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Abstract

With applications in secure messaging, Updatable Public Key Encryption (UPKE) was pro-
posed by Jost et al. (EUROCRYPT ’19) and Alwen et al. (CRYPTO ’20). It is a natural
relaxation of forward-secure public-key encryption. In UPKE, we can update secret keys by
using update ciphertexts which any sender can generate. The UPKE schemes proposed so far
that satisfy the strong CCA security are Haidar et al.’s concrete construction (CCS ’22) and
Dodis et al’s generic construction that use Non-Interactive Zero-Knowledge (NIZK) arguments.
Yet, even despite the aid of random oracles, their concrete efficiency is quite far from the most
efficient CPA-secure scheme. In this paper, we first demonstrate a simple and efficient attack
against Dodis et al.’s strongly CCA-secure scheme, and show how to fix it. Then, based on the
observation from the attack and fix, we propose a new strongly CCA-secure generic construction
for a UPKE scheme with random oracles and show that its instantiation is almost as concretely
efficient as the most efficient CPA-secure one.

1 Introduction
Forward security (or forward secrecy), which is practically crucial for secure communication pro-
tocols such as Transport Layer Security (TLS) and secure-messaging protocols such as Signal,
guarantees that even if users’ secret keys are compromised, messages previously exchanged be-
fore the compromise remain secure. In the symmetric-key setting, forward security can be easily
achieved with Pseudo-Random Generator (PRG) [BY03]; one has an initial seed s0 and iteratively
runs PRG : {0, 1}λ → {0, 1}2λ to generate (ki, si) from si−1, where ki is a one-time key and si is
a seed for the next update. However, the symmetric-key approach does not scale since it is hard
to efficiently and dynamically add or remove users to or from a group. Although an interactive
group key-agreement protocol (e.g., [KLL04]) allows users to join and leave the group dynamically,
it could take longer to run, especially when some users are offline.1 The requirement that all users
are always active and behave faithfully is unrealistic, particularly in the context of secure messaging.

Forward-Secure Public-Key Encryption (FS-PKE) [CHK03] provides efficient key-evolving func-
tionality in the public-key setting; any sender can update a public key “· · · → pki → pki+1 → · · · ”

1A trivial solution in the public-key setting, i.e., refresh all users’ pairs of public and secret keys, has the same
problem and requires all users to be online for each update.
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consistently with the corresponding secret key “· · · → ski → ski+1 → · · · ,” which is only up-
dated by a receiver.2 Any ciphertexts encrypted under pki can be decrypted with ski, and the key
chain guarantees the one-wayness of secret keys, i.e., forward security; even if ski is exposed, no
ciphertexts encrypted under pkj for any j < i are compromised. However, a major drawback of
FS-PKE is efficiency. Canetti et al. [CHK03] showed that Hierarchical Identity-Based Encryption
(HIBE) [GS02, HL02] implies an asymptotically efficient FS-PKE scheme. Although HIBE can
be instantiated from various assumptions over bilinear groups [BB04, BBG05], lattices [CHK+12],
and even pairing-free groups [DG17], these concrete HIBE schemes (and, therefore, the resulting
FS-PKE schemes) either require relatively expensive techniques such as pairings or are considerably
less efficient than many simple PKE schemes.

Another important security requirement for modern secure messaging protocols is backward
security (or post-compromise security), which guarantees that once the exposure of secret keys
ends, security can be restored by updating secret keys. Unfortunately, FS-PKE never supports
backward security since the public-key update procedure is deterministic; the adversary who has
an exposed secret key ski can obtain a sequence of the future secret keys ski+1, ski+2, . . .. Although
several key-evolving PKE schemes support backward security [DKX+02, DFK+03, DFK+04], they
seem to essentially require computational costs at least as expensive as HIBE, as in FS-PKE.

Updatable Public-Key Encryption. Motivated by practically efficient forward and backward
security in secure messaging protocols, Jost et al. [JMM19] and Alwen et al. [ACD+20] recently
put forward a notion of Updatable Public-Key Encryption (UPKE), a mild variant of the above
key-evolving PKE schemes.3 UPKE allows any sender to initiate key updates, whereas senders
are forced to synchronize key-update intervals with the receiver, who has a secret key in FS-PKE.
Specifically, any sender can update pki to pki+1 and generate (encrypted) update information upi+1,
called an update ciphertext. The receiver updates ski to ski+1 with upi+1 so as to be consistent
with pki+1. Indeed, UPKE meets both forward and backward security (in the above sense) and
can close the gap in the efficiency between the existing key-evolving PKE and standard PKE
schemes; Jost et al. [JMM19] and Alwen et al. [ACD+20] showed a UPKE scheme based on the
hashed ElGamal PKE scheme, i.e., from the computational Diffie–Hellman (CDH) assumption in
the Random Oracle Model (ROM). Following these seminal works, Dodis et al. [DKW21] got rid
of the random oracles and proposed two concrete UPKE schemes from Decisional Diffie–Hellman
(DDH) and the Learning with Errors (LWE) assumptions in the standard model, respectively.
Recently, Haidar et al. [HLP22] showed a UPKE scheme from the Decisional Composite Residuosity
(DCR) assumption without random oracles.

Chosen-Randomness Security vs. Chosen-Update Security. In addition to standard secu-
rity notions against Chosen-Plaintext Attacks (CPA) and Chosen-Ciphertext Attacks (CCA), there
are two kinds of security notions for update operations in UPKE: Chosen-Randomness (CR) and
Chosen-Update (CU) security. The seminal works [JMM19, ACD+20] originally considered the
former in the context of secure messaging protocols; it captures the exposure of intermediate values
of computations (including the randomness r′ used for key updates) during sessions, and therefore
an adversary can obtain vulnerable secret keys sk′i updated by the exposed randomness r′. For that
matter, the adversary is even allowed to arbitrarily choose “bad” randomness to have the target
receiver update secret keys with it. The UPKE constructions listed in the last paragraph all satisfy

2In the seminal work [CHK03], FS-PKE allows receivers to update their secret keys ski without updating the
corresponding public keys pk. Nevertheless, FS-PKE can be viewed as a key-evolving PKE by setting pki = (pk, i).

3To be precise, UPKE does not always support backward security, though it meets forward security in any case.
Nevertheless, UPKE clearly differs in the possibility of backward security from FS-PKE (see [JMM19, Sec. 4] for the
detailed discussion).
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CR-CPA security.
Dodis et al. [DKW21] introduced CU security; it allows the adversary to provide a (maliciously-

generated) public key pk′i and update ciphertext up′i to the target receiver, instead of the exposed
randomness r′. It is clear that CU security is stronger than CR since the CU adversary does
not necessarily follow the update procedure and choice of randomness. Taking into account the
presence of such malicious senders who attempt to impersonate honest ones, CU security is much
closer to reality. Thus, we mainly focus on CU security in this paper. To date, there are only
two approaches to achieving CU security. The first is generic transformations, as proposed by
Dodis et al. [DKW21]. Specifically, they showed two generic transformations that lift CPA to
CCA security and CR to CU security, respectively. Hence, any CR-CPA-secure UPKE scheme
can be transformed into a CU-CCA-secure one. Both transformations employ one-time, strong,
true-simulation f -extractable Non-Interactive Zero-Knowledge (NIZK) arguments. Although the
NIZK arguments with those properties can be instantiated by, e.g., Groth–Sahai proof [GS08], its
practically efficient instantiation is unclear. The second one is Haidar et al.’s direct construction
from the DCR assumption in the ROM [HLP22]. The construction is based on their CR-CPA-secure
scheme in the standard model and avoids using an inefficient NIZK argument; instead, they build
a Σ-protocol and apply the Fiat-Shamir transformation to construct an efficient NIZK argument.
Therefore, though it requires random oracles to lift CR to CU security, the construction is more
practical than Dodis et al.’s transformation. Yet, despite the aid of random oracles, the concrete
efficiency of their CU-CCA-secure scheme is quite far from Jost et al.’s CR-CPA-secure UPKE
scheme (see Table 1).

Going back to the original motivation of UPKE [JMM19, ACD+20], it was introduced and
investigated in the hope of being used for secure messaging protocols. Therefore, in that sense, the
concrete rather than asymptotic efficiency of UPKE is a crucial issue; to be put to practical use,
i.e., used as a critical primitive in secure messaging protocols, UPKE has to be comparable to the
existing primitives, such as the X3DH protocol [MP16] and the double ratchet protocol [PM16] in
the Singal [Sig]. Thus, the question we ask in this paper is:

How efficiently can we make a CU-CCA-secure UPKE scheme? In particular, is it possible to
realize a CU-CCA-secure UPKE scheme almost as concretely efficient as Jost et al.’s scheme?

1.1 Our Contributions

In this paper, we give an affirmative answer to the above question; we show a CU-CCA-secure
UPKE scheme almost as concretely efficient as the most-efficient-ever UPKE scheme, i.e., Jost et
al.’s scheme. Indeed, Jost et al.’s UPKE scheme is just a variant of hashed ElGamal PKE, and
therefore, our results show that UPKE could reach the same efficiency level as standard PKE.
Specifically, our contributions are two-fold.

