
BASS: Boolean Automorphisms Signature Scheme

DIMA GRIGORIEV, ILIA ILMER, ALEXEY OVCHINNIKOV, AND VLADIMIR SHPILRAIN

Abstract. We offer a digital signature scheme using Boolean automorphisms of a mul-
tivariate polynomial algebra over integers. Verification part of this scheme is based on
the approximation of the number of zeros of a multivariate Boolean function.

Keywords: digital signature, multivariate polynomial, Boolean function

1. Introduction

Due to the concern that if large-scale quantum computers are ever built, they will com-
promise the security of many commonly used cryptographic algorithms, NIST had begun
in 2016 a process to develop new cryptography standards and, in particular, solicited
proposals for new digital signature schemes [5] resistant to attacks by known quantum
algorithms, such as e.g. [6].

One possible way to avoid quantum attacks based on solving the hidden subgroup
problem (including the attacks in [6]) is not to use one-way functions that utilize one
or another (semi)group structure. The candidate one-way function that we use in our
scheme here takes a private polynomial automorphism φ as the input and outputs φ(P)
for a public multivariate polynomial P .

To avoid any parallels with the encryption scheme of [4], we say up front that since
ours is just a signature scheme (i.e., is not a spin-off of any encryption scheme), we do not
need our candidate one-way function to have a trapdoor because the private key holder
does not need to invert the function. Also, in [4], the candidate one-way function was φ
itself, and the private (decryption) key was φ−1. In contrast, in our signature scheme φ−1

does not play any role and does not have to be computed.
The main novelty of our signature scheme is manifested in the verification part. First,

note that any polynomial P has as many zeros as φ(P) does, where φ is any automorphism
of the polynomial algebra. To balance between security and efficiency, we do not want
the number of zeros to be either too small or too large. To that end, we use polynomials
over integers, but we count zero values on Boolean tuples only. Since the number of
Boolean tuples is exponential in the number of variables, it can still be too large to
process deterministically. Instead, we use a non-deterministic (Monte Carlo) method to
count the number of zero (or nonzero) values of a polynomial in question. We note that the
accuracy of the Monte Carlo method for estimating the number of zeros of a multivariate
polynomial was studied and quantified in [1].

2. Scheme description

Let K = Z[x1, . . . , xn] denote the algebra of polynomials in n variables over the ring
Z of integers, and let B(K) denote the factor algebra of K by the ideal generated by
all polynomials of the form (x2

i − xi), i = 1, . . . , n. Informally, one can call B(K) the
1

2 BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME

“Booleanization” of K. We note that the ring B(K) is isomorphic (as a ring) to the direct
sum of 2n copies of the ring Z.
The signature scheme is as follows.

Private: an automorphism φ of the algebra B(K). We note that φ is defined by the
polynomials yi = φ(xi), i = 1, . . . , n.

Public:
– 3 sparse polynomials Pi = Pi(x1, . . . , xn) with coefficients ±1.
– 3 polynomials φ(Pi), where φ is a private automorphism of the algebra B(K). We note
that φ(Pi) = Pi(y1, . . . , yn), where yi = φ(xi).
– a hash function H with values in the algebra B(K) and a (deterministic) procedure for
converting values of H to sparse polynomials from the algebra B(K).

Remark 1. We emphasize that the automorphism φ, the 3 sparse polynomials Pi, and the
3 polynomials φ(Pi) are all generated/computed in the offline phase. The hash function H
is one of the standard hash functions (we suggest SHA-256), with values converted from
a bit string to a polynomial in B(K) (see Section 3.3).

Signing a message m:

1. Apply the hash function H to the message m. Convert H(m) to a polynomial
Q = Q(x1, . . . , xn+1) with integer coefficients using a deterministic public procedure (see
Section 3.3). That is, the polynomial Q has an extra variable compared to the polynomials
Pi.

