
Zombies and Ghosts: Optimal Byzantine
Agreement in the Presence of Omission Faults

Julian Loss1 and Gilad Stern2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2 The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract. Studying the feasibility of Byzantine Agreement (BA) in re-
alistic fault models is an important question in the area of distributed
computing and cryptography. In this work, we revisit the mixed fault
model with Byzantine (malicious) faults and omission faults put forth
by Hauser, Maurer, and Zikas (TCC 2009), who showed that BA (and
MPC) is possible with t Byzantine faults, s send faults (whose outgoing
messages may be dropped) and r receive faults (whose incoming mes-
sages may be lost) if n > 3t+ r + s. We generalize their techniques and
results by showing that BA is possible if n > 2t+ r + s, given the avail-
ability of a cryptographic setup. Our protocol is the first to match the
recent lower bound of Eldefrawy, Loss, and Terner (ACNS 2022) for this
setting.

1 Introduction

Byzantine agreement (BA) is a fundamental problem in distributed computing
where n parties 1, . . . , n each hold an input vi and want to agree on a com-
mon output v by running some distributed protocol Π. However, their task is
complicated by some t < n out of the parties deviating from the protocol de-
scription, e.g., by crashing or sending incorrect messages. BA forms the backbone
of many distributed protocols and has wide-ranging applications such as multi-
party computation, verifiable secret sharing, and replicated state machines. For
this reason, an extensive body of literature has studied the feasibility of BA un-
der various conditions, e.g., different types of network behaviors and/or faults.
If no setup is assumed, the celebrated work of Lamport, Shostak and Pease [15]
demonstrates that BA is possible if and only if the number of malicious faults t
satisfies t < n

3 . On the other hand, a protocol can tolerate any number of crash
faults (i.e., where a party crashes). As a middle ground between these two types
of faults, many previous works have also considered so-called omission faults. An
omission fault is a party that remains honest and online, but for which some of
its incoming and outgoing messages may not be delivered. This makes omission
faults a very realistic, but also particularly difficult type of fault to deal with.

Toward a more general understanding of fault tolerance with omission faults,
Hauser, Maurer, and Zikas [27], studied BA (and multi-party computation) in
a mixed model with malicious faults and omission faults. Their work considers
two types of omission faults, receive omission faults (a party does not receive

some incoming messages) and send omission faults (some messages of a party
are not delivered). Their result shows that BA and MPC are possible if n >
3t+ r + s, where t is the number of malicious faults, r is the number of receive
omission faults, and s is the number of send omission faults.3 Much more recently,
Eldefrawy, Loss, and Terner [10] make a first attempt at translating this result
to a setting where cryptographic setup (i.e., a PKI) is available to the parties.
In this setting, they show that BA is possible only if n > 2t + r + s. On the
converse, they show a protocol that matches this bound when considering a
special type of send omission fault called a spotty fault. Spotty faults must drop
either all or none of their messages in any given protocol round; a feature which
their protocols crucially exploit. Their work explicitly leaves open the question
of finding a protocol matching the lower bound even for general send omission
faults. In this work, we answer this question in the affirmative. More concretely,
we show the following results:

– We begin by revisiting the protocol framework of Hauser et al. used by parties
to detect and silence themselves upon becoming receive omission faulty. To
overcome additional obstacles that we are presented with as a result of our
more general fault regime, we extend their framework to the much more
challenging case of send omission faults.

– Using our new framework, we then give the the first protocol matching the
2t + r + s < n lower bound of Eldefrawy et al. in the mixed model with
malicious faults and general send/receive omission faults. Our definitions
and protocol designs are modular and lend themselves ideally as building
blocks to future works in this area.

1.1 Our Techniques

We now give a technical overview of our results. We begin with a recap of the
model and necessary definitions.

The Mixed Fault Model. Let us first revisit the standard security properties
of BA (i.e., without omission faults): (1) validity : if all honest parties input v,
all honest parties output v. (2) consistency : if an honest party i outputs v, then
all honest parties output v. From the onset, it is clear that we cannot hope to
achieve this definition for omission faulty parties. For example, a receive faulty
party may not receive all of the necessary messages to output in protocol Π at
all. Similarly, a send omission faulty party may not be able to share its input,
so any validity property that is sensitive to its input cannot be achieved. On the
other hand, we can hope to achieve a validity property that takes into account
receive faulty parties’ inputs as well as to guarantee output for parties that are
only send faulty. Indeed, the protocols of Hauser et al. and Eldefrawy et al.
satisfy these properties.

3 Parties who are both send and receive omission faulty are counted twice in this
bound.

2

Zombies. Central to the protocol design of existing works is a means for receive
omission faulty parties to detect that they are not receiving messages as they
should. A self-detected party can then react by ceasing to propagate potentially
incorrect information in the future. To this end, parties overlay communication
with a protocol that constantly checks whether they receive messages from suffi-
ciently many parties, i.e., n− t−s many of them. If not, a party i can be certain
that it is not receiving messages from at least one party who is neither malicious
nor send omission faulty. Hence, i concludes that it is receive faulty and shuts
itself off in the protocol so as to not cause further harm to the remaining honest
parties. In line with existing works, we will refer to such parties as zombies. To
deal with t < n

3 malicious faults, Hauser et al. now obtain a weak consensus
protocol as follows.4 Suppose that from party i’s view, there is a value b ∈ {0, 1}
that is supported by at least n−s−r > 2t parties, whereas 1−b is supported by
fewer than t+ 1 many parties. Then i can decide b, as it is sure that among the
(at least) 2t + 1 supporters of b, there were t + 1 honest parties. Those parties
would have also communicated their support to all other parties, who, by the
same rule, would not decide 1− b, unless they are receive faulty. Moreover, if all
honest parties input b to the protocol, b will always be the decided value for all
honest parties and send omission faulty parties. Since zombie parties can detect
themselves and cease to send messages, Hauser et al. now manage to transform
the above weak consensus, into strong consensus via standard techniques.

Additional Challenges When n
3 ≤ t < n

2 . Even when signatures are available,
it is unclear how the above approach would be made to work. Note that the
standard strategy in this setting (i.e., when there are no omission faults) is for
parties to gather certificates of at least t + 1 signatures on either b or 1 − b,
which they then pass on to all other parties. Upon obtaining t + 1 certificates
on a value b and no certificate on a conflicting value 1− b, a party i deems that
it is safe to output b. Much as above, P would usually infer that at least one
certificate on b was sent to it by another honest party, j, who also sent it to all
other parties. Hence, no other party decides 1− b.

This strategy is not applicable when there are send omission faults, as i’s t+1
certificates could have been sent by t malicious parties and one send faulty party
j. Contrary to an honest, party, j might not be able to pass on the certificate
to all other honest parties, and so they may yet decide on 1 − b. It may seem
tempting for i to just wait for more certificates. But, since zombies are still
needed to make the remaining steps of the construction work, this is also not
possible, since i, in the worst case, will receive messages from at most t + 1
honest parties. Hence i may not decide on a value b, even if all honest parties
input b to weak consensus. The issue with send faulty parties described above is
sidestepped by Eldefrawy et al. who consider spotty omissions that drop all or
none of the messages in a single protocol round.

4 Weak consensus is a precursor to full consensus in which any honest party outputs
either some y ∈ {0, 1} or a special symbol ⊥ (but no honest party outputs 1 − y).
Moreover, if all honest parties input y, they all output y.

3

Ghosts. We now introduce our new tool that allows us to deal with fully fledged
send omission faults. As with zombies, our main idea is for parties to self-detect
whether or not they are send faulty and take measures to prevent themselves from
causing further harm in the protocol. Looking ahead, we will again let parties
who self-detect as send omission faulty silence themselves in all subsequent pro-
tocol steps. Different from zombies, however, self-detected send omission faulty
parties will remain as silent observers in the protocol and output along with the
honest parties. Therefore, we refer to such parties as ghosts.