First, along the way to our main result above, we show a practical attack breaking CR/CU-
CCA-security of Dodis et al.’s CPA-to-CCA transformation [DKW21] and how to modify it. Specif-
ically, we formalize a special property of UPKE, called non-influential randomness, and show
that it contradicts CCA security but not CPA. Indeed, all the existing CR-CPA-secure UPKE
schemes [JMM19, ACD+20, DKW21, HLP22] satisfy this property. We then show that our attack
is effective and efficient against CCA-secure UPKE schemes obtained via Dodis et al.’s CPA-to-
CCA transformation (even in a CR setting) if the underlying CPA-secure UPKE scheme meets
the non-influential randomness. To put it differently, the property is carried over to the resulting
CCA-secure scheme. We also show how to modify their transformation, namely, how not to take
over the special property in the transformation.
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Table 1: Comparison for existing UPKE schemes with 128-bit security.

Scheme Secret key Public key Ciphertext
Update

ciphertext
Security ROM

Jost et al. [JMM19] 256b 512b 512b 512b CR-CPA yes
Dodis et al. [DKW21] 1.3kb 328kb 328kb 419Mb CR-CPA no
Haidar et al. [HLP22] 4.6kb 6.1kb 12kb 12kb CR-CPA no
Ours (with [JMM19]) 256b 512b 512b 1kb CU-CPA yes
Haidar et al. [HLP22] 4.6kb 6.1kb 66kb 12kb CR-CCA yes
Haidar et al. [HLP22] 4.6kb 9.2kb 91kb 105kb CU-CCA yes
Ours (with [JMM19]) 256b 640b 768b 512b CR-CCA yes
Ours (with [JMM19]) 256b 640b 768b 1kb CU-CCA yes

Second, as our main result, we propose a new generic transformation from CR-CPA to CU-CCA
security in the ROM. Unlike the existing transformation, our generic construction no longer requires
NIZK arguments and is almost as concretely efficient as the underlying CR-CPA-secure UPKE
scheme (see Table 1). Namely, as in the seminal works [JMM19, ACD+20], we use random oracles
to circumvent a circular-security issue and make the resulting scheme efficient, and we differently
employ random oracles for the lifting of CR to CU security; we apply the double Fujisaki-Okamoto
(FO) transformation for that aim, whereas the Haidar’s CU-CCA-secure scheme [HLP22] employs
the Fiat–Shamir heuristic with random oracles. In that sense, we only require the one-wayness of
CR-CPA security, i.e., OW-CR-CPA security, not indistinguishability (IND-CR-CPA security).

Efficiency Comparison. Table 1 compares the efficiency of the CR/CU-CCA-secure UPKE
schemes among existing schemes and our schemes instantiated with Jost et al.’s CR-CPA-secure
scheme [JMM19]. As reference, we also show a comparison between Jost et al.’s CR-CPA-secure
scheme in the ROM and Haidar et al.’s CR-CPA secure scheme in the standard model. Specifically,
we compare the sizes of secret keys, public keys, ciphertexts, and update ciphertexts when satisfying
128-bit security. Based on this comparison, we can say that our CR/CU-CCA-secure UPKE schemes
are more efficient than Haidar et al.’s CR/CU-CCA-secure UPKE schemes. Specifically, it can be
seen that our schemes are efficient by an order of magnitude (2 to 100 times) for each parameter
size. We note that the comparison in Table 1 does not take into account the security loss caused
by security proofs, so it is necessary to consider the effect of the security loss when conducting a
rigorous parameter evaluation.

1.2 Technical Overview

In this section, we give an overview of our results.

Updatable Public-Key Encryption. We start describing the syntax of UPKE: it consists of
standard PKE algorithms (Gen,Enc,Dec) and the following update algorithms (UpdPk,UpdSk) for
public and secret keys:

(pki, upi)← UpdPk(pki−1; ri), ski ← UpdSk(pki−1, ski−1, (pki, upi)),

where ri is update randomness used in UpdPk, upi is an update ciphertext, and it holds Dec(pki,
ski,Enc(pki,M)) = M for any epoch i. Any sender can initiate the update procedure and execute
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UpdPk to update pki−1 to pki and generate an update ciphertext upi. Receiving (pki, upi), a receiver
updates the corresponding secret key ski−1 to ski.

As described earlier, there are two kinds of security notions related to the update procedures
of UPKE: CR and CU security. Loosely speaking, CR security captures “leakage and malicious
modifications to update randomness,” whereas CU security captures “leakage and malicious mod-
ifications to whole update information (including update randomness).”

• CR Security: A CR adversary is allowed to arbitrarily choose update randomness r∗i and
force the target receiver to run the UpdPk algorithm with r∗i . It is worth noting that the
CR adversary may choose the update randomness over arbitrary probability distribution. If
chosen uniformly at random, it captures that the CR adversary observes the leakage of update
randomness.

• CU Security: A CU adversary can create maliciously-generated public keys pk∗i and update
ciphertexts up∗i and force the target receiver to use them for the UpdSk algorithms. Note that
the CU adversary may not follow the protocol, whereas pk∗i and up∗i are honestly generated
except for the choice of the update randomness in CR security. Hence, CU security is a
stronger security notion than CR.

Combined with CPA and CCA security, there are four security notions for UPKE, CR-CPA,
CU-CPA, CR-CCA, and CU-CCA, where the first is the weakest, and the last is the strongest.
Existing Construction Approaches for CU-CCA-Secure UPKE. All related works [JMM19,
ACD+20, DKW21, HLP22] have begun working on constructing CR-CPA-secure schemes directly,
and then some of the works extended them to strongly secure ones, e.g., CU-CCA-secure schemes.
In particular, only two existing ways to enhance CR-CPA security to CU-CCA.

• CU-CCA Security in the ROM [HLP22]: Haidar et al. extended their CR-CPA-secure UPKE
construction from the DCR assumption to a CU-CCA-secure scheme in the ROM by using
a specific and efficient NIZK argument that supports a limited language (but compatible
with their CR-CPA-secure scheme). They employed the variant of Naor–Yung transforma-
tion [NY90] with the Fiat–Shamir heuristic [FS86] to construct such an efficient NIZK argu-
ment, which can be the downside of this approach; this specific NIZK argument cannot be
applied to other CR-CPA-secure UPKE schemes.

• CU-CCA Security in the Standard Model [DKW21]: Dodis et al. proposed two transforma-
tions for UPKE: the one lifts CPA security to CCA, and the other lifts CR security to CU,
which we call the CPA-to-CCA and CR-to-CU transformations. These transformations also
employ NIZK arguments. In particular, since Dodis et al. viewed (CR-CPA-secure) UPKE
schemes as a kind of PKE schemes with circular security and leakage resilience, they required
strong properties of NIZK arguments to lift CPA security to CCA even in the leakage-resilient
setting. It is worth noting that the two transformations do not require random oracles, though
it is unclear how to efficiently instantiate such a strong NIZK argument.

As seen above, both approaches are based on NIZK arguments, which seem to be an efficiency
bottleneck: if one wants to realize CU-CCA-secure schemes without random oracles, inefficient
NIZK arguments seem necessary; even with random oracles, one has to narrow down the language
the NIZK supports to keep efficiency. Although Haidar et al.’s CU-CCA-secure scheme requires
random oracles, their CR-CPA-secure UPKE scheme does not require any random oracles, so its
parameter sizes are relatively large.
A Simple Attack against Dodis et al.’s CPA-to-CCA Transformation. Along the way
to pursuing efficient CU-CCA-secure UPKE schemes, we find a simple and efficient attack against
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Dodis et al.’s CPA-to-CCA transformation. To be precise, this attack works if the underlying
CPA-secure UPKE scheme satisfies a certain property, however, all the existing CPA-secure UPKE
schemes [JMM19, ACD+20, DKW21, HLP22] indeed meet it.

Let us briefly explain here with an instantiation of the CPA-to-CCA transformation from Jost
et al.’s scheme [JMM19]. A public and secret keys are given by:

pki := (g, h := gx,CRS) and ski := x,

where g is a generator of a cyclic group G of order q, x ∈ Zq, and CRS is a common reference string
of the underlying NIZK argument. The UpdPk and UpdSk algorithms are defined as follows.

• UpdPk(pki): Choose update randomness r
$← Zq and output pki+1 := (g, h · gr,CRS) and

upi+1 ← Enc(pki, r).

• UpdSk(pki, ski, (pki+1, upi+1)): Run r ← Dec(pki, ski, upi+1) and output ski+1 := x+ r mod q.

Here, let us briefly explain the CU-CCA-security game between an adversary A and a challenger
C. The adversary A can make either update or challenge queries: upon an update query on the
update randomness ri, where i denotes the current epoch, the challenger C generates updated public
and secret keys such that pki+1 := (g, h · gri ,CRS) and ski+1 := x + ri mod q; upon the challenge
query (M∗

0,M∗
1), A receives the challenge ciphertext ct∗, which is encrypted by pki∗ , where i∗ is the

challenge epoch. Although A is not allowed to make a decryption query on ct∗ at the challenge
epoch i∗ to prevent a trivial attack, A can make a decryption query on ct∗ once the public and
secret keys are updated, i.e., the epoch goes by.