2. The automorphism φ is extended to the “Booleanization” of the algebra Z[x1, . . . , xn+1]
by taking xn+1 to xn+1 + r(x1, . . . , xn) − 2xn+1 · r(x1, . . . , xn), where r(x1, . . . , xn) is a
polynomial from the set G of polynomials (see Section 4). This extended automorphism
we denote by the same letter φ. (The fact that this is, indeed, an automorphism of the
“Booleanization” is part of Proposition 1 in Section 4.)

3. The signature is φ(Q).

Remark 2. The reason why we extend the automorphism φ by adding an extra variable
xn+1 at Step 2 is to prevent the forger from accumulating many pairs (Q,φ(Q)) with the
same φ. Now, with each new signature, we have a different φ because of a random choice
of the polynomial r(x1, . . . , xn) at Step 2.

Verification.

1. The verifier computes H(m) and converts H(m) to Q = Q(x1, . . . , xn+1) using a
deterministic public procedure.

2. The verifier selects a random 4-variable polynomial u(x, y, z, t) with coefficients from Z
and computes u(φ(P1), φ(P2), φ(P3), φ(Q)). Note that this is equal to φ(u(P1, P2, P3, Q)).
Denote the polynomial φ(u(P1, P2, P3, Q)) by S.

3. The verifier also computes u(P1, P2, P3, Q). Denote this polynomial by R. (Note that
S should be equal to φ(R) if the signature is valid.)

BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME 3

4. The verifier then compares the proportion of positive values on Boolean tuples for
the polynomials R and S. That is, the proportion of positive values on (n + 1)-tuples
(x1, . . . , xn+1), where each xi is 0 or 1. It is not immediately obvious how the verifier
can do that, given that with suggested parameters, the number of Boolean (n+1)-tuples
is quite large (2n+1, to be exact) and given that this kind of counting is #P-hard, see
[7], so it is unlikely that there are any “short cuts” to this counting. We explain a non-
deterministic method in the following subsection; here we just say that the verifier accepts
the signature if and only if the proportions of positive values for R and S differ by no
more than 3% of the total number of trials. See Section 4 for an explanation of why these
proportions should be the same (when computed deterministically) if S is an automorphic
image of R.

Correctness. While it is obvious that polynomials P and φ(P) have the same number
of zeros, it is not at all obvious why they have the same number of positive values on
Boolean tuples. Indeed, this may not be true for an arbitrary automorphism φ, so we
have a special algorithm for sampling φ. This is explained in Section 4, and correctness
is formally proved in the Appendix.

2.1. Monte Carlo method for counting positive values of a polynomial on
Boolean tuples. Our non-deterministic method for estimating the proportion of pos-
itive values on Boolean tuples for a given polynomial P is pretty standard. Just plug in a
large number (we suggest 1,000) of random Boolean tuples into P and count how many of
them yield a positive value of P . Then divide the obtained number by the total number
of Boolean tuples used; this is your proportion.

We note that the accuracy of the Monte Carlo method for counting zeros of Boolean
polynomials was studied and quantified in [1].

3. Key generation

First we note that, since the algebra B(K) is the factor algebra of K by the ideal
generated by all polynomials of the form (x2

i − xi) and since we only count values of a
polynomial on Boolean tuples, when we generate the public polynomials Pi it makes sense
to only generate monomials where no xj occurs with an exponent higher than 1. Then
generating Pi will look as follows.

3.1. Generating a random t-sparse polynomial.

(1) Select, uniformly at random, an integer d between 1 and b (where b is one of the
parameters of the scheme). This integer will be the degree of our monomial. (Note
that the degree of a monomial cannot be higher than n since our monomials are
square-free because of factoring by the ideal generated by all polynomials of the
form (x2

i − xi).)

(2) To select a monomial of degree d, do a selection of xi, uniformly at random from
{x1, . . . , xn}, d times, avoiding repetition of xi. Then build the monomial as a
product of the selected xi.

(3) Finally, build a t-sparse polynomial as a linear combination of t selected monomials
with coefficients ±1, selected at random.

