GR0, 900

69 LOAD %GR0, %GR0

70 HALT
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A.3 KMP

1 BB_BEGIN:

2 IMM %GR5, 0

3 LOAD %GR5, %GR5

4 IMM %GR6, 1

5 LOAD %GR6, %GR6

6 IMM %GR0, 1

7 BB0:

8 SUBI %GR1, %GR0, 1

9 ADDI %GR1, %GR1, 50

10 LOAD %GR1, %GR1

11 BBSP0:

12 ADDI %GR4, %GR0, 100

13 LOAD %GR4, %GR4

14 BB1:

15 ADDI %GR3, %GR1, 100

16 LOAD %GR3, %GR3

17 EQI %GR8, %GR1, 0

18 EQ %GR2, %GR4, %GR3

19 ADD %GR2, %GR2, %GR8

20 EQI %GR2, %GR2, 0

21 JNE %GR2, BB2

22 SUBI %GR1, %GR1, 1

23 ADDI %GR1, %GR1, 50

24 LOAD %GR1, %GR1

25 J BB1

26 BB2:

27 EQ %GR2, %GR4, %GR3

28 ADD %GR2, %GR2, %GR1

29 ADDI %GR3, %GR0, 50

30 STORE %GR3, %GR2

31 ADDI %GR0, %GR0, 1

32 EQ %GR2, %GR0, %GR5

33 JNE %GR2, BB0

34 BB3:

35 IMM %GR7, 0

36 IMM %GR1, 0

37 IMM %GR0, 0

38 BB4:

39 ADDI %GR3, %GR0, 150

40 LOAD %GR3, %GR3

41 BB5:

42 ADDI %GR4, %GR7, 100

43 LOAD %GR4, %GR4

44 EQI %GR8, %GR7, 0

45 EQ %GR2, %GR3, %GR4

46 ADD %GR2, %GR2, %GR8

47 EQI %GR2, %GR2, 0

48 JNE %GR2, BB6

49 SUBI %GR7, %GR7, 1

50 ADDI %GR7, %GR7, 50

51 LOAD %GR7, %GR7

52 J BB5

53 BB6:
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54 EQ %GR2, %GR3, %GR4

55 ADD %GR7, %GR7, %GR2

56 EQ %GR2, %GR7, %GR5

57 ADD %GR1, %GR1, %GR2

58 SUBI %GR8, %GR7, 1

59 ADDI %GR8, %GR8, 50

60 LOAD %GR8, %GR8

61 CCOPY %GR7, %GR2, %GR8

62 ADDI %GR0, %GR0, 1

63 EQ %GR2, %GR0, %GR6

64 JNE %GR2, BB4

65 BB_END:

66 HALT

B Full Garbling Scheme and Proofs

B.1 Scheme Definition

We provide the formal procedures for GAR. Figure 10 lists the scheme procedures (i.e., Construc-
tion 1) of GAR. Figure 11 explains how we handle ACCESS gates internal to SGC branches.
Figure 12 and Figure 13 are unrolled modifications of the COND gate procedures from LogStack.

In Definition 4, we define primitive programs as having explicit AND gates, XOR gates, etc. For
brevity and to closely match the procedures of [HK21b], which are conceptually quite similar, we use
slightly different syntax our figures. I.e., a netlist is a sequence of AND and XOR gates. Netlists are
handled via the [ZRE15] garbling scheme. ‘Cond’ statements correspond to the SWITCH keyword.
‘Seq’ statements denote two circuit components that are run in sequence. We emphasize that this
language-level difference does not change the meaning of primitive circuit programs.

B.2 Correctness/Security Definitions and Proofs

In this appendix, we prove our garbling scheme correct and secure. Security definitions are adapted
from [BHR12]. Our garbling scheme is proved secure assuming the existence of a circular correlation
robust hash function. The following definition is adapted from [ZRE15]:

Definition 5 (Circular Correlation Robustness). Let H be a function. We define two oracles:

• circ∆(x, i, b) = H(x⊕∆, i)⊕ b∆ where ∆ ∈ {0, 1}κ−11.

