
Tiresias: Large Scale, Maliciously Secure
Threshold Paillier

Offir Friedman, Avichai Marmor, Dolev Mutzari, Yehonatan C. Scaly,
Yuval Spiizer, and Avishay Yanai

dWallet Labs,
research@dwalletlabs.com

Abstract. In the threshold version of Paillier’s encryption scheme a
set of parties hold a share of the secret decryption key. Whenever a ci-
phertext is to be decrypted, the parties sends their decryption shares,
which are then verified for correctness and combined into the plaintext.
The scheme has been widely adopted in various applications, from se-
cure voting to general purpose MPC protocols. However, among handful
proposals for a maliciously secure scheme, one must choose between an
efficient implementation that relies on non-standard assumptions or an
infeasible one that relies on widely acceptable assumptions.
In this work, we present a new protocol that combines the benefits of both
worlds. We depart from the efficient scheme, which was proven secure
relying on non-standard assumptions, and for the first time, prove that
it is secure under standard assumptions only. This is possible thanks to a
novel reduction technique, from the soundness of a zero-knowledge proof
of equality of discrete logs, to the factoring problem. Furthermore, our
simple and efficient proof supports batching, and hence enables batched
threshold Paillier decryption for the first time.
Until now, verifying that a decryption share is correct was the bottle-
neck of threshold Paillier schemes, and prevented its implementation in
practice (unless one is willing to rely on a trusted dealer). Our new proof
and batching techniques shift that bottleneck back to the plaintext re-
construction, just like in the semi-honest setting, and render threshold
Paillier practical for the first time, supporting large scale deployments.
We implemented our scheme and report our evaluation with up to 1000
parties, in the dishonest majority setting. For instance, over an EC2
c6i machine, we get a throughput of about 50 and 3.6 decryptions per
second, when run over a network of 100 and 1000 parties, respectively.

Keywords: Additive Homomorphic Encryption · Paillier Encryption ·
Threshold Encryption · Batched ZK Arguments

1 Introduction

The Paillier encryption scheme, introduced by Pascal Paillier [Pai99] in 1999, has
gained significant popularity due to its advantageous properties. It is a public-
key encryption scheme renowned for its additive homomorphic property, enabling

linear operations on encrypted data without requiring decryption. Additionally,
the Paillier scheme supports a large message space, enabling useful operations
on secrets, black box in the underlying ring.

Motivated by applications in voting systems, several authors have proposed
threshold variants of the Paillier encryption scheme [FPS01,DJN10]. These vari-
ants are based on similar constructions for RSA signatures [Sho00].

A threshold encryption scheme facilitates a group of parties utilizing a public
encryption key pk to encrypt messages while collectively maintaining the corre-
sponding secret key sk for decrypting ciphertexts. In this scheme, each party
Pi possesses a secret decryption key share ski. When the parties collectively
decide to decrypt a ciphertext ct, they participate in a cryptographic protocol
that ultimately reveals the message while ensuring the confidentiality of the se-
cret decryption key. Typically, in such protocols, each party Pi broadcasts a
”decryption share” ctj = Decski

(ct). If a sufficient number of parties, passing
a certain pre-defined threshold, broadcast their decryption shares, those can
then be locally combined by anyone to actualy plaintext pt = Decsk(ct). The
combination of homomorphic properties and threshold decryption capabilities
has rendered the Paillier encryption scheme highly appealing in systems focused
on privacy-preserving voting [KLM+20,DJN10] and data aggregation in general
[MT21,BS21]. Moreover, threshold decryption of the Paillier scheme (and ad-
ditively homomorphic encryption in general) serves as a foundational building
block in other cryptographic protocols like threshold signatures [GGN16] and
secure multiparty computation (MPC) in general [DN03,DPSZ12]. However, the
utilization of the threshold Paillier scheme necessitates the implementation of
a protocol for both public key generation and distribution of secret key shares.
Previous works, such as [FPS01,GGN16], which made use of the threshold Pail-
lier decryption feature, relied on a trusted dealer for key generation. However,
this approach inadvertently reintroduced a security risk similar to the one origi-
nally intended to be avoided. Other works such as [GG20] compromised on non-
threshold Paillier for threshold ECDSA signatures. Nevertheless, this requires
each party to have its own Paillier public key, and therefore in the pre-sign
phase each pair of parties exchanges unique messages, rather than having each
party only send broadcast encrypted messages under a single public key. To
this end, fully-fledged threshold schemes have been proposed, (e.g., [DK01]). In
these schemes, the involvement of a trusted dealer is entirely eliminated, and the
generation and distribution of keys are carried out by the participating parties
themselves.

Similar to other RSA-based primitives, like signature [RSA78] and verifiable
delay function (VDF) [BBBF18] schemes, the public key of the Paillier encryp-
tion scheme consists of a modulus N that is the product of two large prime
numbers P and Q. Therefore, many works (see [BDF+23] and references within)
deal with distributed RSA modulus as a stand alone and independent building
block, leaving additional necessary cryptographic material to be generated by
the specific application, be it the RSA signature, RSA encryption, VDF, or Pail-
lier encryption schemes. The additional cryptographic material may be different

2

from scheme to scheme. For example, in the threshold RSA signature scheme,
Pi’s signature share on message m is computed by σi = H(m)di mod N where
d =

∑
di is the secret signing key shared among the parties, and the final sig-

nature is σ =
∏

σi. If one of the parties computes an incorrect partial signature
σ′
i ̸= σi then it is evident to everyone, since the final signature σ′ will not verify.

In contrast, in the context of threshold encryption, without employing some ver-
ifiability mechanism it might not be possible to tell whether a decryption share
was computed correctly or not. To this end, all proposals for threshold Paillier
devise such a verifiability mechanism, in the form of a zero knowledge proof.
That is, in addition to the aforementioned decryption share, each party provides
a zero knowledge proof for the claim that the decryption share is computed cor-
rectly using its secret key share. In that sense, the proposed threshold Paillier
protocols differ mostly in the way that the zero knowledge proof is implemented,
offering a trade off between efficiency and security. Specifically, these protocols
offer a trade off in the three metrics below:

– Key generation efficiency refers to whether distributed key generation is
practical.

– Proof efficiency refers to the size and the time it takes to generate/verify
the zero knowledge proof of the correctness of the decryption share.

– Strength of assumptions refers to the cryptographic assumptions under-
lying the soundness of the proof.

Considering only protocols with a feasible key generation phase, one has to
choose between a protocol with an efficient proof that relies on non-standard
assumptions, and a protocol whose proof is inefficient, but relies on standard
widely accepted assumptions. This raises the following question:

Is it possible for a threshold Paillier encryption scheme to incorporate an
efficient key generation and proof while relying solely on standard assumptions?

In this work we answer this question in the affirmative. We depart from a pro-
tocol that has an efficient key generation and proof, but relies on non-standard
assumptions, and present a novel reduction technique that is applied to the proof
of soundness of the zero knowledge proof of correct decryption share. This, for
the first time, allows using an efficient version of threshold Paillier without com-
promising on security.

1.1 Previous Work: Efficiency vs. Security

In the following, we provide a more detailed overview of the trade-off discussed
above, which involves a tension between efficiency and the level of leniency as-
sociated with relying on non-standard assumptions.

On one extreme, the protocol by Algesheimer et al. [ACS02] allows dis-
tributed generation of a bi-prime public key N = PQ consisting of safe primes.
The fact that N is a product of safe primes enables an efficient zero knowledge
protocol for the correctness of the threshold decryption, while also achieving se-
curity under standard assumptions. Generating N as a product of safe primes is

3

commonly adopted by works that assume a trusted dealer [FPS01,DJN10], since
a dealer can easily generate such a key. However, distributed generation of safe
primes remains an infeasible task, which is evident by the fact that [ACS02] has
never been implemented.

On the other extreme, Damg̊ard et al. [DK01] proposed a protocol that lowers
the bar by generating public key N that is a product of ‘general’ primes1 P,Q
(i.e., they are not necessarily safe), and using the same efficient zero knowledge
proof as [FPS01]. However, since the generated primes may lack some important
properties that exist in safe primes, the soundness of that zero knowledge proof
has to rely on non-standard assumptions.

In order to bridge between the above mentioned extremes, Fouque and Stern
[FS01] proposed a new protocol in which the key generation produces primes
P,Q that are only almost safe primes, meaning that P−1

2 and Q−1
2 are B-rough

numbers and co-prime. Unlike safe primes – distributed generation of almost
safe primes can be done, but is impractical for most use-cases (our estimations
were that generation of almost safe primes would be 1000x slower than general
ones), and unlike general primes – the B-roughness property facilitates a proof of
soundness for the zero knowledge protocol without relying on new assumptions.
This, however, incurs a degradation of the efficiency of the zero knowledge proof.
As reported by the authors, the proof efficiency is about 30× worse than that
used in [DK01].

Another bridging attempt is due to Hazay et al. [HMR+19]. Their protocol,
similar to [DK01], builds on a public key N that is a product of general primes,
but uses a different zero knowledge protocol (using the cut-and-choose technique)
than the one used in [DK01]. Their proof, while relying on standard assumptions,
suffers from poor soundness (1/2), which means that it has to be repeated κ times
to meet real security requirements.

Since safe prime generation as in [ACS02] is infeasible, we are left with the
choice between accepting the extra assumptions in [DK01] and getting an effi-
cient proof (and therefore threshold decryption), or sticking to the widely ac-
cepted assumptions but suffering an inefficient proof, as in [FS01] and [HMR+19].

Lastly, it worth mentioning a different approach, proposed by Baum et al.
[BDTZ16], which removes the zero knowledge proof from threshold Paillier de-
cryption altogether. That is, in order to decrypt the ciphertext c = Encpk(m; r)
the parties first reconstruct the randomness r, which in turn enables learning the
plaintext m. This approach, however, apart from revealing the randomness r to
the adversary, enables an attacker to anonymously cheat in the reconstruction
of r and thus to deny decryption. Both of the above issues are problematic in
most cases, yet tolerable in some scenarios2.

1 We remark that distributed generation of a product of general primes is due to Boneh
and Franklin [BF97] and its improvements [DdSGMRT21,CHI+21,BDF+23].

2 Specifically, in [BDTZ16] such decryption is happening only in the preprocessing
phase of a generic MPC protocol, in which case, neither an abort nor leakage of r
gives the adversary any advantage. Alternatively, the same work proposes a method

4

1.2 Technical Overview

Let us begin with the high-level overview of the threshold Paillier decryption.
As mentioned above, Paillier’s public key is a modulus N that is a product of
two large primes P and Q. The secret key d is derived from these primes, and
it is assumed to be computationally infeasible to obtain it from N . In threshold
Paillier key generation protocols, the parties first obtain a sharing of P and Q,
and then derive a sharing of d as well as the productN = PQ in plain. To be more
specific, the generated primes P and Q are required to satisfy gcd (ϕ(N), N) = 1,
where ϕ(N) = (P − 1)(Q − 1). Using this fact, the secret key is computed3 by
d = ϕ(N) · [ϕ(N)−1 mod N] ∈ Z and shared among the parties using a secret
sharing scheme over the integers4, such that party Pi obtains a share di. In
addition to the public modulus N , the parties generate a public verification key
vi for every Pi, such that vi = gdi for some basis element g from the group of
quadratic residues modulo N2 (denoted QRN2). Then, when the parties agree
to decrypt a ciphertext ct, party Pi sends the decryption share cti = ctdi along
with a zero-knowledge proof that cti is computed correctly using the public ct
and the secret di.

5 This proof is a proof of equality of discrete logs of the values
cti and vi over QRN2 , with respect to the bases ct and g. That is, if Pi computes
its decryption share correctly then logct(cti) = logg(vi) = di.

In the following we present in more detail why safe primes are powerful for
efficient proofs, and later we explain how we achieve the same efficiency without
using safe primes and without resorting to additional assumptions.

Suppose that the generated modulus N is a product of two safe primes P,Q,
meaning that P ′ = P−1

2 and Q′ = Q−1
2 are primes as well. There are three main

benefits from the assumption that P ′ and Q′ are primes:

1. In the context of proofs for equality of discrete logs, it is commonly assumed
that the group is cyclic. For any pair P,Q of distinct safe primes, the group
QRN2 is guaranteed to be cyclic, since QRN2 ∼= QRP 2×QRQ2 and the orders
of QRP 2 and QRQ2 are co-prime. However, in the general case these orders
may share a common factor and the group QRN2 may not be cyclic.

2. When the group QRN2 happens to be cyclic, it is guaranteed to have a gen-
erator g, meaning that every element in QRN2 equals gi for some i. This fact
typically helps when arguing security for zero knowledge protocols. Finding
a generator of QRN2 is easy when N is a product of safe primes, since a ran-
dom element of QRN2 is highly probable to generate the group. However, in
the general case (where the primes are not safe), even when QRN2 is cyclic,
no efficient algorithm for finding a generator of QRN2 is known.

to avoid denial of decryption at the cost of two additional rounds and assuming the
primes are safe, a property we wish to avoid in the first place.

3 There are several choices for the exact form of the secret key, which are all variants
of the one described above.

4 Some works assume secret sharing over the ring ZNϕ(N) but this is harder to achieve
without a trusted dealer.

5 When the threshold is smaller than the number of parties each exponent is multiplied
by the appropriate Lagrange coefficient.

5

3. The standard proof of soundness (see [FPS01]) obtains an equation of the
form xe = 1 mod N2 for some small e (i.e., e≪ min{P ′, Q′}), and concludes
that x = 1 since e is necessarily co-prime with ϕ(N2)/4 = NP ′Q′. This
conclusion cannot be made when P ′ and Q′ are allowed to be composite
numbers.

These three benefits of safe primes are also drawbacks of general primes. The
work [DK01] overcomes these drawbacks and applies the same zero knowledge
proof as in [FPS01], but does not assume that the primes are safe and therefore
rely on the following non-standard assumptions:

1. It is computationally hard to compute an element a ∈ Z∗
N such that a ̸= ±1

mod N and the order of a is not divisible by the largest factor of ϕ(N).
2. A random element in QRN is indistinguishable from those elements in QRN

with maximal order.