4 BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME

3.2. Generating a random polynomial from the set G. The set G of polynomials in
Z[x1, . . . , xn] will play a crucial role in generating automorphisms of the algebra B(K), see
Section 4. This set can be defined recursively as follows. Assign all variables x1, . . . , xn to
G. Then keep adding more polynomials to G using the following rules: (1) if a polynomial
P belongs to G, then 1− P belongs to G, too; (2) if both polynomials P1 and P2 belong
to G, then their product P1P2 belongs to G, too.

Remark 3. The number of multiplications in the above procedure for generating a poly-
nomial from the set G (see Step 3 in the procedure below) is one of the parameters of our
scheme; denote it by r.

Note that the set G consists of polynomials P such that P (x1, . . . , xn) = 0 or 1 for any
Boolean n-tuple (x1, . . . , xn). This easily follows by induction from the above recursive
definition of the set G. In other words, any polynomial from G induces an n-variable
Boolean function and, conversely, any n-variable Boolean function is induced by a poly-
nomial from G.

Based on this description, we suggest the following procedure for sampling a polynomial,
depending on variables from a subset X of the set of variables, from the set G. We
emphasize again that in our scheme, this is done in the offline phase.

(1) Select a random monomial as in the previous Section 3.1, except that the degree
d should be really small, between 1 and 2. Denote this monomial by M .

(2) With probability 1
2
, select between M and 1−M . Denote the result by M ′.

(3) Select, uniformly at random, a variable xi not from the subset X of variables.
Then, with probability 1

2
, multiply M ′ by either xi or 1− xi.

(4) Repeat steps (2) through (3) r times for some small r (one of the parameters of
the scheme).

3.3. Converting H(m) to a polynomial. We suggest using a hash function H from
the SHA-2 family, specifically SHA-256. We assume the security properties of SHA-256,
including collision resistance and preimage resistance. Below is an ad hoc procedure for
converting a hash H(m) to a polynomial. We assume there is a standard way to convert
H(m) to a bit string of length 256.

Let B be a bit string of length 256. We will convert B to a polynomial from the factor
algebra of K = Z[x1, . . . , xn+1] by the ideal generated by all polynomials of the form
(x2

i − xi), i = 1, . . . , n+ 1. We note that this process is deterministic.

(1) Split 256 bits in 32 8-bit blocks. The 5 leftmost bits will be responsible for a coeffi-
cient of the corresponding monomial, while the 3 rightmost bits will be responsible for a
collection of variables xi in the monomial.

(2) After Step (1), we have 32 3-bit blocks corresponding to monomials of degree 3 that
we now have to populate with 3 variables each. Enumerate 96 bits in these 32 3-bit blocks
by x1, . . . , x32, x1, . . . , x32, x1, . . . , x32 (in this order, going left to right). Now each 3-bit
block is converted to a monomial that is a product of xi corresponding to the places in
the bit string where the bit is “1”. In particular, each monomial will be of degree at most
3.

BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME 5

(3) Now we have to use 5 remaining bits in each 8-bit block to obtain an integer coefficient
for each monomial of degree ≤ 3 obtained at Step 2. This is done as follows. First, we
compute the sum of these 5 bits. Then, we reduce it modulo 3. If the result is 0, then
the coefficient is 0. If the result is 1, then the coefficient is 1. If the result is 2, then the
coefficient is -1.

(4) Combine all monomials and coefficient obtained at Step (2) into a polynomial.

4. Generating an automorphism φ

An automorphism φ is generated in the offline phase, as follows.
Recall that the set G consists of polynomials P such that P (x1, . . . , xn) = 0 or 1 for

any Boolean n-tuple (x1, . . . , xn), see Section 3.2.
Then we have:

Proposition 1. Let h = h(x1, . . . , xn) be a polynomial from the set G. Suppose h does
not depend on xk. Let α be the map that takes xk to xk + h − 2xk · h and fixes all other
variables. Then:
(a) α defines an automorphism of B(K), the factor algebra of the algebra Z[x1, . . . , xn]
by the ideal generated by all polynomials of the form (x2

i − xi), i = 1, . . . , n. Denote this
automorphism also by α.

