
Secure Range-Searching Using Copy-And-Recurse

Eyal Kushnir∗, Guy Moshkowich†, Hayim Shaul‡

IBM Research

June 23, 2023

Abstract

Range searching is the problem of preprocessing a set of points P ,
such that given a query range γ we can efficiently compute some function
f(P ∩γ). For example, in a 1 dimensional range counting query, P is a set
of numbers, γ is a segment and we need to count how many numbers in P
are in γ. In higher dimensions, P is a set of d dimensional points and the
query range is some volume in Rd. In general, we want to compute more
than just counting, for example, the average of P ∩γ. Range searching has
applications in databases where some SELECT queries can be translated
to range searches. It had received a lot of attention in computational
geometry where a data structure called partition tree was shown to solve
range searching in time sub-linear in |P | using only space linear in |P |.

In this paper we consider partition trees in a secure setting where
we answer range queries without learning the value of the points or the
parameters of the range. We show how partition trees can be securely

traversed with O(n1+ϵ + t · n1− 1
d
+ϵ) operations, where n = |P |, t is the

number of operations needed to compare to γ and ϵ > 0 is a parameter.
As far as we know, this is the first non-trivial bound on range searching
and it improves over the näıve solution that needs O(t · n) operations.

Our algorithms are independent of the encryption scheme but as an
example we implemented them using the CKKS FHE scheme. Our exper-
iments show that for databases of sizes 223 and 225, our algorithms run
×2.8 and ×4.7 (respectively) faster than the näıve algorithm.

The improvement of our algorithm comes from a method we call copy-
and-recurse. With it we efficiently traverse a r-ary tree (where each inner
node has r children) that also has the property that at most ξ of them
need to be recursed into when traversing the tree. We believe this method
is interesting in its own and can be used to improve traversals in other
tree-like structures.

∗eyal.kushnir@ibm.com
†guy.moshkowich@ibm.com
‡hayim.shaul@ibm.com

1

1 Introduction

The problem of range searching has been studied extensively. In this problem
we are given a finite set of points P ⊂ Rd and a volume (range) γ ⊂ Rd and
wish to quickly compute some function of P ∩ γ. For example, P ⊂ R2 can
represent a 2-column database, where p ∈ P is a record and the columns are
mapped to the x and y coordinates. Then, for example, this query:

SELECT COUNT(*) FROM table tab

WHERE (x1 < tab.x) and (tab.x < x2)

and (y1 < tab.y) and (tab.y < y2);

can be answered by counting the number of points in P that fall in the axis-
parallel box γ = {(x, y) | x1 < x < x2 and y1 < y < y2}.

Figure 1: A FHE-based system for delegating a database to an unstrusted cloud.
(1) The data owner (hospital) uploads a database to an untrusted cloud. (2) A
client (doctor) encrypts their query and send it to the untrusted cloud. (3) the
cloud performs the query under FHE and (4) returns the result to the client.

The privacy preserving range searching problem is to compute a function over
P ∩γ without sharing the input (i.e. P or γ). This is useful if for example P is a
database of medical data that is kept at an untrusted cloud. Such problems can
be solved by secure-multi party computation (MPC) in which several parties
compute an output without sharing their private input. Solutions such as that
by Beaver [7] have the disadvantage that they have a large communication
complexity. Also they are interactive which requires the parties to remain online
for the entire computation. There are non-interactive methods, e.g. based on
Fully Homomorphic Encryption (FHE) which is a public key encryption where
addition and mutiplication can be applied on ciphertexts. Using FHE we can
send an encrypted input to a server and run entirely at the server side. The
methods and techniques in this paper are generic and can be implemented in
any MPC solution, however, for simplicity we present them for FHE.

The näıve implementation checks for every point p ∈ P whether p ∈ γ for
a total of O(t · n) operations, where n = |P | and t is the number of operations
to check whether p ∈ γ. In plaintext, efficient solutions group points together,
check whether the entire group is contained in γ and recursively continue only
in groups that are partially contained in γ. These solutions rely heavily on
branching in the code. This is something that is impossible under FHE (or
MPC in general). Under FHE it is impossible to branch based on a condition

2

that depends on the input. More specifically, knowing whether a condition
on the input is met contradicts the semantic security of FHE and therefore is
impossible. Näıvely, when running a privacy-preserving protocol a branch based
on a condition C is replaced by: (1) computing a ciphertext Enc(c) where c = 1
if C is met and c = 0 otherwise; (2) computing both branches; (3) multiplexing
by multiplying one branch by Enc(c) and the other branch by (1 − Enc(c)).
Effectively, this leads to computing all possible branches of an algoithm which
is why solutions that work well in plaintext do not (näıvely) extend well to FHE.

In this paper we consider the secure range searching problem for ranges
that can be described with a constant number of parameters (formally this is
called “constant description complexity”. See definition in Section 7.1). In this
case we show how to solve the privacy-preserving range searching problem in
O(n1+ϵ + t · n1− 1

d+ϵ) time, where t and n are as before, d is the dimension
P ⊂ Rd and ϵ > 0 is arbitrarily small (as usual there is a multiplicative factor
that grows as ϵ gets smaller). Our algorithm outperforms the näıve algorithm
asymptotically and also in practice as our experiments show. We note that
under FHE the problem has a lower bound of Ω(n) operations. This stems from
a Ω(n) lower bound on private information retrieval (PIR) ([8]) which can be
solved by 2D range-searching problem. In addition, in plaintext the best known
solution for range searching with near linear storage is O(n1− 1

d+ϵ) ([2]).
In plaintext, range-searching can be solved using linear storage with partition

trees (see [20]). This tree-structure is built for a family of ranges Γ and a set of
points P . In the construction we partition P ⊂ Rd into m subsets P1, . . . , Pm

such that for any range γ ∈ Γ it can be quickly determined whether a subset
Pi is contained (Pi ⊂ γ), disjoint (Pi ∩ γ = ∅) or crosses γ. The geometric
structure admits a partition where only a small number of subsets cross γ and
need further “attention”. In plaintext, this leads to an improved running time
of O(t · n1− 1

d+ϵ).
Näıvely implementing a partition tree under FHE leads to O(t ·n) operations

because as mentioned earlier, the näıve approach visits all branches and nodes
of the tree. This leads to an algorithm whose running time is O(t · n). Our

improved time bound O(n1+ϵ + t · n1− 1
d+ϵ) comes from using a method we call

“copy-and-recurse” with it we traverse a partition tree efficiently under FHE.
The copy-and-recurse method can be applied when traversing a r-ary tree (i.e.
each inner node has r children) that also has a bound ξ < r on the number of
children that need to be recursed into. The method copies ξ children and their
subtrees (under FHE) and recurses into the copied subtrees. The time spent
by algorithm copying subtrees is linear in the tree size, however, the function
that compares a range is called only at a sublinear number of nodes. This leads
to an algorithm that needs only O(n1+ϵ + t · n1− 1

d+ϵ) operations. The choice
of r and the bound ξ determine the value of ϵ. We demonstrate our copy-and-
recurse method on partition trees that solve the range searching problem, but
our method can be used in other tree based solutions and we expect it to be of
interest for other solutions as well.

To demonstrate the performance of our algorithm we provide a C++ code

3

that implements it. We use the HElayers library [3] and our experiments show
that our method is ×4.6 faster than the näıve implementation for a database
of 32M records. (We note that modern databases often have significantly more
records.) We expect our algorithm to have impact in practice as well as in
theory.

In Figure 1 we show a system that implements privacy preserving range
searching. At the left is a hospital. To save IT and maintenance costs they
upload their database to an untrusted (honest but curious) cloud. Physicians of
that hospital can then query that database to get various statistics and views
of the database by sending an encrypted query range to the cloud, receiving the
encrypted result and decrypting it.

1.1 Our contribution

We list below our contributions in this paper.

• The copy-and-recurse method. We show how to efficiently traverse a
full r-ary tree (i.e. each inner node has r children) with n leaves, where
there is a bound ξ < r on the number of children we need to recurse into at
each node. Here r is a parameter 0 < r < n that affects the running time.
In a nutshell the method traverses a tree as we now (briefly) describe.
When visiting a node:

– Compute (under FHE) an indicator vector indicating which children
need to be recursed into. (There are at most ξ such children.)

– Use the indicator vector to copy ξ children and their subtrees.

– Recurse into the copies of ξ children.

• An algorithm to answer privacy preserving range searching queries.
We show how to build a FHE-friendly partition tree that efficiently an-
swers range searching queries (see [1, 2, 20]). In a nutshell, a partition tree
is built with a parameter r > 0, a family of ranges Γ and points P ⊂ Rd

where each inner node has O(r) children. When traversing the tree with

a query γ ∈ Γ at most ξ = O(r1−
1
d) children need to be recursed into at

each node. Our algorithm can be implemented by an arithmetic circuit of
size O(n1+ϵ + t · n1− 1

d+ϵ), where t is the size of a arithmetic circuit that
checks whether γ contains or intersects a point or a simplex and ϵ > 0 is a
parameter that can be arbitrarily small (as usual, there is a multiplicative
factor that grows when ϵ decreases).

• Generalized range searching problem definition. We generalize the
classic range searching problems (counting and reporting) to output f(P ∩
γ) for a large set of functions. Specifically, our protocol works with any
function f , that can be computed in a divide and conquer way, i.e., there
exists another function g such that f(A ∪ B) = g(f(A), f(B)). This is
summarized in the following theorem:

4

Theorem 1. Let P ⊂ Rd be a set of n points, Γ ⊂ 2R
d

a family of
semi-algebraic ranges, T a full partition tree as output from Algorithm 4,
a function f that can be computed in a divide and conquer manner and
t and ℓ are the size and depth of the circuit that compares a range to
a simplex, then given γ ∈ Γ, PPRangeSearch (Algorithm 2) securely

evaluates f(γ ∩ P) in a circuit whose size is O(n1+ϵ + t · n1− 1
d+ϵ) and

depth is O(ℓ · log n).