Now, A tries to break the CU-CCA security as follows. At the challenge epoch i∗, A sets
update randomness ri∗ := 0 and makes an updated query on ri∗ . Then, A forces C to compute
(pki∗+1, ski∗+1) such that (pki∗+1, ski∗+1) = (pki∗ , ski∗), since pki∗+1 := (g, h ·g0,CRS) and ski∗+1 :=
ski∗+0 mod q. As described above, A can now make a decryption query on the challenge ciphertext.
Since (pki∗+1, ski∗+1) = (pki∗ , ski∗), A obtains the decryption result of the challenge ciphertext and
breaks the CU-CCA security.

Why Does the Attack Succeed? The attack succeeds since if the underlying CPA-secure
UPKE scheme meets the property that there exists update randomness r∗ such that (pki∗+1, ski∗+1) =
(pki∗ , ski∗), the CPA-to-CCA transformation inherits it. In the main part, we formally reveal and
define the property as non-influential randomness, and demonstrate a generalized version of the
above attack. We want to emphasize that the property of non-influential randomness contradicts
CCA security but does not contradict CPA, and all the existing CPA-secure schemes meet it.

How to Fix the Flaw. The above attack enables the adversary to get the decryption result
of the challenge ciphertext since the adversary can create a situation for generating the same
public and secret keys as those at the challenge epoch. To prevent this attack, they must have
essentially different key pairs of public and secret keys in different epochs. We give an overview of
our modification of Dodis et al.’s CPA-to-CCA transformation below.

1. Change the public key pki = (g, h,CRS) (and the corresponding relation) to (g, h, i ,CRS)
to make it explicit that the public key has an epoch.

2. Change the Enc and Dec algorithms so that an epoch is embedded into a ciphertext ct ←
Enc(pki, [i‖M] ), instead of Enc(pki,M).
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Our Efficient Generic Construction. Going back to our main goal: to construct an efficient
CU-CCA-secure UPKE scheme. As mentioned earlier, towards our goal, it is preferable to avoid
using NIZK arguments to achieve CU-CCA security. Therefore, we employ the Fujisaki-Okamoto
(FO) transformation [FO99, FO13] twice to lift both CPA and CR security to CCA and CU,
respectively.

First, let us see the encryption procedure of the original FO transformation below.

ct := (Enc(pk, σ;H(σ,SKE.Enc(G(σ),M)), SKE.Enc(G(σ),M)) ,

where

• SKE.Enc is an encryption algorithm of symmetric-key encryption that takes as input a com-
mon secret key and a plaintext M.

• σ is a random value chosen from the plaintext space of PKE,

• G and H are random oracles.

The above encryption procedure is sufficient to achieve CCA security of traditional (i.e., non-
updatable) PKE, but it is actually insufficient for the CCA security of UPKE. As discussed in the
last paragraph, we need to embed the epochs into the public keys and ciphertexts not to have the
property of non-influential randomness. We fix the above for UPKE by embedding the epoch i into
H as follows.

ct := (Enc(pki, σ;H(i, σ,SKE.Enc(G(σ),M))), SKE.Enc(G(σ),M)).

Thanks to the above modification, the challenger in the CCA security game can easily reject the
ciphertexts which generated at the different epoch j. Indeed, our attack described earlier no longer
works. This is our CPA-to-CCA transformation without NIZK arguments; it yields better efficiency
than the existing ones and is applicable to all the existing CPA-secure UPKE schemes.

Although our CR-to-CU transformation can be realized similarly to the above, we can fine-tune
our variant of the FO transformation since, roughly speaking, there is no challenge query in the
sense of update queries. Specifically, we do not need to embed an epoch into update ciphertexts
since the challenger does not return the update information to the adversary, unlike the challenge
query.

2 Preliminaries
Notation. Throughout the paper, λ denotes a security parameter. For a finite set S, s

$← S
denotes a sampling of an element of s from S uniformly at random and let|S| denotes a cardinality
of S. Probabilistic polynomial time is abbreviated as PPT.

Useful Lemma. In this paper, we use the following lemma.

Lemma 1 (Difference Lemma [Sho04]). Let A, B, and F be events defined in some probability
distribution, and suppose that A ∧B ⇔ B ∧ ¬F . Then, |Pr[A]− Pr[B]| ≤ Pr[F ] holds.

2.1 Updatable Public Key Encryption

Syntax. LetM and R be the message and the randomness spaces determined only by the security
parameter, respectively. A UPKE scheme Π consists of the five algorithms (Gen,Enc,Dec,UpdPk,
UpdSk) as follows:
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Gen(1λ)→ (pk0, sk0): On input the security parameter λ, it outputs an initial public key pk0 and
an initial secret key sk0.

Enc(pki,M)→ ct: On input a public key pki for epoch i and a plaintext M, it outputs a ciphertext
ct.

Dec(pki, ski, ct)→ M or ⊥: On input a public key pki, a secret key for epoch i, and a ciphertext
ct, it outputs the plaintext M or ⊥, which indicates the failure of decryption.

UpdPk(pki)→ (pki+1, upi+1): On input a public key pki for epoch i, it outputs a new public key
pki+1 and an update ciphertext upi+1 for next epoch i+ 1.

UpdSk(pki, ski, (pki+1, upi+1))→ ski+1 or⊥: On input a pubic key pki, a secret key ski for epoch i,
and an update ciphertext upi+1, it outputs a new secret key ski+1 for next epoch i+ 1.

Correctness. For all λ ∈ N, all ` ∈ N, all (pk0, sk0) ← Gen(1λ), all M ∈ M, all i ∈ {0, . . . , `},
it is required that Dec(pki, ski,Enc(pki,M)) = M holds with overwhelming probability, where
(pkj , upj)← UpdPk(pkj−1), skj ← UpdSk(pkj−1, skj−1, (pkj , upj)) for j = 1, . . . , `.
Security. In this paper, we almost follow the security notions defined by Dodis et al. [DKW21].

Definition 1 (IND-CR-CPA Security [DKW21]). The IND-CR-CPA security of a UPKE scheme
Π is defined by a game between an adversary A and a challenger C as follows:

Init: C runs (pk0, sk0)← Gen(1λ) and gives pk0 to A.

Phase 1: A is allowed to make the following update queries to C.

Update query: A is allowed to make the query on ri ∈ R where i is the current epoch.
Upon the query, C runs (pki+1, upi+1) ← UpdPk(pki; ri) and ski+1 ← UpdSk(pki, ski,
(pki+1, upi+1)).

Challenge query: A is allowed to make the query only once. Upon A’s query on (M∗
0,M∗

1) ∈M2,
where M∗

0 and M∗
1 have the same length. Then C flips a coin coin∗ $← {0, 1} and runs ct∗ ←

Enc(pktc ,M∗
coin∗) where tc is the current epoch. Finally, C returns ct∗ to A.

Phase 2: A is allowed to make update queries as in Phase 1.

Reveal query: For the query ⊥ from A, C chooses a randomness r∗
$←R, and runs (pk∗tr , up∗)←

UpdPk(pktr−1; r
∗) and sk∗tr ← UpdSk(pktr−1, sktr−1, (pk∗tr , up∗tr)) where tr is the current epoch.

Then, C returns (pk∗tr , up∗tr , sk
∗
tr) to A.

Guess: At the end of the game, A returns ĉoin ∈ {0, 1} as a guess of coin.

The adversary A wins in the above game if ĉoin = coin∗ and the advantage is defined to

AdvIND-CR-CPA
Π,A (λ) :=

∣∣∣∣Pr
[
ĉoin = coin∗

]
− 1

2

∣∣∣∣ .
If AdvIND-CR-CPA

Π,A (λ) is negligible in the security parameter λ for all PPT adversaries A, a UPKE
scheme Π is said to satisfy IND-CR-CPA security.

Next, we define IND-CU-CCA security, the strongest security notion in UPKE, based on Dodis
et al.’s one [DKW21, DKW22]. We suppose UpdSk also performs the consistency check in our
definition, whereas Dodis et al. separately defined UpdSk and VerifyUpd algorithms.
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Definition 2 (IND-CU-CCA Security). The IND-CU-CCA security of a UPKE scheme Π is defined
by a game between an adversary A and a challenger C as follows:

Init: C runs (pk0, sk0)← Gen(1λ) and gives pk0 to A.

Phase 1: A is allowed to make the following two types of queries to C.

Update query: A is allowed to make the query on (pki+1, upi+1) where i is the current
epoch. Upon the query, C runs UpdSk(pki, ski, (pki+1, ski+1)) and rejects update if it
outputs ⊥ otherwise returns the result as ski+1.

Decryption query: A is allowed to make the query on ct. Upon the query, C runs Dec(pki,
ski, ct) and returns the result, where i is the current epoch.

Challenge query: A is allowed to make the query only once. Upon A’s query on (M∗
0,M∗

1) ∈M2,
where M∗

0 and M∗
1 have the same length. Then C flips a coin coin∗ $← {0, 1} and runs ct∗ ←

Enc(pktc ,M∗
coin∗) where tc is the current epoch. Finally, C returns ct∗ to A.