(b) The group of automorphisms of B(K) is generated by all automorphisms as in part
(a) and is isomorphic to the group of permutations of the vertices of the n-dimensional
Boolean cube.

(c) For any polynomial P from Z[x1, . . . , xn], the number of positive values of P on
Boolean tuples (x1, . . . , xn) equals that of α(P).

For the proof of Proposition 1, see the Appendix.

4.1. Generating triangular automorphisms. Our (private) automorphism φ will be
a composition of “triangular” automorphisms and permutations on the set of variables.
Below is how we generate an “upper triangular” automorphism α.

(1) Let k = 1.

(2) With probability 1
2
, either take xk to itself or take xk to xk + h(x1, . . . , xn) − 2xk ·

h(x1, . . . , xn), where h(x1, . . . , xn) is a random t-sparse polynomial from the set G not
depending on any xj with j ≤ k (see Section 3.2). Fix all other variables.

(3) If k < n, increase k by 1 and go to Step (2). Otherwise, stop.

Generating a “lower triangular” automorphism β is similar:

(1) Let k = n.

(2) With probability 1
2
, either take xk to itself or take xk to xk + h(x1, . . . , xn) − 2xk ·

h(x1, . . . , xn), where h(x1, . . . , xn) is a random t-sparse polynomial from the set G not
depending on xj with j ≥ k. Fix all other variables.

(3) If k > 1, decrease k by 1 and go to Step (2). Otherwise, stop.

6 BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME

4.2. Generating φ as a composition of triangular automorphisms and permu-
tations. Having generated an upper triangular automorphism α and a lower triangular
automorphism β, we generate our private automorphism φ as a composition αβπ, where
π is a random permutation on the set of variables. Here α is applied first, followed by β,
followed by π.

At the end of the whole procedure, we will have n polynomials yi = φ(xi) that define
the automorphism φ.

5. Suggested parameters

For the hash function H, we suggest SHA-256.
For the number n of variables, we suggest n = 31.
For the number t of monomials in t-sparse polynomials, we suggest t = 3.
For the bound b on the degree of monomials in t-sparse polynomials, we suggest b = 3.
For the degree d of the monomial M in the procedure for generating a polynomial from
the set G (Section 3.2), we suggest d = 2.
For the number r of the number of multiplications in the procedure for generating a
polynomial from the set G (Section 3.2), we suggest r = 1.
For the number of trials in Monte Carlo method for counting positive values of a polyno-
mial on Boolean tuples, we suggest 1,000.

6. Performance and signature size

For our computer simulations, we used Apple MacBook Pro, M1 CPU (8 Cores), 16
GB RAM computer. Julia code is available, see [2].

With the suggested parameters, signature verification takes under 0.2 sec on average,
which is not bad, but the polynomial φ(Q) (the signature) is rather large, about 4 Kb on
average.

The size of the private key (the automorphism φ) is about 1.5 Kb, and the size of the
public key is about 15 Kb.

We note that we have measured the size of a signature, as well as the size of pri-
vate/public keys, as follows. We have counted the total number of variables that occurred
in relevant polynomial(s) and multiplied that number by 5, the number of bits sufficient
to describe the index of any variable (except x32). To that, we added the number of mono-
mials times 3 (the average number of bits needed to describe a coefficient at a monomial
in our construction(s).

As usual, there is a trade-off between the size of the private key φ and its security. The
size of φ can be reduced to just a few hundred monomials, but then security becomes a
concern since some of φ(xi) may be possible to recover more or less by inspection of the
public pairs (Pi, φ(Pi)).

In the table below, we have summarized performance data for most reasonable (in
our opinion) parameter sets. Most columns are self-explanatory; the last column shows
memory usage during verification.

BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME 7

Performance metrics for various parameter values
#
mono-
mials in
Pi

max de-
gree of
Pi

max de-
gree of
mono-
mials M

parameter
m

verification
time (sec)

signature
size
(Kbytes)

public
key size
(Kbytes)

private
key size
(Kbytes)

memory
usage
(Mbytes)

3 3 1 1 0.12 4.3 17.5 1.2 5.7
3 3 2 1 0.12 3.7 12.6 1.6 5.7
3 4 1 1 0.25 4.3 25 1.2 5.8
4 3 1 1 1.6 4.2 38 1.25 7.1
5 3 1 1 3.2 6 46 1.3 8.2
3 3 1 2 0.7 20 56 5.5 6.3

6.1. Accuracy of the Monte Carlo method. We have run numerous computer sim-
ulations to estimate the probability of a “false positive” result, in particular accepting a
forged signature from somebody who knows only some of φ(xi). In our experiments, the
difference between the number of positive values of u and u′ for a u′ obtained by using
a wrong private key φ was always above 9%. Recall that the threshold difference for
accepting a signature in our scheme is 3%.

“False negative” results (i.e., rejecting a valid signature because the difference was more
than 3%) occurred in 1 out of 1000 experiments. Increasing the number of trials in the
Monte Carlo method obviously reduces the probability of false negative as well as false
positive results. With 10,000 trials (instead of suggested 1000), we did not detect any
false negative or false positive results. However, the verification time then increases to
1.2 sec on average.

7. What is the hard problem here?

Recall that the candidate one-way function that we use in our scheme takes a private
polynomial automorphism φ as the input and outputs φ(P) for a public multivariate
polynomial P . Thus, the (allegedly) hard problem here is: given a public pair (or several
pairs) (P, φ(P)), recover φ. We note that such a φ does not have to be unique, although
most of the time it is.

The problem of recovering φ from a pair (P, φ(P)), as well as the relevant decision
problem to find out whether or not, for a given pair of polynomials (P,Q), there is an
automorphism that takes P to Q, was successfully addressed only for two-variable poly-
nomials [3]. For polynomials in more than two variables the problem is unapproachable
at this time, and there are no even partial results in this direction.

Of course, in a cryptographic context one is typically looking not for general theoret-
ical results, but rather for practical ad hoc, often non-deterministic, attacks. The most
straightforward non-deterministic attack that comes to mind here is as follows. Recall
that monomials in the polynomial P have low degree (bounded by 3). Thus, given a
monomial, say, x1x2x3 in the polynomial P , one can try to replace each xi by a hypo-
thetical φ(xi) of the form

∑
(cixi + cijxixj + cijkxixjxk), with indeterminate coefficients

ci, cij, cijk. Given that φ is “sparse”, this may yield a number of equations in the indeter-
minate coefficients that is not huge. However, these equations will include not just linear

8 BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME

equations, but also equations of degree 2 and 3 (since φ(x1x2x3) = φ(x1)φ(x2)φ(x3)), and
given a large number (hundreds) of unknowns, there is no computationally feasible way
known to solve such a system.

In the next Section 8, we offer a “linearization” of this attack where all equations
become linear, at the expense of making the number of unknowns and the number of
equations very large.

8. Linear algebra attack

One can attempt to recover the private automorphism φ from the public pairs (Pi, φ(Pi))
by using linear algebra, more specifically by trying to replace φ by a linear transformation
of the linear space of monomials involved in Pi and in the polynomials φ(xi). The latter
polynomials are not known to the adversary, but at least the degrees of monomials in
those polynomials can be bounded based on the public polynomials φ(Pi).

Let us compute the dimension of the linear space of monomials of degree at most 27
in 31 variables. This is because a polynomial Pi has monomials of degree at most 3, and
in the polynomials φ(xi) there can be monomials of degree up to 9 (with the suggested
parameters), so in φ(Pi) there can be monomials of degree up to 27.
By a well-known formula of counting combinations with repetitions, the number of

monomials of degree at most 27 in 31 variables is equal to
(
57
30

)
≈ 1.4 · 1016 > 253. This is

how many variables the attacker will have should (s)he use a linear algebra attack. The
number of equations will be about triple of this number.