• Implementation and experiments for privacy preserving range
searching. We implemented our algorithm into a system that answers
privacy preserving range searching queries. Our algorithm is generic and
can be implemented with any scheme. In this paper we used the HElayers
framework [3] with HEAAN [15] as the cryptographic library.

1.2 Paper organization

The rest of the paper is organized as follows: in Section 2 we review the related
work and in Section 3 we give some preliminaries and notations (the ones that
relate to computational geometry we defer to Section 7.1). In Section 4 we
state the main problem this paper solves. In Section 5 we describe our copy-
and-recurse method. In Section 6 we describe a FHE-friendly partition tree
to solve the 1-dim privacy preserving range searching counting problem. In
Section 7 we show how to extend our solution to d dimensions. In Section 8
we analyze our algorithm, with respect to the size and depth of the arithmetic
circuit that implements it and its security. In Section 9 we show how to extend
our solution from counting to to more generic functions. In Section 10 we
describe the experiments we have done and finally we conclude in Section 11.

2 Related Work

Range searching. In a range searching problem (in plaintext) we are given
a set of n points P ⊂ Rd and a family of ranges Γ (usually of infinite size) and
wish to efficiently compute P ∩ γ (or some function on it) for any γ ∈ Γ. The
problem has been studied extensively in computational geometry. In a seminal
work Matoušek [20] showed how to build a data structure called partition tree of
O(n) size where for any γ, which is a halfspace in Rd bounded by a hyperplane
(i.e., Γ is the infinite set of all such halfspaces), P ∩ γ can be computed in
O(n1−1/d+ϵ) time. Later, Agarwal and Matoušek [1] extended this result to
ranges of constant description complexity in time O(n1−1/c+ϵ), where c = d,
for d = 2, 3 and c = 2d − 4, for d ≥ 4. Using tools from algebraic geometry
Agarwal, Matoušek and Sharir [2] improved this running time to O(n1−1/d+ϵ).

In the privacy preserving context, the private information retrieval (PIR)
problem can be answered with range searching as we describe now. In PIR,
one party (the server) has an array T and a second party (the client) has an
index x ∈ Z. The goal is to output T [x] to the client while hiding x from

5

the server and T [i], for i ̸= x from the client. To answer PIR with range
searching replace each entry in the table, T [i], with a 2D point (i, T [i]), for
i = 1, 2, To answer the PIR problem, report the (single) point in the range
γx = {(a, b) ∈ R2 | x − 0.5 < a < x + 0.5}. In [8] a lower bound of Ω(n)
was shown for the PIR problem, which holds for the privacy preserving range
searching query as well. Another line of works related to private range query is
based on symmetric searchable encryption (SSE) e.g., [16, 17, 18]. SSE schemes
offer a tradeoff between efficiency and revealing some well defined information
about queries and stored data and are less secure than homomorphic encryption
schemes.

As far as we know, this is the first non-trivial work that answers general
range searching queries under FHE.

Traversing a tree under FHE One of our contributions is the copy-and-
recurse method to efficiently traverse a tree under FHE. A recent work by Azo-
gagh et al. [6] describes how to efficiently traverse a decision tree using FHE. In
their implementation they evaluate a single path instead of the entire tree. At
each node of the decision tree they compare a variable to a parameter, where
they blindly copy the variable and the parameter from an array of variables and
parameters. Here, the index of the node that the traversing reached is encrypted
and used to fetch the right variable and parameter from the arrays. However, it
is not clear how to extend their ideas to answering range searching queries. An-
other recent work by Cong et al. [14] discussed homomorphic traversing where
they show how to efficiently traverse a decision tree. To use their techniques
the values at each decision node needs to be bit-wise ecnrypted i.e., each bit
in its own ciphertext. The threshold in the tree need to be given in plaintext.
Then they express the conditions at decision node as boolean polynomials and
compute all polynomials together while applying a heuristic that finds mutual
subpolynomials and computing them once. In the worst case, their technique
leads to O(n) conditions being evaluated. Their technique relies heavily on the
input being encrypted in binary and also the thresholds being given in plain-
text. Furthermore, it is not clear how to extend their techniques to answer
range searching. In [5] Akavia et al. showed how to train a decision tree and
use it for prediction, however their method evaluates the conditions at all nodes
of the tree leading to O(t ·n) operations, where t is the number of operations to
compute a condition at a node. In [21] the authors also considered prediction
using decision trees but here as well they tested the conditions at each node of
the tree again leading to O(t · n) operations. In [22] the authors considered a
solution that uses garbled circuits and ORAM to achieve sub-linear prediction
time with a decision tree, however their solution is interactive. We summarize
these works in Table 1.

Computing a function over database records that match a query func-
tion. Given a set P ⊂ Zm of n points and a function h : Zm → Z, Iliashenko
et al. showed in [19] how to preprocess P s.t. given an encrypted value x,

6

[6] [5] [14] copy-and-recurse
Encoding agnostic ✓ ✓ ✓
Sublinear ✓ ✓
Encrypted ✓ ✓ ✓
Range searching ✓

Table 1: Comparing our copy-and-recurse method to other works. Encoding
agnostic means input is not restricted to be encrypted bit-wise. Sublinear means
the number of comparisons performed is sublinear in the number of leaves (a
crossed checkmark means a heuristic that may result in a sublinear number
of comparisons). Encrypted means encrypted trees are also supported. Range
searching means range searching is efficiently supported.

it can efficiently compute the number of points whose image is x, i.e. report
|{p ∈ P | h(p) = x}|. This can be formulated as a range searching query where
a range is of the form γx = {p ∈ Zm | h(p) = x} that doesn’t necessarily have
a finite VC-dimension and then reporting |P ∩ γx|, i.e. report f(P ∩ γ), where
f(A) = |A|. However, they require that γx be given in plaintext. Moreover,
they do not show how to compute f(P ∩ γ) for functions f or ranges γx other
than what mentioned above.

Cheon et.al [13] considered encrypted queries over an encrypted database.
They propose a search-and-compute method, where they first search for records
that match a query and then compute a function f (addition, average, min, max,
etc.) on those records. However, to find the records that match a query they
apply a IsMatch function all of the records, for a total of O(t · n) operations,
where n is the number of records and t is the number of operations to evaluate
IsMatch.

3 Preliminaries

To improve readability we split the preliminaries into two parts. We give here
the preliminaries that are needed to understand the 1-dim case and in Section 7
we give more preliminaries in computational geometry that are needed for the
d-dim case.

Number representation. Our algorithms work over the reals and are
stated in this paper as such. Computers use finite space to represent numbers
and therefore cannot truly work over the reals. There are several number rep-
resentations (e.g. fixed point representation) to address this problem. In this
paper we are not concerned with how numbers are represented and require only
the existence of addition and multiplication operations.

Divide and conquer functions. In this paper we are concerned with
functions that take a set as input. We say such a function, f can be computed in
a divide and conquer manner if f(A∪B) can be computed from f(A) and f(B),
when A and B are (non-empty) disjoint sets. For example, for the cardinality
function we have |A∪B| = f(A∪B) = f(A)+f(B) = |A|+ |B|. More generally,

7

there exists a function g such that f(A ∪B) = g(f(A), f(B)).
Selection matrix. A selection matrix M ∈ {0, 1}ξ×d, with ξ < d is a

matrix that has the property that it selects elements of a vector. More formally:
M · xT = (xi1 , . . . , xiξ), where x = (x1, . . . , xd). Intuitively, to construct M we
set Mr,c = 1 if ir = c, i.e. if the c-th element in x is the r-th element in M · xT ,
otherwise we set Mr,c = 0.

Trees. We use v to denote a node in the tree. We use dot (”.”) to denote
members of v, so for example, v.child[1], . . . , v.child[r] are the children of v. We
also denote the root of the tree by root. The height of a node v is the number
of nodes on the path from v to the root and the height of a tree is the maximal
height of its nodes.

3.1 Fully homomorphic encryption

Our algorithms and protocols can be implemented using FHE or other MPC
schemes that supports addition and multiplications. However, to improve read-
ability we describe our protocol using FHE.

FHE (see e.g. [10, 11]) is an asymmetric encryption scheme that also sup-
ports + and × operations on ciphertexts. More specifically, a FHE scheme is
the tuple E = (Gen,Enc,Dec,Add,Mult), where:

• Gen(1λ, p) gets a security parameter λ and an integer p and generates the
keys pk and sk.

• Encpk(m) gets a message m and outputs a ciphertext JmK.

• Decsk(JmK) gets a ciphertext JmK and outputs a message m′.

• Addpk(JaK, JbK) gets two ciphertexts JaK, JbK and outputs a ciphertext JcK.

• Multpk(JaK, JbK) gets two ciphertexts JaK, JbK and outputs a ciphertext d.

Correctness is the requirement that m = m′, c = a + b mod p and d = a · b
mod p. In an approximated FHE (e.g. CKKS [11]) we require that m ≈ m′,
c ≈ a+ b and d ≈ a · b.

Semantic security is the requirement that given pk, Jm1K, . . . , Jmpoly(λ)K,m1, . . . ,mpoly(λ),
where poly(λ) is a number that polynomially depends on λ, then given Jm0K,
the value of m0 is known in probability negligible in λ.

Using additions and multiplications we can construct any arithmetic circuit
and compute any polynomial P(x1, . . .) on the ciphertexts Jx1K, For example,
in a client-server system, the client encrypts her data and sends it to the server
who computes a polynomial P on the encrypted input. The output is also
encrypted and is returned to the client who then decrypts it. The semantic
security of FHE guarantees the server does not learn anything on the content
of the client’s data.

When evaluating an arithmetic circuit, we are concerned with the size of C
(size(C)), which is the number of gates in C and with the depth of C (depth(C)),
which is the maximal number of multiplication gates on a path of C. The time

8

to evaluate a circuit is then Time = overhead · size(C), where in many schemes
overhead grows when depth(C) increases.