Putting ghost parties to good use turns out to be subtle. To see the issue,
consider the following scenario. In some round, a party i becomes aware that at
least n− t− s > t+ r parties (and thus at least one honest party) haven’t heard
from it in the previous round and haven’t become zombies. This can easily be
achieved by running our protocol via an overlay in which parties confirm each
others messages in each round. Party i promptly concludes that it must be send
omission faulty and stops speaking in all further rounds. However, the problem
is that i might already have caused a problematic situation. For example, i
might have sent a certificate for some value b to a party j. Party j would like
to conclude that b is a safe value to decide on. However, even if j sees t + 1
certificates (including i’s) for b in a given round, and no conflicting certificate
for 1− b, it still cannot do so, as i’s message may not have arrived in that round
at all other honest parties. As a result some of those parties might still deem
1− b a value that is safe to decide on.

To prevent this scenario, we introduce some extra rounds after every round
of sending messages. During these rounds, parties confirm to each other that
they didn’t turn themselves into ghosts in any of the previous rounds. At the
same time, parties are instructed to echo all of the messages they receive to all
other parties and to keep confirming receipts of messages to each other in all
rounds. In order to guarantee the delivery of a message, i sends the message once,
and then sends it again if it hasn’t become a ghost. Every party that receives
the message during the first round also forwards that message in the second
round. Party i knows that if it didn’t become a ghost, at least one non-faulty
party received its message in the first round and will forward that message to all
parties. In addition, a party that receives messages from i in both rounds knows
that every party will hear about the message for similar reasons (i.e., because
i has not turned itself ghost). Using this technique, in addition to detecting its
own failures, every party can also grade received messages according to how
confident it is that every other party will receive them as well. Then, if some
party receives a certificate with high confidence that every other party will do
so as well, it can count it towards its tally of t + 1 supporting certificates for a
given value.

Putting Things Together: Undead Consensus. Using the above template,
we use a modular approach to build protocols of increasingly strong consistency
guarantees. Here, we follow a more or less standard structure of going from weak
consensus to full consensus. We adapt all of our definitions to explicitly take
into account undead parties (i.e., zombies or ghosts). This is important, because

4

zombie parties cannot be expected to have the same consistency guarantees as
the live (i.e., honest) ones, whereas ghost parties cannot be expected to have
their inputs taken into account for protocols they participate in. Our definitions
are tailored to modular protocol design and depart from prior works, in which
these guarantees where left implicit. In particular, our definitions account for
parties to be undead even before the protocol starts, which may occur as the
result of running a previous subprotocol in the overall protocol stack. We believe
that our modular notions will serve as important definitional pillars for future
work in this area.

2 Model and Definitions

2.1 Network Model

We assume a network of n parties with point-to-point authenticated communi-
cation channels. In addition, we assume a PKI setup used for signing messages,
meaning that each party i has a well-known public key pki associated with it
and a signing key ski known only to it. Parties can sign a message using the
Sign algorithm and verify signatures using the Verify algorithm. As is standard
in this line of literature, we model the signatures as perfectly unforgeable. It
is, however, straight-forward to instantiate signatures in any of our protocols
with any existentially unforgeable signature signature scheme, in which case our
properties hold against computationally bounded adversaries.

The network is assumed to be synchronous, meaning that there is a well-
known upper bound ∆ on message delay. Any message sent by an honest party
at time t is delivered by time t + ∆. In such systems, it is possible to define
discrete communication rounds. All parties start each protocol at time 0, and
then actions taken between time (r−1)∆ and r∆ are said to take place in round
r. In particular, if a party sends a message at time (r − 1)∆ in the beginning
of round r, it is guaranteed to be delivered by time r∆, at the beginning of the
next round. In the below protocols, each bullet-point defines the actions to be
taken in the beginning of a specific round, unless specifically stated otherwise.
When a bullet-point contains a call to a subprotocol that requires k rounds to
complete, parties continue to the next bullet-point only after k rounds.

2.2 Adversary Model

The aim of this work is to deal with mixed-fault networks. The n parties can
experience one of three types of faults/corruptions:

– Send Omission Faults. Send faulty parties follow the protocol description.
For any message that a send faulty party sends, the adversary can choose
not to deliver that message. We assume that there are at most s send faulty
parties.

5

– Receive Omission Faults. Receive faulty parties follow the protocol de-
scription. For any message sent to a receive faulty party, the adversary can
choose not to deliver that message. We assume that there are at most r
receive faulty parties.

– Byzantine/Malicious Faults. A Byzantine/Malicious party can deviate
from a protocol description arbitrarily. We assume that there are at most t
Byzantine parties.

Throughout this work, we will assume that n > 2t+s+r. As shown by Eldefrawy,
Loss, and Terner, this is the best-possible tolerance that can be achieved. The
adversary is assumed to be rushing and strongly adaptive. This means that it
can corrupt parties at any time throughout a protocol execution with one of the
three types of corruptions explained above. In any round of a protocol execution,
the adversary can observe the messages of all honest parties and then choose the
messages of corrupt parties as well as what new parties to corrupt adaptively
for that round. For send faulty parties, the adversary chooses which of their
messages to deliver for that round, whereas for receive faulty parties, it chooses
which of the (honest) messages to deliver to those parties. If a party newly
becomes Byzantine and/or send faulty in a round, the adversary can erase (or
replace, in case of a Byzantine corruption) any of the messages that party sent
while it was honest, as long as those messages have not been delivered yet.
Similarly, for a newly receive faulty party, the adversary may erase any of the
messages that were sent to that party while it was still honest, as long as those
messages have not been delivered. We assume the adversary to have full control
over the network, subject to the constraint of delivering messages of honest and
receive faulty parties within ∆ time.

2.3 Zombies and Ghosts

Our overarching goal is constructing a mixed-fault tolerant consensus protocol,
allowing all parties to agree on a value. As has been done in previous works,
our protocols are designed in a way that an omission-faulty party should either
behave correctly (or correctly enough), or find out that it is faulty and stop
communicating in order not to cause harm.

Using the terminology of [27], if a party finds out that it is receive faulty, it
becomes a “zombie”. This means that it sets a flag Z to the value true, stops
sending messages, and eventually outputs the flag from the protocol in addition
to any other value. Similarly, if a party sees that it is send faulty it becomes a
“ghost” by setting a flag G to true, stops sending messages, and eventually out-
puts this flag as well. Parties also receive such flags as inputs, denoting whether
they were zombies or ghosts in the beginning of the protocol, and output those
flags in addition to any regular output in order to relay this information to any
calling protocol. For simplicity, whenever a party sends a message via a protocol
with a designated sender, we assume all parties participate in the protocol. In
addition, whenever parties call an internal protocol, they also input their current
Z,G flags to the called protocol.

6

We say that a party has become a zombie or a ghost during a protocol if it set
its corresponding flag to the value true while executing the protocol. Similarly,
we say that a party is a zombie or a ghost in the beginning of a protocol if its
corresponding input flags are set to the value true. A party that has become a
zombie or a ghost is said to be “undead”, and a non-Byzantine party that isn’t
undead at a given moment is said to be alive.

2.4 Protocol Definitions

We now give basic protocol definitions used throughout this paper. Our defi-
nitions extend classical definitions in the literature with properties for undead
parties.

No Living Undead Protocol. In all of the following definitions, we consider
undead versions of classic protocols. That is, if parties output a value x in some
protocol, in the undead version parties output x, z, g, with x being analogous to
the original output, z being a flag indicating whether the party became a zombie
while running the protocol, and g being a flag indicating whether it became a
ghost. A general property we would like in any such protocol is that parties only
become zombies or ghosts if they are indeed receive or send faulty, respectively.
We formalize this notion in the following definition, indicating that the protocol
does not produce any undead parties that are actually alive.

Definition 1. Let Π be a protocol executed by parties 1, . . . , n, where every party
outputs a triplet (x, z, g) such that z and g are boolean values. We say that Π is
(t, s, r)-no living undead (NLU) if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: if a non-
Byzantine party is alive in the beginning of the protocol and it outputs (x, z, g)
such that z = true (resp. g = true), then it is receive faulty (resp. send faulty).