Solving a system of linear equations with that many variables and equations would
require more than 253·2.3 ≈ 2122 arithmetic operations, according to our understanding of
the state-of-the-art in solving systems of linear equations.

We note that increasing the number of variables in the polynomial algebra will not
seriously affect efficiency as long as the bound on the degrees of monomials remains the
same. At the same time, the more variables the less feasible the linear algebra attack is.

9. Security claims

The linear algebra “brute force” attack amounts to solving a system of linear equations
(over Z) with about 253 variables and at least as many equations.

There could be ad hoc attacks on the public key aiming at recovering some of the φ(xi),
but recovering only some of φ(xi) does not make the probability of passing verification
non-negligible, according to our computer simulations.

We have not been able to come up with any ideas of forgery without getting a hold of
the private key.

As for quantum security, it appears that no known quantum algorithms are applicable in
our situation since there are no abelian (semi)groups in play here that could be exploited
by one of the known quantum attacks.

10. Conclusion: advantages and limitations of the scheme

10.1. Advantages.

1. A novel mathematical idea used for signature verification.

2. Efficiency of the signature verification (under 0.2 sec on average).

BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME 9

10.2. Limitations.

1. The main limitation is the size of the public key (about 15 Kbytes with suggested
parameters).

The private key (the automorphism φ) is not too small either, about 1.5 Kbytes on
average. There is a trade-off between the size of φ and its security. The size of φ can
be, in principle, reduced to just a few hundred monomials, but then security becomes a
concern since some parts of φ(xi) may be possible to recover more or less by inspection
of the public pairs (Pi, φ(Pi)).

The signature size is about 4 Kb on average, which is decent but not record-breaking.

2. Another limitation is that using non-deterministic methods, such as a Monte Carlo
type method, may result in errors, more specifically in false negative or even false positive
results of the signature verification. So far, with suggested parameters, false positive
results did not occur in our computer simulations, and false negative results occurred in
about 1 out of 1000 experiments. (“False negative” means rejecting a valid signature.)

Increasing the number of trials in the Monte Carlo method obviously reduces the prob-
ability of false negative as well as false positive results. With 10,000 trials (instead of
suggested 1000), we did not detect any false negative or false positive results. However,
there is a trade-off with the verification time: it will then increases to 1.2 sec on average.

References

[1] D. Grigoriev, M. Karpinski, An approximation algorithm for the number of zeroes of arbitrary
polynomials over GF[q] - Proc. 32 IEEE Symp. FOCS, 1991, pp. 662–669.

[2] Julia code for the BASS, https://drive.google.com/file/d/1z3RWV9SRhSAxbBOtTXuw_

HEIZhNFyB3a/view

[3] L. Makar-Limanov, V. Shpilrain and J.-T. Yu, Equivalence of polynomials under automorphisms
of K[x, y], J. Pure Appl. Algebra 209 (2007), 71–78.

[4] T. T. Moh, A public key system with signature and master key functions, Comm. Algebra 27
(1999), 2207–2222.

[5] NIST: Post-Quantum Cryptography: Digital Signature Schemes, https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

[6] P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26 (1997), 1484–1509.

[7] L. Valiant, Complexity of computing the permanent, Theor. Comput. Sci. 8 (1979), 189–201.

Appendix

Here we give a proof of Proposition 1.

Proposition 1. Let h = h(x1, . . . , xn) be a polynomial from the set G. Suppose h does
not depend on xk. Let α be the map that takes xk to xk + h− 2xk · h and fixes all other
variables. Then:

(a) α defines an automorphism of B(K), the factor algebra of the algebra Z[x1, . . . , xn]
by the ideal generated by all polynomials of the form (x2

i − xi), i = 1, . . . , n. Denote this
automorphism also by α.

