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Abstract. In the threshold version of Paillier’s encryption scheme, a set
of parties collectively holds the secret decryption key through a secret
sharing scheme. Whenever a ciphertext is to be decrypted, the parties
send their decryption shares, which are then verified for correctness and
combined into the plaintext. The scheme has been widely adopted in var-
ious applications, from secure voting to general purpose MPC protocols.
However, among the handful existing proposals for a maliciously secure
scheme, one must choose between an efficient implementation that relies
on non-standard assumptions or a computationally expensive implemen-
tation that relies on widely acceptable assumptions.
In this work, we show that one can enjoy the benefits of both worlds.
Specifically, we adjust a scheme by Damg̊ard et al. (Int. J. Inf. Secur.
2010) to get a practical distributed key generation (DKG). While the
original scheme was only known to be secure under ad-hoc non-standard
assumptions, we prove that the adjusted scheme is in fact secure under
the decisional composite residuosity (DCR) assumption alone, required
for the semantic security of the Pallier encryption scheme itself. This
is possible thanks to a novel reduction technique, from the soundness
of a zero-knowledge proof of equality of discrete logs, to the factoring
problem. Furthermore, we use similar ideas to prove that batching tech-
niques by Aditya et al. (ACNS 2004), which allows a prover to batch
several statements into a single proof, can be applied to our adjusted
scheme. This enables a batched threshold Paillier decryption in the fully
distributed setting for the first time.
Until now, verifying that a decryption share is correct was the bottleneck
of threshold Paillier schemes and hindered real world deployments (unless
one is willing to rely on a trusted dealer). Our work accumulates to
shifting the bottleneck back to the plaintext reconstruction, just like in
the semi-honest setting, and render threshold Paillier practical for the
first time, supporting large scale deployments.
We exemplify this shift by implementing the scheme and report our eval-
uation with up to 1000 parties, in the dishonest majority setting. For
instance, over an EC2 c6i machine, we get a throughput of about 50 and
3.6 decryptions per second, when run over a network of 100 and 1000
parties, respectively.
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Threshold Encryption · Batched ZK Arguments



1 Introduction

The Paillier encryption scheme from 1999 [Pai99] has gained significant popu-
larity due to its advantageous properties. It is a public-key encryption scheme
renowned for its additive homomorphic property, enabling linear operations on
encrypted data without requiring decryption. Additionally, the Paillier scheme
supports a large message space, enabling useful operations on secrets.

Motivated by applications in voting systems, several authors have proposed
threshold variants of the Paillier encryption scheme [FPS01, DJN10]. These vari-
ants are based on similar constructions for RSA signatures [Sho00].

A threshold encryption scheme facilitates a set of parties utilizing a public
encryption key pk to encrypt messages while collectively maintaining the cor-
responding secret key sk for decrypting ciphertexts. In this scheme, each party
Pj possesses a secret decryption key share skj . When the parties collectively
decide to decrypt a ciphertext ct, they participate in a cryptographic proto-
col that ultimately reveals the message while ensuring the confidentiality of the
secret decryption key. Typically in such protocols, each party Pj broadcasts a
“decryption share” ctj = Decskj (ct). If a sufficient number of parties, passing a
certain pre-defined threshold, broadcast their decryption shares, those can then
be locally combined by anyone to recover the plaintext pt = Decsk(ct).

The combination of homomorphic properties and threshold decryption ca-
pabilities has rendered the Paillier encryption scheme highly appealing in sys-
tems focused on privacy-preserving voting [KLM+20, DJN10] and data aggre-
gation in general [MT21, BS21]. Moreover, threshold decryption of the Paillier
scheme (and additively homomorphic encryption in general) serves as a foun-
dational building block in other cryptographic protocols like threshold signa-
tures [GGN16] and secure multiparty computation (MPC) in general [DN03,
DPSZ12]. In many prior works, such as [FPS01, GGN16], the focus was pri-
marily on the threshold Paillier decryption feature. However, these approaches
often relied on a trusted dealer for key generation and secret key share distri-
bution. This reliance reintroduced a security risk that originally prompted the
use of threshold encryption in the first place. To this end, fully-fledged threshold
schemes have been proposed, (e.g., [DK01]). In these schemes, the involvement
of a trusted dealer is entirely eliminated, and the generation and distribution of
keys are carried out by the participating parties themselves.