3.2 Notation

Abbreviated syntax. To make our algorithms and protocols more intuitive
to read we use J·Kpk to denote a ciphertext. When pk is clear from the context
we omit it. We use an abbreviated syntax:

• JaK + JbK is short for Addpk(JaK, JbK).

• JaK · JbK is short for Multpk(JaK, JbK).

• JaK + b is short for Addpk(JaK, Encpk(b)).

• JaK · b is short for Multpk(JaK, Encpk(b)).

3.3 Comparisons under FHE

A major obstacle when running under FHE is not being able to perform com-
parisons, i.e. to get a plantext bit indicating whether one encrypted message
is smaller than another. Informally, this is impossible because it breaks the se-
mantic security of FHE. Such a comparison could have been useful, for example,
when traversing a binary search tree under FHE to continue into only one child
of a node (and not both).

Instead, there has been work (e.g. [12]) of implementing a IsSmaller(Jc1K, Jc2K)
function that returns a ciphertext that encrypts the indicating bit (whether
or not c1 < c2). In a nutshell, such works implement a bi-variate polynomial

IsSmaller(x, y) =

{
1, if x < y

0, otherwise.
(Or its approximated version in the case of

CKKS). The implementation details of this polynomial depends on the underly-
ing FHE scheme and the way numbers are represented. With this primitive, it
is easy to construct more complicated tests, e.g., whether a value x is contained
inside a range (a, b).

3.3.1 Making Tests Under FHE - the 1-dim case

While our protocol works also in high dimensions, we start by explaining the eas-
ier 1-dim case. The extension to higher dimensions is explained in Section 7. We
assume the existence of 2 functions IsContaining and IsCrossing (described
in detail below). Our protocol uses these functions as black-boxes. We are not
concerned with how these functions are implemented and express the complex-
ity bounds of our protocol with respect to IsContaining and IsCrossing (see
below the definition of t and ℓ, parameters that capture the “hardness” these
functions).

For the 1-dim case, these functions are (see also Figure 2):

9

• IsContaining(JσK, JγK). This function gets as input two encrypted seg-
ments σ, γ ⊂ R. The value of IsContaining is a ciphertext JcK, where
c = 1 if σ ⊆ γ and c = 0 otherwise.

• IsCrossing(JσK, JγK). This function gets as input two encrypted segments
σ, γ ⊂ R. The value of IsCrossing is a ciphertext JcK, where c = 1 if γ
crosses σ (i.e. intersects but not contains) and c = 0 otherwise.

Figure 2: A range γ and simplices σ1, σ2, σ3 and σ4. Above (a) is a setting
in 1-dim, where the range is a segment and the simplices are non-intersecting
segments. Below (b) is a setting in 2-dim, where the range is an octagon and
the simplices are (possibly intersecting) triangles. In both cases σ1 and σ3 cross
γ, σ2 is contained in γ and σ4 is disjoint from γ.

3.4 Size and depth of computing IsContaining and IsCrossing
(t and ℓ)

We define t and ℓ as the size and depth of the circuit that computes IsContaining
and IsCrossing. These parameters capture the “hardness” of comparing a
range to a simplex in FHE.

We note that the implementation of IsCrossing and IsContaining varies
with the FHE scheme and the way numbers are represented (as does the prim-
itive IsSmaller they depend on). Looking ahead, in Section 7 we consider the
problem in high dimensional settings. There, the implementation of these func-
tions also depends on the shape of the query ranges. It therefore makes sense to
show how the complexity of a range search protocol depends on the complexity
bounds of IsContaining and IsCrossing. Also, from the practical perspective
most of the running time is spent executing these functions. Therefore it makes
sense for the complexity to be expressed as a function of t and ℓ.

10

4 Problem Statement

In this paper we gradually introduce the ultimate problem we consider. We
start by a simple problem of counting in 1-dim. Then we extend the problem to
higher dimensions and finally, we extend the problem to more general functions.

Simple problem: Counting in 1-dim. First we consider the counting
problem in 1-dim. In this problem we are given a set P ⊂ R of n numbers.
We preprocess P in linear time into a data structure D of linear size, such that
given a a query segment γ = [γa, γb] we efficiently compute |γ ∩P | = |{pi | γa ≤
pi ≤ γb}|.

Extension to higher dimensions. We then extend this problem to higher
dimensions. That is, P ⊂ Rd and the query range γ is a volume that can be
described with a constant number of parameters. Here γ is taken from a family
of ranges Γ. The family of ranges Γ is known at the time D is constructed. See
for example Figure 2 (bottom) for an example in 2-dim.

Extension to more general functions. Finally, we extend our solution
to compute efficiently f(P ∩ γ), where f is a function that can be computed in
a divide and concur manner.

In all cases our privacy guaranty is that D does not leak anything on P
except n and d. Also, during the computation of the query nothing leaks on P
or on γ.

4.1 Security model

For simplicity, we consider here a model with 3 players: (1) data owner that
owns P , (2) query owner that performs range search queries and (3) the cloud
to which the database was uploaded to and performs the computation. We also
assume the data owner and the query owner collude. This security model is
motivated by the growing trend of outsourcing a database to the cloud (to save
maintenance and other IT costs). In the example of Figure 1 the hospital is the
data owner and a doctor is the query owner. We note that our protocols can be
modified to support other models which we omit from this paper (e.g., where
the data owner acts as a server, the query owner as a client and they do not
collude).

Figure 1 shows an overall view of a system implementing our secure range
searching protocol.

We consider computationally-bounded, semi-honest adversaries. We assume
the data owner and the query owner collude but not with the cloud. This follows
from our motivation of out-sourcing a database to the cloud. We note that our
protocol can be modified to support other models but we use this simple model
to present our method. The semantic security of FHE guarantees that the cloud
learns nothing on the content of γ or P .

11

Protocol 1: RangeSearchingProtocol

Parties: Data owner, Query owner, Cloud.
Parameters: d > 0 the dimension of the space;

Γ ⊂ 2R
d

a family of ranges.
Data Owner Input: A set P ⊂ Rd of n points.
Query Owner Input: A pair (sk, pk) of secret and public keys.

Ranges γ1, γ2, . . . ∈ Γ.
The Cloud has no input.
Query Owner Output: |P ∩ γi|, for i = 1, 2,
The cloud and the data owner have no output.

1 Query owner Performs:
2 Send pk to the Cloud and to Data owner.
3 Data owner Performs:
4 Choose a parameter 0 < r < n.
5 (T ′, ξ, h) := Build a partition tree for P and Γ with parameter r.

// See Section 6

6 T := FillT ree(n, r, h, T ′). // See Algorithm 4

7 JT K := encrypt v.f, v.σ for every v ∈ T .
8 Send JT K, n,Γ, ξ, r, h to Cloud.
9 foreach range γ the query owner has do

10 Query-owner performs:
11 JγK := Encpk(γ)
12 Send JγK to Cloud.
13 Cloud performs:
14 JxK := PPRangeSearchn,d,Γ,ξ,r,h(T, JγK) // See Algorithm 2

15 Send JxK to Data-owner.
16 Query owner performs:
17 x := Decsk(JxK)
18 Output x

5 Copy-and-Recurse

Before describing our solution to the range search problem we need to describe
our copy-and-recurse method and how it is used to traverse a tree efficiently
under FHE.

5.1 Prerequisites

Given a r-ary tree T (where each node has r children) that needs to be traversed,
we can use copy-and-recurse if the following holds:

• T is full - i.e., all inner nodes have r children and all leaves have the same
height.

12

• There exists an upper bound ξ < r such that at each node at most ξ
children need to be recursed into.

An example of such a tree is a full binary search tree, where at each node we
recurse into exactly one child. Here r = 2 and ξ = 1. In Section 6 and Section 7
we describe partition trees and how they are efficiently traversed using copy-
and-recurse. In Section 7.3 we discuss how to transform an arbitrary tree T to
a full tree by adding “empty” nodes.

5.2 How it works

We now show how to efficiently traverse a tree T with the prerequisites in
Section 5.1. We start at the root of T and perform:

1. Determine (under FHE) which children need to be recursed into. Specif-
ically, we compute a binary vector of r indicator bits χ = (χ1, . . . , χr),
where χi = 1 iff we need to recurse into the i-th child. The specifics of
computing χ depends on the application. Looking ahead, when answering
a range search we recurse into children that cross the query range (more
details are given in Section 6).

2. Copy (under FHE) the children (and their subtrees) we need to recurse
into. From the prerequisites mentioned in Section 5.1 only ξ < r are
copied since at most ξ children need to be recursed into. In the rest of the
paper we think of copying the selected subset as multiplying by a ξ × r
selection matrix. E.g., multiplying the vector of r children by M to get
the ξ children we need to recurse into.

3. Recurse. After copying ξ < r children we recurse into the copied subtrees
by going back to Step 1 with the root of each subtree.

These steps are executed until a leaf is reached. See Figure 3 for an example of
using copy-and-recurse on a binary search tree with n leaves. Applying copy-
and-recurse at each node we determine which subtree to recurse into, copy that
subtree and continue in recursion until we reach a leaf. Eventually, the decision
function was called only (log n) times.

Discussion The complexity analysis of copy-and-recurse is given in Section 8
as part of the analysis of answering a range search. Intuitively, the total cost
of copying subtrees in the process is linear because the size of the subtrees
diminishes exponentially. Consider an algorithm that in plaintext traverses a
tree and performs some additional work in each node it visits. It can be migrated
to run under FHE using copy-and-recurse, such that the additional work will be
performed on the same number of nodes as the plaintext algorithm. The extra
cost of running under FHE with copy-and-recurse is only the cost of copying.