Phase 2: A is allowed to make the queries as in Phase 1 with the following exceptions:

Decryption query: A is not allowed to make the query on ct∗ without making an update
query. In other words, A’s query ct on a epoch i satisfies (i, ct) 6= (tc, ct∗).

Reveal query: For the query ⊥ from A, C chooses a randomness r∗ $←R, and runs (pk∗tr , up∗tr)←
UpdPk(pktr ; r∗) and sk∗tr ← UpdSk(pktr−1, sktr−1, (pk∗tr , up∗tr)) where tr is the current epoch.
Then, C returns (pk∗tr , up∗tr , sk

∗
tr) to A.

Guess: At the end of the game, A returns ĉoin ∈ {0, 1} as a guess of coin.

The adversary A wins in the above game if ĉoin ∈ {0, 1} as a guess of coin.

AdvIND-CU-CCA
Π,A (λ) :=

∣∣∣∣Pr
[
ĉoin = coin∗

]
− 1

2

∣∣∣∣ .
If AdvIND-CU-CCA

Π,A (λ) is negligible in the security parameter λ for all PPT adversaries A, a UPKE
scheme Π is said to satisfy IND-CU-CCA security.

2.2 Symmetric Key Encryption

Syntax. LetM and SK be the message and the secret key spaces determined only by the security
parameter, respectively. An SKE scheme Γ consists of the two algorithms (SKE.Enc,SKE.Dec) as
follows:

SKE.Enc(k,M)→ ct: On input a secret key k and a plaintext M, it outputs a ciphertext.

SKE.Dec(k, ct)→ M or⊥: On input a secret key and a ciphertext ct, it outputs the plaintext M.

Correctness. For all λ ∈ N, all k ∈ SK, all M ∈ M, it is required that Dec(k,Enc(k,M)) = M
holds.

Definition 3 (OT-CPA security). The OT-CPA security of an SKE scheme Γ is defined by a game
between an adversary A and a challenger C. The game is parameterized by the security parameter
λ. The game proceeds as follows: A sends (M∗

0,M∗
1) ∈M2 to C. C chooses coin∗ $← {0, 1}, k $← SK,

9



runs ct∗ ← SKE.Enc(k,M∗
coin∗), and sends ct∗ to A. Finally, A outputs ĉoin as a guess of coin∗ and

terminates the game. In this game, A’s advantage is defined by

AdvOT-CPA
Γ,A (λ) :=

∣∣∣Pr
[
ĉoin = coin∗

]∣∣∣ .
If AdvOT-CPA

Γ,A (λ) is negligible in the security parameter λ for all PPT adversaries A, an SKE scheme
Γ is said to satisfy OT-CPA security.

2.3 Non-Interactive Zero-Knowledge

Syntax. A NIZK argument for a polynomial relation R consists of the three algorithms as follows:

Setup(1λ)→ (CRS, tk, ek): On input the security parameter λ, it outputs a common reference string
(CRS), a trapdoor key tk, and an extraction key ek.4

Prove(CRS, x, w)→ π: On input a CRS, a statement x, and a witness w with R(x,w) = 1, it
outputs a proof π.

Vrfy(CRS, x, π)→ 1 or 0: On input a CRS, a statement x, and a proof π, it outputs 1 or 0.

In the generic constructions by Dodis et al. [DKW21, DKW22], a NIZK is used that satisfies
completeness, soundness, zero knowledge, and strong extractability. In this paper, we only introduce
the definition of completeness because we only use completeness for the attack.

Definition 4 (Completeness). For all λ ∈ N, all (x,w) ∈ R, and all (CRS, tk, ek) ← Setup(1λ), it
is required that Vrfy(CRS, x,Prove(CRS, x, w)) = 1 holds.

3 Security Analysis of Dodis et al.’s UPKE Scheme
There are only two existing ways to achieve CU-CCA-secure UPKE schemes.

• Haidar et al. [HLP22] provided a direct CR-CPA-secure UPKE construction from the DCR
assumption, and extended it to a CU-CCA-secure scheme with the aid of random oracles.

• Dodis et al. [DKW21] proposed two transformations for UPKE: the one converts CR/CU-
CPA security into CR/CU-CCA, called the CPA-to-CCA transformation, and the other con-
verts CR-CPA/CCA security into CU-CPA/CCA, called the CR-to-CU transformation. Since
CR-CPA-secure UPKE schemes from the DDH and LWE assumptions, respectively, in the
standard model, one obtains CU-CCA-secure UPKE schemes from those assumptions. It is
worth noting that the two transformations do not require random oracles, though they employ
NIZK arguments with strong properties instead.

In this section, we point out that Dodis et al.’s CPA-to-CCA transformation has a fatal flaw when
the underlying CPA-secure UPKE scheme satisfies the property of non-influential randomness,
which is introduced in Sec. 3.1. We can break the CCA security of the CPA-to-CCA transformation
with our simple and efficient attack demonstrated in Sec. 3.2. Indeed, all existing CR-CPA-secure
schemes [JMM19, ACD+20, DKW21, HLP22] satisfy the particular property; therefore, our security
analysis shows that the CPA-to-CCA transformation does not work with any existing CPA-secure
UPKE scheme. Nevertheless, we also show that the transformation can be fixed with a slight
modification in Sec. 3.3.

4tk and ek are used to define security notions such as zero knowledge and strong extractability, although we omit
their definitions.
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3.1 UPKE with Non-Influential Randomness

We reveal and formalize the property that all the existing CPA-secure UPKE schemes have, called
non-influential randomness. Roughly speaking, we say a UPKE scheme has non-influential random-
ness if there exists efficiently computable randomness r∗ such that it holds (pki+1, ski+1) = (pki, ski)
for some epoch i, where (pki+1, upi+1) ← UpdPk(pki; r∗), ski+1 ← UpdSk(pki, ski, (pki+1, upi+1)).
Namely, the randomness r∗ has no influence on key updates. Note that such non-influential ran-
domness can be a sequence; namely, if there exists a sequence of randomness (r∗i , r∗i+1, . . . , r

∗
i+`) such

that it holds (pki+`, ski+`) = (pki, ski) for some epoch i, where (pki+j , upi+j)← UpdPk(pki+j−1; r
∗),

ski+j ← UpdSk(pki+j−1, ski+j−1, (pki+j , upi+j)) for every j = 1, . . . , `.

Definition 5 (UPKE with Non-Influential Randomness). Let Π = (Gen,Enc,Dec,UpdPk,UpdSk)
be a UPKE scheme. Consider a game between a PPT adversary A∗ and a challenger C as follows:

Init: C sets a counter ctr = 0 and runs (pk0, sk0)← Gen(1λ) and gives pk0 to A∗.

Update query: A∗ is allowed to iteratively make the update query. Upon the query, C sets
ctr = ctr + 1, and runs (pkctr, upctr) ← UpdPk(pkctr−1) and skctr ← UpdSk(pkctr−1, skctr−1,
(pkctr, skctr)). C returns (pkctr, upctr, skctr).

Challenge query: Upon A∗’s query on (r∗1, r
∗
2, . . . , r

∗
` ), which is issued only once, where ` is poly-

nomial in λ. For every j = 1, 2, . . . , `, C runs (pkctr+j , upctr+j) ← UpdPk(pkctr+j−1; r
∗
j ) and

skctr+j ← UpdSk(pkctr+j−1, skctr+j−1, (pkctr+j , skctr+j)). C returns (pkctr+`, skctr+`) and (pkctr,
skctr) as the output of the game and halts the game.

We say that the UPKE scheme has non-influential randomness if for all PPT adversaries A∗, it
holds

(pkctr+`, skctr+`) = (pkctr, skctr),

with overwhelming probability in λ.

It is worth noting that the above property does not contradict CR/CU-CPA security since the
property brings the CPA adversary no benefit; even if the CPA adversary has the challenger produce
(pktc+`, sktc+`) such that (pktc+`, sktc+`) = (pktc , sktc) for some ` ∈ N and tc is the challenge epoch,
all information the CPA adversary can obtain after the challenge query is the response to the reveal
query (pk∗tr , up∗tr , sk

∗
tr), which is randomized with fresh randomness chosen by the challenger.

Indeed, all the existing CR-CPA secure UPKE schemes [JMM19, ACD+20, DKW21, HLP22]
satisfy the property of non-influential randomness. Let us show the CR-CPA-secure UPKE scheme
under the CDH assumption in the ROM by Jost et al. [JMM19] as an example. Let M and
H : {0, 1}∗ →M denote a plaintext space and random oracle, respectively.

Gen(1λ)→ (pk0, sk0): Choose a cyclic group G of order q with a generator g, which is determined
by the security parameter λ, and choose x

$← Zq. Output pk0 := (g, gx) and sk0 := x.

Enc(pki,M)→ ct: Parse pki = (g, h) and output ct = (gs,H(hs)⊕M), where s
$← Zq.

Dec(pki, ski, ct)→ M: Parse ski = x and ct = (a, b), and output H(ax)⊕ b.

UpdPk(pki)→ (pki+1, upi+1): Parse pki = (g, h), choose r
$← Zq, and output pki+1 := (g, h ·gr) and

upi+1 := Enc(pki, r).