In [FS01] mentioned earlier, which aims at avoiding extra assumptions with-
out requiring the primes to be safe, the efficiency is degraded for two reasons.
First, the protocol has to be repeated with many bases g1, g2, . . ., which together
generate QRN2 with overwhelming probability. Second, the protocol requires
P−1
2 and Q−1

2 to be B-rough (i.e., to have all prime factors larger than B), and
the soundness depends on B. Since all known practical key generation protocols
result in quite a small B, soundness must be amplified via parallel repetitions.

Our approach. In this work we take the same approach as in [DK01], but
remove their extra assumptions. Specifically, we manage to obtain an efficient
zero knowledge proof of equality of discrete logs over QRN2 , even when N is
a product of general primes.6 By setting minimal and practically achievable
properties to the primes, we overcome the above three drawbacks by using the
following observations.

1. Even though P,Q are not safe-primes, with high (but not overwhelming)
probability P−1

2 and Q−1
2 are co-primes, and therefore QRN2 is cyclic. During

the key generation protocol the parties will reject prime candidates that do
not meet the requirement that P−1

2 and Q−1
2 are co-primes. The rejection

of prime candidates that do not satisfy that condition incurs only a small
constant factor overhead (about 1.2×) to the key generation protocol.

2. Even when P,Q are not safe primes, the order of a random element g ∈ QRN2

is ‘close enough’ to the order of QRN2 , and so for our purpose it can be
used as if it was a generator. Specifically, we prove that with overwhelming
probability, the order of a randomly sampled g ∈ QRN2 is at least the order
of QRN2 divided by a sufficiently small smooth number (whose prime factors
are all small).

6 We do require N to meet one extra constraint, which only slightly affects the effi-
ciency of the key generation protocol, but not the efficiency of the threshold decryp-
tion, and doesn’t require additional cryptographic assumptions.

6

3. For similar reasons, in the proof of soundness, instead of obtaining the equa-
tion xe = 1 mod N2 we obtain xe · η = 1 mod N2, where η ∈ QRN2 has
a smooth order δ. This means that xe·δ = 1 mod N2. Then, we divide the
proof into two cases: If xe = 1 (as in the case where g is a generator), then
we can find the factorization of e since e is small, from which we can find the
factorization of N using classical techniques, as long as x ̸= 1. Otherwise,
xe ̸= 1 mod N2 is an element of small smooth order and so we can employ
Pollard’s p− 1 method in order to factor N .

Interestingly, our proof of soundness leverages the fact that there is a large
gap between a computational security parameter κ and the hardness of the
factorization problem. In particular, it leverages the fact that factoring a number
with κ bits is actually easy for popular choices of κ like 128 or 256.

1.3 Our Contribution

– We present the first practical, efficient, large-scale threshold Paillier encryp-
tion protocol, supporting efficient distributed key generation and threshold
decryption, relying only on standard assumptions (the decisional composite
residuosity assumption). The protocol is secure in the presence of a malicious
adversary who statically corrupts t < n parties.

– At the heart of our contribution lies a novel proof of soundness of the equality
of discrete logs over QRN2 , even when N is not a product of safe primes.
Such proof may find independent interest: First, the same proof can be used
in threshold protocols over RSA groups, such as threshold RSA signature.
Second, the requirement of safe primes in various cryptographic primitives
can be re-assessed, which is left to a future work.7 The ramification of that
proof is that distributed Paillier key generation can be implemented using
any distributed bi-prime modulus generation (for ‘general’ primes), and in
particular, we can leverage recent advances, like Diogenes [CHI+21], for key
generation by thousands of parties.

– In a real-world system, which is required to continuously process many ci-
phertexts, the parties need to verify decryption shares received from other
parties for many ciphertexts. Verification of such many proofs (number of
parties times number of ciphertexts) can easily dominate the overall cost
of decryption. To solve this, we adapt a novel batching technique, which is
applicable when verifying proofs of multiple decryption shares from multiple
provers. Specifically, computation and verification of B proofs incurs sin-
gle ‘large’ exponentiation and O(B) ‘small’ exponentiations instead of O(B)
large exponentiations (where ‘large’ refers to the size of the shamir share
over the integers of the decryption key, e.g., 4096 bits, and ‘small’ refers to
the size of the computational security parameter, e.g., 128 bits).

7 That being said, while similar techniques may be applied to remove the requirement
of safe primes in other cases as well, in some protocols the requirement that the
primes are safe might be crucial, so every protocol must be analyzed on its own.

7

For example, in a setting of 1000 parties, computing decryption shares for
1000 ciphertexts over a standard Mac laptop takes only 144 milliseconds per
share, while it takes 137 milliseconds per share if no proof is required (i.e.,
in the semi-honest setting). This means that protecting against a malicious
security in this case incurs only ×1.05 overhead.

– We stress that this is the first time that batch proof and verification for
threshold Paillier decryption is shown possible, when N is not a product
of safe-primes. As argued above, such batching technique is crucial for the
efficiency of threshold Paillier decryption and is the difference between a
practical and impractical solution.

Although our contributions are concentrated around threshold decryption,
we briefly discuss the protocol for distributed key generation as well (in Section
3.3), for completeness of the exposition.

1.4 Organization

In Section 2 we present our notation and the mathematical background that
is necessary in order to understand our protocols; then we present in detail
the background on the Paillier encryption scheme, threshold decryption and
distributed key generation in Section 3. In Section 4 we present our new zero
knowledge protocol for equality of discrete logs over QRN2 , and provide a full
proof of security. Finally, we present an optimization to the plaintext reconstruc-
tion, as well as a tighter analysis Shamir sharing over the integers in Section 5,
where we also report on our experiments.

2 Preliminaries

General notation. We let N,Z,Zm denote the set of natural numbers excluding
0, integers, and integers modulo m, respectively. In addition, we denote by Z∗

m

the multiplicative group modulo m. We denote by primes and primesm the set of
all prime numbers and the set of prime numbers smaller than m, respectively.
For a, b ∈ Z we denote by [a], [a, b], [a, b) and (a, b) the sets {1, . . . , a}, {a, . . . , b},
{a, . . . , b − 1} and {a + 1, . . . , b − 1}, respectively. The bit representation of an
integer x is denoted (xℓ−1, . . . , x0) with xℓ−1 being the most significant bit. We
denote by X ← Ω a uniform sampling from a set Ω. We use κ and σ to denote
computational and statistical security parameters, respectively. We denote by
time(A(x1, x2, . . .)) the run time of an algorithm A on inputs (x1, x2, . . .).

Mathematical background. Let a, b ∈ Z. If a = b · q + r for some q ∈ Z and
r ∈ [0, b) then r = [a mod b] represents the reduction of a modulo b. If r = 0
then we say that b divides a and denote it by b|a. If, in addition, b /∈ {1, a}, then
we say that b is a non-trivial factor of a. We write a1 = a2 = . . . = ak mod b if
[ai mod b] = [aj mod b] for all i, j. The values gcd (a, b) and lcm (a, b) are the
greatest common divisor and least common multiple of a and b, respectively. If

8

gcd (a, b) = 1 we say that a and b are co-prime. In the following we present some
basic number theoretic properties that can be found in introductory books (e.g.,
[KL14, Section 7]).

Proposition 2.1 Let a, b ∈ Z. if c = [ab mod b2] then a = c/b mod b.

Proposition 2.2 Let m ∈ Z and x, r ∈ [0,m− 1]. Then:

– Euclidean algorithm: gcd(m,x) = gcd(m, [x mod m]).

– gcd(m,xr) = 1 if and only if gcd(m,x) = 1 and gcd(m, r) = 1.

Proposition 2.3 Let a,m1,m2, . . . ∈ Z and gcd(mi,mj) = 1 for all i ̸= j.
Then, gcd(a,

∏
i mi) =

∏
i gcd(a,mi).

Corollary 2.4 Let a ∈ Z and p1, p2, . . . ∈ primes: gcd(a, pi) = 1 for all i if and
only if gcd(a,

∏
i pi) = 1.

Number classification and properties. We use some classical number theoretic
notions. The reader is referred to [MV06, Section 7] for more information.

Definition 2.5 (β-Smooth Number) For β ∈ N, an integer k is called β-
smooth if all the prime factors of k are smaller than β.

Definition 2.6 (Safe Prime) A prime number p is called safe if p−1
2 is prime.

Definition 2.7 (Conforming Bi-Prime) An integer N is called a conform-
ing bi-prime if there exist two primes P,Q such that N = P ·Q, gcd (P − 1, Q− 1) =
2, P = Q = 3 mod 4 and gcd (N,ϕ(N)) = 1.

Groups. We use multiplicative notation for groups. Let G be a finite abelian
group. For g1, . . . , gk ∈ G we denote by ⟨g1, . . . , gk⟩ the subgroup H ⊆ G gen-

erated by g1, . . . , gk. That is, H =
{∏k

i=1 g
αi
i

}
αi∈Z,i∈[k]

. We denote by |G| and

ord(g) (or |⟨g⟩|) the order of (number of elements in) G and ⟨g⟩, respectively.
An element y ∈ G is a quadratic residue if there exists an x ∈ G with x2 = y.
For abelian groups, the set of quadratic residues forms a subgroup. For an in-
teger m > 2, we denote by QRm the subgroup of quadratic residues in Z∗

m. By
Lagrange’s theorem, if G is a group and H ⊆ G then |H| divides |G|.

Indistinguishability.

Definition 2.8 (Statistical Distance) Let X,Y : Ω → [M] be two random
variables. The statistical distance between X,Y , denoted SD(X,Y), is

SD(X,Y) :=
∑
w∈Ω

|Pr[X = w]− Pr[Y = w]|

9

Hardness assumptions. Let GenModulus be a polynomial time algorithm that,
on input 1κ, outputs (N,P,Q) where N = PQ, and N is a conforming bi-prime
except with probability negligible in κ.

Definition 2.9 (DCR) We say that the decisional composite residuosity (DCR)
problem is hard relative to GenModulus if for all probabilistic polynomial time al-
gorithms A there exists a negligible function neg such that∣∣Pr [A (N, [rN mod N2]

)
= 1
]
− Pr [A (N, r) = 1]

∣∣ ≤ neg(κ)

where the probabilities are taken over N as an output from GenModulus(1κ) and
r ← Z∗

N2 .

The decisional composite residuosity (DCR) assumption is the assumption
that there exists a modulus generator algorithm GenModulus relative to which
the decisional composite residuosity problem is hard.

Definition 2.10 (Factoring) We say that factoring is hard relative to GenModulus
if for all probabilistic polynomial time algorithms A there exists a negligible func-
tion neg such that

Pr[P ′ ·Q′ = N | (P ′, Q′)← A(N), (N,P,Q)← GenModulus(1κ)] ≤ neg(κ).

The factoring assumption is the assumption that there exists a GenModulus
relative to which factoring is hard.

2.1 Shamir Secret Sharing

We present Shamir’s threshold secret sharing over a field [Sha79] and its exten-
sion to a threshold secret sharing over the integers [NS10,Rab98,VAS19].

Shamir sharing over a prime field. Shamir t-out-of-n secret sharing over
the field F (where t < n ∈ N) is defined by a tuple of algorithms SSF =
(Share,Reconstruct), where [s] = ([s]1, . . . , [s]n) = Sharet,n(s; r) denotes a shar-
ing of s using randomness r, and s = Reconstruct([s]i1 , . . . , [s]it+1

) denotes the
reconstruction using t + 1 shares, which may result with ⊥ if the shares are
inconsistent. With more details:

– [s] = Sharet,n(s; r). Given a secret s ∈ F and a random tape r = (a1, . . . , at) ∈
Ft, output [s] = ([s]1, . . . , [s]n), where [s]i = p(i) and p(x) = s+a1x+a2x

2+
. . .+ atx

t.

– s = Reconstruct({(t, [s]t)}j∈T). Let T ⊂ [n] be a set of t+1 distinct elements
from [n]. Let p be the unique interpolation polynomial such that p(t) = [s]t
for all j ∈ T . Output s = p(0).

10

Lagrange interpolation is used in order to get p(i) directly. For T = {i1, . . . , it+1},
given points ([s]i1 , . . . , [s]it+1

), the polynomial that passes through them is p(x) =∑t+1
j=1[s]ij · ℓj(x), where

ℓj(x) =
∏

1≤k≤t+1

k ̸=j

x− ik
ij − ik

.

Now, for any subset T of size t + 1, every j ∈ T and every evaluation point
v ∈ F the Lagrange coefficient is defined as λv

T,j = ℓj(v); then we can write

p(v) =
∑t+1

j=1 λ
v
T,j · [s]ij .

Shamir sharing over the integers. Let s ∈ Z be a secret such that s ∈
[−b,+b]. Define ∆n = n! and define some bound I(σ, n, b) on the (absolute value
of the) coefficients of the polynomial. Until recently (e.g., see [VAS19]) the bound
I(σ, n, b) = 2σ ·∆2

n · b was used, however, following [BDO22] we provide a tighter
bound for I(σ, n, b) in Section 5.2.

The algorithm Sharet,n(s) picks a1, . . . , at ← [−I(σ, n, b),+I(σ, n, b)] and out-

puts ([s]1, . . . , [s]n) where [s]i = p(i) and p(x) = ∆n · s+
∑t

j=1 aj · xj .
Reconstruction works as follows. Given a set T = {i1, . . . , it+1} and shares

{[s]ij}ij∈T , we have

p(0) =

t+1∑
j=1

λ0
T,j · [s]ij = ∆ns,

However, since the Lagrange coefficients might not be in Z, we multiply them
first by ∆n, and get t+1∑

j=1

∆nλ
0
T,j · [s]ij

 /∆2
n = s. (1)

For an (n, t)-threshold Shamir sharing over the integers of secret s ∈ [−b,+b],
we denote the upper bound on the absolute value of the shares on s byD(σ, n, t, b),
which is:

D(σ, n, t, b) = ∆n · b+
t∑

i=1

I(σ, n, b) · ni ≤ ∆n · b+ 2ntI(σ, n, b)

for all n ≥ 2.

Local operations over sharings. Given two polynomials p1(x) and p2(x)
with secrets s1 = p1(0) and s2 = p2(0), the secret sharing of s = s1 + s2 can be
locally computed by having each party Pi compute [s]i = [s1]i+[s2]i so that the
secret s is shared using the polynomial p(x) = (p1 + p2)(x). In addition, given
a polynomial p(x) and a (public) constant α ∈ F, the secret sharing of α · s can
be locally computed by having each party Pi compute [αs]i = α[s]i. Similarly,
the above is extended to any affine operation over the secrets.