13

Figure 3: An example of copy-and-recurse method used with a full binary tree
with n leaves. The black nodes are the nodes the plaintext algorithm visits as
it traverses the tree. First (a) the FHE algorithm visits the root of the tree. It
then determines (under FHE) it needs to recurse into the right child and copies
the right subtree. Next (b) the algorithm continues in the copied subtree. Again
it determines the nodes it needs to recurse into the left child and copies the left
subtree. Similarly that happens at (c). In (d) the FHE algorithm reaches a leaf
and reports it. Using copy-and-recurse the decision function was called log n
times, as oppose to the näıve FHE algorithm that calls the decision function on
all leaves.

6 1-dim Partition Trees

We now continue to describe how range searching can be answered efficiently.
To simplify the description we consider here the 1-dim counting problem, i.e.,
to preprocess a set P of n numbers, p1 ≤ . . . ≤ pn ∈ R, such that given a range
[a, b], we report the number of elements in the range, i.e. |{pi | a ≤ pi ≤ b}|.
In Section 7 we explain how to extend this to higher dimensions and more
complicated ranges. Our solution uses partition trees (introduced by Matoušek
in [20]) and traverses them efficiently using the copy-and-recurse method. Next
we show a partition for the 1-dim case with the property ξ = 2 (i.e., at each
node, at most 2 children need to be recursed into).

6.1 The partition tree

A partition tree, T , is a tree data structure constructed for a set P . In this
section, we assume each inner node of T has the same number of children,
r. We also assume that all leaves have the same height. See Figure 4 for an
example. A partition tree that meets these assumptions is easy to construct (in
the 1-dim case) as we show below.

Each node of the tree is associated with a subset of P . For a node v, we
denote by Sv the subset associated with it. Additionally we require:

• Sroot = P . The root is associated with the entire set P

• |Sleaf | = 1. A leaf is associated with a single element

• the subsets associated with the children of v form a partition of Sv, i.e.
∪iSv.child[i] = Sv and Sv.child[i] ∩ Sv.child[j] = ∅, for i ̸= j

14

We stress that Sv is used when building the tree but it is not kept at v. We
now list the data that we do keep at each node v:

• (For inner nodes) child[1], . . . , child[r] - the children nodes.

• J|Sv|K - the encryption of |Sv|. We note that for a full tree |Sv| = rdist,
where dist is the number of nodes in a path (distance) from v to a leaf.
This makes storing J|Sv|K unnecessary. We still mention it here because
this is changed in Sections 7 and 9.

• JσK =
[
JσminK, JσmaxK

]
- i.e., the encryption of σmin = minSv and σmax =

maxSv. We call the segment [σmin, σmax] the bounding segment of Sv

because x ∈ [σmin, σmax] for all x ∈ Sv.

6.2 Building a partition tree.

We now describe how to build a partition tree. Recall that we are given p1 ≤
. . . ≤ pn ∈ R and a parameter r. Also, recall that for simplicity we consider the
case of a full tree which means n = rh, for some h ∈ N.

We start with v = root and set Sv = Sroot = P . Then we:

• Set v.|Sv| = |Sv|.

• Set Jv.σminK = J[minSv,maxSv]K.

• Partition Sv into r subsets P1 = (p1, . . . , pn/r),
P2 = (pn/r+1, . . . , p2n/r), . . ., Pr = (pn−r+1, . . . , pn)

• Recursively build a sub-tree for v.child[i] until we have |Sv| = 1.

6.3 Traversing a partition tree

In this section we describe how to traverse a partition tree is traversed to com-
pute |P ∩ γ|.

As we traverse the tree we keep a counter count of points in |P ∩ γ|. At
the beginning we set count = 0 then we start traversing at the root of the tree.
When at a node v we consider each child ui = v.child[i], compare its bounding
segment, Jui.σK, to γ to determine whether it is contained, disjoint or crosses
and act as follows:

1. contained. If u.σ is contained in γ then all the points in Sui should be
counted and we add |Sui | to count without recursing into the subtree of
ui.

2. disjoint. If u.σ and γ are disjoint then none of the points in Sui
should

be counted and we skip ui without recursing into its subtree.

3. cross. If u.σ crosses γ (i.e. it intersects but not contained) we need to
recurse into the subtree of ui to determine which of the points in Sui

are
contained in γ.

15

As already hinted, we can efficiently traverse the partition tree using copy-
and-recurse. As mentioned in Section 5.1 to do that we need to show that at
each node we need to recurse into at most ξ children for some bound ξ < r. In
the next lemma we prove that a query segment can cross at most 2 of r segments
(where any pair overlap in at most one point). This proves that for a 1-dim
partition tree we have ξ = 2.

Lemma 1. Let σ1 = [σmin1
, σmax1

], . . . σr = [σminr
, σmaxr

] be r segments,
where any pair overlap in at most one point. Specifically σmin1

≤ σmax1
≤

. . . ≤ σminr
≤ σmaxr

. Then, a segment γ = [γmin, γmax] crosses at most 2
segments of σ1, . . . , σr.

The claim is intuitive (see Figure 2) and we omit the proof. The implications
of this lemma is that at most 2 children need to be recursed into and therefore
we can use copy-and-recurse with ξ = 2.

Figure 4 shows an example of a partition tree that was built for the numbers
1, 2, 4, 4, 5, 7, 7, 8, 8 and r = 3 and how it is used to count the numbers that lie
in a query segment γ = [4, 7].

Figure 4: An example of a 1-dim partition tree that was built for the numbers
1,2,4,4,5,7,7,8,8 with r = 3. At each node v we show Sv and the bounding
segment of Sv (for readability we omit this or some leaves). The figure also shows
how the tree is traversed for counting all values in a query segment γ = [4, 7].
Nodes with v.σ ⊂ γ are marked with solid black. All values in these nodes
can be counted without recursing. Nodes with v.σ ∩ γ = ϕ are marked with
white. All values in these nodes can be ignored. Nodes with v.σ crossing γ are
marked with black stripes. These nodes should be recursed into to determine
how many of the values they represent are in γ.

In Figure 2 we describe in pseudo-code how a partition tree is traversed
efficiently to compute |P ∩ γ| for the 1-dim case.

In Section 7 we extend this algorithm to higher dimensions and in Section 9
we extend it to compute more general function f(P ∩ γ).

Algorithm overview Algorithm 2 implements privacy preserving range count-
ing in 1-dim. The public parameters of the algorithm are: n and r, where
n = |P | is the number of points and r is the number of children each inner node
has.

16

Algorithm 2: PPCountn,r(JT K, JγK)

Parameters: n = |P |
r the number of children each inner node has.
Input: A full tree T where v is its root; an encrypted segment JγK
Output: JxK, where x = |P ∩ γ|.

1 if v is a leaf then
// check whether v.σ ⊂ γ

2 JContK := IsContaining(Jv.σK, JγK)
3 Output JContK · Jv.fK
4 else
5 foreach i = 1, . . . , r do

// check whether v.child[i].σ ⊂ γ
6 JCont[i]K := IsContaining(Jv.child[i].σK, JγK)
7 JxK :=

∑r
i=1JCont[i]K · Jv.child[i].fK

8 foreach i = 1, . . . , r do
// check whether c.child[i].σ crosses γ

9 JCross[i]K := IsCrossing(Jv.child[i].σK, JγK)
10 JMK := BuildSeletionMatrixr,2(JCrossK) // See Algorithm 3

11 Jchild′K := M · Jv.childK
12 JCross′K := M · JCrossK
13 JxK := JxK +

∑2
i=1 Cross′[i] · PPCountn/r,r(Jchild′[i]K, JγK))

14 Output JxK

17

The input of the algorithm is JT K and JγK. T is a partition tree and γ is
a segment. We use a ciphertext notation for T because the (private) content
stored at each node (e.g. v.σ and v.f) are encrypted. We note that the structure
of T (e.g. which node is the child of which) is not encrypted.

The output of the algorithm is JxK where x = |P ∩ γ|.
Algorithm 2 works recursively. When it is first called it operates on the root

of the tree. Then it recurses into some of the children of the root by calling
itself with the subtree of these children as input. For example, to recurse into
root.child[i] it calls PPCount(Jroot.child[i]K, JγK). The recursion stops when it
reaches a leaf. While traversing the partition tree the algorithm sums Jv.fK
from various nodes (as we explain below). The improved efficiency of the algo-
rithm comes from the property (proved in Lemma 1) that at most 2 children
need to be recursed into. This is done under FHE using copy-and-recurse and
more specifically, by making a copy of 2 children together with their subtrees.
Lemma 1 proves that the children we actually need to recurse into are among
the 2 children we copy.

Algorithm 2 starts by checking the stopping condition of the recursion (Line 1).
For a leaf, v, it checks whether v.σ ⊆ γ (Line 2). This is done by calling the func-
tion IsContaining which returns JcK, where c = 1 if v.σ ⊆ γ and 0 otherwise.
Then we use JcK as a multiplexer to output |Sv| or 0 (Line 3).

When v is an inner node (Lines 4-14) the algorithm checks for each child
of v whether its bounding segment, σ, contains γ (Line 6). If Sv.child[i] ⊂
v.child[i].σ ⊂ γ we can count v.f = |Sv.child[i]| without checking the points of
Sv.child[i]. Then, the algorithm finds children whose bounding segment crosses
γ (Line 9). These values are kept in a r-dimensional binary vector Cross. The
copy-and-recurse method is implemented by multiplying by a selection matrix
M . The matrix is generated (Line 10) using the BuildSeletionMatrix algo-
rithm (see Algorithm 3). Then the algorithm copies the subtrees (Line 11)
by computing M · v.child (here we regard v.child as a vector with r elements
(v.child[1], . . . , v.child[r]) where each element is a subtree). The output is a vec-
tor child′ with only 2 elements. Similarly we copy Cross into Cross′. We then
recurse into the subtrees in child′ to check a finer partition (i.e., into smaller
sets) of their points Line 13. We add the output of these recursions into the
output of the algorithm.

7 Range searching in d-dim

In this section we explain how partition trees are extended to answer range
searching in d dimensions.