UpdSk(pki, ski, (pki+1, upi+1))→ ski+1: Parse ski = x, run r ← Dec(pki, ski, upi+1), and output
ski+1 := x+ r mod q.
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We can construct the adversary A∗ against the game in Def. 5 of the above scheme as follows:
the challenger C generates (pk0, sk0) = ((g, gx), x) and gives pk0 to A∗. A∗ makes a challenge query
r∗ := 0 and the challenger runs the UpdPk and the UpdSk algorithms. Then, the public and secret
keys at the epoch 1 is (pk1, sk1) = ((g, gx · g0), x+ 0) = ((g, gx), x), which is the same as (pk0, sk0).
Therefore, Jost et al.’s UPKE scheme indeed has non-influential randomness.

Remark 1. In the above attack against Jost et al.’s scheme, we demonstrated the simplest case; we
use the fact that 0 is the identity element of the secret key space Zq and g0 = 1 is also the identity
element of the public key space G. A naive countermeasure is to modify UpdPk and UpdSk so that
they halt if the randomness r is the identity element. However, as stated in Def. 5, the adversary
is allowed to make multiple update queries, and we can improve the above attack to circumvent
the countermeasure: Suppose the adversary randomly chooses r1, r2, . . . , ri ∈ Zq and use them as
i update queries. Now the challenger has a correctly generated key-pair (pki, ski). the adversary
arbitrarily chooses i and `, and randomly chooses r′1, r

′
2, . . . , r

′
` ∈ Zq such that

∑`
j=1 r

′
j = 0 mod q.

After the challenge query on (r′1, r
′
2, . . . , r

′
`), it obviously holds (pki+`, ski+`) = (pki, ski). Although

one can check all the previous keys to detect the above attack, it seems unrealistic and inefficient.

Although the property of non-influential randomness may coexist with CPA security by def-
inition, in contrast, it hinders CCA security due to decryption queries. Specifically, the CCA
adversary is allowed to make decryption queries on even the challenge ciphertext after the epoch
when the challenge query is made. Therefore, the adversary easily breaks CCA security by issuing a
decryption query on the challenge ciphertext at the epoch ` such that (pktc+`, sktc+`) = (pktc , sktc),
where tc is the epoch when the adversary makes the challenge query.

3.2 Security Analysis of Dodis et al’s CPA-to-CCA Transformation

We show a simple and efficient attack against the CPA-to-CCA transformation proposed by Dodis
et al. [DKW21]. It clearly stems from the non-influential randomness property of the CCA-secure
UPKE scheme obtained by the transformation. Put differently, if the underlying CPA-secure scheme
has non-influential randomness, the CPA-to-CCA transformation takes over the property. In that
sense, our attack does not work if the underlying CPA-secure UPKE scheme does not meet the
property; however, as mentioned above, all the known CPA-secure schemes do.

We describe the CPA-to-CCA transformation from any CR/CU-CPA-secure UPKE scheme
Π = (Gen,Enc,Dec,UpdPk,UpdSk) and any NIZK argument Ω = (Setup,Prove,Vrfy) for the re-
lation R =

{
((pki, ct), (M, r)) | ct = Enc(pki,M; r)

}
to a CR/CU-CCA-secure UPKE scheme

Σ = (Gen′,Enc′,Dec′,UpdPk′,UpdSk′) as follows.

Gen′(1λ)→ (pk′0, sk′0): Generate an initial key pair as follows.

• (pk0, sk0)← Gen(1λ),
• (CRS, tk, ek)← Setup(1λ).

Output pk′0 := (pk0,CRS) and sk′0 := sk0.

Enc′(pk′i,M)→ ct′: Parse pk′i = (pki,CRS) and run

• r
$←R,

• ct← Enc(pki,M; r),
• π ← Prove(CRS, (pki, ct), (M, r)).

Output ct′ = (ct, π).
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Dec′(pk′i, sk′i, ct′)→ M or⊥: Parse pk′i = (pki,CRS), sk′i = ski, and ct′ = (ct, π). If 1 ← Vrfy(CRS,
(pki, ct), π) holds, then run and output Dec(pki, ski, ct). Otherwise, output ⊥.

UpdPk′(pk′i)→ (pk′i+1, up′i+1): Parse pk′i = (pki,CRS) and run (pki+1, upi+1)← UpdPk(pki). Then,
output pk′i+1 = (pki+1,CRS) and up′i+1 = upi+1.

UpdSk′(pk′i, sk′i, (pk′i+1, up′i+1))→ sk′i+1: Parse pk′i = (pki,CRS), sk′i = ski, pk′i+1 = (pki+1,CRS),
and up′i+1 = upi+1. Run ski+1 ← UpdSk(pki, ski, (pki+1, upi+1)) and output sk′i+1 := ski+1.

Theorem 1. Let Σ = (Gen′,Enc′,Dec′,UpdPk′,UpdSk′) be the UPKE scheme constructed above.
Then, if the underlying IND-CU-CPA-secure (resp., IND-CR-CPA-secure) UPKE scheme has non-
influential randomness, there exists a PPT algorithm A that breaks IND-CU-CCA security (resp.,
IND-CR-CCA security).

Proof. It is sufficient to show how to break the IND-CU-CCA security of the above UPKE scheme
if the underlying UPKE scheme has non-influential randomness, so we omit the case of IND-CR-
CCA security. For this purpose, we use a PPT adversary A∗, which can efficiently find non-
influential randomness via the game in Def. 5, to construct a PPT adversary A that breaks IND-
CU-CR-CCA security as follows. The challenger C begins the IND-CU-CCA security game, runs
(pk′0 = (pk0,CRS), sk′0 = sk0)← Gen′(1λ), and gives pk′0 toA. A then gives pk0 toA∗. A∗ iteratively
makes update queries to A; for an i-th update query from A∗, A runs UpdPk(pki−1) to get (pki, upi),
and gives (pk′i, up′i) := ((pki,CRS), upi) to C. At some point (suppose that the current epoch is i∗),
A receives a challenge query (r∗1, r

∗
2, . . . , r

∗
` ) for some ` ∈ N from A∗. Then, A chooses M∗

0,M∗
1

$←M
such that |M∗

0| = |M∗
1| ∧M∗

0 6= M∗
1 and makes the challenge query on (M∗

0,M∗
1). Upon A’s challenge

query, C chooses coin∗ ← {0, 1}, runs ct∗ = (ct, π)← Enc′(pk′i∗ ,M∗
coin∗), and returns ct∗ toA. A then

makes an update query on (pk′i∗+j , up′i∗+j) for j = 1, 2, . . . , ` by executing UpdPk(pki∗+j−1; rj) →
(pki∗+j , upi∗+j) and setting (pk′i∗+j , up′i∗+j) := ((pki∗+j ,CRS), upi∗+j). Upon the update query, C
runs UpdSk(pki∗+j−1, upi∗+j−1, (pki∗+j , upi∗+j)) and gets sk′i∗+j . Then, due to the non-influential
randomness property, it holds that (pki∗+`, ski∗+`) = (pki∗ , ski∗) with overwhelming probability.
Finally, A makes a decryption query on the challenge ciphertext ct∗ = (ct, π). Since the current
secret key ski∗+` is the same as the secret key ski∗ at the challenge epoch, A obtains the decryption
result of the challenge ciphertext, which clearly breaks the IND-CU-CCA security.

Note that, in the above attack, we only use the non-influential randomness and correctness
properties of the CR/CU-CPA-secure UPKE scheme Π, and the completeness of the NIZK argument
Ω.

3.3 Fixing the Transformation

The reason why the attack in the previous section succeeds is that the transformation inherits
the property of non-influential randomness that the underlying CPA secure UPKE scheme has.
The non-influential randomness allows the adversary to get the decryption result of the challenge
ciphertext since the adversary can have the challenger generate the same public and secret keys as
those at the challenge epoch. To prevent this attack, they must have essentially different key pairs
of public and secret keys in different epochs.

One may come up with the following naive approach: just appending epoch information to public
and secret keys, i.e., (pk′i, sk′i) := ((pki, i,CRS), (ski, i)), instead of (pk′i, sk′i) := ((pki,CRS), ski).
Unfortunately, this approach does not work since the key pairs are not essentially different; although
it holds (pk′i, sk′i) 6= (pk′i+`, sk′i+`) for any i, `, the parts of the secret keys ski and ski+` could still
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be equivalent due to the non-influential randomness property, and therefore ski+` might be able to
decrypt the challenge ciphertext encrypted at the epoch i.

Based on the above observation, we modify Dodis et al.’s CPA-to-CCA transformation not to
inherit the property by embedding epochs in not only public keys but also ciphertexts. To this
end, we make two minor changes as follows. First, we change the public key pk′i = (pki,CRS) to
(pki, i,CRS) to make it explicit that the public key has an epoch, and the corresponding relation
to R′ =

{
((pki, i, ct), (M, r)) | ct = Enc(pki, [i‖M]; r)

}
. Second, accordingly, we also change the Enc′

and Dec′ algorithms as follows:

Enc′(pk′i,M)→ ct′: Parse pk′i = (pki, i,CRS) and run

• r
$←R,

• ct← Enc(pki, [i‖M]; r),
• π ← Prove(CRS, (pki, i, ct), (M, r)).