Undead Weak Multicast. An undead weak multicast protocol is a basic build-
ing block, replacing the simple multicast implementation. In the protocol, a
known sender has a message to send to all parties. The sender then attempts to
send the message to all parties, checking whether it should become a ghost and
allowing parties to check whether they should become zombies. This primitive
is weak in the sense that if a party does not become a ghost, it only knows that
at least one nonfaulty party heard its message.

Definition 2. Let Π be a protocol executed by parties 1, . . . , n, with a designated
sender i∗ starting with an input m ̸= ⊥. In addition, every party i has two values
zi, gi ∈ {true, false} as input. Every party outputs a triplet (x, z, g) such that x
is either a possible message or ⊥, and z, g are boolean values.

– Validity. Π is (t, s, r)-valid if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: if
i∗ is nonfaulty or receive faulty and is alive in the beginning of the protocol,
every non-Byzantine party either outputs (x, z, g) such that x = m , or

7

becomes a zombie by the end of the protocol. In addition, if i∗ is send faulty,
no non-Byzantine party outputs (x, z, g) such that x /∈ {m,⊥}.

– Detection. Π is (t, s, r)-detecting if the following holds whenever at most
t parties are Byzantine, s parties are send faulty and r parties are receive
faulty: if i∗ is send faulty and it is alive at the end of the protocol, at least
one nonfaulty party output (x, z, g) such that x = m.

– Termination. Π is (t, s, r)-terminating if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: all parties complete the protocol and output a value.

If Π is (t, s, r)-valid, (t, s, r)-detecting, (t, s, r)-terminating, and (t, s, r)-no liv-
ing undead we say that it is a (t, s, r)-secure multicast protocol with undead par-
ties.

Undead Graded Multicast. Using the undead weak multicast primitive, it is
possible to construct a slightly stronger multicast primitive. An undead graded
multicast protocol also has a designated sender that attempts to send its message
to all parties in such a way that parties can detect their own faults. In addition
to outputting a message m, parties also output a grade y, intuitively indicating
how confident they are that the the protocol succeeded. In such a protocol, if
some party is very confident that the protocol succeeded for some non-Byzantine
sender, all parties will receive a message from the sender, even if it is send faulty.
This protocol is also “stronger” than the previous protocol in the sense that if a
sender does not become a ghost, it knows that every party received its message.

Definition 3. Let Π be a protocol executed by parties 1, . . . , n, with a designated
sender i∗ starting with an input m ̸= ⊥. In addition, every party i has two values
zi, gi ∈ {true, false} as input. Every party outputs a triplet (x, y, z, g) such that
x is either a possible message or ⊥, y ∈ {0, 1, 2} and z, g are boolean values.

– Validity. Π is (t, s, r)-valid if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: if
i∗ is nonfaulty or receive faulty and is alive in the beginning of the protocol,
every non-Byzantine party either outputs (x, y, z, g) such that x = m, y = 2,
or becomes a zombie by the end of the protocol. In addition, if i∗ is send
faulty, no non-Byzantine party outputs (x, y, z, g) such that x /∈ {m,⊥}.

– Detection. Π is (t, s, r)-detecting if the following holds whenever at most
t parties are Byzantine, s parties are send faulty and r parties are receive
faulty: if i∗ is send faulty and it is alive at the end of the protocol, every
nonfaulty party output (x, y, z, g) such that x = m and y ≥ 1.

– Consistency. Π is (t, s, r)-consistent if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: if i∗ is non-Byzantine, for every two non-Byzantine parties j, k
that output (xj , yj , zj , gj) and (xk, yk, zk, gk) respectively, either |yj − yk| ≤
1, or at least one of the parties becomes a zombie by the end of the protocol.
In addition, if yj ̸= 0, then xj = m.

8

– Termination. Π is (t, s, r)-terminating if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: all parties complete the protocol and output a value.

If Π is (t, s, r)-valid, (t, s, r)-detecting, (t, s, r)-consistent, (t, s, r)-terminating,
and (t, s, r)-no living undead we say that it is a (t, s, r)-(secure) multicast with
undead parties protocol.

Note that in the above, the output of a party is x, y, z, g with z, g being
boolean flags. For the no living undead property, we consider x, y as the first
element of the output and omit the parentheses for convenience, and z, g as the
two flags.

Undead Weak Consensus An undead weak consensus protocol is a mixed-
fault version of a weak consensus protocol. In such a protocol, every party has
a binary input, 0 or 1. The goal of the protocol is for there to be some value y
such that every party either outputs y or ⊥.

Definition 4. Let Π be a protocol executed by parties 1, . . . , n, in which every
party i starts with an input vi ̸= ⊥. In addition, every party i has two values
zi, gi ∈ {true, false} as input. Every party outputs a triplet (x, z, g) such that x
is either a possible input message or ⊥, and z, g are boolean values.

– Validity. Π is (t, s, r)-valid if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: if
all parties that are alive in the beginning of the protocol have the same input
v, every non-Byzantine party either outputs (x, z, g) such that x = v, or
becomes a zombie by the end of the protocol.

– Consistency. Π is (t, s, r)-consistent if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are re-
ceive faulty: if two parties are either alive or ghosts at the end of the protocol
and they output (x, z, g) and (x′, z′, g′), then either x = x′, x = ⊥ or x′ = ⊥.

– Termination. Π is (t, s, r)-terminating if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: all parties complete the protocol and output a value.

If Π is (t, s, r)-valid, (t, s, r)-consistent, (t, s, r)-terminating, and (t, s, r)-no liv-
ing undead we say that it is a (t, s, r)-secure undead weak consensus protocol.

Undead Consensus Similarly, an undead consensus protocol is a mixed-fault
version of a consensus protocol, in which all parties output the same value.

Definition 5. Let Π be a protocol executed by parties 1, . . . , n, in which every
party i starts with an input vi ̸= ⊥. Every party outputs a triplet (x, z, g) such
that x is a possible input value or ⊥, and z, g are boolean values.

9

– Validity. Π is (t, s, r)-valid if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: if
all parties that are alive in the beginning of the protocol have the same input
v, every non-Byzantine party either outputs (x, z, g) such that x = v, or
becomes a zombie by the end of the protocol.

– Consistency. Π is (t, s, r)-consistent if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are re-
ceive faulty: if two parties are either alive or ghosts at the end of the protocol
and they output (x, z, g) and (x′, z′, g′), then x = x′.

– Termination. Π is (t, s, r)-terminating if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: all parties complete the protocol and output a value.

If Π is (t, s, r)-valid, (t, s, r)-consistent, (t, s, r)-terminating, and (t, s, r)-no
living undead we say that it is a (t, s, r)-secure undead consensus protocol.

Undead Common Coin. As done in previous works, in order to construct
a consensus protocol with a constant expected number of rounds, we use an
unbiasable common-coin protocol in each iteration of the protocol. Using the
same construction as the one in [10], we assume a common coin protocol using
threshold signatures and a multicast protocol which allows parties to detect
their own failures and turn into zombies or ghosts. Using this construction, the
protocol informally achieves the following properties:

– Until at least one non-Byzantine party calls the common coin protocol for a
given iteration, the output is distributed uniformly from the point of view
of the adversary.

– All parties that are not zombies at the end of the protocol output the same
value.

As done in other protocols, parties output a bit b, as well as two flags Z,G
indicating whether they became zombies or ghosts throughout the protocol.

3 Protocols

In this section we construct protocols solving the tasks defined in Section 2.4.
We generally follow many of the ideas and structure of Eldefrawy et al. [10].
Importantly, we both adjust the protocols to deal with ghosts and slightly change
their protocol design. We use an undead graded multicast protocol instead of a
weak broadcast protocol, which does not allow Byzantine parties to equivocate,
but does not output grades as well as messages. In addition, we reduce our weak
consensus protocol directly to a consensus protocol while they construct a graded
consensus protocol as a step in between the two protocols.

In all of the following protocols, when we say that a party calls a protocol,
we assume that it also inputs its current flags Z and G to the protocols without

10

explicitly stating that it does so. In addition parties always participate in mul-
ticast and broadcast protocols with other parties as senders without explicitly
stating so.