11

2.2 Zero Knowledge

We use the formalization from [HL10, Chapter 6] with a slight deviation in
the soundness definition. Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation, where
(x,w) ∈ R implies |w| ∈ poly(|x|). We call w a witness for instance x. Define
LR to be the set of inputs x for which there exists a w such that (x,w) ∈ R. A
Σ-protocol template for relation R is given in Protocol 2.1 below. We say that
the transcript (a, e, z) is an accepting transcript for x if the protocol instructs V
to accept based on the values (x, a, e, z).

PROTOCOL 2.1
(
Σ-protocol template for relation R

)
– Common input: The prover P and verifier V both have x.
– Private input: P has a value w such that (x,w) ∈ R.
– Protocol template:

1. P sends V a message a.
2. V sends P a random challenge e← {0, 1}κ.
3. P sends a reply z, and V decides to accept or reject based solely on

(x, a, e, z).

Definition 2.11 A protocol π is a Σ-protocol for relation R if it is an instance
of the protocol template above (Protocol 2.1), namely, it is a three-round public-
coin protocol, and the following requirements hold:

– Completeness. If P and V follow the protocol on input x and private input
w to P, where (x,w) ∈ R, then V always accepts.

– Soundness. For any statefull probabilistic polynomial prover P∗ = (P∗
1 ,P∗

2)
(i.e., P∗

1 and P∗
2 have an access to the same state)

Pr[(P∗
2 (x;w)↔ V(x)) = 1 | x← P∗

1 (1
κ) ∧ ∀w : (x,w) ̸∈ R] ≤ neg(κ).

While the standard definition of soundness requires the above to hold for
every x, here we require that it holds only for instances x that are output by
the dishonest prover P∗ itself, hinting to the difficulty of finding an instance
x for which the equation does not hold.

– Special honest verifier zero-knowledge. There exists a PPT simulator
S, which on input x outputs a transcript of the form (a, e, z) with the same
probability distribution as transcripts between P and V on common input x.
Formally, for every x and w such that (x,w) ∈ R, it holds that S(x) and
(P(x;w)↔ V(x)) are statistically indistinguishable.

Proposition 2.12 (Proposition 6.2.3 [HL10]) Let π be a Σ-protocol for a
relation R. Then, π is an interactive zero-knowledge proof of membership for
LR.

It is common to turn a Σ-protocol into a non-interactive zero-knowledge pro-
tocol using the Fiat-Shamir (FS) transform [FS87,CCH+18,AFK22], for which
it is sufficient to consider only honest verifier.

12

3 Background on Threshold Paillier

3.1 The Paillier Encryption Scheme

In this section we present the Paillier encryption scheme [Pai99], which is char-
acterized by the following tuple of algorithms Paillier = (Gen,Enc,Dec).

– Gen(1κ). Given a security parameter 1κ, sample ℓ = poly(κ)-bit primes P,Q
such that gcd (N,ϕ(N)) = 1. The algorithm outputs the public encryption
key N = P ·Q and the secret decryption key (N ; d) where d = 0 mod ϕ(N)
and d = 1 mod N .

– Enc(N, pt; r). Given the public key N , a plaintext pt ∈ ZN and randomness
r ∈ Z∗

N , output ciphertext

ct =
[
(1 +N)pt · rN mod N2

]
.

– Dec((N, d), ct). Given the secret key d and a ciphertext ct, output

pt =

[
[ctd mod N2]− 1

N
mod N

]
.

Correctness. Decryption is always correct because:[
[ctd mod N2]− 1

N
mod N

]
=

[[
(1 +N)d·pt · rd·N − 1 mod N2

]
N

mod N

]

=

[[
d · pt ·N mod N2

]
N

mod N

]
= d · pt mod N

= pt,

where equalities (top to bottom) hold by replacing ct with the definition of
encryption; the binomial expansion (1 + N)k = 1 + Nk mod N2 and the fact
that rd·N = 1 mod N2 (since ϕ(N)|d and ord(ZN2) = Nϕ(N)); Proposition 2.1;
and the fact that d = 1 mod N and that pt < N .

3.2 Threshold Decryption with a Trusted Setup

Consider a trusted dealer, who runs (N ; d) ← Paillier.Gen(1κ). Then the dealer
publishes N and shares d over the integers to n parties, P1, . . . , Pn, using a (t, n)-
sharing scheme (cf. 2.1), resulting with [d] such that Pj receives dj . The sharing
of d is over the integers rather than over Z|QRN2 | as the parties cannot compute
the Lagrange coefficients over Z|QRN2 | because the order |QRN2 | is unknown.

In the following we assume that the parties behave honestly and later we
describe how to handle malicious behaviour. Given a ciphertext ct ∈ Z∗

N2 party
Pj broadcasts its decryption share ctj = ct2∆ndj (recall that ∆n = n!). Given

13

ctj for j ∈ T where T ⊂ {P1, . . . , Pn} of size t + 1, it is possible to decrypt by
computing

ct′ :=

∏
j∈T

ct
2∆nλ

0
T,j

j mod N2

 =

∏
j∈T

(ct2∆ndj)2∆nλ
0
T,j mod N2

=

∏
j∈T

ct4∆
2
ndjλ

0
T,j mod N2

=
[
ct4∆n

∑
j∈T ∆ndjλ

0
T,j mod N2

]
=
[
ct4∆

3
nd mod N2

]
=

[(
ct4∆

3
n

)d
mod N2

]
= Enc

(
N, 4∆3

npt; r
4∆3

n

)d
,

where the first equality holds since ctj = ct2∆ndj , the third follows by Lagrange

interpolation in the exponent, by Eq. (1) we have
(∑

j∈T ∆ndjλ
0
T,j

)
= ∆2

nd),

and the last one follows by the encryption definition.
Then, obtain the plaintext by computing[(

ct′ − 1

N

)
· (4∆3

n)
−1 mod N

]
=
[
pt · 4∆3

n · (4∆3
n)

−1 mod (N)
]
= pt,

where the first equality is derived from the correctness of the standard Paillier
scheme.

Handling corrupted parties. To detect a malicious party Pj that sends an in-
correct decryption share ctj , we require Pj to send a zero knowledge proof that
ctj is computed correctly using the public base ct and the secret share dj . As
discussed in Section 1.1, several approaches were proposed in the literature, and
here we follow the one taken by Damg̊ard et al., which uses a single verification
key. In more detail, in addition to the sharing [d], the trusted dealer computes
and publishes vj = g∆ndj for every Pj , where g is a random element in QRN2 .
Then, whenever Pj wishes to send its decryption share ctj = ct2∆ndj , it also
sends a proof that the discrete log of ctj in the basis ct2 equals the discrete log
of vj in the basis g. In that sense, we view vj as a commitment to Pj ’s share of
the secret key dj .

We remark that the discrete logarithm equality described above does not
assure that Pj behaves honestly, and a slightly stronger claim needs to be proved.
See Section 4 for the exact formulation of the language and the proof protocol.

3.3 Distributed Key Generation (Without a Trusted Dealer)

Many protocols for distributed generation of bi-prime (or RSA) modulus were
proposed (e.g. [BF97,DdSGMRT21,BDF+23]). In this work we make use of

14

the Diogenes [CHI+21] protocol as it is highly scalable. The functionality re-
alized by the Diogenes protocol is given in Functionality A.1. In Diogenes the
parties obtain a bi-prime N = PQ for some large primes P and Q, but in
our context (threshold Paillier) we need N to be a conforming bi-prime (Def-
inition 2.7). Namely, N = PQ should satisfy: (1) P = Q = 3 mod 4, (2)
gcd (P − 1, Q− 1) = 2, and (3) gcd (N,ϕ(N)) = 1. Generating a conforming
bi-prime requires only a minor modification to Diogenes that will not affect se-
curity. The first condition is already satisfied by Diogenes, resulting P = Q = 3
mod 4. We ensure that the other two conditions are satisfied by invoking the
GCD test sub-protocol, which receives one secret and one public value as in-
put and outputs their GCD. The third condition is easily achieved using that
GCD test, by running it on inputs ϕ(N) (which is secret) and N (which is pub-
lic) and verifying the result is 1. To verify that the second condition is met we
need to manipulate the inputs, since both P − 1 and Q − 1 are secrets. First

note that gcd (P − 1, Q− 1) = 2 is equivalent to gcd
(

Pi−1
2 , Qi−1

2

)
= 1. Now,

applying the same trick as in in [FS01]), we note that gcd (Pi − 1, Qi − 1) =
gcd (Pi − 1 + (Qi − 1)Pi, Qi − 1) = gcd (Ni − 1, Qi − 1). And so we run the GCD
test on the secret value Qi − 1 and the public value Ni − 1.

Then, using the obtained values above, the parties generate the secret key
d and the verification keys. Recall that the secret key should satisfy d = 0
mod ϕ(N) and d = 1 mod N . As ϕ(N) is already shared by the parties, such
secret key can be obtained by computing d = ϕ(N)[ϕ(N)−1 mod N] ∈ Z, which
satisfies both constraints: d = 0 mod ϕ(N) as it is a multiple of ϕ(N), and d = 1
mod N as ϕ(N) ∈ Z∗

N (guaranteed by the fact that N is a conforming bi-prime)
and so ϕ(N) · ϕ(N)−1 = 1 mod N .

The parties obtain a sharing of d using standard techniques, see Hazay et
al. [HMR+19, Appendix C.2]. In the same work ([HMR+19]) it is shown how
the parties obtain the verification keys vj as well; below we briefly describe how
it works. During the key generation phase the parties obtain cj = Encpk(dj) for
every j, where Enc is the El-Gamal encryption scheme and pk is a joint encryp-
tion public key that was previously generated by the parties. Then, the parties
sample a random basis g ∈ QRN2 and finally each party publishes vj = gdj

and proves that cj is an encryption of logg(vj). The language LEQ is formally
described in [HMR+19, Section 3] and the zero knowledge protocol πEQ is pre-
sented in [CKY09]. Note that, we could have used the exact same technique of
[HMR+19] for our threshold Paillier protocol, namely, whenever a party sends a
decryption share ctj = ctdj , it also provides a proof that cj is an encryption of
logct(ctj). This, however, would result with an inefficient threshold decryption
protocol, as such proof is at least ×64 more expensive than the proof of the
language LEDL that we use (see Section 4).

The security of the key generation is proven in [CHI+21,HMR+19] to be
UC-secure [Can01] under the decisional composite residuosity, RLWE and the
decisional Diffie-Hellman assumptions.

15

4 Zero-Knowledge of Equality of Discrete Logs

4.1 Formalizing the Language

In this section we present the proof of equality of discrete logs, which is utilized
to prove the validity of threshold decryptions by the parties. Notably, defining
the appropriate language is somewhat subtle. Say that d, the secret decryption
key, is upper bounded by d̂, thus, we define D = D(σ, n, t, d̂) as the upper bound

on the shares |dj |, where d̂ < N3 · n. The näıve approach would be:

LEDL′ [N, g, a] = {(h, b) | h, b ∈ Z∗
N2 ∧ ∃x ∈ Z : a = gx ∧ b = hx} (2)

where (h, b) are public values, N, g, a are the language’s parameters, and x is a
witness. The meaning of these values follows:

1. g is a base element chosen in the DKG phase.
2. a is the verification key vj associated with the prover Pj . namely, vj =

g2∆ndj .
3. x is a witness known by the prover Pj , namely, x = 2∆ndj .
4. h is the ciphertext to be decrypted ct.
5. b is the claimed partial decryption of the prover Pj , namely, b = ctj =

ct2∆ndj .

The above formalization raises two issues:

1. The Paillier ciphertext h = ct is in Z∗
N2 and so it would be most natural

to prove equality of discrete logs over this group. However, since Z∗
N2 is

not a cyclic group, we work over QRN2 , which raises another issue: deciding
membership to QRN2 is assumed to be a computationally hard problem,
known as quadratic residuosity problem (QRP).

2. Since g might not be a generator of QRN2 , we have ord(g) < |QRN2 | and so
there exists x′ ∈ Z such that x ̸= x′ mod |QRN2 | and gx1 = gx2 = a. Indeed,
we may take any x′ = x mod ord(g). Therefore, a cheating prover may send
(h, b) such that b = hx′ ̸= hx, yet, this prover can wrongly convince the
verifier that logg a = logh b mod |QRN2 |. Nevertheless, we show that such a
pair (h, b) is hard to find, and in particular can be reduced to factoring N .

To solve the first issue, in the DKG and threshold decryption phases the
parties will publish the roots of the elements, and prove statements on their
squares. This ensures that the whole proof holds over QRN2 . Specifically, a ran-
dom element g′ ← Z∗

N2 is sampled and published in the DKG phase, and we

set g̃ = g′
∆n , and g = g̃2 = g′

2∆n ∈ QRN2 . Similarly, we set h̃ = ct2∆n and
h = h̃2 = ct4∆n ∈ QRN2 . Finally, we define b̃ = ctj = ct2∆ndj = h̃dj and

b = b̃2 = hdj . Under the new syntax, we have:

1. g′ is some element chosen from Z∗
N2 in the DKG phase.

2. a = gdj is the verification key vj associated with the prover Pj , which is

generated in the DKG phase. Namely, vj = g′
2∆ndj .

16

3. x is a witness known by the prover Pj , namely, x = dj .

4. h̃ = ct2∆n .

5. b̃ is the claimed partial decryption of the prover Pj , namely, b̃ = ctj =
ct2∆ndj .

We get that logh b = logg a = dj and the new formalization of the language
is

LEDL2 [N, g̃, a;x] = {(h̃, b̃) | h̃, b̃ ∈ Z∗
N2 ∧ a = g̃2x ∧ b̃2 = h̃2x}.

The witness is now x = dj , which is log(∆n) bits shorter than the witness as
defined in LEDL′ .

Regarding the second issue, the language is formalized with g̃, h̃ rather than
g, h. In addition, x is a witness that is disclosed to the prover and we require
the prover to use that particular x in the proof. Specifically, x = dj is Pj ’s share
over the integers of the decryption key d. We expressed this fact by adding x to
the parameters of the language LEDL2 . Then, by defining

LEDL[N, g, a;x] = {(h, b) | h ∈ QRN2 ∧ a = gx ∧ b = hx},

we have (h̃, b̃) ∈ LEDL2 [N, g̃, a;x] ⇐⇒ (h, b) ∈ LEDL[N, g, a;x], where b = b̃2,
therefore, we continue with a proof system for the language LEDL2 .