Output ct′ = (ct, π).

Dec′(pk′i, sk′i, ct′)→ M or⊥: Parse pk′i = (pki, i,CRS), sk′i = ski, and ct′ = (ct, π). If 1← Vrfy(CRS, (pki,
i, ct), π), then run [i‖M]← Dec(pki, ski, ct) and output M. Ohterwise, output ⊥.

By making the above change, even if the adversary makes a decryption query on a challenge
ciphertext ct∗ after the update queries, the challenger can return ⊥ thanks to the Vrfy algorithm.

Theorem 2. If Π is an IND-CU-CPA-secure (resp., IND-CR-CPA-secure) UPKE scheme and
Ω is a strong one-time true-simulation f -extractable NIZK argument,5 the UPKE scheme Σ =
(Gen′,Enc′,Dec′,UpdPk′,UpdSk′) constructed above meets IND-CU-CCA security (resp., IND-CR-
CCA security).

We omit the proof since it is almost the same as in the original transformation [DKW21].

4 Efficient Generic Construction of CU-CCA-Secure UPKE
As seen above, fortunately, although Dodis et al.’s CPA-to-CCA transformation is fixable, it still
employs NIZK arguments with strong requirements. Their original motivation to use such a strong
NIZK argument is to lift CPA security to CCA in the context of UPKE, which is regarded as PKE
with circular security and leakage resilience by Dodis et al. Their technique can rule out random
oracles; however, it is unclear how the strong NIZK arguments can be efficiently instantiated.

Haidar et al. [HLP22] showed another method to achieving CCA security of UPKE is to apply a
specific variant of the Naor–Yung transformation [NY90] to their CPA-secure UPKE scheme from
the DCR assumption. They proposed a concrete Σ-protocol to prove plaintext equality so that
it is compatible to their specific CPA-secure UPKE scheme, and applied the Fiat–Shamir heuris-
tic [FS86] to make the Σ-protocol non-interactive in the ROM. Although this approach preserves
the efficiency of the underlying CPA-secure scheme, there are two issues with applicability and con-
crete efficiency: first, the Σ-protocol (and the NIZK via the Naor–Yung transformation) supports
a specific language, and therefore it cannot be combined with other CPA-secure schemes; second,
though the variant of the Naor–Yung transformation does not lose the efficiency of the underlying
UPKE scheme that much, the CPA security of the underlying UPKE scheme was proved without
random oracles, and hence it (and the resulting CCA-secure scheme) requires relatively larger con-
crete parameters compared to Jost et al.’s scheme [JMM19]. The above NIZK issues seem to be an

5See the original paper [DKW21] for the detailed definition of such a NIZK argument.
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unavoidable dilemma; even with random oracles, one has to narrow down the language the NIZK
supports to keep efficiency.

Towards concretely efficient CCA-secure UPKE schemes, we take an alternative approach: ap-
plying random oracles to convert any CPA-secure UPKE scheme to a CCA-secure scheme without
using NIZK. To this end, we employ the FO transformation [FO99, FO13] twice to lift both CPA
and CR to CCA and CU, respectively. Therefore, the one-wayness of CR-CPA security suffices to
build our construction, which will be introduced in Sec. 4.1.

4.1 Definitions for UPKE

We define the security notion considering one-wayness called the OW-CR-CPA security, as in OW-
CPA security in PKE.

Definition 6 (OW-CR-CPA Security). The OW-CR-CPA security of a UPKE scheme Π is defined
by a game between an adversary A and a challenger C, which is the same as the IND-CR-CPA
security game defined in Def. 1 except for the following change:

Challenge query: A is allowed to make the query only once. Upon A’s query on ⊥, C chooses
M∗ ←M and runs ct∗ ← Enc(pktc ,M∗) where tc is the current epoch. Finally, C returns ct∗
to A.

Guess: At the end of the game, A returns M̂ as a guess of M∗.

The relationship between OW-CR-CPA and IND-CR-CPA security can be easily derived below.
We omit the proofs, which can be proved similarly to traditional PKE.

Proposition 1. If a UPKE scheme Π satisfies IND-CR-CPA security, it also satisfies OW-CR-CPA
security.

Proposition 2. There exists a UPKE scheme Π that satisfies OW-CR-CPA security but does not
meet IND-CR-CPA security.

We next define γ-spread for UPKE based on the same property of PKE [FO99, FO13].

Definition 7 (γ-spread). A UPKE scheme Π = (Gen,Enc,Dec,UpdPk,UpdSk) is γ-spread if for all
λ, ` ∈ N all (pk0, sk0)← Gen(1λ), all M ∈M, all i ∈ {0, . . . , `}, we have

− log
(

max
ct∈{0,1}∗

Pr
[
h

$←R : ct = Enc((pki,M;h)
])
≥ γ,

where (pkj , upj)← UpdPk(pkj−1), skj ← UpdSk(pkj−1, skj−1, (pkj , upj)) for j = 1, . . . , `.

Our construction requires UPKE schemes to meet γ-spread, where γ is at least O(λ). Indeed, all
the existing CR-CPA-secure UPKE schemes satisfy this requirement and can be used to instantiate
our construction. Even if CR-CPA-secure UPKE schemes with insufficient γ-spread are proposed
in the near future, as in [FO99, FO13], one can strengthen the γ-spread to the (γ + γ′)-spread by
appending a random value r

$← {0, 1}γ′ to the end of ciphertexts.
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4.2 Our Construction

We combine the two FO transformations and fine-tune them to achieve an efficient CU-CCA-secure
UPKE scheme. Specifically, the second FO transformation could be a weaker form since CU security
requires the consistency check but no (kind of) challenge queries.

Formally, we construct an IND-CU-CCA-secure UPKE scheme Σ = (Gen′,Enc′,Dec′,UpdPk′,
UpdSk′) from an OW-CR-CPA-secure UPKE scheme Π = (Gen,Enc,Dec,UpdPk,UpdSk), an OT-
CPA-secure SKE scheme Γ = (SKE.Enc,SKE.Dec), and four random oracles G : {0, 1}∗ → SKsym,
H : {0, 1}∗×{0, 1}∗×{0, 1}∗ →Rasy, Ĝ : {0, 1}∗ → SKsym, and Ĥ : {0, 1}∗×{0, 1}∗ →Rasy,6 where
Masy, Rasy, and SKsym are the spaces of plaintexts of Π, randomness of Π, and secret keys of Γ,
respectively.

Gen′(1λ)→ (pk′0, sk′0) : Run (pk0, sk0)← Gen(1λ) and output pk′0 := (pk0, 0) and sk′0 := sk0.

Enc′(pk′i,M)→ ct : Parse pk′i = (pki, i). Run

• σ
$←Masy,

• k := G(σ),
• ctsym ← SKE.Enc(k,M),
• h := H(i, σ, ctsym),
• ctasy ← Enc(pki, σ;h).

Output ct := (ctasy, ctsym).

Dec′(pk′i, sk′i, ct)→ M or⊥ : Parse pk′i = (pki, i), sk′i = ski, and ct = (ctasy, ctsym). Run

• σ ← Dec(pki, ski, ctasy).

Output ⊥ if σ 6∈ Masy. Otherwise, run

• h := H(i, σ, ctsym).

Output ⊥ if ctasy 6= Enc(pki, σ;h). Otherwise, run

• k := G(σ).

Finally, run and output SKE.Dec(k, ctsym).

UpdPk′(pk′i)→ (pk′i+1, up′i+1) : Parse pk′i = (pki, i). Run

• r
$←Masy,

• s := Ĝ(r)
• (pki+1, upi+1)← UpdPk(pki; s),
• h := Ĥ(r, pki+1, upi+1),
• ctaux ← Enc(pki, r;h).

Output pk′i+1 := (pki+1, i+ 1) and up′i+1 := (upi+1, ctaux).

UpdSk′(pk′i, sk′i, (pk′i+1, up′i+1))→ sk′i+1 or⊥ : Parse pk′i = (pki, i), sk′i = ski, pk′i+1 = (pki+1, i+ 1),
and up′i+1 = (upi+1, ctaux).7 Run

6One may merge G and Ĝ (and also H and Ĥ) into one by using a bit flag, though we use the random oracles
separately to make the security proof simple. For instance, one may set G(0‖·) and G(1‖·) instead of G(·) and Ĝ(·),
where ‘‖’ denotes concatenation.

7To be precise, one has to confirm whether the second element of pk′
i+1 = (pki+1, j) denotes the next epoch of
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• r ← Dec(pki, ski, ctaux).

Output ⊥ if r 6∈ Masy holds. Otherwise, run

• h := Ĥ(r, pki+1, upi+1),
• s := Ĝ(r).

Output ⊥ if at least one of the following holds:

• ctaux 6= Enc(pki, r;h),
• (pki+1, upi+1) 6= UpdPk(pki; s).

Otherwise, run ski+1 ← UpdSk(pki, ski, (pki+1, ski+1)) and output sk′i+1 := ski+1.

4.3 Correctness

We prove the correctness of our UPKE construction as follows.

Theorem 3. Our UPKE scheme Σ satisfies correctness if the underlying UPKE scheme Π and
SKE scheme Γ satisfy correctness.