• R(x, i, b) is a random function with κ-bit output.

A sequence of oracle queries (x, i, b) is legal when the same value (x, i) is never queried with different
values of b. H is a circular correlation robust hash function if for all poly-time adversaries A:∣∣∣∣Pr∆ [

Acirc∆(1κ) = 1
]
− Pr

R

[
AR(1κ) = 1

]∣∣∣∣ is negligible.

Circular correlation robustness ensures that a valid sequence of queries is computationally in-
distinguishable from uniform randomness, even when we use the important Free XOR optimiza-
tion [KS08].
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GAR.ev(C, x⃗) :
▷ m⃗ is a global array initialized to all 0.

▷ What are the circuit semantics?

Switch C :
case Netlist(·) : return HalfGates.ev(C, x⃗)
case Seq(C0, C1) : return GAR.ev(C1, GAR.ev(C0, x⃗))
case Cond(C⃗) :
▷ split branch index from input

α | x⃗′ ← x⃗

▷ Run the active branch.

return GAR.ev(C⃗[α], x⃗′)

case Access( ⃗idx, v⃗al, rw, d⃗st) :

if x⃗[rw] == 0 :

▷ Load

x⃗[d⃗st]← m⃗[x⃗[ ⃗idx]]

else :

▷ Store

m⃗[x⃗[ ⃗idx]]← x⃗[v⃗al]

return x⃗

GAR.Ev(C,M, X⃗) :

▷ MEM is a unique global Array object by EpiGRAM.init(·)
▷ How does E evaluate the GC?

Switch(C) :
case Netlist(·) : return HalfGates.Ev(C,M, X⃗)

case Seq(C0, C1) :
M0 |Mtr |M1 ←M

return GAR.Ev(C1,M1, trans.Ev(GAR.Ev(C0,M0, X⃗),Mtr)

case Cond(C⃗) : return EvCond(C⃗,M, X⃗)

case Access( ⃗idx , v⃗al , rw , d⃗st) :

▷ Call GRAM access procedure

MEM , Y⃗ ← EpiGRAM.access(MEM , X⃗[ ⃗idx ], X⃗[v⃗al ], X⃗[rw ],M)

X⃗[d⃗st ]← Y⃗

return X⃗

GAR.Gb(1κ, C, S)
▷ MEM is a unique global Array object by EpiGRAM.init(·)
▷ How does G garble the GC?

▷ S is an explicit seed.

Switch C :
case Netlist(·) :
return HalfGates.Gb(1κ, C, S)

case Seq(C0, C1) :
▷ Derive seeds for two circuits.

S0 ← FS(0)

S1 ← FS(1)

(M0, e0, d0)← GAR.Gb(1κ, C0, S0)

(M1, e1, d1)← GAR.Gb(1κ, C1, S1)

▷ Labels out of C0 must be translated

▷ to labels into C1.
Mtr ← trans.Gb(d0, e1)

M ←M0 |Mtr |M1

return (M, e0, d1)

case Cond(C⃗) : return GbCond(C⃗, S)

case Access( ⃗idx, v⃗al, rw, d⃗st) :

▷ Generate encodings for access arguments

e ⃗idx
← repeatedly-sample FS(·)

e
v⃗al
← repeatedly-sample FS(·)

erw ← repeatedly-sample FS(·)
▷ Call GRAM access procedure

d,MEM ,Macc ← EpiGRAM.access(MEM, e ⃗idx
, e

v⃗al
, erw )

return (Macc, e ⃗idx
| e

v⃗al
| erw , d)

Figure 10: GAR’s garbling scheme. The included algorithms are typical except for the handling
of conditionals. Ev and Gb delegate the core of our approach: EvCond (Figure 13) and GbCond