The proofs of all theorems in this section are provided in Appendix A

3.1 Undead Weak Multicast

The simplest primitive constructed in this work is an undead weak multicast
protocol. This protocol is an adaptation of the FixReceive protocol of [27] and
the all-to-all FixReceive protocol of [10]. In the protocol, the sender i∗ attempts
to send its message m to all parties, while allowing parties to detect their own
faults. This is done by i∗ sending the message m along with a signature σ to
all parties, which then forward any message they received, or ⊥ if they received
no message. Parties then output m′ if they receive this message along with a
verifying signature from any party. Every party that isn’t receive faulty knows
that it should receive some message (either m or ⊥) from all of the nonfaulty
and receive faulty parties, totalling in n− t− s parties. Therefore, if some party
receives fewer than n− t− s messages, it knows that it should become a zombie.
In order for i∗ to be able to detect its own faults, non-zombie parties inform it
if they received no message and resorted to outputting ⊥. If i∗ receives t + 1
such messages, it knows that at least one non-Byzantine party output ⊥, and
can conclude that it should become a ghost. The full description of the protocol
is provided in Fig. 1 and the proof of Theorem 1 is provided in Appendix A.1.

Undead Weak Multicast, sender i∗ with input m, every party j
with inputs zj , gj

1. Every party j sets Zj = zj ,Gj = gj . Party i∗ sends m,Sign(ski∗ ,m) to
every party if it is alive.

2. If a party receives m,σ from i∗ such that Verify(pki∗ ,m, σ) = 1, forward
m,σ to every j. Otherwise, send ⊥ to every j.

3. Every j ̸= i∗ that received fewer than n − t − s messages becomes
a zombie by setting Zj = true and outputs (⊥,Zj ,Gj). If j hasn’t
become a zombie and it received at least one pair m,σ such that
Verify(pki∗ ,m, σ) = 1, it outputs (m,Zj ,Gj) (choose arbitrarily). If j
hasn’t become a zombie or output a tuple, it sends “no output” to i∗

and outputs (⊥,Zj ,Gj) (note that zombies don’t send this message).
In all cases, parties wait an additional round before terminating.

4. If i∗ receives at least t+1 “no output” messages, it becomes a ghost by
setting Gi∗ = true. Regardless of whether it has become a ghost, if Zi∗ =
false, i∗ outputs (m,Zi∗ ,Gi∗) and otherwise it outputs (⊥,Zi∗ ,Gi∗).

Fig. 1. An undead weak multicast protocol

Theorem 1. The protocol described in Fig. 1 is a (t, s, r)-secure undead weak
multicast protocol if n > 2t+ s+ r.

11

3.2 Undead Graded Multicast

We turn to construct a slightly stronger version of an undead weak multicast
protocol. In the previous protocol, if the sender party did not become a ghost,
it only knows that one nonfaulty party received its message. The undead graded
multicast protocol described in Fig. 2 allows a non-ghost sender to know that
all parties received its message. In addition, parties output a message x as well
as a grade y ∈ {0, 1, 2}. Informally, the grades represent parties’ confidence that
all parties heard the message sent by the sender. A grade of 2 guarantees that
all parties hear the message sent by a non-Byzantine sender, and a grade of 0 is
only given in the case that some party heard no value and had to output ⊥.

The protocol consists of two rounds. In the first round, i∗ signs its message m
and sends m,σ to all parties with the undead weak multicast protocol described
above. In the second round, parties forward the received message and signature
if they received such values, and ⊥,⊥ otherwise. Parties then output m, 2 if they
heard (m,σ) from i∗ in both rounds; m, 1 if they heard (m,σ) from some party in
the second round; and ⊥, 0 if they heard no message with a verifying signature.
Intuitively, if some party outputs m, 2, it knows that i∗ did not become a ghost
in the first round because it sent a message in the second round. This means that
some nonfaulty party heard that message and forwarded it to all parties, which
either receive it and output m with a grade of at least 1, or become zombies. It
is important to note that we require that if some party is receive faulty, but is
alive in the beginning of the protocol, all parties receive its message and output
m, 2. In order to make sure this happens, if i∗ finds out that it is a zombies after
the first round, it sends its message again in the second round and only then
becomes a zombie. The proof of Theorem 2 is provided in Appendix A.2.

Theorem 2. The protocol described in Fig. 2 is a (t, s, r)-secure undead graded
multicast protocol if n > 2t+ s+ r.

3.3 Undead Weak Consensus

Using the undead graded multicast protocol, we construct an undead weak con-
sensus protocol with binary inputs. In this protocol, parties send each other their
signed inputs. Each party i then collect all of the signed inputs it heard in a set
Si and forwards the set to all parties using the undead graded multicast protocol.
These sets are used as certificates, proving that a large enough number of parties
reported having a certain input. Generally, we say that Si is a certificate for the
value x if it contains signatures from t + 1 parties on the value x. Parties then
output a value x if it is possible that all nonfaulty parties had the input x. They
check whether this is possible by seeing if at least t+ 1 parties signed a value x
and at most t parties signed the opposite value 1− x (this can be generalized to
t+ 1 signatures for x and at most t signatures on any other value).

The protocol, described in Fig. 3, consists of two rounds. Each party starts
by signing its input and sending it to all parties. Every party then defines Si to
be the set of signed messages it receives and forwards it using an undead graded

12

Undead Graded Multicast, sender i∗ with input m, every j with
inputs zj , gj

1. Every party j sets Zj = zj ,Gj = gj . Party i∗ sends m, Sign(ski∗ ,m)
using an undead weak multicast protocol if it is alive.

2. Every party j checks whether it became a zombie in the previous round,
and if not forwards whichever message it received. As an exception,
i∗ sends its message again even if it became a zombie (but not if it
became a ghost). More precisely, let xj ,Z

′
j ,G

′
j be j’s output in the

previous round. If Z′
j = true for some j ̸= i∗, j sets Zj = true and

if G′
j = true (for any j), j sets Gj = true. Then, if Z′

i∗ = true, i∗

first sends (m,σ) again using an undead weak multicast protocol and
then sets Zi∗ = true. Every j ̸= i∗ checks if xj = (m′, σ′) such that
Verify(pki∗ ,m

′, σ′) = 1. If this is the case, j sets (mj , σj) = (m′, σ′), and
otherwise (mj , σj) = (⊥,⊥). Every j ̸= i∗ that is alive sends (mj , σj)
using an undead weak multicast protocol.

3. For every pair of parties j, k, define xj,k,Zj,k,Gj,k to be the value j
received from k in the previous round. If j has become a ghost or a
zombie in any of the calls to the undead weak multicast protocol, it
becomes one in the undead graded multicast protocol as well. That is,
it sets Gj = true if Gj,j = true and sets Zj = true if there exists a k
such that Zj,k = true. Then, if j has Zj = true, it outputs ⊥, 0,Zj ,Gj .
If Zj ̸= true, (mj , σj) ̸= (⊥,⊥) and j received xj,i∗ = (mj , σj) from
i∗ in the previous round as well, it outputs mj , 2,Zj ,Gj . If j did not
output a value yet and there exists some k such that xj,k = (m′, σ′) and
Verify(pki∗ ,m

′, σ′) = 1, j outputs m′, 1,Zj ,Gj and if no such k exists
it outputs ⊥, 0,Zj ,Gj .

Fig. 2. An undead graded multicast protocol

multicast protocol. If a party receives a certificate Sj for a value v with a grade
of 2 from t + 1 parties j, and it does not receive a conflicting certificate Sk for
the value 1− v from any party k, it outputs v. Intuitively, a party that outputs
v knows that at least one of the certificates that was received with grade 2 was
sent by a non-Byzantine party. All parties receive that certificate with grade
1 or greater, or become zombies. Therefore, a party that chooses to output v
knows that all other parties will either become zombies or hear about at least
one certificate for v and thus won’t output 1 − v. The proof of Theorem 3 is
provided in Appendix A.3.

Theorem 3. The protocol described in Fig. 3 is a (t, s, r)-secure undead weak
consensus protocol if n > 2t+ s+ r.