Having established the language and the syntax above, let us describe the
proof in the context of threshold decryption of Paillier.

1. The setup phase consists of the DKG and the choice of the ciphertext to
decrypt. That is, the results of the setup phase are the bi-prime modulus N ,
the base point g̃ ∈ Z∗

N2 , a = vj is the verification key associated with Pj ,

h̃ = ct is the ciphertext that the parties agree to decrypt, and finally, x = dj
is Pj ’s share over the integers of d - the secret decryption key.

2. The prover Pj sends b̃ and proves that (h̃, b̃) ∈ LEDL2 .

In sub-section 4.2 we describe the setup phase in more detail; we present and
prove a Σ-protocol for LEDL2 in sub-sections 4.3; in sub-sections 4.4-4.5 we show
how batching of the protocol is possible over multiple ciphertexts; and finally
we show security of the protocol under the Fiat-Shamir transrorm in sub-section
4.6.

4.2 Setup Phase

Let us define the Setup algorithm for generating the parameters of the language:

(N, g̃, a;x)← Setup(1κ, 1σ)

This algorithm takes 1κ and 1σ as inputs and outputs:

– A conforming bi-prime N = P ·Q.

17

– g′ is drawn uniformly at random from Z∗
N2 and computes g̃ = g′∆n and

g = g̃2. We stress that g is not necessarily a generator of QRN2 . Note that g′
2

is a random element in QRN2 . Setting g = (g′
2
)∆n and β = 2σ+2 log(|QRN2 |),

Lemma 4.6 and Corollary 4.7 imply that
|QRN2 |
ord(g) is β-smooth with probability

> 1−2−σ−1. We define βσ = 2σ+2 log |QRN2 | and observe that when n < βσ

it holds that βσ ≤ 2σ+3 logN .
– x is drawn from [−D,+D]; and
– a := gx.

The algorithm may fail with probability 2−σ. Specifically, failure means that

either N is not a bi-prime or
|QRN2 |
ord(g) is not βσ-smooth. The former happens

when N passes the bi-primality Jacobi test σ + 1 times even though it is not a
bi-prime. Such N passes the Jacobi test with probability at most 1/2, so after
σ+1 independent tests it fails with probability 2−(σ+1). The latter happens with
probability 2−(σ+1) by Lemma 4.6. By the union bound, Setup fails with with
probability at most 2−σ.

4.3 The Protocol

In the following we give some explanation about the values in the proof, in order
to put it in the right context of threshold Paillier decryption. The global param-
eters consist of (N, g̃, a;x) output from the setup phase, where g = g̃2 ∈ QRN2

is a base element for the verification keys of all parties, a = gx is the verification
key associated with the specific prover, where x = dj is the decryption key share

held by the prover. Then, h̃ = ct2∆n where ct is the ciphertext to be decrypted,
and b̃ = h̃dj = ct2∆ndj .

PROTOCOL 4.1
(
ΠEDL2 : ZKP of Equality of Discrete Logs over QRN2

)
Parameters. The output of (N, g̃, a;x)← Setup(1κ, 1σ).

Protocol.

1. P samples r ← [−22κD,+22κD) and chooses h̃ ∈ Z∗
N2 , and sends h̃, b̃ =

[h̃x mod N2], u = [gr mod N2], v = [hr mod N2] to V.
2. V samples e← [0, 2κ) and sends e to P.
3. P sends z = r − e · x ∈ Z to V.
4. V computes b = [b̃2 mod N2], h = [h̃2 mod N2] and verifies that:

– h̃, b̃, u, v ∈ (0, N2) \ {N},
– z ∈ (−D(22κ + 2κ),+D(22κ + 2κ)),
– u = gz · ae mod N2 and v = hz · be mod N2.

We prove the following.

Theorem 4.2. A protocol ΠEDL2 (Protocol 4.1) is a Σ-protocol for relation
EDL2.

Proof. In the following we show that all Σ-protocol’s properties are satisfied.

18

Completeness.
Let (N, g̃, a;x) be the output of Setup(1κ, 1σ), then, for every h̃ ∈ Z∗

N2 and

b̃ = [h̃x mod N2] the protocol’s transcript is accepting. The range check of
h̃, b̃, u and v obviously goes through, as well as the range check of z, which
follows immediately from the ranges of r, e and x. Then, we have

[gz · ae mod N2] = [gr−ex · gex mod N2]

= [gr mod N2] = u

and

[hz · be mod N2] = [h̃2(r−ex) · h̃2ex mod N2]

= [h̃2r mod N2] = [hr mod N2] = v.

Honest-verifier zero-knowledge (HVZK). We show that for every (h̃, b̃) ∈ LEDL2 [N, g, a;x]
there exists a PPT simulator S, such that

S(N,g,a)(h̃, b̃)
c≡
{
View(P(h̃, b̃;x)↔ V(h̃, b̃))

}
.

The simulator S samples z′ ← (−D(22κ + 2κ),+D(22κ + 2κ)), e′ ← [0, 2κ) and
computes u′ = [gz

′ · ae′ mod N2] and v′ = [hz′ · be′ mod N2]. We argue that
for every the statistical distance between (u, v, e, z) (of the real execution) and
(u′, v′, e′, z′) (of the simulation) is negligible in κ. First, we have that e and
e′ are identically distributed. Then, (u, v) and (u′, v′) are fully determined by
(N, g, a, h̃, b̃, e, z) and (N, g, a, h̃, b̃, e′, z′), respectively. Therefore, to complete the
proof it is sufficient to show that for every ẽ ∈ [0, 2κ) showing that the statistical
distance between [z|e = ẽ] and [z′|e′ = ẽ] is negligible in κ.

We have that z′ (in simulation) is uniformly distributed from (−D(22κ +
2κ),+D(22κ + 2κ)) independent of e′, whereas z (in real execution) is com-
puted by z = r − ex, where x ∈ [−D,+D] and r is drawn uniformly from
[−22κD,+22κD). In the following we show that z and z′ are statistically close
for every x and e. Specifically, fix x and e and consider the probability Pr[z = ζ]:

– If x ≥ 0 then z is uniformly distributed over (−D(22κ+2κ), D(22κ+2κ)−ex).
– If x < 0 then z is uniformly distributed over (−D(22κ + 2κ) + e|x|, D(22κ +

2κ)).

In both cases there are 2D(22κ + 2κ) − ex values ζ, in the range (−D(22κ +
2κ),+D(22κ+2κ) for which Pr[z = ζ] = 1/

(
2D(22κ + 2κ)− ex

)
whereas Pr[z′ =

ζ] = 1/
(
2D(22κ + 2κ)

)
. The difference between the two is maximal when |x| = D

and e = 2κ, in which case the difference is 1/
(
2D(22κ + 2κ) · 2κ+1

)
. For the rest

2κD values ζ we have Pr[z = ζ] = 0. Therefore, the distance is∑
ζ

|Pr[z = ζ]− Pr[z′ = ζ]| ≤ 2D(22κ + 2κ)− 2κD

2D(22κ + 2κ) · 2κ+1
+

2κD

2D(22κ + 2κ)
< 2−κ

where ζ iterates over (−D(22κ +2κ),+D(22κ +2κ)), which concludes the proof.

19

Soundness. Notably, since g is not necessarily a generator of QRN2 , we cannot
prove soundness for every statement (g̃, a, h̃, b̃). Indeed, for any y ∈ Z such that
y = x mod ord(g) and for any h̃ ∈ [N2], setting b̃ := h̃y yields an accepting
transcript. This does not constitute a break to the soundness property (see Def-
inition 2.11) since finding such group elements h̃, b̃, implies (as we see shortly)
finding a group element b̃/h̃x with “small” order, which translates to factoring
N . Therefore, in the definition let the P∗ choose the statement (h̃, b̃), and show
a reduction from cheating prover to factoring of N . Formally, we prove

Theorem 4.1 Let P∗ = (P∗
1 ,P∗

2) be a stateful PPT prover such that

Pr[(P∗
2 ()↔ V(h̃, b̃)) = 1 |(h, b) ̸∈ LEDL[N, g, a;x],

(h̃, b̃)← P∗
1 (1

κ, 12
σ

, N, g̃, a;x),

(N, g̃, a;x)← Setup(1κ, 1σ)] = ε.

Then there exists an adversary A that solves the factorization problem (Defini-
tion 2.10) with probability 1− 2−κ in time O(κ

ε′ · (T + log(D) log2(N)) +M) +

βσ log
3(N)), where M = max{time(Factor(m)) | m ∈ [2κ]}, ε′ = ε2− ε · 2−κ and

T = time(P∗(1κ, 12
σ

, N, g̃, a;x)).

Intuitively, we show that finding a pair (h, b) ̸∈ LEDL[N, g, a;x] that leads
to an accepting transcript with a non-negligible probability, yields an element
b
hx of “small” order, which translates to factorization. Therefore, finding such
h, b given N should be computationally as hard as factoring, and in turn it is
infeasible to state a false claim and prove it assuming factorization is hard.

Proof. First, we introduce an algorithm called A1 with a time complexity of
O(T + log(D) log2(N)). The purpose of algorithm A1 is to find an element c ∈
QRN2 and an exponent 0 < e′ < 2κ, such that c ̸= 1 and ord(ce

′
) is a βσ-smooth

number. We show that A1 does so with probability at least ε′ Then, using A1,
algorithm A factors N in time O(κ

ϵ′ · (T + log(D) log2(N)) +M). Algorithm A1

works as follows:

1. Setup: Let (N, g̃, a;x) ← Setup(1κ, 1σ). By Lemma 4.6 and Corollary 4.7

we have that
|QRN2 |
ord(g) is βσ-smooth with probability at least 1−2−σ−1 and by

Lemma 4.2 there exists an element η ∈ QRN2 such that ⟨g, η⟩ = QRN2 , and

for every prime p such that p|ord(η) we have that p| |QRN2 |
ord(g) , which implies

ord(η) is βσ-smooth. Note that η might not be known to A1.
2. Receiving the claim: A1 calls P∗

1 (1
κ, 12

σ

, N, g̃, a;x) and receives h̃ and b̃.
If b̃2 = h̃2x then output ⊥ (failure, as we are looking for a prover that breaks
soundness).

3. Receiving proofs: A1 calls P∗
2 () and receives a randomized claim u, v. A1

then sends a random challenge e1 ∈ [0, 2κ) and receives the response z1.
A1 rewinds P∗

2 () and calls it again with a fresh challenge e2 ← [0, 2κ) and
receives another response z2. If both proofs are accepting and e1 ̸= e2, then
A1 outputs c = b

hx and e′ = |e1 − e2|, otherwise it outputs ⊥.

20

By the rewinding lemma (see [BS20], Lemma 19.2), the probability that
A1 returns an output other than ⊥ is at least ε′ = ε2 − ε2−κ. Moreover, its
time complexity is O(T + log(D) log2(N)), since the most expensive part of A1

except for calling (P∗
1 ,P∗

2) is an exponentiation by x modulo N2. Let us prove
that whenever A1 does not return ⊥, its output is ‘valid’. Namely, ord(ce

′
) is a

βσ-smooth number, where c ∈ QRN2 , e′ ∈ (0, 2κ), and c ̸= 1.
We have four equations (all are computed modulo N2):

u = gz1 · ae1 , v = hz1 · be1 , u = gz2 · ae2 , and v = hz2 · be2 .

Assume wlog that e1 > e2 and denote e′ = e1 − e2, z
′ = z1 − z2, then

1 = gz
′
· ae

′
mod N2 and 1 = hz′

· be
′

mod N2.

Since there exists η such that ⟨g, η⟩ = QRN2 , there exists α, δ such that h = gαηδ

and
1 = gz

′
· ae

′
mod N2 and 1 = gα·z

′
ηδ·z

′
· be

′
mod N2.

Recall that α, δ and η are unknown to A1. Dividing the second equation by the
first equation raised to the power of α we get

1 =
gα·z

′
ηδ·z

′ · be′

gα·z′ · aα·e′
= ηδz

′
(

b

aα

)e′

mod N2. (3)

Observe that

b

aα
=

b

hx
· h

x

aα
=

b

hx
· g

αxηδx

gαx
=

b

hx
ηδx mod N2.

then, substituting b
aα = b

hx η
δx in Eq. (3),

1 = ηδz
′
(

b

hx
ηδx
)e′

= ηδ(z
′+xe′)

(
b

hx

)e′

mod N2.

Therefore, raising to the power of ord(η):

1 =

(
ηδ(z

′+xe′)

(
b

hx

)e′

mod N2

)ord(η)

=

(
b

hx

)ord(η)e′

mod N2.

Algorithm A1 outputs c = [b
hx mod N2] ̸= 1 (since if b = hx the algorithm

fails), and 0 < e′ < 2κ, where so it’s order divides ord(ce
′
)|ord(η), so it is βσ-

smooth.
Now we describe the required algorithm A: It calls A1 up to 1+ 3ln(2)

2
κ
ε′ times,

until it obtains c and e′ as above. If all invocations yield ⊥ then A outputs ⊥. By
Chernoff’s bound, A outputs ⊥ with probability ≤ 2−κ. Otherwise (c and e′ were
obtained), if ce

′
= 1 mod N2 then by Lemma 4.3 A may find the factors P,Q of

N in time complexity time(Factor(e′)) + polylog(N). Otherwise,
(
ce

′
)ord(η)

= 1

and by Lemma 4.5 A may find P,Q in time βσ log
3(N). ■

21

In the following we present and prove the lemmas used in the reduction
above.

Lemma 4.2 Let G be cyclic group and let |G| =
∏k

i=1 p
ri
i where pi ∈ primes are

distinct and ri ∈ N for all i ∈ [k]. For every a ∈ G, there exists b ∈ G such

that ⟨a, b⟩ = G and ord(a) =
∏k

i=1 p
αi
i where αi ≤ ri for all i and ord(b) =∏

i:αi ̸=ri
prii .