(Figure 12). En and De are not listed as they are standard.
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GAR.Ev∗(C,M, X⃗) :

▷ Similar as Ev until access case

case Access( ⃗idx, v⃗al, rw, d⃗st) :

Macc |Mtr ←M

▷ The access happened outside conditional

▷ M should be ⊥

if X⃗ has d⃗st ready : return X⃗

else : ▷ HALT and return X⃗ to top layer

GAR.Gb∗(1κ, C, S)
▷ Similar as Gb until access case

case Access( ⃗idx, v⃗al, rw, d⃗st) :

▷ Generate encodings

e, d← repeatedly-sample FS(·)
▷ Treat it as inputs and outputs

return (⊥, e, d)

Figure 11: Variants for Gb and Ev . These variants are called inside GbCond and EvCond. We
implicitly use function∗ to denote function from where the underlying calling to Gb (resp. Ev) is
replace by Gb∗ (resp. Ev∗).

Definition 6 (Correctness). A garbling scheme is correct if for all valid circuits C, all input
strings x⃗ of length inpSize(C), and all pseudorandom seeds S:

De(d,Ev(C,M,En(e, x⃗))) = ev(C, x⃗)

where (M, e, d) = Gb(1κ, C, S)

Theorem 2. GAR’s garbling scheme is correct.

Proof. By induction on the structure of C.
In short, each of the cases of induction, except the handling of conditionals, is trivially inherited

from prior work.

• When initializing the main memory MEM , correctness is inherited from EpiGRAM’s array
initialize procedure.

• Suppose C is a Netlist. Correctness is inherited from [ZRE15].

• Suppose C is a sequence Seq(C0, C1). Correctness holds trivially by induction.

• Suppose C is an access Access. Correctness is inherited from EpiGRAM’s array access pro-
cedure.

• Suppose C is a conditional Cond(C⃗).
We proceed by further induction on the maximum number of accesses across each branch,
i.e., c ≜ ComputeMaxAcc(C⃗):

– Base Case: Suppose c is 0. I.e., there is no access in any branch. In this case, we
delegate to a normal conditional gate as specified by LogStack. Specifically, GbCond
and EvCond will delegate to the functions defined in LogStack. Correctness is inherited.
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GbCond(C⃗, S) :
b← |C⃗|
▷ Find maximum RAM access count among all branches from the circuits.

c← ComputeMaxAcc(C⃗)
▷ Recursively derive all ‘good’ seeds for the entire tree.

s← DeriveSeedTree(S, b)

▷ Sample input/output encodings for the conditional.

e← GenProjection(S, inpSize(Cond(C⃗)))
d← GenProjection(S, outSize(Cond(C⃗)) + c ∗ (n+ 33))

▷ Parse encoding into encoding of α and encoding of rest of input.

eα | e′ ← e

▷ Parse encoding into encoding of c access arguments and encoding of rest of outputs.

d0 | ... | dc−1 | d′ ← d

▷ Garble SortingHat based on the encoding of α.

▷ This outputs material as well as the tree of all ‘bad’ seeds s′.

MSortingHat, s
′ ← SortingHat.Gb(eα, s)

▷ Construct the stacked material and input encodings for each branch.

Mcond, econd, dcond ← GbSubtreeFromSeed∗(C⃗, 0, b− 1, s0,b−1)

▷ Parse encodings for each branch into encodings on c access results and rest of inputs.

econd,0 | ... | econd,c−1 | e′cond ← econd

▷ Parse encodings for each branch into encodings on c access arguments and rest of outputs.

dcond,0 | ... | dcond,c−1 | d′cond ← dcond

▷ The demux conditionally translates the input encoding e′

▷ to one of the branch encodings in e′cond based on eα.

Mdem,Λin ← demux.Gb(eα, e
′, e′cond)

for i ∈ 0..c− 1 :

Λout ← ComputeGarbage∗(C⃗,Mcond,Λin, s, s
′)

▷ Extract garbage on i access argument wires.