In d-dim the input P ⊂ Rd is a set of points (an not values in R). The
query range is some volume γ ⊂ Rd (e.g., a sphere, a polytope, etc. See more
on this below). At each node v we keep a bounding simplex1 v.σ that contains
all the points in Sv.

1A simplex in Rd is the convex hull of d+ 1 points.

18

The concept of partition tree is generic and can be used in d dimensions as
long as we supply a d-dim version of a partition theorem. Unlike the 1-dim case,
in d-dim it is not trivial to find a partition to subsets of equal sizes bounded by
simplices where the number of simplices crossing a query is bounded. Even the
simple planar case with query ranges being the area under a query line received
a lot of attention from the computational geometry community in the past.
Looking ahead, the machinery we use can handle arbitrary ranges in d-dim as
long as they are not “too complex” as we now explain.

In what follows we give some computational geometry preliminaries that
were deferred until now to improve readability and then we describe the changes
that need to be made in Algorithm 2 to support multiple dimensions.

7.1 Computational geometry preliminaries

In this section we explain some terminology in computational geometry. This
terminology comes in handy in Section 7.

Range space. A range space is a pair (X,Γ), where X is a set and Γ ⊂ 2X

is a family of subsets, called ranges. We consider X = Rd for some d.
Range Searching. The range searching problem studied in computational

geometry is: given a set of n points P ⊂ Rd and a family of ranges Γ, preprocess
P into a data structure D, such that given a range γ ∈ Γ and using D we can
efficiently compute |P ∩ γ|.

Algebraic range. A d-dimensional algebraic range is a subset γ ⊂ Rd

defined by an algebraic surface given by a function that divides Rd into two
regions (e.g. above and below).

Semi-algebraic range. A d-dimensional semi-algebraic range is a subset
γ ⊂ Rd that is a conjunction and disjunction of a bounded number of algebraic
ranges. Simply put, a semi-algebraic range is the result of intersections and
unions of algebraic ranges.

Constant description complexity. The description complexity of a range
is the number of parameters needed to describe it. One example is a half-space
range bounded by a plane in R3 ax + by + cz + 1 = 0 which has 3 parameters
a, b, and c. Another example is a sphere (x − a)2 + (y − b)2 + (z − c)2 ≤ r2,
which has 4 parameters: a, b, c, r. The description complexity may depend on n
(for example a star-shaped volume in R3 with n “spikes” has O(n) parameters).
There is a connection between the number of parameters and the “hardness”
of the range searching problem. Intuitively, it is harder to answer queries when
ranges have more parameters. The machinery we use requires the ranges to have
a constant number of parameters in their description (i.e., to have a constant
description complexity).

Elementary Cell Partition (or Simplicial Partition). Given a set
P ⊂ Rd of n points, an elementary cell partition (or simplicial partition) is a
collection Π = {(P1, σ1), . . . , (Pm, σm)} where Pi’s are disjoint subsets such that
∪Pi = P and each Pi ⊂ σi, where σi is simplex. We say the size of the partition
is m.

19

Crossing number. Given a simplicial partition Π = {(P1, σ1), . . . , (Pm, σm)}
and a range γ, the crossing number of γ with respect to Π is the number of sim-
plices γ crosses, i.e. |{σi | σi ∩ γ ̸= σi and σi ∩ γ ̸= ∅, for i = 1, 2, . . . ,m}|.

Partition Theorem. In a seminal work [20] Matoušek showed a non-trivial
partition with small crossing number when Γ is the set of halfspaces bounded
by hyperplanes. In [1] it was extended to general semi-algebraic ranges with
constant description complexity. The most recent partitioning is due to [2] who
improved the bound on the crossing number. Their result is summarized in the
following theorem.

Theorem 2 (From [2]). Given a set P of n points in Rd, for some fixed d,
a family of semi-algebraic ranges of constant description complexity Γ and a
parameter r ≤ n, an elementary cell partition Π = {(P1, σ1), . . . , (Pm, σm)} can
be computed in randomized expected time O(nr + r3) such that:

1. ⌊n/r⌋ ≤ |Pi| < h⌊n/r⌋ for every i and some constant h.

2. The crossing number of Π is O(r1−1/d).

7.2 Changes to algorithms

We now describe the changes needed to be made in Algorithm 2 to support
higher dimensions.

As mentioned above, in d dimensions we use Theorem 2 when constructing
the partition tree. The tree constructed with this theorem has r/h ≤ m ≤ r
children at each node and the height of a leaf is ⌊logr n⌋ ≤ height ≤ ⌊logr/h n⌋.
This follows from the subset sizes at node v being ⌈|Sv|/r⌉ ≤ m ≤ h⌈|Sv|/r⌉.

The variable number of children and variable leaf height raises 2 problems:
(1) the tree structure may leak information on the input and (2) the copy-and-
recurse prerequisites are not met. To solve these 2 problems we describe in
Section 7.3 how a partition tree can be filled by adding empty nodes. For the
remainder of this section we assume the given tree is full.

Changes to RangeSearchingProtocol The changes needed to apply toRangeSearchingProtocol
to support high dimension include getting d and Γ as parameters, where d is
the dimension and Γ is the family of all possible query ranges. d and Γ are used
when the partition tree is constructed (they are needed by the Theorem 2).

Changes to PPCount The changes PPCount include:

• The parameters now include d,Γ, IsContaining and IsCrossing (more
precisely, PPCount needs only IsContaining and IsCrossing but their
implementation depends on d and Γ).

• Call BuildSeletionMatrix with r and ξ as parameters. (Line 10)

• Recurse into the ξ children that were copied (Line 13).

20

7.3 Hiding tree structure

As mentioned above using Theorem 2 results in a partition tree that is not
full. This may have security issues. Also, it does not meet the prerequisites of
the copy-and-recurse method. In this section we give a recipe to “fill” trees by
adding empty nodes to them (as we explain below) until the tree becomes full
i.e.: (1) each node has the maximal number of children and (2) all leaf is at
the maximal height. As our analysis below shows, this addresses the security
problem because the structures of 2 full trees (built with the same parameters n
and r) are indistinguishable. Our analysis also shows the size of the tree grows
from O(n) to O(n1+ϵ). We first define an empty node and then explain how
they are added.

Definition 1 (Empty Node). An empty node is a node v that is associated with
an empty set, Sv = ∅ and its simplex is a degenerated empty simplex, v.σ = ∅.

To hide the structure of a tree we add empty nodes until (1) all inner nodes
have r children and (2) the height of each leaf is ⌈logr/h n⌉. For completeness
we describe this algorithm in Appendix C.

We conclude this section by stating 2 lemmas whose proofs are given in
Appendix C.

Lemma 4. Let P be a set of n points in Rd, Γ a family of ranges, r < n
a parameter and h a parameter such that any simplicial partition of P ′ with
respect to Γ, Π = {(P ′

1, σ1), . . . , (P
′
m, σm)} satisfies |P ′|/r < |P ′

i | < h · |P ′|/r
and let T = FillT ree(T ′, n, r, h), where T ′ is a partition tree built for P and

Γ, then the height of T is ⌈logr/h n⌉ and it has a total of n
1

1−⌈logr h⌉ = O(n1+ϵ)
nodes.

Lemma 5. Let P1, P2 ⊂ Rd be 2 sets of points with |P1| = |P2| = n and T ′
1, T

′
2

be 2 partition trees built for P1 and P2, respectively, with the same parameters
r, h then T1 and T2 have the same structure, where Ti = FillT ree(n, r, h, T ′

i).

8 Size And Depth Analysis

In this section we analyze the size and depth of a circuit that implements
PPRangeSearch (Algorithm 2) to compute f(P ∩ γ). We start by analyzing
the size and depth of BuildSeletionMatrix which is used by PPRangeSearch.

8.1 Analyzing BuildSeletionMatrix

Depth and size analysis. The Analysis of the size and depth of a circuit
implementing BuildSeletionMatrixr,ξ is summarized in the following lemma.

Lemma 2. Computing M [col, row] for 1 ≤ col ≤ ξ and 1 ≤ row ≤ r can be
done with a circuit of depth O(ξ · log r) and size O(ξ · r2).

21

Proof. We prove the lemma by induction on ξ. For ξ = 1 we have M [1, row] :=

c[row] ·
∏row−1

i=1 (1 − c[i]) which can be done for all 1 ≤ row ≤ r in a circuit of
depth O(log row) and size O(row). Computing for all rows in parallel we get a
circuit of depth O(log r) and size O(r2).

Assuming it holds for all ξ′ < ξ we prove it holds for ξ. Since we have

M [ξ, row] = c[row]
∑row−1

k=1

(
M [ξ− i, k]

∏row−1
h=k+1(1− c[h])

)
this can be done for

all 1 ≤ row ≤ r with a circuit whose depth is O(log r+ (ξ − 1) log r) and size is
O(r2 + (ξ − 1)r2), which proves the claim.

8.2 Analyzing PPRangeSearch

We now turn to analyze PPRangeSearch (Algorithm 2). As mentioned in
Section 3.3.1 we denote by t, ℓ the size and depth of the circuit that realizes
IsContaining or IsCrossing.

Analyzing the space of a tree is now easy.

Lemma 3 (Space). Let P, T be as in Lemma 4, where |P | = n and r < n is
a parameter, then T needs space of O(n1+ϵ), where the value of ϵ depends on r
and can be made arbitrarily small.

Proof. From Lemma 4 the number of nodes is n
1

1−logr h . Since we keep O(1)

data with each node the total space is O(n1+ϵ), where ϵ = logr h
1−logr h can be made

arbitrarily small by choosing a large r.

We now turn to analyze the size and depth of the circuit that computes a
range search query.

Theorem 1. Let P ⊂ Rd be a set of n points, Γ ⊂ 2R
d

a family of semi-
algebraic ranges, T a full partition tree as output from Algorithm 4, a function
f that can be computed in a divide and conquer manner and t and ℓ are the size
and depth of the circuit that compares a range to a simplex, then given γ ∈ Γ,
PPRangeSearch (Algorithm 2) securely evaluates f(γ ∩ P) in a circuit whose

size is O(n1+ϵ + t · n1− 1
d+ϵ) and depth is O(ℓ · log n).