Proof. Since G is a cyclic group and
∏

i:αi ̸=ri
prii divide |G|, there exists b such

that ord(b) =
∏

i:αi ̸=ri
prii . The groups generated by a and b, namely, ⟨a⟩ and

⟨b⟩, are subgroups of ⟨a, b⟩, which implies that |⟨a, b⟩| is divisible by both ord(a)
and ord(b). Thus, |⟨a, b⟩| is also divisible by lcm (ord(a), ord(b)) = |G|. ■

Lemma 4.3 Let Factor be a factoring algorithm. There exists an algorithm
Factor′ that, given inputs N, x, e, such that

– N = PQ is a conforming bi-prime;
– 0 < e < N ; and
– x ̸= ±1 mod N but xe = 1 mod N ,

outputs P,Q and has a time complexity time(Factor′(N, x, e)) ≤ time(Factor(e))+
polylog(N).

Proof. Clearly, e ̸= 1. If e = 2 then x is a non-trivial square root of 1, and we
can compute gcd (N, x± 1) to get a factor of N in time polylog(N). Therefore, in

the following we assume e > 2 and [x2 ̸= 1 mod N]. Since |QRN | = (P−1)(Q−1)
4

is odd (and so 2 is co-prime to |QRN |) the function f : QRN → QRN defined by
f(a) = a2 is a bijection. Now, if 4|e then xe = (xe/2)2 and xe/2 ∈ QRN (with
xe/4 being a square root), so xe/2 = f−1(1) = 1. Thus, given (N, x, e), define
e0 = e and ei = ei−1/2; we can solve for (N, x, e′) where e′ = ei and i is the
minimal index for which 4 ∤ ei. Define s, t ∈ Z such that e′ = s · 2t, where t ≥ 0
and s is odd (there must exist such s and t). The above analysis implies that
t ≤ 1, so either e′ = s (in case t = 0) or e′ = 2s (in case t = 1). Consider
algorithm Factor′(N, x, e′) below.

1. Call Factor(e′) to obtain p1, · · · , pk such that e′ =
∏k

i=1 pi and p1 ≤ · · · ≤ pk.
2. For i = 1 to k:

– If xpi = 1, return P = gcd (N, x− 1) and Q = N/P .
– Otherwise, update x← [xpi mod N].

The call to Factor(e′) results with p1 ≤ · · · ≤ pk where pi > 2 for all i > 1

(since 4 ∤ ei). Define e′0 = e′ and e′i+1 =
e′i

pi+1
(alternatively, e′i = e′∏i

j=1 pi
)

and similarly x0 = x and xi+1 = (xi)
pi+1 (alternatively, xi = x(

∏i
j=1 pi)); note

that (xi)
ei = xk = 1 mod N . Let i be the minimal index such that xi = 1,

and set y = xi−1. We get that y ̸= 1 mod N and ypi = 1 mod N ; since pi
is prime we have pi = ord(y). If pi = 2 then i = 1 and we have a non-trivial
square root of 1, so we can factor N as above. Therefore, continue by assuming

22

pi > 2. Since N is a conforming bi-prime, we have gcd (P − 1, Q− 1) = 2. In
addition, ord(y) = pi|(P − 1)(Q − 1) and pi > 2; therefore, either pi|(P − 1) or
pi|(Q−1). Wlog assume pi|(Q−1) (implying pi ∤ (P −1) as otherwise pi > 2 is a
common divisor for (P − 1) and (Q− 1)), so gcd(pi, P − 1) = 1 and the function
g : ZP → ZP defined by g(a)→ api is a bijection. Since ypi = 1 mod N we get
ypi = 1 mod P and so g(y) = g(1) = 1 mod P , implying y = 1 mod P . On
the other hand, y ̸= 1 mod Q as otherwise (combining y = 1 mod P and y = 1
mod Q) we have y = 1 mod N , in contradiction to the fact that i is the minimal
index for which xi = ypi = xpi

i−1 = 1 mod N (i.e., if y = 1 mod N then the
condition already holds at i− 1). We summarize that gcd(y − 1, N) = P .

To conclude, the aforementioned algorithm factors N . Since it begins with
factoring e and the rest of the algorithm has a time complexity of polylog(N),
the total time complexity of Factor′ is at most time(Factor(e)) + polylog(N). ■

Lemma 4.4 Let Factor be a factoring algorithm. There exists an algorithm
Factor′ that, given inputs N, x, e such that

– N = PQ is a conforming bi-prime;
– 0 < e < N ; and
– x ∈ QRN2 satisfies x ̸= 1 mod N2 but xe = 1 mod N2,

outputs P,Q and has a time complexity time(Factor′(N, x, e)) ≤ time(Factor(e))+
polylog(N). Note that the conditions on x between this Lemma and Lemma 4.3
are different.

Proof. xe = 1 mod N2 implies xe = 1 mod N , therefore, if x ̸= ±1 mod N
then we apply algorithm Factor′ from the proof of Lemma 4.3.

We argue that x ̸= −1 mod N : we have the Legendre symbol
(−1

P

)
=

[(−1)(P−1)/2 mod P] = −1 since (P − 1)/2 is odd, so (−1) ̸= QRP . An ele-
ment g ∈ ZN2 belongs to QRN2 if and only if g ∈ QRP and g ∈ QRQ. Therefore,
we have (−1) /∈ QRN2 and x ̸= −1 mod N2.

It remains to address the case where x ̸= 1 mod N2 and x = 1 mod N . This
implies that x = 1+ kN for some 0 < k < N , so xe = (1+ kN)e = 1+ kNe = 1
mod N2. It means that (1 + kNe) − 1 = kNe = k′N2 for some k′ ∈ Z, so
ke = k′N and thus PQ|ke. Since 0 < k, e < N , we may deduce that N ∤ k and
N ∤ e, so WLOG we may assume that P |e and Q ∤ e. In that case, a factoring
algorithm could find P = gcd (N, e). ■

Lemma 4.5 There exists an algorithm Factor′, that given N, x, β as input, where
N = PQ is a conforming bi-prime, 1 ̸= x ∈ QRN2 , and ord(x) is β-smooth for
some β < N , outputs P,Q in time(Factor′(N, x, β)) ≤ β log3(N).

Proof. The algorithm Factor′ is based on the Pollard’s p−1 factorization method [Pol74].
It receives N, x, β as inputs and runs as follows:

1. For all pi ∈ primes ∩ [0, β]:
(a) Repeat ⌈logpi

(N2)⌉ times:
i. If xpi = 1 mod N2 and x = 1 mod N , return P = pi andQ = N/P .

23

ii. If xp1 = 1 mod N2 and x ̸= 1 mod N , return P = gcd (x− 1, N)
and Q = N/P .

iii. Otherwise, assign x← [xpi mod (N2)] and continue.
2. Return ⊥.

The algorithm certainly reaches x for which x ̸= 1 mod N2 and xpi = 1
mod N2. Since pi < β < N , Lemma 4.4 implies that, wlog, either x = 1 mod N
and gcd (pi, N) = P , or x ̸= 1 mod N and gcd (x− 1, N) = P . ■

We now present a lemma for the key generation:

Lemma 4.6 Let G be a cyclic group and let a ∈ G be a uniformly random

element, then |G|
ord(a) is β-smooth with probability at least 1− log ord(G)

β log β .

Proof. Let g ∈ G be a generator, and fix a prime factor p > β of ord(G). Given
an element a ∈ G, we can write a = gi for 0 ≤ i < ord(G). Clearly, p divides
|G|

ord(a) if and only if p|i. Therefore, the probability that p divides |G|
ord(a) is 1

p < 1
β .

Next, we denote the prime factors of ord(G) that are larger than β by
p1, . . . , pk. Since gcd(pi, pj) = 1 for all i ̸= j and since pi|ord(G) for all i, we
may deduce that (

∏
i pi)|ord(G), so

∏
i pi ≤ ord(G). By the assumption, pi > β

for all i, so βk ≤ ord(G) and k ≤ log ord(G)
log β .

Now we are ready to conclude the proof: For an element a ∈ G, we have

that |G|
ord(a) is not β-smooth if and only if there exists a prime factor p > β of

ord(G) that divides |G|
ord(a) . The probability that a fixed p divides |G|

ord(a) is at most
1
β , and there are at most log ord(G)

log β such primes. Thus, by the union bound, the

probability that |G|
ord(a) is not β-smooth is at most log ord(G)

β log β . ■

By Lemma 4.6, if we define βσ := 2σ+2 log(|G|), then the probability that
|G|

ord(g) is βσ smooth is greater than 1−2−(σ+1). We take (σ+1) bits of statistical

soundness in order to end up with σ bits of soundness for the key generation
overall.

Corollary 4.7 Let G be a cyclic group, a ∈ G be a uniformly random element,

and β > n, then |G|
ord(a∆n)

is β-smooth with probability at least 1− log ord(G)
β log β .

Proof. By Lemma 4.6, it follows that |G|
ord(a) is β-smooth with probability 1 −

log ord(G)
β log β . We note that |G|

ord(a∆n)
= |G|

ord(a)/ gcd(∆n,ord(a))
= |G|·gcd(∆n,ord(a))

ord(a) . In par-

ticular, since ∆n is a β-smooth number (as all factors of ∆n are smaller than n),
so is gcd (∆n, ord(a)) and the product of two β-smooth numbers is a β-smooth
number.

4.4 Batching

Batching techniques allows a prover to convince a verifier of the correctness
of many statements in an efficient way, i.e., much faster then it would take to

24

prove (and verify) each statement alone. In the context of threshold decryption,
a good batching technique may shift the bottleneck from the verification of the
validity of a partial decryption to the combination of the parties’ verified partial
decryption into the plaintext.

Recall (from Protocol 4.1) that proving (h̃, b̃) ∈ EDL2 requires raising g and
h to the power of r, which is a large exponents. Then, without batching, proving
B statements (h̃i, b̃i) requires raising g, hi to the power of large exponents ri. To
improve efficiency, we use the the ‘small exponent’ (SE) technique, introduced
in [BGR98] and followed by [APB+04]. The idea of the technique is to combine
the (h̃i, b̃i) statements into a single statement (h̃, b̃) using a random linear com-
bination, such that h̃ =

∏
h̃ti
i and b̃ =

∏
b̃tii , and then use Protocol 4.1 only

once, on the combined (h̃, b̃). Hence, raising to the power of a large exponent r
happens only twice, just like in a proof of a single statement. The efficiency gain
by that combination depend on the size of the coefficients ti, which we show can
be much smaller than the size of r without increasing the soundness error of the
proof. The resulting proof of B statements requires the prover to raise 2B times
to the power of a small exponent and then only twice to the power of a large
exponent (instead of raising 2B times to the power of a large exponent). The
same efficiency gain affects the verifier’s computational cost as well.

Intuitively, the soundness of the batched protocol relies on the fact that it
is not possible for the prover to pick statements (h̃i, b̃i), of which at least one
is incorrect, such that their random combination (h̃, b̃) is a correct statement
(except for a negligible probability).

We note that using the small exponents technique requires the verifier to
pick the coefficients ti only after the prover committed to its statements, which
incurs two additional rounds over Protocol 4.1. We show, however, that even this
protocol (with five rounds) can be turned non-interactive using the Fiat-Shamir
transform without significantly increasing soundness error (see Section 4.6).

The batched proof of equality of discrete logs is formally described in Proto-
col 4.3.

PROTOCOL 4.3
(
ΠB

EDL2 : Batched Proof for EDL2.
)

Parameters. The output of (N, g̃, a;x)← Setup(1κ, 1σ).

Protocol.

1. P chooses h̃i ∈ Z∗
N2 , and sends h̃i, b̃i = [h̃x

i mod N2] to V, for every
i ∈ [B].

2. V checks that h̃i, b̃i ∈ (0, N2) \ {N}, and sends ti ← [0, 2κ) to P for every
i ∈ [B]. Then P and V compute h̃ =

∏
i∈[B] h̃

ti
i , b̃ =

∏
i∈[B] b̃

ti
i .

3. P and V run ΠEDL2 (Protocol 4.1) on the argument (h̃, b̃) ∈
LEDL2 [N, g̃, a;x].

Completeness follows by the fact that if b̃i = h̃x
i for all i ∈ [B] then b̃ =(∏

i∈[B] b̃
t
i

)
=
(∏

i∈[B] h̃
tx
i

)
=
(∏

i∈[B] h̃
t
i

)x
= h̃x, and so (h̃, b̃) ∈ EDL2.

25

As for HVZK, we show that for every (h̃i, b̃i)i∈[B] such that (h̃i, b̃i) ∈ LEDL2 [N, g̃, a;x]
for all i, there exists a PPT simulator S, such that

S(N,g̃,a)({h̃i, b̃i}i∈[B])
c≡
{
View(P({h̃i, b̃i}i∈[B];x)↔ V({h̃i, b̃i}i∈[B]))

}
.

The simulator S simply computes h̃ and b̃ as in the protocol, and runs the
simulator associated withΠEDL2 (Protocol 4.1) on (h̃, b̃) and outputs (u′, v′, e′, z′)
as output by that simulator. The transcript produced by S and the one under
the real execution are statistically close with the exact same analysis as in the
proof of Theorem 4.2.

Next, we argue soundness:

Theorem 4.8 Let P∗ = (P∗
1 ,P∗

2) be a stateful PPT prover such that:

Pr[(P∗
2 ())↔ V((h̃i, b̃i)i∈[B])) = 1 |∃i ∈ [B] : (h̃i, b̃i) ̸∈ LEDL2 [N, g̃, a;x],

(h̃i, b̃i)i∈[B] ← P∗
1 (1

κ, 12
σ

, N, g̃, a;x),

(N, g̃, a;x)← Setup(1κ, 1σ)] = ε.

Then assuming factorization is hard, ε = neg(κ).

Proof. For brevity, denote the event that the prover attempted cheating given a
correct setup by

Cheat = ∃i ∈ [B] : (h̃i, b̃i) ̸∈ LEDL2 [N, g̃, a;x] ∧
(h̃i, b̃i)i∈[B] ← P∗

1 (1
κ, 12

σ

, N, g̃, a;x) ∧
(N, g̃, a;x)← Setup(1κ, 1σ),

and the event that P∗ breaks soundness by

Break = [(P∗
2 ()↔ V((h̃i, b̃i)i∈[B])) = 1]

∣∣Cheat.
Then, the theorem states that ε = Pr[Break] is negligible, because:

Pr[Break] = Pr
[
Break|(h̃, b̃) ̸∈ LEDL2 [N, g̃, a;x]

]
· Pr[(h̃, b̃) ̸∈ LEDL2 |Cheat]

+ Pr
[
Break|(h̃, b̃) ∈ LEDL2 [N, g̃, a;x]

]
· Pr[(h̃, b̃) ∈ LEDL2 |Cheat]

≤ Pr
[
Break|(h̃, b̃) ̸∈ LEDL2 [N, g̃, a;x]

]
+ Pr[(h̃, b̃) ∈ LEDL2 |Cheat].