Λarg ← ExtractArg(C⃗, i,Λout)

Maccmux,i ← mux.Gb(eα, di, dcond,i,Λarg)

▷ Get encoding of access outputs from GRAM procedure.

ei,MEM,Macc,i ← EpiGRAM.access(MEM,di)

Maccdemux,i,Λ
′
in ← demux.Gb(eα, ei, econd,i)

▷ Merge existing garbage with new garbage encodings.

Λin ← Λin ∪ Λ′
in

▷ Compute all possible garbage outputs.

Λout ← ComputeGarbage∗(C⃗,Mcond,Λin, s, s
′)

▷ The demultiplexer collects garbage outputs.

Mmux ← mux.Gb(eα, d
′, d′cond,Λout)

Mram ←Maccmux,0 |Macc,0 |Maccdemux,0 | ... |Maccmux,c−1 |Macc,c−1 |Maccdemux,c−1

return (MSortingHat |Mdem |Mcond |Mmux |Mram, e, d′)

Figure 12: The algorithm for garbling a conditional with b branches where each branch has at most
c RAM accesses. Main memory is a length-2n GRAM with 32-bit entries. Our procedure follows
the structure of LogStack’s procedure of the same name. Our colored boxes highlight diffences
as compared to LogStack, and the green box highlights the most important modification.
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EvCond(C⃗,M,X) :

b← |C⃗|
▷ Find maximum RAM access count among all branches from the circuits.

c← ComputeMaxAcc(C⃗)
▷ Parse the active branch index from the rest of the input.

α | X ′ ← X

▷ Parse material for gadgets and body of conditional.

MSortingHat |Mdem |Mcond |Mmux |Mram ←M

Maccmux,0 |Macc,0 |Maccdemux,0 | ... |Maccmux,c−1 |Macc,c−1 |Maccdemux,c−1 ←Mram

▷ Run SortingHat to compute all of E’s seeds.

es← SortingHat.Ev(α,MSortingHat)

▷ Run the demultiplexer to compute input (except access results) for each branch Ci.
X⃗cond ← demux.Ev(α,X,Mdem)

▷ We define a recursive subprocedure that evaluates Ci − Cj using material M .

EvCond′(i, j,Mi,j) :

if i = j :

▷ Base case: compute output by evaluating the branch normally.

▷ This base case corresponds to guess = i.

▷ Accumulate output labels into the vector Y⃗cond (for later garbage collection).

Y⃗cond[i]← Ev∗(Ci,M, X⃗cond[i])

else :

k ← halfway(i, j)

▷ Garble the right subtree using the available seed,

▷ unstack, and recursively evaluate the left subtree.

Mk+1,j , ·, · ← GbSubtreeFromSeed∗(C⃗, k + 1, j, esk+1,j)

EvCond′(i, k,Mi,j ⊕Mk+1,j)

▷ Symmetrically evaluate the right subtree.

Mi,k, ·, · ← GbSubtreeFromSeed∗(C⃗, i, k, esi,k)
EvCond′(k + 1, j,Mi,j ⊕Mi,k)

for i ∈ 0..c− 1 :

▷ Start recursive process from the top of the tree.

EvCond′(0, b− 1,Mcond)

▷ Extract garbage on i access argument wires.

A⃗cond ← ExtractArg(C⃗, i, Y⃗cond)
▷ Mux to get encodings of the access arguments.

A← mux.Ev(α, A⃗cond,Maccmux,i)

▷ Get encodings of the access results.

MEM,R← EpiGRAM.access(MEM,A,Macc,i)

▷ Demux to get encodings of the access arguments for each branch.

X⃗ ′
cond ← demux.Ev(α,R,Maccdemux,i)

▷ Merge to get updated encodings of inputs.

X⃗cond ← X⃗cond ∪ X⃗ ′
cond

▷ Start recursive process from the top of the tree.