Informally, the correctness follows from the plaintext algorithm that Algo-
rithm 2 implements. The bound on the circuit size is proved by solving the
recursion formula of the circuit size. The circuit depth is proved by induction
on the tree height. For lack of space, we give the full proof in Appendix B.

8.3 Privacy analysis

In this section we discuss the privacy of the inputs in the presence of dishonest
adversaries. As mentioned above, we consider 3 parties: (1) the data owner;
(2) the cloud and (3) the range owner who also holds the secret key and gets
the output. We assume the data owner colludes with the query owner but not
with the cloud and claim the cloud does not learn anything on the context of
the encrypted input it receives. The range owner is the only party who receives

22

an output. As mentioned, this model is motivated by the growing trend to
outsource databases to untrusted clouds to save maintenance and IT costs.

For the cloud, we consider a computationally bounded, semi-honest (a.k.a.
honest but curious) adversary that follows the protocol but tries to infer addi-
tional information to what is stated above.

Informally, the security of our algorithm stems from the semantic security of
FHE. For lack of space we discuss the security more formally in Appendix D.

9 extending to generic f

Until now we have discussed the counting problem in which we compute |P ∩γ|.
In this section we show how we can modify PPCount to compute f(P ∩ γ) for
functions f that can be computed in a divide and conquer manner. Note that
computing |P ∩ γ| is a special case in which f(A) = |A|.

Looking at f we see that its input2 is a subset of P and its output is a
value v ∈ V which we have no restriction on (e.g., for the counting problem we
have V = N). Additionally, we require that f can be computed in a divide and
conquer manner. For the case of counting, we have f(A ∪B) = f(A) + f(B).

In what follows we describe the changes that need to be made on PPCount.
In Appendix E we give a few useful applications that use different functions f
and g.

Changes needed to be made on PPCount:

• Set v.f = f(Sv), i.e. each node in the partition tree keeps the value of f
applied on Sv.

• The output when v is a leaf 3 is JContK · Jv.fK + (1− JContK) · f(∅), i.e.
return v.f if Cont = 1 and f(∅) otherwise.

• Adding the contribution of children that are contained in γ should use g
and be: foreach i = 1, . . . , r do
JxK := JCont[i]K · g(JxK, Jv.child[i].fK, JγK) + (1− JCont[i]K) · JxK

• Adding the contribution of children that cross γ should use g and be:
foreach i = 1, . . . , ξ do
JxK := JCross[i]K · g(JxK, PPCount(child′[i], γ)) + (1− JCross′[i]K) · JxK

In Appendix E we give a few useful applications for privacy preserving range
searching.

2we avoid the more acceptable terms “domain” and “range” to avoid confusion

23

10 Experiments

In this section we report experiments we made to check our copy-and-recurse
method with partition trees. We compared our method to the näıve solution
(described below). As far as we know there are no better solutions. In what
follows we describe the experiments and comparisons we made.

What we tested. Our method is generic for dimension d, range family Γ and
function f as defined in previous sections, but for the experiments we set the
parameters as follows. In the first experiment we set d = 1 (i.e. P ⊂ R) and
the range family Γ is the set of all segments. In the second experiment we set
d = 2 (i.e. P ⊂ R2) and Γ is set to the set of all axis-parallel rectangles. In
both experiments the goal was to count f(P ∩γ) = |P ∩γ|. This type of queries
often arises in databases. When running our method we used several values of
r. Specifically, we set r = 3, 5, 7, 9.

Setup. Our method is independent of a specific FHE scheme, and so in our
experiments we used the CKKS scheme [11], which is a popular scheme. To
implement the IsSmaller function we used the work of [12].

We used CKKS when implementing both the näıve and our methods. We
used the HELayers framework [3] which uses the HEaaN library [15] as the im-
plementation for CKKS. We set the parameters of the keys to have 128 bits of
security with 215 slots, chain length 12, integer precision of 18 bits and frac-
tional precision of 42 bits. With these parameters the scheme also supported
bootstrapping. The system we used had 64 cores (128 threads) of AMD EPYC
7742 CPU with 500 GB memory and NVIDIA A100-SXM4-80GB GPU.

Packing and SIMD Our technique is independent of SIMD, but in our ex-
periments we stored each number p ∈ P in a different slot for a total of 215

elements of P in a single ciphertext.

The näıve solution. The näıve solution we implemented is similar to that of
Cheon et al. [13] in the sense that given a set P of n points and a range γ we
check for each point p whether p ∈ γ, for a total of O(n) such checks. We remind
that the points were packed in SIMD manner, so that only O(n/slots) checks
are actually needed. In our experiments, checking whether p ∈ γ was made by
comparing p ∈ R to the two endpoints of γ. The output of these comparisons
was a binary vector χ of size n with 1 for p ∈ γ and 0 for p /∈ γ. Summing the
elements of χ yields |P ∩ γ|.

What we measured. To compare our method to the näıve method we ran
both algorithms and measured their running time over different database sizes.

24

10.1 Results in 1-dim

Our results are summarized in Table 2 and in Figure 5. Table 2 shows the
running time (reported in minutes) of copy-and-recurse algorithm with different
values of r and of the näıve algorithm. The algorithms were run multiple times
and the reported result is the minimum of the measured running times (this is
to eliminate skews in running times). Each column reports the running time of
the algorithm specified in the column’s title. For example, the running times of
PPCount using the copy-and-recurse algorithm with r = 3 are reported in the
2nd column. Each row reports the running time of the algorithms over database
of of different size. For example, the 4th row shows the case where |P | = 221.
These results also appear in Figure 5. The x-axis is the size of P and the y-axis
is the running time of the algorithm.

We see that our method is faster when |P | > 223 (i.e., even for a relatively
small database). For example, when |P | = 223 the näıve method took 49.36
minutes to run whereas our algorithm took less than 17 minutes when setting
r = 3. The time difference grows in our favor as number of points increases. For
example, when |P | = 225 the näıve took 197.04 minutes and our code took 42.71
minutes. This is expected and follows from our analysis as we now explain.

The näıve time is linear with a factor of t ≈ 6·10−6 as expected since its time
complexity is O(tn). Indeed, the running times grows approximately four folds
when we increase |P | four folds. For example, the ratio between the running
times for |P | = 219 and for |P | = 217 is 3.89.

The running time of the copy-and-recurse method is, largely speaking, linear.
The running times grows approximately four folds when we increase |P | four
folds. This is expected and follows from our analysis that the running time is
O(n1+ϵ+tnϵ). Indeed, for small values of n the part tnϵ is more dominant but it
becomes less dominant as n grows. This is the reason we see sub-linear growth
when |P | > 221. The results are also summarized in Figure 5.

Partition tree using copy-and-recurse
|P | r = 3 r = 5 r = 7 r = 9 Näıve
215 0.38 0.39 0.39 0.38 0.21
217 1.86 1.47 1.47 1.47 0.74
219 6.97 7.15 6.85 6.35 2.92
221 16.07 18.01 14.84 26.96 11.59
223 16.98 23.38 48.24 38.94 49.36
225 42.71 56.27 100.72 74.59 197.04

Table 2: The running time (in minutes) when running a range count query, i.e.,
finding |P ∩ γ| where P ⊂ R. The first column shows the size of the database,
|P |. The next 4 columns show the running time of answering range counting
using copy-and-recurse with r = 3, 5, 7, 9. The last column shows the running
time of the näıve method.

25

10.2 Results in higher dimensions

We also repeated our experiment in 2 dimensions. In this case Γ was the set
of all axis-parallel rectangles. In this case, we built a 1-dim partition tree for
P projected on the x-axis and then built a secondary tree at each node. This
is a standard method (see for example Section 16.2 in [9]) to answer range
queries when the ranges are conjunctions of algebraic ranges. The results are
summarized in Table 3. For example, as before the näıve algorithm is linear
while our algorithm is sub-linear. For example, when |P | = 225 our method
took 700 minutes, while the näıve algorithm took 910 minutes.

Partition tree using
copy-and-recurse

|P | r = 4 Näıve
4 13 3
16 64 14
64 161 54
256 335 213
1024 700 910

Table 3: The running time (in minutes) when running a range count query in
2 dimensions, i.e., finding |P ∩ γ| where P ⊂ R2. The first column is the size
of P . The second column shows the running time of answering range counting
using copy-and-recurse with r = 3. The last column shows the running time of
the näıve method.

11 Conclusion

We showed a method we call copy-and-recurse and showed it can efficiently
traverse a tree when there’s a bound on the number of children we need to
recurse into.

We showed how to apply this method to efficiently implement partition trees
under FHE. Partition trees are a powerful tool for solving range query problems
(we note the proliferation of problems in plaintext that were solved using par-
tition trees). In this paper we have seen a few applications that can be stated
as range searching problems. Specifically, many database queries can be states
as range queries.

In the general case, when the ranges are semi-algebraic with constant de-
scription complexity we showed how to answer a range search query with a
circuit whose size is O(n1+ϵ + t · n1− 1

d+ϵ) and depth is O(ℓ · log n), where n is
the number of points, d is their dimensionality and t is the time to check how a
range interacts with a point simplex.

Since, more complex ranges mean a higher t value and since in practice these
comparisons are the dominant part of the running time our result improves
over the naive implementation. We remind that O(n) is a lower bound when

26

running under FHE, and O(t · n1− 1
d+ϵ) is the best bound known in plaintext

when allowing near linear storage.
The efficiency in our result comes from the way we traverse the partition

tree which takes advantage of its properties, namely there is a bound ξ on the
number of children we need to recurse into. We then recurse into ξ children thus
achieving similar results as the plaintext algorithm (which add to the O(n1+ϵ)
overhead to allow this recursion). We believe the copy-and-recurse method can
be useful in more tree and tree-like constructions.