3.4 Undead Consensus

Finally, we use the undead weak consensus protocol above to construct an undead
consensus protocol with expected constant round complexity, similarly to the
construction of [10]. Parties start by setting a local variable vi to be their input,

13

Undead Weak Consensus, each party i has input xi ∈ {0, 1} and
two inputs zi, gi

1. Each party i sets Zi = zi,Gi = gi. Each party i that is alive at this
time sends xi, Sign(ski, xi) to all other parties.

2. Each party i defines the set Si to contain tuples of the form (j, x, σ)
such that i received the message x, σ from j and Verify(pkj , x, σ) = 1
and calls the undead graded multicast protocol with input Si.

3. For every party i, j, define Sj,i, yj,i,Zj,i,Gj,i to be i’s output from the
undead graded multicast call with j as sender. If there exists some j
such that Zj,i = true, i sets Zi = true, and if there exists some j such
that Gj,i = true, i sets Gi = true. A set S with enough signatures on the
value v is called a certificate for v. That is, S is said to be a certificate for
v if |{k|∃σ s.t.(k, v, σ) ∈ S ∧ Verify(pkk, v, σ) = 1}| ≥ t+ 1. Each party
i checks if there is a value vi such that there are at least t+1 parties j
from which it received a certificate Sj,i with grade 2, and checks that
none of the Sj,i sets it received contained a certificate for the value
1 − vi, before outputting vi. More precisely if there exists some value
v such that for t + 1 parties j, Sj,i is a certificate for v and yj,i = 2;
and for every k, Sk,i is not a certification for 1 − v (with any grade
yk,i); then i sets vi = v. Otherwise, it sets vi = ⊥. Finally, i outputs
vi,Zi,Gi.

Fig. 3. An undead weak consensus protocol

and then perform several actions in a loop until terminating. In the beginning of
each iteration, parties call an undead weak consensus protocol with vi as input,
and after completing that protocol also call a common coin protocol. If some
party outputs u ̸= ⊥ from the protocol, it adopts it as its value by updating
vi = u. On the other hand, if u = ⊥, i defaults to using the output from the
common coin protocol as its input to the next round. If some party outputs the
same value u from both the weak consensus protocol and from the common coin
protocol, it signs the value and send the signature to all parties. At this point,
it already knows that v is going to be the output from the protocol and could
output v if desired. Parties store all signatures received throughout the protocol
in a set Dv. Once parties receive t+1 such signatures on v, they forward Dv to all
parties and output v. They then continue for one more iteration of the protocol
in order to help parties complete the protocol without becoming zombies or
ghosts.

The protocol works by having parties check whether they already agree on a
value v using the weak consensus protocol. If all parties have the same input to
the protocol, they will output it from the weak consensus protocol and always
have their vi variables equal v. Unfortunately, parties don’t know that the weak
consensus protocol succeeded, so they also need to choose when to complete the
protocol. This is done by also flipping a common coin, and checking whether its
result b equals the output from the weak consensus protocol u. Every party that
sees that b = u knows that every party j either sets its vj variable to u because it

14

output u from the weak consensus protocol, or because it output b = u from the
common coin protocol. From this point on, all parties have the same input u in
each iteration and will output u from any subsequent call to the weak consensus
protocol. Note that this event also takes place if all parties output ⊥ from the
weak consensus protocol and then adopted the value of the common coin as their
inputs to the next iteration. Parties now simply need to wait for b to equal u, at
which point all parties will send signatures and complete the protocol. A formal
description of the protocol is provided in Fig. 4 and a proof of Theorem 4 is
provided in Appendix A.4.

Undead Consensus, each party i has input xi ∈ {0, 1} and two
inputs zi, gi

– Set vi = xi, Zi = zi,Gi = gi and D0 = D1 = ∅, then loop until
terminating:
1. Call the undead weak consensus protocol with input vi. Define

ui,Z
′
i,G

′
i to be the output from the undead weak consensus call. If

Z′
i = true, set Zi = true and if G′

i = true, set Gi = true.
2. Call the common coin protocol, and define b,Z′

i,G
′
i to be its output.

If Z′
i = true, set Zi = true and if G′

i = true set Gi = true. If ui ̸= ⊥,
update vi = ui. If also ui = b, send the message vi, Sign(ski, vi) to
all parties. On the other hand, if ui = ⊥, update vi = b.

3. If for some v ∈ {0, 1}, |Dv| ≥ t + 1, send v,Dv to all parties and
continue for one more iteration of the loop but stop updating the
flags Zi,Gi. Output v,Zi,Gi and terminate at the end of the next
iteration of the loop.

– If at any point in the protocol, Zi = true, send “Zombie” to all par-
ties, output ⊥,Zi,Gi and terminate. If at any point in the protocol a
“Zombie” message is received from some party j, act as if it forwards ⊥
messages in every undead weak multicast protocol from this point on,
or messages corresponding to receiving no values in other protocols. If
at any point Gi = true, stop sending any message in the protocol, but
continue processing messages.

– If at any point in the protocol, a v, σ message is received from some
party j such that Verify(pkj , v, σ) = 1 and there is no tuple of the form
(j, σ′) ∈ Dv, add (j, σ) to Dv.

– If at any point in the protocol, a message v,D′
v is received such

that D′
v is a set of tuples of the form (j, σ), for every (j, σ) ∈ D′

v,
Verify(pkj , σ, v) = 1 and |{j|∃σ s.t. (j, σ) ∈ D′

v}| ≥ t+ 1, set Dv = D′
v.

Fig. 4. An undead consensus protocol

Theorem 4. The protocol described in Fig. 4 is a (t, s, r)-secure undead con-
sensus protocol if n > 2t+ s+ r.

15

4 Related Work and Future Directions

Byzantine Agreement, originally defined as the Byzantine Generals problem,
has been researched as a foundational task in the field of distributed computing.
Early results showed that the task is only solveable in synchronous systems with
t Byzantine parties and without a PKI setup if n > 3t and with a PKI setup if
n > 2t [15]. The highly related task of authenticated broadcast has been shown
to be possible as long as n > t [9]. Following that, research into the task of
consensus in synchronous systems with omission faults yielded protocols that
are resilient to any number of omission faults if the faulty parties aren’t required
to output correct values [19], and in the presence of k omission faults (of either
type) if n > 2k when they are required to output correct values [18,20].

A long line of research has been done on consensus in systems with mixed
faults. The earliest works dealing with mixed faults considered a mix of t Byzan-
tine faults and k non-malicious faults, consisting of both crash and omission
faults. Crash faults are relatively mild, allowing the adversary to crash parties
and stop them from sending or receiving any messages in the protocol. In the
below discussion, t is always considered as the number of Byznatine faults, and k
is the number of non-malicious faults when the works do not specify any further
or allow for a mix of non-malicious faults. When works specify the exact number
of crash, receive-omission and send-omission faults we specify these numbers as
c, r and s respectively.

Early works such as that of Siu, Chin and Yang [23] a synchronous consensus
protocol when n > 3f + k. A similar work by Garay and Perry [12] constructed
a similar protocol with n > 3f + c. Additional works such as that of Tham-
bidurai and Park [24] and of Lincoln and Rushby [17] constructed broadcast
protocols for n > 3t+2f + k, when k parties may have non-malicious faults and
f parties may deviate from the protocol, but must send the same message to
all parties in each round. The work of Hauser, Maurer and Zikas [27] presents
several protocols, including a consensus, a broadcast and a secure function eval-
uation protocol under the assumption that n > 3t+ r+ s, also using the notion
of zombies. More recently, the works of Eldefrawy, Loss and Terner [10] and of
Abraham, Dolev, Kagan and Stern [1] construct mixed-fault consensus and state
machine repliacation (SMR) protocols in an authenticated setting. Abraham et
al. construct authenticated consensus and SMR protocols when n > 2t+ c, only
allowing crash faults. On the other hand, Elderfrawy et al. construct an authen-
ticated consensus protocol for n > 2t+2s+ r. They also improve their resilience
to n > 2t+ s+ r when dealing only with spotty omission faults in which either
all messages sent by a party are delivered in a given round, or none of them are.
Our work adapts many of the ideas of the work of Elderfrawy et al., achieving a
resilience of n > 2t + s + r while removing the additional assumptions on fault
structure.