EvCond′(0, b− 1,Mcond)

▷ Eliminate garbage and propagate Y⃗α via the multiplexer.

return mux.Ev(α, Y⃗cond,Mmux)

Figure 13: E’s procedure, EvCond, evaluates a conditional with b branches and at most c RAM
accesses. Our procedure follows the structure of LogStack’s procedure of the same name. Colored
boxes highlight the major differences as compared to LogStack, and the green box highlights the
most important modification.
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– Induction Step: Suppose the scheme is correct for c = k accesses. That is, after k
iterations of the green boxes in GbCond and EvCond, there will be correct encodings on
each wire of the active branch Cα and correct garbage on each wire of each inactive branch
Ci ̸=α. Now, consider c = k+1. I.e., there is one additional access. W.l.o.g, suppose each
branch has k+1 access gates. By induction, after k iterations of each green box, there will
be correct encodings and garbage on each wire except those directly connected to each
branch’s last access gate response. Notice that for each such last access gate, the input
wires do not depend on the output wires by construction. Thus for the last ACCESS
gate of the active branch Cα, the encodings on these wires in are correct. Focusing on
the last iteration of the green boxes, ComputeGarbage∗ will produce correct garbage on
the inputs to the last ACCESS gate on each inactive branch Ci ̸=α. With these values as
inputs, outputs of mux (for this ACCESS query) will correctly encode the arguments of
this single extra access. Together with the correctness of EpiGRAM, the outputs of the
access procedure correctly encode the accessed value. Crucially, the MEM object will
also be updated correctly. With these results as input, the demux (for this ACCESS
response) will generate correct encodings of the accessed element for the active branch
and correct garbage for each inactive branch.

Thus, the overall conditional is correct.

GAR is correct.

Definition 7 (Obliviousness). A garbling scheme is oblivious if there exists a simulator Sobv such
that for any circuit C and all inputs x⃗ of length inpSize(C), the following are indistinguishable:

(C,M, X⃗)
c
= Sobv(1κ, C)

where S is uniform, (M, e, ·) = Gb(1κ, C, S) and X⃗ = En(e, x⃗).

Obliviousness ensures that the garbled circuit with input labels can be simulated, and hence
reveals no extra information to E.

To prove obliviousness, we use the following lemma, which follows from [ZRE15]’s, [HK20b]’s,
and [HKO21]’s security proofs.

Lemma 1. If H is circular correlation robust (Definition 5), then there exist simulators SAND ,
SSortingHat, Strans , Sdemux, Smux, SARRAY , SACCESS that securely simulate the material generated
by the respective GC procedures.

For the most part, these simulators are straightforward, since most of these GC procedures are
implemented as straightforward and standard encrypted truth tables. We note that EpiGRAM’s
ARRAY and ACCESS simulators are significantly more involved, but are given in [HKO21].

Theorem 3. If H is circular correlation robust (Definition 5), GAR’s garbling scheme is oblivious.

Proof. By construction of a simulator Sobv(1κ, C).
For the most part, the simulator precisely follows the generator’s GC procedure Gb, except that

the simulator simulates each GC subprocedure by invoking the appropriate simulator.
Technically, our proof proceeds by a hybrid argument where we one-by-one substitute the real

handling of each program component by its simulator. The details of this hybrid argument are
standard, so we focus on simulating each component.
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In more detail, Sobv starts by simulating each input label with a uniform string. This is indis-
tinguishable from real since the real garbling procedure assigns input labels from a PRG. Sobv then
steps through the circuit gate by gate. Each gate is handled by calling the appropriate simulator
and updating the gate’s output wire:

• For each ARRAY gate, simulate by calling SARRAY from EpiGRAM.

• For the Netlist, simulate each internal AND gate by calling SAND from [ZRE15] and simulate
each XOR gate by xoring the two simulated inputs.