Denote ε1 = Pr
[
Break|(h̃, b̃) ̸∈ LEDL2 [N, g̃, a;x]

]
and ε2 = Pr[(h̃, b̃) ∈ LEDL2 |Cheat].

We have ε1 = neg(κ) by Theorem 4.1 (otherwise we can construct an adversary
P∗ who breaks the soundness of ΠEDL2 (Protocol 4.1)). In addition, ε2 ≤ 2−κ by
Lemma 4.9 below, assuming factorization is hard, which concludes the proof. ■

26

Lemma 4.9 Let P∗
1 be a PPT algorithm for which

Pr

[
(h̃, b̃) ∈ LEDL[N, g̃, a;x] | ∃i0 ∈ [B] :(h̃i0 , b̃i0) ̸∈ LEDL2 [N, g̃, a;x],

{ti} ← [0,M),

{(h̃i, b̃i)}i∈[B] ← P∗
1 (1

κ, 12
σ

, N, g̃, a;x),

(N, g̃, a;x)← Setup(1κ, 1σ)

]
= ε

where M ∈ N is the coefficients domain, h̃ =
∏

i∈[B] h̃
ti
i and b̃ =

∏
i∈[B] b̃

ti
i .

If ε > 1
M then there exist an algorithm that factors N with a time complexity

O(
√
M + log3 N) + max{time(Factor(m)) | m ∈ [M]}.

Proof. Wlog, we may assume that i0 = 1. By definition, h̃x = b̃ if and only if

(Πi∈[B]h̃
ti
i)

x = Πi∈[B]b̃
ti
i , which is equivalent to Πi∈[B]

(
h̃x
i

b̃i

)ti
= 1. Note that

we can divide by the b̃i’s since if one of the b̃i’s has no inverse in Z∗
N2 then

gcd(b̃i, N
2) ̸= 1. However, if gcd(b̃i, N

2) ̸= 1 then either the verifier rejects or
we can factor N . By isolating the i0 = 1 term we get:(

h̃x
1

b̃1

)t1

=
∏

i∈[B]\{1}

(
h̃x
i

b̃i

)−ti

.

(4)

Now, if ε > 1
M , there must exist t2, . . . , tB and t′1 ̸= t1, such that both

(t1, t2, . . . , tB) and (t′1, t2, . . . , tB) satisfy Equation (4). Otherwise (for every
t2, . . . , tB there is up to only one t1 that satisfies the equation), denote by E
the event that the equation holds, we get

ε = Pr[E] =
∑

t2,...,tB

Pr
t1
[E|t2, . . . , tB] Pr[t2, . . . , tB] ≤

∑
t2,...,tB

(1/M) Pr[t2, . . . , tB] = 1/M

by contradiction.

This implies
(

h̃x
1

b̃1

)∆t

= 1, where ∆t := t1 − t′1, and ∆t may not be known

to A. Nevertheless, we can find ∆t using generic order finding algorithms in
complexity O(

√
M log(N)) (Pollard’s rho algorithm). Given ∆t, we can factor

N in time complexity Factor(∆t) +O(log3 N) using Lemma 4.4. ■

4.5 Batch Verification

Batch verification is a technique that allows a verifier to simultaneously verify
proofs from multiple non-interactive provers, thereby reducing computational
load. This is somewhat analogous to the batching procedure done using the
‘small exponent’ method, however since different provers have different verifi-
cation keys aj , instead of digesting multiple exponentiation operations into a

27

single one, we get a multi-exponentiation, see [Pip80]. Essentially, instead of val-
idating two (or more) equations gx = 1 and hy = 1 separately, we may sample
a randomizers r1, r2 ∈ [0, 2κ] and verify gr1x · yr2y = 1, and with 1 − neg(κ)
probability this implies the validity of both (or all) equations. An algorithm for

computing
∏C

i=1 g
ti
i is called a C-multi-exponentiation, and can be computed

more efficiently than C exponentiations (gtii) and then multiplying the results.

It is important to note that, if batch verification fails, the verifier does not
know the identity of the cheaters, since all claims where merged into one. In that
case, the verifier ‘falls back’ to verifying each proof individually.

In Algorithm 4.4 below we present the batched verification algorithm, which
takes as input a B-batched proof from C provers.

ALGORITHM 4.4
(
C-Batched Verification of B-Batched Proofs

)
Input: The transcripts

(
g̃j , aj , (h̃i,j , b̃i,j)i∈[B], (ti,j)i∈[B], uj , vj , ej , zj

)
j∈[C]

. a

Algorithm:

1. V proceeds as follows:
(a) Computes h̃j :=

∏
i∈[B] h̃

ti,j
i,j , b̃j =

∏
i∈[B] b̃

ti,j
i,j as in Protocol 4.3.

(b) Samples sj ← [0, 2κ) for each j ∈ [C].
(c) Computes using multi-exponentiation (all computation is modulo

N2):

ˆ̃g =
∏

j∈[C] g̃
zj ·sj
j ,

ˆ̃
h =

∏
j∈[C] h̃

zj ·sj
j , û =

∏
j∈[C] u

sj
j , v̂ =

∏
j∈[C] v

sj
j ,

â =
∏

j∈[C] a
ej ·sj
j ,

ˆ̃
b =

∏
j∈[C] b̃

ej ·sj
j , and ĝ = ˆ̃g2, ĥ =

ˆ̃
h2, b̂ = b̃2.

(d) Accepts if
– h̃i,j , b̃i,j , uj , vj ∈ (0, N2) \ {N} for all i, j,
– zj ∈ (−D(22κ + 2κ),+D(22κ + 2κ)) for all j,
– ti, ej ∈ [0, 2κ) for all i and j,
– û = ĝ · â mod N2 and v̂ = ĥ · b̂ mod N2.

a In our case, g̃j ≡ g̃, h̃i,j ≡ h̃i across all provers.

The complexity of the batch verification in Algorithm 4.4 consists of a 2C-

multi-exponentiation with large exponents for ˆ̃g,
ˆ̃
h (actually, C + 1-multi expo-

nentiation, since g̃j = g̃ can be merged into one exponentiation, by comput-

ing ˆ̃g = g̃
∑

j zjsj), another 4 C-multi-exponentiation with small exponents for

(û, v̂, â, b̂), plus the additional cost of computing h̃j , b̃j per batch proof (which
incurs B-multi-exponentiation with small exponents C times). 8

Following [Pip80], a C multi exponentiation with E-bits exponents can be
done in time O(E · C

log(C)). Therefore, the total overhead in our case is O(C
log(C) ·

logD + BC
log(B) · κ).

8 We note that we can combine all 6 multi exponentiations (in Step (c) into a single
one.

28

In the following we show that the batch verification algorithm accepts only
if each individual transcript is accepting (except for a negligible probability in
κ).

Assume there exist i, j such that logg̃(aj) ̸= logh̃i
(b̃i,j). Then by Theorem 4.8,

assuming factorization is hard, logg̃(aj) ̸= logh̃j
b̃j . Therefore, h̃

xj ·ej
j ̸= b̃

ej
j . Anal-

ogously to the proof of Lemma 4.9,

Pr
(sj′)j′∈[C]

 ∏
j′∈[C]

(ĥ
xj′ ·ej′
j′)sj′ =

∏
j′∈[C]

(b̂
ej′

j′)sj′

 ≤ 2−κ

Otherwise, there exist s′j ̸= sj such that the above equation holds, and by rear-

ranging we get
(
ĥ
xj

j /b̂j

)ej∆sj
= 1. Again, if

(
ĥ
xj

j /b̂j

)ej
= 1 we use Lemma 4.4.

Otherwise, we use Pollard’s rho algorithm on
(
ĥ
xj

j /b̂j

)ej
, which has a low order

that divides ∆sj < 2κ. In both cases we get a factorization of N . Therefore
by union bound, all BC statements about EDL relations hold with probability
≥ 1 − BC · 2−κ = 1 − neg(κ) for B,C = poly(κ), therefore the probability to
cheat is negligible.

Remark 4.10 (Possible Trade-off) In case many provers want to prove mul-
tiple statements at the same time, we can further improve the verifier’s computa-
tional overhead, so it performs only two large exponentiations instead of 2C multi
exponentiations, at the cost of an additional communication round. Namely, each
prover Pj first broadcasts its statement ((h̃i,j)i∈[B], (b̃i,j)i∈[B]). Then, all provers
derive the same randomizers ti by hashing all statements, and compute the same
combinations h̃j =

∏
i∈[B] h̃

ti
i,j and b̃j =

∏
i∈[B] b̃

ti
i,j for every j. Each party then

completes its proof on its statement (h̃j , b̃j), which results with (uj , vj , ej , zj).

V may then compute h̃j , b̃j, sample sj ← [0, 2κ), set z :=
∑

j∈[C] zj · sj, and

compute û =
∏

j∈[C] u
sj
j , v̂ =

∏
j∈[C] v

sj
j , â =

∏
j∈[C] a

ej ·sj
j , b̂ =

∏
j∈[C] b

ej ·sj
j ,

and verify that û = gz · â and v̂ = ĥz · b̂ (as well as the other range checks).
Note that here there are only two large exponentiations (with z as the large expo-
nent). HVZK and soundness arguments are similar to those in the Fiat-Shamir
transform and the batch verification.

4.6 Fiat-Shamir Transform for Batched Proofs

The Fiat-Shamir Transform ([FS87]) is a general tool which enables to transform
any public-coin interactive proof into a non-interactive proof in the random
oracle model (ROM). A proof with soundness error ϵ becomes a proof with
soundness error at most Qµϵ after the transform, where 2µ + 1 represents the
number of rounds, and Q is the number of oracle queries performed by the
adversary. In our batched ZKP protocol (Protocol 4.3) we have µ = 2, and so we
get a soundness error of 2−κ/2 (that is, for an adversary who queries the random
oracle Q = 2κ/2 times, the soundness error is at most 2κϵ). To get a soundness

29

error of 2−κ after the transform, one may aim to get soundness error of ϵ = 2−2κ

in the interactive version, and then after the transform it gets soundness error
of 2−κ. However, in our case this could not work since the reduction to factoring
itself takes 2κ/2 time, using Pollard’s rho algorithm.

The increase of soundness error is inevitable for some protocols (e.g., the
non-parallel k-fold repetition of a Σ protocol), but this is not the case for all
multi-round protocols. In particular, as shown by Attema et al. [AFK22], if
a protocol has ‘(k1, . . . kµ)-out-of(N1, . . . , Nµ)-special soundness’ then applying
the Fiat-Shamir transform does not admit a large increase in soundness error.
In the following we give the definition from [AFK22] and explain why Protocol
4.3 fits that definition.

Definition 4.11 (Def. 7 in [AFK22]) A 2µ+1 rounds public-coin interactive
proof Π for relation R, where V samples the ith challenge from a set of cardinality
Ni > ki, is said to have ‘(k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-special soundness’ if
there exist a polynomial time algorithm that, on input a statement (x,w) and a
(k1, . . . kµ) tree of accepting transcripts outputs a witness w such that (x,w) ∈ R
with overwhelming probability.

Note that in [AFK22] they aim to achieve knowledge-soundness (a.k.a extraction
of the witness) whereas in our case we do not achieve extraction, but rather a
break of the factoring problem.

By the following theorem, applying the Fiat-Shamir transform on a protocol
with (k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-special soundness only increases soundness
error by a factor of Q:

Theorem 4.5 (Thm. 2 in [AFK22]). The Fiat-Shamir transformation FS[Π]
of a k1, . . . kµ out of N1, . . . Nµ special sound interactive proof Π with soundness
2−κ, has soundness of (Q+ 1)2−κ.

By examining the proof of soundness of Protocol 4.3 (and particularly the
proof of Theorem 4.8) one can observe that the protocol has (2, 2)-out-of-(2κ, 2κ)-
special soundness and so the Fiat-Shamir does not affect it significantly.

5 Optimization & Evaluation

5.1 Multi-Exponentiation

Suppose we want to compute:

pt =
t∏

j=0

ct
∑m−1

i=0 ei,j ·Bi

j

This is the type of computation required to preform decryption from partial
Paillier decryptions, which is the bottleneck of our scheme, where we write each
Lagrange coefficient (multiplied by ∆n = n!) in base B = 2b, and so the bit-
length of each exponent is m·b. A naive computation for pt would take O(t·m·b)
multiplications. Consider the following algorithm:

30

1. For each 0 ≤ j ≤ t, and each 0 ≤ k ≤ B, compute yj,k = ctkj . This takes Bt
multiplications.

2. For each 0 ≤ i < m, compute zi =
∏t

j=0 ct
ei,j
j =

∏t
j=0 yj,ei,j . This takes m · t

multiplications.
3. Compute:

pt =

((((zm−1)
B · zm−2

)B
· zm−3

)B

. . .

)B

· z1

B

· z0

This takes m multiplications and m · b squares.

Complexity Analysis. If for example, B = 28 and m = 29 so that the bit-length
of each Lagrange coefficient is m · b = 212 = 4096. A naive computation with t
decryption shares would therefore take 4096t multiplications and squares. The
above approach would take 256t multiplications for the first step, 512t for the
second, and 4096 squares for the last part plus 512 multiplications. Overall, an
improvement of about ≈ 80% for t ≫ 1 parties. In general, we want m ≈ B,
so 2b · b is the bit-length of the Lagrange coefficients. This results in about × 1

b
speed-up.

5.2 A Tighter Bound of Shamir Shares Over the Integers

Recall that [0, b], b ∈ N, is the range of the secret, n is the number of parties and
σ is the statistical security parameter. We analyze the required value of I(σ, n, b)
mentioned in Section 2.1 for the security of the Shamir sharing over the integers.

Our analysis is based on [BDO22]. First we cite the relevant definitions:

Definition 5.1 ([BDO22, Definition 8]) A secret sharing scheme is statisti-
cally private if for any set of corrupted parties C ⊆ {P1, . . . , Pn} with |C| ≤ t,
any two secrets α, α′ ∈ [0, b] and independent random coins r, r′, we have that the
statistical distance between {Sharei(α, r) | i ∈ C} and {Sharei(α′, r′) | i ∈ C}
is negligible in σ.