(b) The group of automorphisms of B(K) is generated by all automorphisms as in part
(a) and is isomorphic to the group of permutations of the vertices of the n-dimensional
Boolean cube.

https://drive.google.com/file/d/1z3RWV9SRhSAxbBOtTXuw_HEIZhNFyB3a/view
https://drive.google.com/file/d/1z3RWV9SRhSAxbBOtTXuw_HEIZhNFyB3a/view
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

10 BASS: BOOLEAN AUTOMORPHISMS SIGNATURE SCHEME

(c) For any polynomial P from Z[x1, . . . , xn], the number of positive values of P on
Boolean tuples (x1, . . . , xn) equals that of α(P).

Proof. (a) Let Bn denote the Boolean n-cube, i.e., the n-dimensional cube whose vertices
are Boolean n-tuples. The map α leaves the set of vertices of Bn invariant. Indeed, α fixes
all xi except xk, and it is straightforward to see that if xk = 0, then α(xk) = h(x1, . . . , xn),
and if xk = 1, then α(xk) = 1− h(x1, . . . , xn). Since on any Boolean n-tuple (x1, . . . , xn),
one has h(x1, . . . , xn) = 0 or 1 (see Section 3.2), we see that α is a bijection of the set of
vertices of Bn onto itself.

Next, observe that for any polynomial h from the set G, one has h2 = h modulo the
ideal generated by all polynomials of the form (x2

i − xi); this easily follows from the
inductive procedure of constructing polynomials h, see Section 3.2. Therefore, α leaves
the ideal generated by all (x2

i − xi) invariant since α takes xi to xi + h− 2xi · h, and then
α(x2

i − xi) = (xi + h− 2xi · h)2 − (xi + h− 2xi · h) = (x2
i − xi) + (h2 − h) + 2xih− 4x2

ih−
4xih

2 + 4x2
ih

2 + 2xih = (x2
i − xi) + (h2 − h) + 4h(xi − x2

i) + 4h2(x2
i − xi).

(b) Consider the automorphism α again. Fix a particular Boolean n-tuple (x1, . . . , xn).
Suppose that h(x1, . . . , xn) = 1. Suppose xk = 0 in this tuple. Then α takes this tuple to
the tuple where all xi, except xk, are the same as before, and xk = 1, i.e., just one of the
coordinates in the tuple was flipped. Therefore, an appropriate composition of different
α (with different xk) can map any given Boolean n-tuple to any other Boolean n-tuple.

(c) This follows immediately from the argument in the proof of part (a). More specifically,
since the set of vertices of Bn is invariant under α, there is a bijection between the sets
of values of P and α(P) on Boolean n-tuples.

□

CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France
Email address: Dmitry.Grigoryev@univ-lille.fr

Department of Computer Science, CUNY Graduate Center, 365 5th Ave, New York,
NY 10016

Email address: i.ilmer@icloud.com

Department of Mathematics, Queens College, City University of New York, Queens,
NY 11367

Email address: alexey.ovchinnikov@qc.cuny.edu

Department of Mathematics, The City College of New York, New York, NY 10031
Email address: shpilrain@yahoo.com

	1. Introduction
	2. Scheme description
	2.1. Monte Carlo method for counting positive values of a polynomial on Boolean tuples

	3. Key generation
	3.1. Generating a random t-sparse polynomial
	3.2. Generating a random polynomial from the set G
	3.3. Converting H(m) to a polynomial

	4. Generating an automorphism
	4.1. Generating triangular automorphisms
	4.2. Generating as a composition of triangular automorphisms and permutations

	5. Suggested parameters
	6. Performance and signature size
	6.1. Accuracy of the Monte Carlo method

	7. What is the hard problem here?
	8. Linear algebra attack
	9. Security claims
	10. Conclusion: advantages and limitations of the scheme
	10.1. Advantages
	10.2. Limitations

	References
	Appendix