• For the sequence Seq(C0, C1) gate, recursively simulate left part and right one. Use Strans to
simulate the translation gate that forwards the output of C0 as input to C1.

• For the access Access gate, simulate by calling Saccess from EpiGRAM and update MEM
accordingly.

• For the conditional Cond(C⃗) gate, simulate GbCond:

– Compute static information about C⃗ by calling appropriate procedures. For instance,
compute c by calling ComputeMaxAcc.

– Simulate input/output encodings for the conditional with uniform strings. They are
indistinguishable from real since GbCond chooses encodings by sampling from a PRG.

– Simulate each seed s with a uniform string. These are indistinguishable from real since
GbCond samples them from a PRG.

– Simulate MSortingHat by calling SSortingHat. Notice that seeds s′ can be computed by
evaluating on the simulated material for the gadget and the simulated labels for α.

– Simulate Mcond, econd, dcond with uniform strings. Indistinguishability holds Mcond due
to the strong stackability of circuits [HK21b].

– Simulate Mdem by calling Sdem. Notice that the garbage values on inputs of the condi-
tional can be calculated from simulated Mdem and simulated labels of conditional inputs.

– For each iteration, do following steps in order: simulate garbage outputs of this iteration
by calling the procedure ComputeGarbage∗; simulate Maccmux by calling Smux; simulate
Macc by calling Saccess from EpiGRAMsimulate Maccdemux by calling Sdemux. Each step
is updates simulated labels, garbage, and the simulated MEM object.

– Simulate Mmux by calling Smux.

GAR is oblivious.

Definition 8 (Privacy). A garbling scheme is private if there exists a simulator Sprv such that
for any circuit C and all inputs x⃗ of length inpSize(C), the following are computationally indistin-
guishable:

(M, X⃗, d)
c
= Sprv(1κ, C, y⃗),

where S is uniform, (M, e, d) = Gb(1κ, C, S), X⃗ = En(e, x⃗), and y⃗ = ev(C, x⃗).

Privacy ensures that E, who is given access to (M, X⃗, d), learns nothing except what can be
learned from the output y⃗. I.e., G’s input is protected.

We note that for most garbling schemes, privacy holds by a straightforward and unsurprising
argument. For instance, our proof is very similar to that of [HKO21].
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Theorem 4. If H is circular correlation robust (Definition 5), GAR’s garbling scheme is private.

Proof. By construction of a simulator Sprv.
In short, privacy follows from obliviousness (Theorem 3) and from the definition of De. Sprv

performs the following steps:

• Simulate a GC by invoking the obliviousness simulator (Theorem 3):

(C,M ′, X⃗ ′)← Sobv(1κ, C)

• Evaluate C using M ′ and X⃗ ′:
Y⃗ ′ ← Ev(C,M ′, X⃗ ′)

• For an output decoding string d′ that causes Y ′ to correctly decode to y. Specifically, for the

i-th output, let noncei denote the nonce used in the decoding truth table. Let ri
$← {0, 1}κ

be a uniform string. Set:

d′i ←

{
(H(Yi,noncej), ri) if yi = 0

(ri, H(Yi,noncej)) if yi = 1

• Output (M ′, X⃗ ′, d′).

The simulated output is indistinguishable from (M, X⃗, d) because (1) (M ′, X⃗ ′) and (M, X⃗) are
indistinguishable due to obliviousness, (2) the decrypted rows of d and d′ each yield output y, and
(3) the undecrypted rows of d and d′ are indistinguishable thanks to the circular correlation robust
hash function H.

GAR is private.

Definition 9 (Authenticity). A garbling scheme is authentic if for all circuits C, all inputs x⃗ of
length inpSize(C), and all poly-time adversaries A the following probability is negligible in κ:

Pr
(
Y⃗ ′ ̸= Ev(C,M, X⃗) ∧De(d, Y⃗ ′) ̸= ⊥

)
where S is uniform, (M, e, d) = Gb(1κ, C, S), X⃗ = En(e, x⃗), and Y⃗ ′ = A(C,M, X⃗)

Authenticity ensures that an adversary cannot compute GC output labels except by running the
scheme as intended. For most garbling schemes, authenticity holds by a standard and unsurprising
argument. Indeed, the following proof is very similar to that of [HKO21].