More research has been done into mixed faults in partially synchronous sys-
tems, in which the network starts off as an unstable network with asynchronous
message delivery, but after some point in time (unknown to the participat-
ing parties), all messages are delivered within a well known time bound. The

16

Scrooge [21], Upright [6] and SBFT [13] protocols are authenticated mixed-
fault protocols for partially synchronous systems which are secure as long as
n > 4t + 2c, n > 3t + 2k and n > 3f + 2c respectively. Some protocols achieve
increased resilience by disallowing some actions by the adversary. Some of the
works [5,7,8,16,25] make use of specialized hardware to make sure that the adver-
sary does not act in a Byzantine manner in important code sections and de-facto
make it an omission or crash party that can only choose not to send incorrect
messages messages. Additional approaches include protocols which assume that
specific parties with special roles are not Byzantine [22] and protocols which
can deal with either Byzantine or crash faults, but not with both at the same
time [3].

Future Directions This work intends to simply show that authenticated con-
sensus is possible in synchronous systems when n > 2t + s + r, matching the
known lower bound. Seeing as this is simply a possibility result, this work
adapted techniques and structures while making small adjustments for clarity
and simplicity. Some of these adjustments included removing unnecessary layers
in the protocol stack (mentioned in Section 3), which had the nice side effect of
making the protocol slightly more efficient. A natural future line of work deals
with improving the efficiency of such protocols. For example, it could be possible
to improve the round complexity of the protocol by breaking down the modular
structure of the protocols and bundling several protocol messages together. On
the other hand, it is very likely that improvements can be made in the number
of messages or bits sent by parties by using stronger cryptographic primitives
such as threshold signatures, as seen in modern Byzantine consensus protocols
such as HotStuff [26] and VABA[2].

Another avenue of research is forgoing the use of threshold cryptography in
the common coin protocol. This can be done either by having a t + r + s + 1-
iteration consensus protocol with a rotating leader, as done in [27], or by gener-
ating randomness in a different way. For example, classic Byzantine agreement
protocols such as those of Feldman and Micali [11] and Katz and Koo [14] use
verifiable secret sharing in order to generate randomness, and constructing such
protocols for the authenticated mixed-fault setting can be of independent inter-
est.

Finally, using this protocol, it could be possible to construct more complex
primitives such as state machine replication and secure multiparty computation
protocols in mixed-fault settings with n > 2t+ s+ r. In a state machine replica-
tion protocol, parties agree on a (possibly infinite) log of values, with a numbered
slot for each value. Well-known constructions, such as the PBFT protocol of Cat-
sro and Liskov [4] use many instances of byzantine agreement protocols, and the
recent work of Abraham et al. [1] constructed such protocols to settings where
parties may either be Byzantine or crash. In addition, MPC protocols have been
constructed using consensus protocols, allowing parties to securely compute ar-
bitrary functions (or interactive functionalities). Hauser et al. construct such a
protocol in an unauthenticated mixed-fault setting with n > 3t+s+r [27] using

17

their consensus protocol, and it could be possible to adapt synchronous crypto-
graphic MPC protocols to mixed-fault protocols using a consensus protocol as
an important building block.

Acknowledgements

Gilad Stern was supported by the HUJI Federmann Cyber Security Research
Center in conjunction with the Israel National Cyber Directorate (INCD) in the
Prime Minister’s Office.

References

1. Abraham, I., Dolev, D., Kagan, A., Stern, G.: Brief announcement: Authenticated
consensus in synchronous systems with mixed faults. In: Scheideler, C. (ed.) 36th
International Symposium on Distributed Computing, DISC 2022, October 25-27,
2022, Augusta, Georgia, USA. LIPIcs, vol. 246, pp. 38:1–38:3. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.DISC.
2022.38, https://doi.org/10.4230/LIPIcs.DISC.2022.38

2. Abraham, I., Malkhi, D., Spiegelman, A.: Validated asynchronous byzantine agree-
ment with optimal resilience and asymptotically optimal time and word commu-
nication. CoRR abs/1811.01332 (2018), http://arxiv.org/abs/1811.01332

3. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses
with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014.
pp. 355–362. IEEE Computer Society (2014). https://doi.org/10.1109/DSN.

2014.43, https://doi.org/10.1109/DSN.2014.43

4. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Seltzer, M.I., Leach,
P.J. (eds.) Proceedings of the Third USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), New Orleans, Louisiana, USA, Febru-
ary 22-25, 1999. pp. 173–186. USENIX Association (1999), https://dl.acm.org/
citation.cfm?id=296824

5. Chun, B., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only mem-
ory: making adversaries stick to their word. In: Bressoud, T.C., Kaashoek, M.F.
(eds.) Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007.
pp. 189–204. ACM (2007). https://doi.org/10.1145/1294261.1294280, https:
//doi.org/10.1145/1294261.1294280

6. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riché, T.:
Upright cluster services. In: Matthews, J.N., Anderson, T.E. (eds.) Proceedings of
the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009. pp. 277–290. ACM (2009). https://doi.
org/10.1145/1629575.1629602, https://doi.org/10.1145/1629575.1629602

7. Correia, M., Lung, L.C., Neves, N.F., Veŕıssimo, P.: Efficient byzantine-resilient
reliable multicast on a hybrid failure model. In: 21st Symposium on Reliable
Distributed Systems (SRDS 2002), 13-16 October 2002, Osaka, Japan. pp. 2–
11. IEEE Computer Society (2002). https://doi.org/10.1109/RELDIS.2002.

1180168, https://doi.org/10.1109/RELDIS.2002.1180168

18

https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
http://arxiv.org/abs/1811.01332
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://dl.acm.org/citation.cfm?id=296824
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168

8. Correia, M., Neves, N.F., Veŕıssimo, P.: How to tolerate half less one byzantine
nodes in practical distributed systems. In: 23rd International Symposium on Reli-
able Distributed Systems (SRDS 2004), 18-20 October 2004, Florianpolis, Brazil.
pp. 174–183. IEEE Computer Society (2004). https://doi.org/10.1109/RELDIS.
2004.1353018, https://doi.org/10.1109/RELDIS.2004.1353018

9. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983). https://doi.org/10.1137/0212045, https:
//doi.org/10.1137/0212045

10. Eldefrawy, K., Loss, J., Terner, B.: How byzantine is a send corruption? In: Applied
Cryptography and Network Security: 20th International Conference, ACNS 2022,
Rome, Italy, June 20–23, 2022, Proceedings. p. 684–704. Springer-Verlag, Berlin,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-09234-3_34, https://
doi.org/10.1007/978-3-031-09234-3_34

11. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Simon, J.
(ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA. pp. 148–161. ACM (1988). https://doi.
org/10.1145/62212.62225, https://doi.org/10.1145/62212.62225

12. Garay, J.A., Perry, K.J.: A continuum of failure models for distributed computing.
In: Segall, A., Zaks, S. (eds.) Distributed Algorithms, 6th International Workshop,
WDAG ’92, Haifa, Israel, November 2-4, 1992, Proceedings. Lecture Notes in Com-
puter Science, vol. 647, pp. 153–165. Springer (1992). https://doi.org/10.1007/
3-540-56188-9_11, https://doi.org/10.1007/3-540-56188-9_11

13. Golan-Gueta, G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter,
M.K., Seredinschi, D., Tamir, O., Tomescu, A.: SBFT: A scalable and decentral-
ized trust infrastructure. In: 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2019, Portland, OR, USA, June 24-
27, 2019. pp. 568–580. IEEE (2019). https://doi.org/10.1109/DSN.2019.00063,
https://doi.org/10.1109/DSN.2019.00063

14. Katz, J., Koo, C.: On expected constant-round protocols for byzantine agree-
ment. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006, 26th An-
nual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4117,
pp. 445–462. Springer (2006). https://doi.org/10.1007/11818175_27, https:

//doi.org/10.1007/11818175_27

15. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176, https://doi.org/10.1145/357172.357176

16. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: Trinc: Small trusted hard-
ware for large distributed systems. In: Rexford, J., Sirer, E.G. (eds.) Proceedings of
the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2009, April 22-24, 2009, Boston, MA, USA. pp. 1–14. USENIX Associa-
tion (2009), http://www.usenix.org/events/nsdi09/tech/full_papers/levin/
levin.pdf

17. Lincoln, P., Rushby, J.M.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: Digest of Papers: FTCS-23, The Twenty-Third
Annual International Symposium on Fault-Tolerant Computing, Toulouse, France,
June 22-24, 1993. pp. 402–411. IEEE Computer Society (1993). https://doi.org/
10.1109/FTCS.1993.627343, https://doi.org/10.1109/FTCS.1993.627343

18. Parvédy, P.R., Raynal, M.: Uniform agreement despite process omission failures.
In: 17th International Parallel and Distributed Processing Symposium (IPDPS

19

https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1145/62212.62225
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343

2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings. p. 212.
IEEE Computer Society (2003). https://doi.org/10.1109/IPDPS.2003.1213388,
https://doi.org/10.1109/IPDPS.2003.1213388

19. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor
and communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986).
https://doi.org/10.1109/TSE.1986.6312888, https://doi.org/10.1109/TSE.

1986.6312888

20. Raynal, M.: Consensus in synchronous systems: A concise guided tour. In: 9th Pa-
cific Rim International Symposium on Dependable Computing (PRDC 2002), 16-18
December 2002, Tsukuba-City, Ibarski, Japan. pp. 221–228. IEEE Computer So-
ciety (2002). https://doi.org/10.1109/PRDC.2002.1185641, https://doi.org/
10.1109/PRDC.2002.1185641

21. Serafini, M., Bokor, P., Dobre, D., Majuntke, M., Suri, N.: Scrooge: Reducing the
costs of fast byzantine replication in presence of unresponsive replicas. In: Proceed-
ings of the 2010 IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1 2010. pp. 353–362.
IEEE Computer Society (2010). https://doi.org/10.1109/DSN.2010.5544295,
https://doi.org/10.1109/DSN.2010.5544295

22. Serafini, M., Suri, N.: The fail-heterogeneous architectural model. In: 26th IEEE
Symposium on Reliable Distributed Systems (SRDS 2007), Beijing, China, October
10-12, 2007. pp. 103–113. IEEE Computer Society (2007). https://doi.org/10.
1109/SRDS.2007.33, https://doi.org/10.1109/SRDS.2007.33

23. Siu, H.S., Chin, Y.H., Yang, W.P.: Byzantine agreement in the presence of mixed
faults on processors and links. IEEE Transactions on Parallel and Distributed
Systems 9(4), 335–345 (1998). https://doi.org/10.1109/71.667895

24. Thambidurai, P.M., Park, Y.: Interactive consistency with multiple failure modes.
In: Seventh Symposium on Reliable Distributed Systems, SRDS 1988, Columbus,
Ohio, USA, October 10-12, 1988, Proceedings. pp. 93–100. IEEE Computer So-
ciety (1988). https://doi.org/10.1109/RELDIS.1988.25784, https://doi.org/
10.1109/RELDIS.1988.25784

25. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Veŕıssimo, P.: Efficient
byzantine fault-tolerance. IEEE Trans. Computers 62(1), 16–30 (2013). https:
//doi.org/10.1109/TC.2011.221, https://doi.org/10.1109/TC.2011.221

26. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff: BFT
consensus with linearity and responsiveness. In: Robinson, P., Ellen, F. (eds.)
Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-
puting, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. pp. 347–
356. ACM (2019). https://doi.org/10.1145/3293611.3331591, https://doi.

org/10.1145/3293611.3331591

27. Zikas, V., Hauser, S., Maurer, U.M.: Realistic failures in secure multi-party compu-
tation. In: Reingold, O. (ed.) Theory of Cryptography, 6th Theory of Cryptography
Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5444, pp. 274–293. Springer (2009).
https://doi.org/10.1007/978-3-642-00457-5_17, https://doi.org/10.1007/
978-3-642-00457-5_17

20

https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/71.667895
https://doi.org/10.1109/71.667895
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1007/978-3-642-00457-5_17
https://doi.org/10.1007/978-3-642-00457-5_17
https://doi.org/10.1007/978-3-642-00457-5_17
https://doi.org/10.1007/978-3-642-00457-5_17

A Security Proofs

This section includes security proofs not included in the body of the paper.

A.1 Undead Weak Multicast

Theorem 1. The protocol described in Fig. 1 is a (t, s, r)-secure undead weak
multicast protocol if n > 2t+ s+ r.

Proof. Validity. If i∗ is nonfaulty or is receive faulty and alive in the beginning
of the protocol, it sends m,σ to every party and all nonfaulty parties receive
it and forward it. Every party that isn’t receive faulty receives those messages.
Since i∗ is non-Byzantine, it only sends one verifying signature and thus this is
the only received value, which will then be output. In addition, if a receive faulty
party j receives fewer than n− t− s messages, it becomes a zombie. Otherwise,
it receives at least n − t − s ≥ 2t + s + r + 1 − t − s = t + r + 1 messages, and
at least one of those messages was sent by a party that is neither Byzantine nor
receive faulty. Those parties receive the message m,σ from i∗ and forward it,
and thus every j ̸= i∗ outputs m. In addition, if i∗ isn’t a zombie by the end of
the protocol, it outputs (m,Zi∗ ,Gi∗) as well. Finally, if i

∗ is send faulty, it only
signs the message m. This means that no nonfaulty party receives any other
signed message from i∗, and thus output either m or ⊥.

Detection. If i∗ did not become a ghost, then it received “no output” from
fewer than t+1 parties. It receives all messages from all t+1 nonfaulty parties,
so at least one of those parties did not send “no output”, and has thus output
m,Z,G.

Termination. All parties terminate after exactly 3 rounds.
No Living Undead. Any party that isn’t receive faulty receives messages

from at least n− t− s parties in round 2. Therefore, only receive faulty parties
become zombies. If i∗ is nonfaulty or receive faulty, then all nonfaulty parties
receive m,σ in round 1 and forward it. Every non-Byzantine party that hasn’t
become a zombie received n − t − s messages, i.e. at least t + r + 1. Therefore,
at least one of those messages was from a from a nonfaulty or send omission
party. As stated above, it received m,σ and thus did not send “no output”.
This means that i∗ receives at most t messages of the form “no output” from
Byzantine parties and does not become a ghost.

A.2 Undead Graded Multicast

Theorem 2. The protocol described in Fig. 2 is a (t, s, r)-secure undead graded
multicast protocol if n > 2t+ s+ r.

Proof. Validity. If i∗ is nonfaulty or is receive faulty and alive in the beginning
of the protocol, it sends m,σ using an undead weak multicast protocol. The
protocol has no living undead, and thus i∗ does not become a ghost, and sends
the same message again in the second round. From the Validity property of

21

that protocol, every non-Byzantine party either outputs (m,σ),Z,G in both
rounds, or becomes a zombie. Therefore, every party that didn’t become a zombie
received both messages and output m, 2,Z,G. In addition, if i∗ is send faulty,
it only signs m and thus no party receives a message m′ ̸= m with a verifying
signature. Therefore, every party outputs x, y,Z,G such that x = m or x = ⊥.

Detection. If i∗ is send faulty and alive at the end of the protocol, it did
not become a ghost after sending (m,σ) for the first time. From the Detection
property of the undead weak multicast protocol, at least one nonfaulty party j
received that message and forwarded it using the undead weak multicast protocol
in the second round. From the Validity property of the protocol, every party
that doesn’t become a zombie in the protocol receives (m,σ) from j and outputs
m, 1,Z,G if it hasn’t received (m,σ) from i∗ and output m, 2,Z,G instead.