Proof. First, we prove that the UpdPk′ and UpdSk′ algorithms work in the same way as the UpdPk
and UpdSk algorithms. Suppose that λ ∈ N, ` ∈ N, (pk0, sk0)← Gen(1λ), r ∈Masy, i ∈ {0, . . . , `−1}
are arbitrarily fixed. The UpdPk′ algorithm computes

• (pki+1, upi+1)← UpdPk(pki; Ĝ(r)),
• h := Ĥ(r, pki+1, upi+1),
• ctaux ← Enc(pki, r;h),

and outputs (pk′i+1, up′i+1) = ((pki+1, i+1), (upi+1, ctaux)). On the other hand, the UpdSk′ algorithm
computes

• r′ ← Dec(pki+1, ski+1, ctaux),
• h′ := Ĥ(r′, pki+1, upi+1),
• s′ := Ĝ(r′),

and check whether it hold (a) ctaux = Enc(pki, r′;h′) and (b) (pki+1, upi+1) = UpdPk(pki; s′). If so,
UpdSk′ outputs ski+1 ← UpdSk(pki, ski, (pki+1, ski+1)); Otherwise, it outputs ⊥.

First, r = r′ holds with overwhelming probability due to the correctness of the UPKE scheme
Π. It then holds (b) (pki+1, upi+1) = UpdPk(pki; s′) since s′ = Ĝ(r′) = Ĝ(r) = s. Finally, it holds
(a) ctaux = Enc(pki, r′;h′) since it hold r′ = r and h′ = Ĥ(r′, pki+1, upi+1) = Ĥ(r, pki+1, upi+1) = h.
Therefore, the UpdPk′ and UpdSk′ algorithms work the same as in the UpdPk and UpdSk algorithms
with overwhelming probability.

Next, we prove that the Dec′ and Enc′ algorithms satisfy the correctness. Suppose that λ ∈ N,
` ∈ N, (pk0, sk0)← Gen(1λ), M ∈Msym, and i ∈ {0, . . . , `} are arbitrarily fixed. The Enc′ algorithm
computes

• σ
$←Masy,

• ctsym ← SKE.Enc(G(σ),M),

i, i.e., j = i + 1; we omit the procedure since one can easily check it by just incrementing the second element of
pk′

i = (pki, i) and comparing it with j.
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• h := H(i, σ, ctsym),
• ctasy ← Enc(pki, σ;h),

and outputs ct := (ctasy, ctsym). On the other hand, the Dec′ algorithm computes

• σ′ ← Dec(pki, ski, ctasy),
• h′ := H(i, σ′, ctsym),
• M′ := SKE.Dec(G(σ′), ctsym),

and outputs M′ if it holds (c) ctasy = Enc(pki, σ′;h′); it outputs ⊥ otherwise.
First, σ′ = σ holds with overwhelming probability due to the correctness of the UPKE scheme

Π. Then, we have M′ = M from the fact that G(σ′) = G(σ) and the correctness of the SKE scheme
Γ. Since h′ = H(i, σ′, ctsym) = H(i, σ, ctsym) = h and σ′ = σ, it holds (c) ctasy = Enc(pki, σ;h) =
Enc(pki, σ′;h′).

It completes the proof.

4.4 Security

Theorem 4. If the underlying UPKE scheme Π is γ-spread and satisfies OW-CR-CPA security,
SKE scheme Γ satisfies OT-CPA security, and G, H, Ĝ, and Ĥ are random oracles, then our proposed
UPKE scheme Σ satisfies IND-CU-CCA security.

Proof. Let ct∗ = (ct∗asy, ct∗sym) be the challenge ciphertext, and (pk∗tr , sk
∗
tr , up∗tr) = ((pktr , tr), sktr ,

(uptr , ct∗aux)) be the response of the reveal query (at epoch tr), i.e., the tuple of the public key,
the secret key, and the update ciphertext revealed at the reveal query. We arbitrarily fix a PPT
adversary A and consider a game sequence Game0, . . . ,Game4. Let Wi denote an event that A
wins in Gamei for i ∈ {0, 1, . . . , 4}.

Game0: This game is the same as the original IND-CU-CCA security game in Def. 2 between the
challenger C and the adversary A.

Game1: This game is the same as Game0 except that C handles update queries without the secret
keys as follows: C simulates Ĥ and records the queries and the answers in Ĥ, which is an empty
list initially. Upon A’s update query on (pk′i+1, up′i+1) = ((pki+1, i + 1), (upi+1, ctaux)), C searches
for a tuple (r, pki+1, upi+1, h) in Ĥ such that it holds

r ∈Masy ∧ ctaux = Enc(pki, r;h). (1)

We say that the update query (pk′i+1, up′i+1) is valid if Eq. (1) holds. If C finds such a tuple and
it holds (pki+1, upi+1) = UpdPk(pki; Ĝ(r)), C accepts the update and increments the current epoch
i to i + 1. Otherwise, i.e., there is no tuple satsfying Eq. (1) in Ĥ or it holds (pki+1, upi+1) 6=
UpdPk(pki; Ĝ(r)), C rejects the update and returns ⊥ to A. Note that C can perform the above
without the secret key ski.

We show that Game0 and Game1 are computationally indistinguishable from A’s view if Π is
γ-spread. Briefly speaking, the difference between Game0 and Game1 is that C in Game1 outputs
⊥ if A’s query is not valid, while C in Game0 might not. Let Bad1 be an event where A issues a
non-valid update query. Game0 and Game1 proceed identically unless Bad1 occurs. From Lemma 1,
we have

|Pr[W0]− Pr[W1]| ≤ Pr[Bad1].
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We then estimate the probability that Bad1 occurs. Since Ĥ is a random oracle, Ĥ(r∗, pktr , uptr)
is chosen uniformly at random, where r∗ ∈ Masy is randomly chosen for the reveal query, and
independent of Ĥ(ri, pki+1, upi+1) for every i ∈ {0, . . . , tr − 1}. Therefore, A cannot obtain any
information on Ĥ(r∗, pktr , uptr). Since Π is γ-spread, we then have

|Pr[W0]− Pr[W1]| ≤ Pr[Bad1] ≤ 2−γqUpd, (2)

where qUpd is (the upper bound of) the number of update queries issued by A.
Game2: This game is the same as Game1 except that C answers to decryption queries without the
secret keys as follows: C simulates H and records the queries and the answers in H, which is an
empty list initially. Upon A’s query on ct = (ctasy, ctsym), C searches for a tuple (i, σ, ctsym, h) in Ĥ
such that it holds

σ ∈Masy ∧ ctasy = Enc(pki, σ;h). (3)
We say that the decryption query ct is valid if Eq. (3) holds. If C finds such a tuple, C runs
M ← SKE.Dec(G(σ), ctsym) and returns M. Otherwise, i.e., there is no tuple satisfying Eq. (3) in
H, C returns ⊥ to A. Note that C can perform the above without the secret key ski.

We show that Game1 and Game2 are computationally indistinguishable from A’s view if Π is
γ-spread. Briefly speaking, the difference between Game1 and Game2 is that C outputs ⊥ if A’s
query is not valid, while C in Game0 might not. Let Bad2 be an event where A issues a non-valid
decryption query. Game1 and Game2 proceed identically unless Bad2 occurs. From Lemma 1, we
have

|Pr[W1]− Pr[W2]| ≤ Pr[Bad2].
We then estimate the probability that Bad2 occurs. In the epoch i, A’s decryption query on

ct = (ctsym, ctasy) should satisfy (i, ctasy, ctsym) 6= (tc, ct∗asy, ct∗sym). This condition can be writ-
ten as (i, σ, ctsym) 6= (tc, σ

∗, ct∗sym) where σ is the plaintext of ctasy and σ∗ is the plaintext of
ct∗asy. If (i, ctsym) = (tc, ct∗sym) holds when ctasy = ct∗asy, then this implies that σ = σ∗. If
(i, σ, ctsym) = (tc, σ

∗, ct∗sym) holds when ctasy 6= ct∗asy, from H(i, σ, ctsym) = H(tc, σ
∗, ct∗sym), ctasy =

ct∗asy = Enc(pki, σ;H(i, σ, ctsym)) = Enc(pkt∗ , σ∗,H(tc, σ
∗, ct∗sym)) holds. This is a contradiction.

Since H is a random oracle, H(tc, σ
∗, ct∗sym) is chosen uniformly at random, where σ∗ ∈ Masy is

randomly chosen for the challenge query and independent of H(i, σ, ctsym). Therefore, A cannot
obtain any information on H(tc, σ

∗, ct∗sym). Since Π is γ-spread, we then have

|Pr[W1]− Pr[W2]| ≤ Pr[Bad2] ≤ 2−γqDec, (4)

where qDec is (the upper bound of) the number of decryption queries issued by A.
Game3: This game is the same as Game2 except that C generates the update ciphertext at the
reveal query without Ĝ and Ĥ as follows:

1. r∗
$←Masy,

2. s∗
$←Rasy (while using Ĝ to compute s∗ := Ĝ(r∗) in Game2),

3. (pktr , uptr)← UpdPk(pktr−1; s
∗),

4. h∗
$←Rasy (while using Ĥ to compute h∗ := Ĥ(r∗, pktr , uptr) in Game2),

5. ct∗aux ← Enc(pktr−1, r
∗;h∗).