Definition 5.2 ([BDO22, Definition 9]) Let C ⊆ [n] such that |C| = t.
Then we define the sweeping polynomial hC(X) =

∑t
i=0 hC,iX

i as the unique
polynomial of degree at most t such that h(0) = ∆n and h(i) = 0 for all i ∈ C.
Moreover, let hmax be an upper bound on the coefficients of the sweeping poly-
nomials, i.e., hmax ≥ max{|hC,i| | i ∈ [0, t], C ⊆ [n], |C| = t}.

In our analysis we use the following result (restated):

Theorem 5.1 ([BDO22, Theorem 16]). The protocol described in Section
2.1 is statistically private when the coefficients are sampled from [0, I(σ, n, b)]
for I(σ, n, b) ≥ 2σ+2bhmaxt.

Therefore, in order to derive concrete bound for I(σ, n, b), it suffices to bound

hmax. For a set C ⊆ [n], denote ∆C = ∆n

(∏
j∈C j

)−1

. We bound hmax using

the following lemma:

31

Lemma 5.3 (implied in [BDO22, Theorem 16]) For every set C ⊆ [n] with
|C| = t, we have

hC(X) = ∆C ·
∏
j∈C

(j −X).

which is trivially correct by evaluating on 0 and C. Then:

Lemma 5.4 hmax < (t+ 1)∆n.

Proof. Let C ⊆ [n] with |C| = t. By Lemma 5.3, we may write

hC(X) =

t∑
i=0

hC,iX
i = ∆C ·

∏
j∈C

(j −X).

In order to prove that |hC,i| ≤ (t+1)∆n, it suffices to prove
∑

i |hC,i| ≤ (t+1)∆n.
Notice that hC(−X) = ∆C ·

∏
j∈C(j +X) and therefore all hC ’s coefficients are

positive and we can write hC(−X) =
∑t

i=0 |hC,i|Xi. Therefore,

t∑
i=0

|hC,i| = hC(−1) = ∆C ·
∏
j∈C

(j + 1) = ∆n ·
∏
j∈C

(
j + 1

j

)
≤ (t+ 1)∆n.

where the first two equalities hold by applying hC(−1) =
∑t

i=0 |hC,i| · 1 =

∆C ·
∏

j∈C(j+1), the third equality holds by substituting ∆C = ∆n

(∏
j∈C j

)−1

and the inequality holds since
∏

j∈C

(
j+1
j

)
≤
(
2
1

)
·
(
3
2

)
· . . . ·

(
t+1
t

)
= (t+ 1).

We conclude that the coefficients for Shamir secret sharing over the integers,
when the secret is from [0, b], are uniformly sampled from [0, I(σ, n, b)] where
I(σ, n, b) ≥ 2σ+2 · b · t · (t+1) ·∆n. From this we conclude that the shares to the
parties are bound by

t∑
i=0

aix
i ≤

t∑
i=0

I(σ, n, b)·ni = I(σ, n, b)

t∑
i=1

ni = I(σ, n, b)
nt+1 − 1

n− 1
≤ I(σ, n, b)

nt+1

n
2

= 2Int

where the first inequality is since the coefficients ai’s are bounded by I(σ, n, b)
and the party’s evaluation point is at most n; the first equality is trivial; the
second equality is the result of the sum of a geometric series n0, n1, n2, . . . , nt;
then the second inequality is by reducing 1 from both nominator and denomina-
tor (which increases the value) and writing n/2 instead of n in the denominator
(which again increases the value as long as n > 2); and the last equality is trivial.

5.3 Evaluation

We implemented our threshold Paillier scheme in Rust; the implementation is
released as open source at https://github.com/odsy-network/tiresias. In

32

https://github.com/odsy-network/tiresias

our implementation we use crypto-bigint9 for constant-time computations over
sensitive data to avoid leakage. In addition, we use rayon10 for parallelism, and
our evaluation demonstrates that the scheme can greatly leverage that.

We evaluate the performance of our scheme with number of parties, n, varying
from 10 to 1000, and batch sizes, B, varying from 1 (without batching) to 1000.
In cases where it applies, we use t = (2/3)n as the threshold. All experiments are
conducted over two machine types: (1) AWS EC2 instance of type c6i.24xlarge11

with 96 3rd generation Intel Xeon Scalable vCPUs @ 3.50GHz and 192GB RAM,
and (2) MacBook Pro Apple M1 Max with 10 Cores @ 3.22GHz and 64GB RAM.

Our experiments use a 2048-bit bi-prime modulus N (equivalent to 4096-bit
Paillier modulus N2) where the secret Paillier decryption key d = ϕ(N)[ϕ(N)−1

mod N] ∈ Z is (t, n)-Shamir shared over the integers using the tighter bound on
the coefficients as analysed in Section 5.2 above. All presented runtimes are the
average over 10 runs.

Figures & tables. In Figure 1 and the supporting Table 1 we report the run time
for a single party to produce B decryption shares (for B different ciphertexts)
when there are n parties.

Then, in Figure 2 and the supporting Table 2 we report the run time for
combining the decryption shares from the parties. In the malicious security model
the parties also provide a proof of equality of discrete logs to prove the correctness
of the decryption shares, in which case we use B-batched proofs, and the ‘Mal’
columns include the time it takes to verify these.

Finally, in Table 3 we isolate the time it takes to verify a B-batched proof.
Apart for run time, we report on the secret decryption key size and the proof

size in bits, which both depend on the number of parties. For n = {10, 100, 1000}
parties, the size in bits of the key d (which is shared over the integers) is
{4295, 5324, 19937} and the proof size in bits is {12743, 13772, 28385}.

Explaining the results. Note that in all figures and tables the number of parties,
n, affects the run time. This is due to the fact that n affects the party’s share
size of the Paillier decryption key when shared over the integers (see Sections
2.1 and 5.2), which in turn affects both prover’s and verifier’s exponent size.

The attentive reader may observe an abrupt jump in run time when increasing
from a batch of B1 = 100 ciphertexts to a batch of B2 = 1000 in the C6i machine,
and when increasing from B1 = 10 ciphertexts to B2 = 100 in the M1 machine.
This jump is due to the parallelism of our implementation, which utilizes up
to 96 cores of the C6i machine and up to 10 cores of the M1 machine. Up to
B1 ciphertexts, the workload is quite concurrent and runs simultaneously for
all ciphertexts in the batch, whereas above B1 ciphertexts the work becomes
sequential.

Importantly, the figures show that adding protection against a malicious
adversary does not incur high overhead. For all n and B this overhead is a small

9 https://github.com/RustCrypto/crypto-bigint
10 https://github.com/rayon-rs/rayon
11 https://aws.amazon.com/ec2/instance-types/c6i/

33

https://github.com/RustCrypto/crypto-bigint
https://github.com/rayon-rs/rayon
https://aws.amazon.com/ec2/instance-types/c6i/

constant and as n and B grow (toward n = 1000 or B = 1000) this constant
reaches 1.5. We present the precise factors in the tables under the ‘×’ column.

Our batching technique (along the multi exponentiation described in Section
5.1) proves itself necessary if a truly scalable solution is needed. For decryp-
tion share computation (Table 1) with n = {10, 100, 1000}, the prover’s time for
generating a decryption share for a single ciphertext is {134, 355, 1434} millisec-
onds on M1 machine, resp. When generating decryption shares for B = 1000
ciphertexts, the cost is only {12.5, 32.5, 144} milliseconds for each one, respec-
tively, which is about 10× improvement. Similar results are obtained for the
combination of decryption shares (Table 2) and for proof verification (Table 3).

Fig. 1. Time in milliseconds to generate a decryption share with and without proof of
equality of discrete logs (e.g., in the presence of a malicious and semi-honest adversaries,
resp.).

5.4 Conclusion

This paper introduces a novel security reduction technique, from the soundness
of the proof of equality of discrete logs to the factoring problem. Combining our
zero-knowledge proof (and its batching capabilities) with a large scale modulus
generation (e.g., Diogenes [CHI+21]), we show for the first time, that threshold
Paillier encryption scheme is practical under standard assumptions. In fact, we
demonstrate that threshold Paillier is not only practical, but also ready for a
large scale deployment with thousands of parties.

Acknowledgements We thank Zeev Manilovich for his support with setting
up an accurate benchmarking environment on AWS.

34

Compute Decryption Share (ms)
AWS C6i MBP M1

n B S.H. Mal × S.H. Mal ×
10 1 47.7 151.93 3.19 41.8 134.3 3.21
10 10 66.8 233.02 3.49 56.9 210.76 3.70
10 100 160.8 873.98 5.44 526.8 1218.2 2.31
10 1000 1198.4 7424.6 6.20 6336.7 12531.0 1.98

100 1 69.1 193.28 2.80 246.3 355.2 1.44
100 10 85.9 272.0 3.17 336.4 506.59 1.51
100 100 221.6 959.41 4.33 2153.4 2861.2 1.33
100 1000 1666.8 7909.8 4.75 26455.9 32585.0 1.23

1000 1 383.7 790.67 2.06 1081.2 1434.1 1.33
1000 10 415.0 884.33 2.13 2060.3 2475.0 1.20
1000 100 1122.1 2138.8 1.91 13100.6 14058.0 1.07
1000 1000 8034.3 14558.0 1.81 137575.7 143970.0 1.05

Table 1. Computation time, in milliseconds, of B decryption shares when there are
n parties (and up to t = 2n/3 are corrupted). Times are measured on two types of
machines: AWS C6i, with 128 vCPU’s and MacBook Pro M1 with 10 cores. S.H and
Mal stand for semi-honest and malicious, where the ‘malicious’ column includes the
time it takes to generate the proof of equality of discrete logs, and the × column is the
overhead factor Mal/S.H.

Fig. 2. Time in milliseconds to combine decryption shares from t = 2n/3 parties of B
ciphertexts, with and without proof of equality of discrete logs (e.g., in the presence of
a malicious and semi-honest adversaries, resp.).

35

Combining Decryption Shares (ms)
AWS C6i MBP M1

n B S.H. Mal × S.H. Mal ×
10 1 21.517 89.517 4.16 25.027 216.82 8.66
10 10 21.958 152.28 6.94 95.336 473.6 4.97
10 100 61.703 763.5 12.37 953.03 3178.2 3.33
10 1000 450.11 6746.1 14.99 10303.0 31480.0 3.06

100 1 82.635 262.53 3.18 100.69 2653.4 26.35
100 10 84.031 397.24 4.73 455.83 5124.2 11.24
100 100 270.96 1559.8 5.76 4173.4 11409.0 2.73
100 1000 2449.3 12362.0 5.05 13083.0 80335.0 6.14

1000 1 5997.6 9722.5 1.62 5249.1 20851.0 3.97
1000 10 6064.8 10709.0 1.77 7201.5 28201.0 3.92
1000 100 22178.0 35058.0 1.58 69940.0 135580.0 1.94
1000 1000 169050.0 266640.0 1.58 884770.0 1345200.0 1.52

Table 2. Time it takes, in milliseconds, to combine a batch of B decryption shares
(of t-out-of-n-Shamir sharing, with t = 2n/3). S.H and Mal stand for semi-honest and
malicious, where the ‘malicious’ column includes the time it takes to verify the proof,
and the × column is the overhead factor Mal/S.H. Times are measured on two types
of machines: AWS C6i, with 128 vCPU’s and MacBook Pro M1 with 10 cores.

Proof Verification (ms)

n B AWS C6i MBP M1

10 1 63.8 57.2
10 10 126.1 118.3
10 100 674.0 655.4
10 1000 6188.4 6069.6

100 1 73.7 65.6
100 10 136.0 126.5
100 100 683.6 664.1
100 1000 6215.7 6079.2

1000 1 215.3 187.4
1000 10 277.6 248.5
1000 100 824.9 789.4
1000 1000 6344.5 6224.4

Table 3. Proof verification time in milliseconds, when there are n parties (of which t
provides their proofs), each providing a batch proof of B decryption shares. Times are
measured on two types of machines: AWS C6i, with 128 vCPU’s and MacBook Pro
M1 with 10 cores.

36

References

ACS02. Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computa-
tion modulo a shared secret with application to the generation of shared
safe-prime products. In Advances in Cryptology-CRYPTO 2002: 22nd
Annual International Cryptology Conference Santa Barbara, Califor-
nia, USA, August 18-22, 2002 Proceedings 22, pages 417–432. Springer,
2002.

AFK22. Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transfor-
mation of multi-round interactive proofs. In Theory of Cryptography:
20th International Conference, TCC 2022, Chicago, IL, USA, Novem-
ber 7-10, 2022, Proceedings, Part I, pages 113–142. Springer, 2022.

APB+04. Riza Aditya, Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon
Lee. Batch verification for equality of discrete logarithms and threshold
decryptions. In Applied Cryptography and Network Security: Second
International Conference, ACNS 2004, Yellow Mountain, China, June
8-11, 2004. Proceedings 2, pages 494–508. Springer, 2004.

BBBF18. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifi-
able delay functions. In Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19–23, 2018, Proceedings, Part I, pages 757–788. Springer, 2018.

BDF+23. Jakob Burkhardt, Ivan Damg̊ard, Tore Kasper Frederiksen, Satrajit
Ghosh, and Claudio Orlandi. Improved Distributed RSA Key Genera-
tion Using the Miller-Rabin Test. Cryptology ePrint Archive, 2023.

BDO22. Lennart Braun, Ivan Damg̊ard, and Claudio Orlandi. Secure Multi-
party Computation from Threshold Encryption based on Class Groups.
Cryptology ePrint Archive, 2022.

BDTZ16. Carsten Baum, Ivan Damg̊ard, Tomas Toft, and Rasmus Zakarias. Bet-
ter preprocessing for secure multiparty computation. In Applied Cryp-
tography and Network Security: 14th International Conference, ACNS
2016, Guildford, UK, June 19-22, 2016. Proceedings 14, pages 327–345.
Springer, 2016.

BF97. Dan Boneh and Matthew Franklin. Efficient generation of shared RSA
keys. In Advances in Cryptology-CRYPTO 97: 17th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August
17-21, 1997 Proceedings 17, pages 425–439. Springer, 1997.

BGR98. Mihir Bellare, Juan A Garay, and Tal Rabin. Fast batch verifica-
tion for modular exponentiation and digital signatures. In Advances
in Cryptology-EUROCRYPT98: International Conference on the The-
ory and Application of Cryptographic Techniques Espoo, Finland, May
31-June 4, 1998 Proceedings 17, pages 236–250. Springer, 1998.