Consistency. Assume i∗ is not Byzantine and that some party j output
m, 2,Z,G with Z = false. This means that j received the same message (m,σ)
from i∗ in both calls to the undead weak multicast protocol. From the Validity
property, i∗ must have sent those messages, and a non-Byzantine party only
sends the second message if it does not become a ghost during the first call
to the protocol. As argued above, at least one nonfaulty party receives that
message and forwards it to all parties, either because of the Validity property
if i∗ is nonfaulty or receive faulty, or from the Detection property if it is send
faulty. Every party either becomes a zombie or receives the message, and thus
outputs m, 1,Z,G if it hasn’t also received (m,σ) from i∗ in the second round,
causing it to output m, 2,Z,G instead. This means that for every nonfaulty j, k
that don’t become zombies, yj , yk ∈ {1, 2} and thus |yj − yk| ≤ 1. Note that if no
nonfaulty party outputs the grade y = 2, then for every j, k the grades yj , yk are
either 0 or 1 and thus |yj − yk| ≤ 1 also holds. Finally, note that if yj ̸= 0, then j
output m′, yj ,Z,G after receiving a pair m′, σ′ such that Verify(pki∗ ,m

′, σ′) = 1.
As stated above, i∗ only signs m, so m′ = m.

Termination. All parties terminate after exactly 2 rounds.
No Living Undead. Parties only become ghosts or zombies after doing

so in the undead weak multicast protocol, and thus are either send or receive
omission respectively since that protocol has no living undead as well.

A.3 Undead Weak Consensus

Theorem 3. The protocol described in Fig. 3 is a (t, s, r)-secure undead weak
consensus protocol if n > 2t+ s+ r.

Proof. Validity. Assume all parties that are alive in the beginning of the pro-
tocol have the same input x. Each alive i sends x, σi to all other parties. Each
nonfaulty party receives at least t + 1 such messages from all nonfaulty par-
ties, and no non-Byzantine party receives more than t messages x′, σ′ such that
x′ ̸= x. Every nonfaulty party then calls the undead graded multicast protocol
with the set of values it received. From the Validity property of the protocol ev-
ery non-Byzantine party that isn’t a zombie at this time receives the Sj set sent
by every nonfaulty party. Therefore, every party i that isn’t a zombie by that

22

time received at least t+ 1 certificates Sj for the input x sent by the nonfaulty
parties, and no set contains more than t signatures on 1 − v. Therefore every
party i that isn’t a zombie at that time outputs x,Zi,Gi.

Consistency. Assume some non-Byzantine party outputs v,Z,G such that
v ̸= ⊥. By construction, this means that this party is not a zombie at that
time. Since it output v ̸= ⊥, there are t + 1 parties j from which it received a
certificate Sj,i for v with yj,i = 2. At least one of these parties is non-Byzantine,
and let that party be j. From the Validity and Consistency properties of the
undead graded multicast protocol, all parties that aren’t zombies received the
same set Sj,i with either grade 1 or 2. This set is a certificate for v and thus
every party that isn’t a zombie won’t output 1 − v. In addition, parties that
do become zombies output ⊥. Therefore, no non-Byzantine party outputs 1− v
from the protocol.

Termination. All parties complete the protocol after exactly 2 rounds.
No Living Undead. Parties only become zombies or ghosts in the protocol

after seeing they do so in the undead graded multicast protocol. The protocol
has no living undead, so parties only do so if they are indeed send or receive
faulty respectively.

A.4 Undead Consensus

Theorem 4. The protocol described in Fig. 4 is a (t, s, r)-secure undead con-
sensus protocol if n > 2t+ s+ r.

Proof. Validity. Assume all parties that are alive in the beginning of the pro-
tocol have the same input v. All parties set vi = v and start the first iteration
of the protocol. We will now prove inductively that every party i that hasn’t
terminated has vi = ui = v in all iterations of the protocol. From the Validity
property of the undead weak consensus protocol, every party that isn’t a zombie
by the end of the protocol outputs ui = v and sets vi = v. Any party that is
a zombie by the end of the protocol outputs ⊥,Z,G. Following that, all parties
that are not zombies start the next iteration with vi = v. Note that parties
only send messages of the form x, σ with x = vi and thus at most t parties sign
any value other than v in the protocol. This means that at all times, there are
signatures from at most t different parties in D1−v and thus no nonfaulty party
outputs 1 − v. In order to complete the proof, it is required to show that all
parties eventually terminate, which will be shown in the Termination property
of the protocol.

Consistency. Assume some nonfaulty party output some value. It does so
after seeing that there are signatures from at least t+ 1 parties in either D0 or
D1. Let i be the first non-Byzantine party to send a v, σ message for any value
v. If it does so, it is alive at that time, and both output ui = v from the undead
weak consensus protocol and saw that b = v in the same iteration. In that case,
every party j that is alive at that point in the protocol output either uj = v
or uj = ⊥ because of the Consistency property of the undead weak consensus
protocol and output b = v from the common coin protocol. Then, every alive

23

j either updates vj to uj if uj ̸= ⊥ (and thus uj = vj = v), or updates vj to
b = v. Following the same arguments as the ones in the Validity property, no
non-Byzantine party ever sends a signature on 1− v, and thus every party that
completes the protocol and isn’t a zombie outputs v.

Termination. First note that if some nonfaulty party completes the protocol
after outputting v, it sends v,Dv to all parties. Every party that isn’t receive
faulty receives that message and terminates in a finite number of rounds, and
every party that is receive faulty will become a zombie after all other parties
stop participating and don’t send it messages, causing it to become a zombie
if it hasn’t terminated earlier. This means that it is enough to show that some
nonfaulty party completes the protocol in a finite amount of time. We will show
that this even takes place with probability 1 and that the expected number of
rounds until this happens is constant.

Observe a single iteration of the protocol in which no nonfaulty party termi-
nated, and assume without loss of generality that all parties that are alive at the
end of the call to the undead weak consensus protocol either output v or ⊥ for
some v ∈ {0, 1}. With probability 1

2 , all parties output b = v from the common
coin protocol as well. Therefore, every party i that is alive in the next iteration
has vi = v. As shown in the proof of the Validity property, from this point on,
all parties have vi = ui = v in all subsequent iterations of the protocol. From
the consistency property of the undead weak consensus protocol, all nonfaulty
parties output v from the protocol in each iteration from this point on. In each
one of those iterations, with probability 1

2 , every nonfaulty party also outputs
b = v from the common coin protocol. At that point, each nonfaulty party sends
a v, σ message to all other parties. Every nonfaulty party receives those mes-
sages, adds the a tuple (j, σ) to Dv for every nonfaulty j and outputs v in the
end of the iteration. From the above discussion, all parties complete the protocol
in a constant number of rounds after that.

Note that the number of iterations required for each of the above events is
a geometric random variable with probability 1

2 of succeeding in each iteration,
and thus the expected number of rounds is bounded by 4. In addition, for any ℓ,
the probability that it takes more than ℓ iterations for each of the events to take
place is no greater than 1

2ℓ
, and thus the probability that some party does not

terminate in at most 2ℓ iterations is no greater than 2
2ℓ

= 1
2ℓ−1 , which decreases

exponentially as ℓ grows with a 0 probability of an infinite run.

No Living Undead. Parties only become zombies or ghosts in the protocol
if they do so in the undead weak consensus and common coin protocols. Both
of these protocols have no living undead, so parties do so if they are receive
or send faulty respectively. Note that if a party is alive and it completes the
protocol after outputting v, it sends its Dv set to all parties and continues
participating in another iteration of the loop. This means that any party that is
alive at the time the first nonfaulty party completes the protocol either receives
the message or is receive faulty. It then outputs v,Z,G in the next iteration
of the loop. Since all parties are still participating in the protocol, the undead
weak consensus protocol has no living undead at that point in time. Any receive-

24

omission party that hasn’t terminated by that point in time will either become a
zombie because it receives no messages or eventually output v. In addition, note
that if parties become zombies, all parties are informed and act as if the zombies
sent messages consistent with receiving no messages in all protocols, which is
a possible behaviour of theirs in a regular run of the protocols, and thus the
protocols still have no living undead.

25

	Zombies and Ghosts: Optimal Byzantine Agreement in the Presence of Omission Faults