We implemented a system to demonstrate the efficiency of our method. Our
implementation shows that our method outperforms the naive implementation
even for small values of n. In future work we will show more applications that
are solved efficiently with range searching.

References

[1] Pankaj K. Agarwal and Jǐŕı Matoušek. On range searching with semialge-
braic sets. DISCRETE COMPUT. GEOM, 11:393–418, 1994.

[2] Pankaj K. Agarwal, Jǐŕı Matoušek, and Micha Sharir. On range searching
with semialgebraic sets. ii. SIAM Journal on Computing, 42(6):2039–2062,
2013.

[3] Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel
Farkash, Lev Greenberg, Ramy Masalha, Guy Moshkowich, Dov Murik,
Hayim Shaul, and Omri Soceanu. HeLayers: A Tile Tensors Framework
for Large Neural Networks on Encrypted Data. CoRR, abs/2011.0, 2020.

[4] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure data retrieval on
the cloud: Homomorphic encryption meets coresets. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(2):80–106, Feb.
2019.

[5] Adi Akavia, Max Leibovich, Yehezkel S Resheff, Roey Ron, Moni Shahar,
and Margarita Vald. Privacy-preserving decision trees training and predic-
tion. ACM Transactions on Privacy and Security, 25(3):1–30, 2022.

[6] Sofiane Azogagh, Victor Delfour, Sébastien Gambs, and Marc-Olivier Kil-
lijian. Probonite: Private one-branch-only non-interactive decision tree
evaluation. In Proceedings of the 10th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, WAHC’22, page 23–33, New York,
NY, USA, 2022. Association for Computing Machinery.

[7] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Joan Feigenbaum, editor, Advances in Cryptology — CRYPTO
’91, pages 420–432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

27

[8] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers compu-
tation in private information retrieval: Pir with preprocessing. In Annual
International Cryptology Conference, pages 55–73. Springer, 2000.

[9] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag
TELOS, Santa Clara, CA, USA, 2nd ed. edition, 2000.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ITCS ’12, pages
309–325, New York, NY, USA, 2012. ACM.

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi
and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
pages 409–437, Cham, 2017. Springer International Publishing.

[12] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homo-
morphic comparison methods with optimal complexity. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 221–256. Springer, 2020.

[13] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-and-compute
on encrypted data. In International Conference on Financial Cryptography
and Data Security, pages 142–159. Springer, 2015.

[14] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V.L. Pereira.
Sortinghat: Efficient private decision tree evaluation via homomorphic en-
cryption and transciphering. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’22, page
563–577, New York, NY, USA, 2022. Association for Computing Machin-
ery.

[15] CryptoLab. HEaaN: Homomorphic Encryption for Arithmetic of Approxi-
mate Numbers, version 3.1.4, 2022.

[16] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios
Deligiannakis, and Minos Garofalakis. Practical private range search revis-
ited. In Proceedings of the 2016 International Conference on Management
of Data, pages 185–198, 2016.

[17] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios
Deligiannakis, Minos Garofalakis, and Charalampos Papamanthou. Practi-
cal private range search in depth. ACM Transactions on Database Systems
(TODS), 43(1):1–52, 2018.

[18] Francesca Falzon, Evangelia Anna Markatou, Zachary Espiritu, and
Roberto Tamassia. Range search over encrypted multi-attribute data.
Cryptology ePrint Archive, 2022.

28

[19] Ilia Iliashenko, Malika Izabachene, Axel Mertens, and Hilder V L Pereira.
Homomorphically counting elements with the same property. page 20.

[20] Jǐŕı Matoušek. Efficient partition trees. In Proceedings of the Seventh
Annual Symposium on Computational Geometry, SCG ’91, page 1–9, New
York, NY, USA, 1991. Association for Computing Machinery.

[21] Anselme Tueno, Yordan Boev, and Florian Kerschbaum. Non-interactive
private decision tree evaluation. In Anoop Singhal and Jaideep Vaidya,
editors, Data and Applications Security and Privacy XXXIV, pages 174–
194, Cham, 2020. Springer International Publishing.

[22] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. Private
evaluation of decision trees using sublinear cost. Proceedings on Privacy
Enhancing Technologies, 2019(1):266–286, 2019.

A Building The selection Matrix

In this section we describe BuildSeletionMatrixr,ξ(JcK), a function that gen-
erates the selection matrix, M , used in Algorithm 2. The function has 2 pa-
rameters r and ξ. In addition, it gets as input an encrypted vector JcK, where
c ∈ {0, 1}r and ξ is an upper bound of the number of non-zero elements in c.
The output of BuildSeletionMatrixr,ξ(JcK) is a matrix M ∈ {0, 1}ξ×r, such
that for any vector x ∈ Rr we have

(M · x)[j] =

{
x[i] if c[i] is the j-th value of 1.

0 if c[i] has less than j non-zero elements.

Algorithm 3: BuildSeletionMatrixr,ξ(JcK)

Parameters: ξ < r.
Input: A vector JcK, where c ∈ {0, 1}r, s.t.

∑
ci ≤ ξ.

Output: A selection matrix JMK that selects the non-zero
elements in c.

1 for (row = 1, . . . , r)

2 JM [1, row]K := Jc[row]K ·
∏row−1

i=1 (1− Jc[i]K)
3 for (col = 2, . . . , ξ)
4 for (row = 1, . . . , r)
5 JM [col, row]K :=

Jc[row]K
∑row−1

k=1

(
JM [col − i, k]K

∏row−1
h=k+1(1− Jc[h]K)

)
6 Output: JMK

29

To understand how Algorithm 3 works we note that M [i, j] = 1 iff c[i] is the
j-th cell with a value of 1. Algorithm 3 starts by setting (Line 2)

M [1, i] = c[i]

i−1∏
k=1

(1− c[k]).

It is easy to see that M [1, i] = 1 iff c[i] is the first non-zero element in c, i.e.
c[i] = 1 and c[k] = 0 for 1 ≤ k < i. Then, Algorithm 3 continues by setting
(Line 5)

M [j, i] = c[i]

i−1∑
k=1

(
M [j − i, k]

i−1∏
h=k+1

(1− c[h])
)

which we now explain. M [j − i][k] = 1 iff c[k] is the (j − 1)-st element with

a value of 1.
∏i−1

h=k+1(1 − c[h]) = 1 iff c[k + 1] = . . . = c[i − 1] = 0. Putting

these together and summing for all values of k < i we get that
∑i−1

k=1

(
M [j −

i, k]
∏i−1

h=k+1(1−c[h])
)
= 1 if there are exactly j−1 values of 1 in c[1], . . . , c[i−1].

Multiplying this by c[i] we get that M [j, i] = 1 iff c[i] is the j-th value of 1.

B Proof Of Theorem 1

In this Section we give the proof to Theorem 1.

Theorem 1. Let P ⊂ Rd be a set of n points, Γ ⊂ 2R
d

a family of semi-
algebraic ranges, T a full partition tree as output from Algorithm 4, a function
f that can be computed in a divide and conquer manner and t and ℓ are the size
and depth of the circuit that compares a range to a simplex, then given γ ∈ Γ,
PPRangeSearch (Algorithm 2) securely evaluates f(γ ∩ P) in a circuit whose

size is O(n1+ϵ + t · n1− 1
d+ϵ) and depth is O(ℓ · log n).

Proof. Correctness. The correctness of the plaintext algorithm for range
searching was proven in [20, 1, 2]. Our construction deviates from the plaintext
algorithm in 3 ways: (1) it adds empty nodes; (2) it always recurses into ξ
children (for inner nodes) and (3) it uses the Cross and Cont indicator arrays
to conditionally aggregate values into the output. These do not change the
functionality of algorithm.

Circuit Size. At each inner node, v, Algorithm 2: (1) computes IsContaining
and IsCrossing r times; (2) builds a selection matrix M ; (3) copies ξ children
of v and (4) recurses into ξ children of v. Computing all IsContaining and
IsCrossing takes O(t ·r) time. From Lemma 2, computing the selection matrix

takes O(r2 ·ξ). The size of each child (including its subtree) is O((n/r)
1

1−logr h) =
O((n/r)1+ϵ) and copying ξ children (out of r) takes O(r · ξ · (n/r)1+ϵ).

It follows that the time to compute a range query is given by the following
recursion rule:

T (n) ≤ O(r · t) +O(r2 · ξ) +O(r · ξ · (n/r)1+ϵ) + ξ · T (h · n/r)

30

This solves to

T (n) =

logr/h n−1∑
i=0

O((r · t+ r2 · ξ) · ξi) +
logr/h n−1∑

i=0

O(r · ξ(n

ri+1
)1+ϵ · ξi)

= (r · t+ r2 · ξ)ξ
logr/h n − 1

ξ − 1
+O(r · n1+ϵ ·

1− (ξ
r1+ϵ)

logr/n +1

1− ξ
r1+ϵ

)

= O((r · t+ r2 · ξ)ξlogr/h n + r · n1+ϵ). (1)

For the case d = 1 we have from Lemma 1 ξ = 2 and h = 1. Putting these
into Equation 1 we get

O((r · t+ r2)2logr n+ r ·n1+ϵ) = O((r · t+ r2)nlogr 2+ r ·n1+ϵ) = O(n1+ϵ+ t ·nϵ)

For the case d > 2 we have from Theorem 2 ξ = O(r1−1/d) and h = O(1).
Putting these into Lemma 1 we get

O((r · t+ r2 · r1−1/(2d−4))(r1−1/d)logr/h n + r · n1+ϵ)

= O((r · t+ r3−1/d)(r1−1/d)logr n logr/2 r + r · n1+ϵ)

= O((r · t+ r3−1/d) · n(1−1/d)(1+logr/h h) + r · n1+ϵ)

= O(n1+ϵ + t · n1−1/d+ϵ)

Putting these together we get the circuit size is O(n1+ϵ + t · n1−1/d+ϵ).
Circuit depth. We prove the circuit depth by induction on the height of

T . For a tree T of height 1 the root has r leaf children. The circuit starts with
r instances of IsContaining and r instances of IsCrossing in parallel whose
depth is ℓ. Then the circuit has a BuildSeletionMatrix subcircuit whose depth
is O(ξ logr). Then the circuit has an instance of matrix multiplication whose
depth is constant. The total depth is ℓ+O(ξ · log r).