Theorem 5. If H is circular correlation robust, GAR’s garbling scheme is authentic.

Proof. By the definition of the privacy simulator (Theorem 4) and the definition of De.
Authenticity allows A access to material M and to encoded input X⃗. To derive a contradiction,

let (M ′, X⃗ ′, d′) be a GC constructed by Sprv . Now, suppose A is given (M ′, X⃗ ′) as input. By

the definition of Sprv , it should be infeasible for A to forge an encoded output Y⃗ ′ that success-

fully decodes. Indeed, to produce a value Y⃗ ′ that successfully decodes, A must guess a security
parameter-length uniform string ri that was sampled by the simulator and that is independent of
A’s view. This is clearly infeasible. That is, A cannot forge an output when given a simulated GC.
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Figure 14: Sketch of our procedure for handling RAM accesses from within SGC branches.

If A can forge output when given a real GC, then we can clearly construct a poly-time privacy
distinguisher. I.e., there is a poly-time procedure that on input C, M , X⃗ distinguishes real from
simulation with non-negligible probability. To do so, this distinguisher simply does the following:
(1) Evaluate C normally with material M and input X⃗ to obtain encoded output Y⃗ , (2) invoke the
adversary A to produce forged output Y⃗ ′, and (3) output 1 if and only if Y⃗ ′ successfully decodes
to a value that is different from decoded Y⃗ .

We already concluded that A cannot successfully forge an output (except with negligible prob-
ability) when given simulated input, so the above succeeds with non-negligible probability on real
input, then it is indeed a privacy distinguisher. But GAR is private, so the distinguisher should
not exist. We have reached a contradiction. It must be that A cannot forge an output given a
real-world input (except with negligible probability).

GAR is authentic.

C SGC and GRAM – Illustration

Figure 14 illustrates the order of events in which we handle RAM accesses from within SGC
branches. The dashed RAM box indicates that each access will happen outside conditional. The
leftmost (resp. rightmost) circuit component represents the demux (resp. mux). Each • (resp. ✕)
denotes a garbled label (resp. a SGC-style garbage label).

We proceed as follows. We describe G’s handling which, crucially, also includes E’s handling,
since G emulates E as a part of SGC.

• (a) G holds labels that encode the input to the overall conditional. G assigns to each branch
(fragment) a random seed. From this seed, he draws labels for the input wires of each branch.
For now, G does not handle the RAM access. Instead, he treats the wires out of the ACCESS
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gate as input to each branch, so these are also assigned GC labels. G can now garble the
demux, which produces garbage labels for each branch. Notice that G cannot yet garble the
demux for the access response because of not knowing garbling encodings on the response
outside SGC. That is, there is no • on solid RAM box outputs.

• (b) G garbles each branch. Notice that this is possible since all input wires already have input
labels. G xors materials from garbling of each branch. G can now generate garbage material
for each branch properly.

• (c) G plays E in his head. G evaluates each branch with appropriate garbage material and
garbage inputs. Notice that G can only emulate E up to the wires of the access query in
each branch. I.e., we cannot yet compute ✕ garbage values on the output wires of the dashed
RAM boxes.

• (d) G garbles the mux to produce GC labels on the solid RAM box query wires. G garbles
the GRAM access, generating garbled labels on the RAM’s output wires.

• (e) G garbles demux with GC labels on each branch’s access response. The gadget also
determines the garbage on each branch’s dashed access response wires. Thus, G can now
continue to play E in his head, allowing him to compute garbage labels on each branch’s
outputs.

• (f) G garbles the mux for the conditional and puts the GC labels on the output of the
conditional.
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