Let Ask1 be an event that A queries r∗ or (r∗, ·, ·) to Ĝ or Ĥ, respectively. Obviously, Game2
and Game3 proceed identically unless Ask1 occurs. Therefore, from Lemma 1, we have

|Pr[W2]− Pr[W3]| ≤ Pr[Ask1]. (5)
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We show that Game2 and Game3 are computationally indistinguishable from A’s view if Π is
OW-CR-CPA secure. For this purpose, we use A to construct a PPT adversary B1 that breaks
OW-CR-CPA security of Π. Let C1 denote a challenger of the OW-CR-CPA security game of Π.
C1 begins the OW-CR-CPA security game and gives pk0 to B. Then, B1 begins the IND-CU-CCA
security game and gives pk′0 = (pk0, 0) to A. In Phase 1, B1 can answer decryption queries and
update queries without the secret keys thanks to the changes in Game1 and Game2. Note that to
answer each update query on (pk′i, up′i), B1 retrieves the tuple (r, ·, ·, ·) satisfying Eq. (1) from Ĥ and
makes an update query on Ĝ(r) to C1. This is important to synchronize epochs and corresponding
public and secret keys in both OW-CR-CPA and IND-CU-CCA games.

Upon A’s challenge query on (M∗
0,M∗

1), B1 chooses coin∗ $← {0, 1}, runs ct∗ ← Enc′(pktc ,M∗
coin∗),

and gives ct∗ to A. B1 can simulate Phase 2 in the same way as Phase 1.
Upon A’s reveal query, B1 makes the challenge query to C1. Then, C1 chooses r∗

$←Masy, runs
ct∗aux ← Enc(pktr−1, r

∗), and gives it to B1. After that, B1 makes the reveal query to C1. C1 samples
s∗ ←Rasy, runs (pktr , uptr)← UpdPk(pktr−1; s

∗) and sktr ← UpdSk(pktr−1, sktr−1, (pktr , uptr)), and
returns (pktr , sktr , uptr) to B1. Then, B1 returns (pk∗tr , sk

∗
tr , up∗tr) = ((pktr , tr), sktr , (uptr , ct∗aux)) to

A. After A outputs ĉoin as a guess of coin, B1 randomly chooses j
$← {1, . . . , qĤash} where qĤash is

the number of queries A makes to Ĝ and Ĥ. B1 then retrieves r̂ from the j-th query to the random
oracles Ĝ and Ĥ, where r̂ is stored in Ĝ in the form of r̂ or in Ĥ in the form of (r̂, ·, ·), and outputs
it as a guess of r∗.

Since we consider the situation that Ask1 occurs, i.e., A queries r∗ to Ĝ or Ĥ, the probability
that B1 outputs r∗ is q−1

Ĥash
. Therefore, we have

|Pr[W2]− Pr[W3]| ≤ Pr[Ask1] ≤ qĤashAdvOW-CR-CPA
Π,B1

(λ). (6)

Game4: This game is the same as Game3 except that C generates the challenge ciphertext without
G and H as follows:

1. σ∗ $←Masy,
2. k∗

$← SKsym (while using G to compute k∗ := G(σ∗) in Game3),
3. ct∗sym ← SKE.Enc(k∗,M∗),

4. h∗
$←Rasy (while using H to compute h∗ := H(tc, σ

∗, ct∗sym) in Game3),
5. ct∗asy ← Enc(pktc , σ∗;h∗).

Let Ask2 be an event that A queries σ∗ or (·, σ∗, ·) to G or H, respectively. Obviously, Game3 and
Game4 proceed identically unless Ask2 occurs. From the same discussion in Eq. (5), we have

|Pr[W3]− Pr[W4]| ≤ Pr[Ask2].

We show that Game3 and Game4 are computationally indistinguishable from A’s view if Π is
OW-CR-CPA secure. For this purpose, we use A to construct a PPT adversary B2 that breaks
OW-CR-CPA security of Π. Let C2 denote a challenger of the OW-CR-CPA security game of Π.
C2 begins the OW-CR-CPA security game and gives pk0 to B2. Then, B2 begins the IND-CU-CCA
security game and gives pk′0 = (pk0, 0) to A. From the changes in Game1 and Game2, B2 can
answer decryption and update queries without the secret keys in Phase 1 in the same way as B1.

Upon A’s challange query on (M∗
0,M∗

1), B2 chooses coin∗ $← {0, 1}, k∗
$← SKsym, and runs

ct∗sym ← SKE.Enc(k∗,M∗
coin∗). Then, B2 makes a challenge query on ⊥ to C2. Upon B2’s challenge
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query, C2 chooses σ∗ ←Masy, runs ct∗asy ← Enc(pktc , σ∗), and returns ct∗asy to B2. After receiving
the ciphertext from C2, B2 returns ct∗ = (ct∗asy, ct∗sym) to A.

Upon A’s reveal query, B2 makes a reveal query and receives (pktr , sktr , uptr). Then B2 generates
ct∗aux, which is another element in up∗, as in the changes in Game3, and returns (pk∗tr , sk

∗
tr , up∗tr) =

((pktr , tr), sktr , (uptr , ct∗aux)) to A. After A outputs ĉoin as a guess of coin∗, B2 randomly chooses
j

$← {1, . . . , qHash}, where qHash is the number of queries A makes to G and H. B2 then retrieves σ̂
from the j-th query to the random oracles G and H, where σ̂ is stored in G in the form of σ̂ or in
H in the form of (·, σ̂, ·), and outputs it as a guess of σ∗.

Since we consider the situation that Ask2 occurs, i.e., A queries σ∗ to G or H, the probability
that B2 outputs σ∗ is q−1

Hash. Therefore, we have

|Pr[W3]− Pr[W4]| ≤ Pr[Ask2] ≤ qHashAdvOW-CR-CPA
Π,B2

(λ). (7)

Finally, we show that it is computationally infeasible for A to win in Game4 if Γ is OT-CPA
secure. To this end, we use A to construct B3 that breaks OT-CPA security of Γ. Let C3 denote
a challenger of the OT-CPA security game of Γ. B3 begins the IND-CU-CCA security game and
gives pk′0 to A. In Phase 1, B3 can answer decryption and update queries in the same way as
B1. Upon A’s challenge query on (M∗

0,M∗
1), B3 generates the challenge ciphertext as follows: B2

makes the challange query on (M∗
0,M∗

1) to C3. C3 chooses coin∗ $← {0, 1}, k∗
$← SKsym, runs

ct∗sym ← SKE.Enc(k∗,M∗
coin∗), and gives ct∗sym to B3. After that, B3 chooses σ∗ $←Masy, h∗ $← Rasy

and runs ct∗asy ← Enc(pktc , σ∗;h∗). Then, B3 returns ct∗ = (ct∗asy, ct∗sym) to A. In Phase 2, B2 can
answer queries in the same way as in Phase 1.

Upon A’s reveal query, B3 generates the update ciphertext ct∗aux as in the changes in Game3.
Then, B3 samples s∗

$← Rasy, runs (pktr , uptr) ← UpdPk(pktr−1; s
∗) and sktr ← UpdSk(pktr−1,

sktr−1, (pktr , uptr)), and gives (pk∗tr , sk
∗
tr , up∗tr) = ((pktr , tr), sktr , (uptr , ct∗aux)) to A. Since B3 has the

initial secret key, B3 can run the UpdSk algorithm. After A outputs ĉoin as a guess of the coin
in the IND-CU-CCA security game, B3 outputs the same ĉoin as a guess of coin∗ in the OT-CPA
security game. Therefore, we have∣∣∣∣Pr[W4]−

1

2

∣∣∣∣ = AdvOT-CPA
Γ,B3

(λ). (8)

From Eqs. (2), (4), (6), (7), and (8), we have

AdvIND-CU-CCA
Σ,A (λ) ≤ 2−γ(qUpd + qDec) + qĤashAdvOW-CR-CPA

Π,B1
(λ)

+ qHashAdvOW-CR-CPA
Π,B2

(λ) + AdvOT-CPA
Γ,B3

(λ).

We conclude the proof.

5 Conclusion
In this paper, we demonstrated that Dodis et al.’s CPA-to-CCA transformation [DKW21] does not
satisfy CCA security if the underlying UPKE schemes have non-influential randomness, a special
property of UPKE that we introduced in this paper. The property enables the adversary to have
the challenger generate the same public and secret keys as those at the challenge epoch. Then,
the adversary can get the decryption result of the challenge ciphertext by making the decryption
query. To prevent the above attack, we modified their CPA-to-CCA transformation by embedding
epochs in public keys and ciphertexts.
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We also proposed a new generic construction of the IND-CU-CPA-secure UPKE scheme from
any OW-CR-CPA-secure UPKE scheme in the ROM. By employing the FO transformation [FO99,
FO13] twice instead of using inefficient NIZK arguments, we can obtain the most efficient CCA-
secure UPKE schemes from the most efficient IND-CR-CPA-secure UPKE scheme by Jost et
al. [JMM19].
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