BS20. Dan Boneh and Victor Shoup. A graduate course in applied cryptog-
raphy. Draft 0.5, 2020.

BS21. Omar Rafik Merad Boudia and Sidi Mohammed Senouci. An Efficient
and Secure Multidimensional Data Aggregation for Fog-Computing-
Based Smart Grid. IEEE Internet Things J., 2021.

Can01. Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pages 136–145. IEEE, 2001.

37

https://eprint.iacr.org/2002/029.pdf
https://eprint.iacr.org/2002/029.pdf
https://eprint.iacr.org/2002/029.pdf
https://eprint.iacr.org/2021/1377.pdf
https://eprint.iacr.org/2021/1377.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-24852-1_36.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-24852-1_36.pdf
https://eprint.iacr.org/2018/601.pdf
https://eprint.iacr.org/2018/601.pdf
https://eprint.iacr.org/2023/644.pdf
https://eprint.iacr.org/2023/644.pdf
https://eprint.iacr.org/2022/1437.pdf
https://eprint.iacr.org/2022/1437.pdf
https://eprint.iacr.org/2016/048.pdf
https://eprint.iacr.org/2016/048.pdf
https://link.springer.com/content/pdf/10.1007/bfb0052253.pdf
https://link.springer.com/content/pdf/10.1007/bfb0052253.pdf
https://cseweb.ucsd.edu/~mihir/papers/batch.pdf
https://cseweb.ucsd.edu/~mihir/papers/batch.pdf
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://hal.science/hal-03323212/document
https://hal.science/hal-03323212/document
https://hal.science/hal-03323212/document
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2000/067.pdf

CCH+18. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N
Rothblum, and Ron D Rothblum. Fiat-Shamir from simpler assump-
tions. Cryptology ePrint Archive, 2018.

CHI+21. Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele
Micciancio, Tarik Riviere, Abhi Shelat, Muthu Venkitasubramaniam,
and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus gener-
ation with a dishonest majority. In 2021 IEEE Symposium on Security
and Privacy (SP), pages 590–607. IEEE, 2021.

CKY09. Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the Portability
of Generalized Schnorr Proofs. In EUROCRYPT, volume 5479, pages
425–442. Springer, 2009.

DdSGMRT21. Cyprien Delpech de Saint Guilhem, Eleftheria Makri, Dragos Rotaru,
and Titouan Tanguy. The return of eratosthenes: Secure generation of
rsa moduli using distributed sieving. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
594–609, 2021.

DJN10. Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. A generalization
of Paillier’s public-key system with applications to electronic voting.
International Journal of Information Security, 9:371–385, 2010.

DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA
signatures without a trusted dealer. In Advances in Cryptology-
EUROCRYPT 2001: International Conference on the Theory and Ap-
plication of Cryptographic Techniques Innsbruck, Austria, May 6-10,
2001 Proceedings 20, pages 152–165. Springer, 2001.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally Composable Effi-
cient Multiparty Computation from Threshold Homomorphic Encryp-
tion. In CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 247–264. Springer, 2003.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty Computation from Somewhat Homomorphic Encryption.
In CRYPTO, volume 7417, pages 643–662. Springer, 2012.

FPS01. Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing
decryption in the context of voting or lotteries. In Financial Cryptog-
raphy: 4th International Conference, FC 2000 Anguilla, British West
Indies, February 20-24, 2000 Proceedings 4, pages 90–104. Springer,
2001.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Advances in Cryptology-
CRYPTO86: Proceedings 6, pages 186–194. Springer, 1987.

FS01. Pierre-Alain Fouque and Jacques Stern. Fully distributed thresh-
old RSA under standard assumptions. In Advances in Cryptology-
ASIACRYPT 2001: 7th International Conference on the Theory and
Application of Cryptology and Information Security Gold Coast, Aus-
tralia, December 9-13, 2001 Proceedings 7, pages 310–330. Springer,
2001.

GG20. Rosario Gennaro and Steven Goldfeder. One Round Threshold ECDSA
with Identifiable Abort. 2020.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-
optimal DSA/ECDSA signatures and an application to bitcoin wallet

38

https://eprint.iacr.org/2018/1004.pdf
https://eprint.iacr.org/2018/1004.pdf
https://eprint.iacr.org/2020/374.pdf
https://eprint.iacr.org/2020/374.pdf
https://eprint.iacr.org/2009/050
https://eprint.iacr.org/2009/050
https://eprint.iacr.org/2021/565.pdf
https://eprint.iacr.org/2021/565.pdf
https://people.csail.mit.edu/rivest/voting/papers/DamgardJurikNielsen-AGeneralizationOfPailliersPublicKeySystemWithApplicationsToElectronicVoting.pdf
https://people.csail.mit.edu/rivest/voting/papers/DamgardJurikNielsen-AGeneralizationOfPailliersPublicKeySystemWithApplicationsToElectronicVoting.pdf
https://iacr.org/archive/eurocrypt2001/20450151.pdf
https://iacr.org/archive/eurocrypt2001/20450151.pdf
https://iacr.org/archive/crypto2003/27290247/27290247.pdf
https://iacr.org/archive/crypto2003/27290247/27290247.pdf
https://iacr.org/archive/crypto2003/27290247/27290247.pdf
https://eprint.iacr.org/2011/535.pdf
https://www.di.ens.fr/~stern/data/St85.pdf
https://www.di.ens.fr/~stern/data/St85.pdf
https://link.springer.com/content/pdf/10.1007/3-540-47721-7_12.pdf
https://link.springer.com/content/pdf/10.1007/3-540-47721-7_12.pdf
https://eprint.iacr.org/2001/008.pdf
https://eprint.iacr.org/2001/008.pdf
https://eprint.iacr.org/2020/540.pdf
https://eprint.iacr.org/2020/540.pdf
https://eprint.iacr.org/2016/013.pdf
https://eprint.iacr.org/2016/013.pdf
https://eprint.iacr.org/2016/013.pdf

security. In Applied Cryptography and Network Security: 14th Inter-
national Conference, ACNS 2016, Guildford, UK, June 19-22, 2016.
Proceedings 14, pages 156–174. Springer, 2016.

HL10. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Proto-
cols - Techniques and Constructions. Information Security and Cryp-
tography. Springer, 2010.

HMR+19. Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, Tomas Toft, and
Angelo Agatino Nicolosi. Efficient RSA key generation and threshold
paillier in the two-party setting. Journal of Cryptology, 32:265–323,
2019.

KL14. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy. CRC Press, 2nd edition, 2014.

KLM+20. Ralf Küsters, Julian Liedtke, Johannes Müller, Daniel Rausch, and An-
dreas Vogt. Ordinos: A Verifiable Tally-Hiding E-Voting System. In
EuroS&P, 2020.

MT21. Dimitris Mouris and Nektarios Georgios Tsoutsos. Masquerade: Ver-
ifiable Multi-Party Aggregation with Secure Multiplicative Commit-
ments. 2021.

MV06. Hugh L. Montgomery and Robert C. Vaughan. Multiplicative Number
Theory I: Classical Theory. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 2006.

NS10. Takashi Nishide and Kouichi Sakurai. Distributed Paillier Cryptosys-
tem without Trusted Dealer. In Information Security Applications -
11th International Workshop, WISA 2010, Jeju Island, Korea, August
24-26, 2010, Revised Selected Papers, volume 6513 of Lecture Notes in
Computer Science, pages 44–60. Springer, 2010.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology-EUROCRYPT 99: In-
ternational Conference on the Theory and Application of Cryptographic
Techniques Prague, Czech Republic, May 2-6, 1999 Proceedings 18,
pages 223–238. Springer, 1999.

Pip80. Nicholas Pippenger. On the evaluation of powers and monomials. SIAM
Journal on Computing, 9(2):230–250, 1980.

Pol74. John M Pollard. Theorems on factorization and primality testing. In
Mathematical Proceedings of the Cambridge Philosophical Society, vol-
ume 76, pages 521–528. Cambridge University Press, 1974.

Rab98. Tal Rabin. A Simplified Approach to Threshold and Proactive RSA. In
CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages
89–104. Springer, 1998.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Commu-
nications of the ACM, 1978.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

Sho00. Victor Shoup. Practical threshold signatures. In Advances in
Cryptology-EUROCRYPT 2000: International Conference on the The-
ory and Application of Cryptographic Techniques Bruges, Belgium, May
14–18, 2000 Proceedings 19, pages 207–220. Springer, 2000.

VAS19. Thijs Veugen, Thomas Attema, and Gabriele Spini. An implementa-
tion of the Paillier crypto system with threshold decryption without a
trusted dealer. ePrint, 2019.

39

https://eprint.iacr.org/2016/013.pdf
https://eprint.iacr.org/2016/013.pdf
https://eprint.iacr.org/2016/013.pdf
https://www.eng.biu.ac.il/~hazay/Book/IntroductionEfficient2PC.pdf
https://www.eng.biu.ac.il/~hazay/Book/IntroductionEfficient2PC.pdf
https://eprint.iacr.org/2011/494.pdf
https://eprint.iacr.org/2011/494.pdf
https://eprint.iacr.org/2020/405
https://eprint.iacr.org/2021/1370
https://eprint.iacr.org/2021/1370
https://eprint.iacr.org/2021/1370
https://www.cambridge.org/core/books/multiplicative-number-theory-i/4E45519B26115AEEA4839C6C38206ACD
https://www.cambridge.org/core/books/multiplicative-number-theory-i/4E45519B26115AEEA4839C6C38206ACD
https://link.springer.com/chapter/10.1007/978-3-642-17955-6_4
https://link.springer.com/chapter/10.1007/978-3-642-17955-6_4
https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://epubs.siam.org/doi/abs/10.1137/0209022
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/theorems-on-factorization-and-primality-testing/6762E84DBD34AEF13E6B1D1A8334A989
https://www.iacr.org/cryptodb/data/paper.php?pubkey=1693
https://web.williams.edu/Mathematics/lg5/302/RSA.pdf
https://web.williams.edu/Mathematics/lg5/302/RSA.pdf
https://dl.acm.org/doi/pdf/10.1145/359168.359176
https://www.iacr.org/archive/eurocrypt2000/1807/18070209-new.pdf
https://eprint.iacr.org/2019/1136.pdf
https://eprint.iacr.org/2019/1136.pdf
https://eprint.iacr.org/2019/1136.pdf

A Key Generation Ideal Functionality

The ideal functionality FKeyGen is parameterized by a computational security
parameter κ, from which ℓ(κ), the size of the primes, is derived. The functionality
interacts with an adversary A who can corrupt a subset U ⊂ [n] of the parties
chosen at the beginning of the execution. A my choose its shares ((xj , yj))j∈U .
The functionality then samples shares for the honest parties ((xj , yj))j /∈U such
that x :=

∑
j∈[n] xj , y :=

∑
j∈[n] yj and N := xy is a conforming bi-prime. It

then calculates d = ϕ(N) · [ϕ(N)−1 mod (N)], samples shares dj of a (t, n)
Shamir Secret Sharing over the integers. Lastly, it samples a random element
ṽ ← ZN2 , sets v = ṽ2 and computes vj = vdj . The functionality sends dj to
party Pj and (N, ṽ, (vj)j∈[n]) to all parties.

FUNCTIONALITY A.1
(
Key Generation Functionality FKeyGen

)
1. Receive Adversary Inputs:

Upon receiving (input, sid, ssid, ((xj , yj))j∈U) from A, record
(input, sid, ssid, Pj , (xj , yj)) for each j ∈ U .

2. Output Request:
Upon receiving (output, sid, ssid) from A:
(a) If a record (input, sid, ssid, Pj) is missing for some Pj , ignore.
(b) Sample shares xj , yj ← [2ℓ] for each j ̸∈ U such that N = xy is a

conforming bi-prime, where x =
∑

j∈[n] xj , y =
∑

j∈[n] yj .

(c) Calculate d = ϕ(N)·[ϕ(N)−1 mod N] and sample shares dj of a (t, n)
Shamir Secret Sharing over the integers of d.

(d) Sample ṽ ← Z∗
N2 , set v = ṽ2 and vj = vdj .

(e) Record all values and send (output, sid, ssid, N, (dj)j∈U , ṽ, (vj)j∈[n])
to A.

3. Output Denial:
Upon receiving (output, . . .) A may send:
– (continue, sid, ssid) – Send (output, sid, ssid, N, ṽ, (vj)j∈[n]) to all

parties and (share, sid, ssid, (xj , yj), dj) to Pj for each j ∈ [n].
– (denial, sid, ssid, U ′) where ∅ ̸= U ′ ⊆ U – Record (cheaters, sid, U ′).

4. Corrupt:
Upon receiving (corrupt, sid, ssid, N ′, ṽ′) from A:
(a) If (denial, sid, . . .) is not recorded, ignore the message.
(b) Re-calculate d′, d′j , v

′, v′j as before but for N ′, ṽ′.
(c) Send (output, sid, ssid, N ′, ṽ′, (v′j)j∈[n]) to all parties and

(share, sid, ssid, d′j) to Pj for each j ∈ [n].
5. Certification:

After an (output, . . .) (and (share, . . .)) message was sent to all parties,
each party may send (certify, sid, ssid, Pj). Upon receiving this message:
(a) If j ∈ U ′, send (cheaters, sid, Pj) to all parties and ignore any mes-

sages from Pj .
(b) Else, upon receiving (certify, . . .) from all parties, if there is no record

of (cheaters, sid, . . .), send (certify, sid, ssid) to all parties.

40

	Introduction
	Previous Work: Efficiency vs. Security
	Technical Overview
	Our Contribution
	Organization

	Preliminaries
	Shamir Secret Sharing
	Zero Knowledge

	Background on Threshold Paillier
	The Paillier Encryption Scheme
	Threshold Decryption with a Trusted Setup
	Distributed Key Generation (Without a Trusted Dealer)

	Zero-Knowledge of Equality of Discrete Logs
	Formalizing the Language
	Setup Phase
	The Protocol
	Batching
	Batch Verification
	Fiat-Shamir Transform for Batched Proofs

	Optimization & Evaluation
	Multi-Exponentiation
	A Tighter Bound of Shamir Shares Over the Integers
	Evaluation
	Conclusion

	Key Generation Ideal Functionality