Assuming the circuit depth of a tree of height (d−1) is (d−1)ℓ+(d−1)O(ξ ·
log r) we prove for a tree of height d. For a tree of height d > 1 the circuit has r
instances of IsContaining and r instances of IsCrossing in parallel. Then the
algorithm has a BuildSeletionMatrix subcircuit followed by ξ subcircuits that
compute range search queries on subtrees of height (d−1). This yields a circuit
depth of d · ℓ+ dO(·ξ log r) = O(ℓ · log n). Since the tree height is d = logr/h n
and ξ is a parameter that depends on r.

C Hiding tree structure

In this section we describe Algorithm 4 which we call FillT ree that adds empty
nodes to an input tree T as mentioned in Section 7.3.

In Figure 6 we show an example of a partition tree and its full version after
empty nodes have been added to it.

31

Algorithm 4: FillT ree(n, r, h, T ′)

Input: Number of points n = |Sroot|; the parameters 0 < r < n;
0 < h as specified in the partition theorem; A tree T ′.

Output: A full tree T where all inner nodes have r children
and all leaves have distance ⌈logr/h n⌉ from the root.

1 while There are nodes with less than r children or leaves whose
distance from the root is less than ⌈logr/h n⌉ do

2 Add an empty child node to an inner node that has less than r
children.

3 Add r empty children nodes to leaves whose distance from the root
is less than ⌈logr/h n⌉.

Lemma 4. Let P be a set of n points in Rd, Γ a family of ranges, r < n
a parameter and h a parameter such that any simplicial partition of P ′ with
respect to Γ, Π = {(P ′

1, σ1), . . . , (P
′
m, σm)} satisfies |P ′|/r < |P ′

i | < h · |P ′|/r
and let T = FillT ree(T ′, n, r, h), where T ′ is a partition tree built for P and

Γ, then the height of T is ⌈logr/h n⌉ and it has a total of n
1

1−⌈logr h⌉ = O(n1+ϵ)
nodes.

Proof. From the partition theorem, at each node v we have a partition with
nv/r ≤ |Pi| ≤ h ·nv/r. It follows that the number of children at each node is at
most r and the height of the tree is at most ⌈logr/h n⌉. The number of nodes is

therefore r⌈logr/h n⌉ = r⌈logr n
1

1−logr h ⌉ = O(n
1

1−logr h) = O(n1+ϵ).

We conclude with a Lemma stating that the structure of a full tree does not
leak information on P .

Lemma 5. Let P1, P2 ⊂ Rd be 2 sets of points with |P1| = |P2| = n and T ′
1, T

′
2

be 2 partition trees built for P1 and P2, respectively, with the same parameters
r, h then T1 and T2 have the same structure, where Ti = FillT ree(n, r, h, T ′

i).

Proof. The number of children in each node of T ′
1 and T ′

2 is at most r for
both trees and does not depend on P . In addition, the hight of T ′

1 and T ′
2

is at most ⌈logr/h n⌉. Since FillT ree adds nodes to have a full tree of height
⌈logr/h n⌉ where each inner node has exactly r children T1 and T2 have the same
structure.

D Security Analysis

In this section we prove the privacy against the cloud (there is no need to prove
privacy against the data owner or the query owner because we assume they
collude).

32

Theorem 3. Algorithm 2 is secure against a computationally bounded, semi-
honest cloud.

Before we prove this theorem we define the view of the cloud, i.e. the set of
all messages it sees during the execution of the protocol. The view of the cloud
is

viewC=(pk,d,n,Γ,h,ξ,r,JγK,JT K,Jf(γ∩P)K,JI1K,JI2K,...),

where pk is the public key as was received from the query owner, d, n,Γ, h, r
and ξ are the parameters the partition tree was built with and were received
from the data owner, JγK and JT K which is the partition tree whose structure
is given but the content in its nodes: Jv.fK and Jv.σK, for every node v ∈ T , is
encrypted. In addition, the view includes Jf(γ ∩ P)K and all the intermediate
values (JI1K, JI2K, . . .) that are generated during the execution of Algorithm 2.
For simplicity, we reorder

viewC = (pk, d, n,Γ, h, ξ, r, structure of T, Jm1K, Jm2K, . . .),

where Jm1K, . . . are the ciphertexts in its view.
Before proving Theorem 3 we prove a lemma claiming that a more restricted

view (one that does not include the structure of T)

viewrestr
C = (pk, d, n,Γ, h, ξ, r, Jm1K, Jm2K, . . .).

is computationally indistinguishable from this view:

viewZ = (pk, d, n,Γ, h, ξ, r, J0K, J0K, . . .).

Lemma 6. viewrestr
C is computationally indistinguishable from viewZ .

Proof. Consider this set of views:

viewrestr
C = view0

C = (pk, d, n,Γ, h, ξ, r, Jm1K, Jm2K, . . .)

view1
C = (pk, d, n,Γ, h, ξ, r, J0K, Jm2K, . . .)

view2
C = (pk, d, n,Γ, h, ξ, r, J0K, J0K, . . .)

...

viewZ = (pk, d, n,Γ, h, ξ, r, J0K, J0K, . . .),

where view
(i)
C is different from view

(i−1)
C by replacing JmiK with J0K, for i =

1, 2, Then if viewrestr
C and viewZ are distinguishable then there exists some

i for which viewi
C is distinguishable from view

(i−1)
C , but this means that JmiK

is distinguishable from J0K without having sk, which is a contradiction to the
semantic security of FHE.

The proof of Theorem 3 is now easy.

33

Proof of Theorem 3. To prove against a semi-honest computationally bounded
cloud we construct a simulator S whose output, when given only the public
parameters (pk, d, n,Γ, h, ξ, r) is computationally indistinguishable from an ad-
versarial cloud’s view in the protocol.

The simulator operates as follows: (1) generates a dummy set P ′ ⊂ Rd of n
points; (2) build a partition tree τ ′ for P ′ with parameters n, ξ, r, h and applies
τ := FillT ree(n, r, h, τ ′); (3) encrypts γ and v.f and v.σ for every node v ∈ τ ;
(3) executes Algorithm 2 PPRangeSearchn,d,Γ,ξ,r,h(JτK, JγK); (4) outputs the
view of the simulator

viewS=(pk,d,n,Γ,h,ξ,r, structure of τ,Jm1K,Jm2K,...)

By Lemma 5 T and τ have the same structure. By Lemma 6 the restricted
simulator view (without the structure of τ) viewrestr

S is computationally indis-
tinguishable from viewZ which is indistinguishable from viewrestr

C . We conclude
that the simulator’s view is computationally indistinguishable from the cloud’s
view.

E Applications

In this section we give a few applications for our privacy preserving range search-
ing.

Counting. Counting is the problem of computing |P ∩ γ|, i.e. how many
points of P are in γ. For this we set f : 2P → N be defined as f(A) = |A| and
g : N× N → N be defined as g(a, b) = a+ b.

Reporting. Reporting is the problem of outputting the points in P ∩γ. Here
we do not report the points explicitly. Instead we report O(log n) canonical
subsets Sv1 , . . . , Svm such that ∪iSvi = P ∩ γ. As hinted, the canonical subsets
are going to be the sets associated with nodes in the partition tree (more specif-
ically, the nodes whose simplex is contained in γ and their father’s simplex is
not) and to report them we assign an id to each node and output the id of the
node. For this we set f : 2P → 2N, that is, f maps a set A ⊂ P into the set ids
of canonical subsets whose union is A. f is defined as f(Sv) = ID(Sv), where
ID(·) is a function returning a unique id for each subset Sv associated with a
node. Similarly g is set to be g : 2N×2N → 2N and is defined as g(A,B) = A∪B.

We also note that techniques such as [4] can be used to efficiently output
P ∩ γ if |P ∩ γ| is small.

Min. The min problem is to report minp∈P∩γ(cost(p)), where cost : P → R
is some cost function. To report minimum we set f : 2P → R and define
f(A) = minp∈A(cost(p)) and g(a, b) = min(a, b).

We note that computing minimum under FHE is a costly operation to
compute. Using a circuit that realizes a partition tree using copy-and-recurse

34

method instantiates only O(log n) instances of the subcircuit implementing the
minimum operation, as oppose to O(n) instances using the naive way.

Averages and k-Means Clustering. The average of a set A is Avg(A) =∑
p∈A p

|A| . Since division is costly under FHE, it is customary to return the pair

(
∑

A p, |A|). We set f : 2P → P × R and define f(A) = (SumA, SizeA),
where SumA =

∑
A a and SizeA = |A|. The average then can be computed

Avg(A) = SumA/SizeA.

35

Figure 5: The running time of a count range search query, i.e., finding |P ∩ γ|
where P ⊂ R. The x-axis is the number size of P . The y-axis is the running
time of the algorithm in minutes. The blue (solid) line shows the running time
of the naive method. The other lines show the running time of PPCount using
copy-and-recurse method using a partition tree with r = 3, 5, 7, 9, where r is the
number of children of every inner node.

36

Figure 6: An example of a partition tree before (left) and after (right) applying
FillT ree. On the left is a partition tree for 4 points p1, . . . , p4. On the right
is a full version of the same tree. All the inner nodes need to have the same
number of children, so empty nodes are added to the root. All leaves need to be
at the same distance from the root, so empty nodes are added to the rightmost
node (that represents p4) and as children of the newly added child of the root.
All empty nodes have the value v.f = f(∅) and empty bounding simplex s0.

37