Similar to other RSA-based primitives, like signature [RSA78] and verifiable
delay function (VDF) [BBBF18] schemes, the public key of the Paillier encryp-
tion scheme consists of a modulus N that is the product of two large prime
numbers P and Q. Therefore, many works (see [BDF+23] and references within)
deal with distributed RSA modulus as a stand alone and independent building
block, leaving additional necessary cryptographic material to be generated by
the specific application, be it the RSA signature, RSA encryption, VDF, or Pail-
lier encryption schemes. The additional cryptographic material may be different
from scheme to scheme. For example, in the threshold RSA signature scheme,
Pj ’s signature share on message m is computed by σj = H(m)dj mod N where
d =

∑
dj is the secret signing key shared among the parties, and the final sig-
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nature is σ =
∏

σj . If one of the parties computes an incorrect partial signature
σ′j ̸= σj then it is evident to everyone, since the final signature σ′ will not verify.
In contrast, in the context of threshold encryption, without employing some ver-
ifiability mechanism it might not be possible to tell whether a decryption share
was computed correctly or not. To this end, proposals for threshold Paillier de-
vise such a verifiability mechanism, in the form of a zero knowledge (zk) proof.
That is, in addition to the aforementioned decryption share, each party provides
a zero knowledge proof for the claim that the decryption share is computed cor-
rectly using its secret key share. In that sense, the proposed threshold Paillier
protocols differ mostly in the way that the zero knowledge proof is implemented,
offering a trade off between efficiency and security. Specifically, these protocols
offer a trade off in the three metrics below:

– Key generation efficiency refers to whether distributed key generation is
practical.

– Proof efficiency refers to the size and the time it takes to generate/verify
the zero knowledge proof of the correctness of the decryption share.

– Strength of assumptions refers to the cryptographic assumptions under-
lying the soundness of the proof.

Considering only protocols with a feasible key generation phase, one has
to choose between a protocol with an efficient proof system that relies on non-
standard assumptions (such as [DJN10] using the assumptions in [DK01]), and a
protocol whose proof system is inefficient but relies on standard widely accepted
assumptions (e.g., [FS01, HMR+19]). This raises the following question:

Is it possible for a threshold Paillier encryption scheme to incorporate an
efficient key generation and proof while relying solely on standard assumptions?

In this work we answer this question in the affirmative. We depart from a pro-
tocol that has an efficient key generation and proof, but relies on non-standard
assumptions, and present a novel reduction technique that is applied to the proof
of soundness of the zero knowledge proof of correct decryption share. This, for
the first time, allows using an efficient version of threshold Paillier without com-
promising on security.

1.1 Previous Work: Efficiency vs. Security
In the following, we provide a more detailed overview of the trade-off discussed
above, which involves a tension between efficiency and the level of leniency asso-
ciated with relying on non-standard assumptions. On one extreme, the protocol
by Algesheimer et al. [ACS02] allows distributed generation of a bi-prime pub-
lic key N = PQ consisting of safe primes (i.e., with (P − 1)/2 and (Q − 1)/2
primes). The fact that N is a product of safe primes enables an efficient zero
knowledge protocol for the correctness of the threshold decryption, while also
achieving security under standard assumptions. Generating N as a product of
safe primes is commonly adopted by works that assume a trusted dealer [FPS01],
since a dealer can easily generate such a key. However, distributed generation of
safe primes remains an infeasible task, which is evident by the fact that [ACS02]
has never been implemented.
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On the other extreme, Damg̊ard et al. [DK01] proposed a protocol for thresh-
old RSA signatures that lowers the bar by generating a public key N that is a
product of ‘general’ primes3 P,Q (i.e., they are not necessarily safe), and using
the same efficient zk-proof as [FPS01]. This result is transferable to threshold
Paillier as mentioned in [DJN10]. However, since the generated primes may lack
some important properties that exist in safe primes, the soundness of that zero
knowledge proof has to rely on non-standard assumptions (which are discussed
later in Section 1.3).

In order to bridge between the above mentioned extremes, Fouque and Stern
[FS01] proposed a new protocol in which the key generation produces primes P,Q
that are only almost safe primes, meaning that P−1

2 and Q−1
2 are B-rough num-

bers and co-prime. Unlike general primes, the B-roughness property facilitates
a proof of soundness for the zk-protocol without relying on new assumptions.
Nevertheless, while distributed generation of almost safe primes can be done,
it is impractical for most use-cases (we estimate that generation of almost safe
primes would be 1000x slower than general ones). Moreover, the technique incurs
a degradation of the efficiency of the zero knowledge proof. As reported by the
authors, the proof efficiency is about 30× worse compared to [DK01].

Another bridging attempt is due to Hazay et al. [HMR+19]. Their protocol,
similar to [DK01], builds on a public key N that is a product of general primes,
but uses a different zero knowledge protocol (using the cut-and-choose technique)
than the one used in [DK01]. Their proof, while relying on standard assumptions,
suffers from poor soundness (1/2), which means that it has to be repeated κ times
to meet real security requirements.

Since safe prime generation as in [ACS02] is infeasible, we are left with the
choice between accepting the extra assumptions in [DK01] and getting an effi-
cient proof (and therefore threshold decryption), or sticking to the widely ac-
cepted assumptions but suffering an inefficient proof, as in [FS01] and [HMR+19].

It worth mentioning a different approach, proposed by Baum et al. [BDTZ16],
which removes the zero knowledge proof from threshold Paillier decryption al-
together. That is, in order to decrypt the ciphertext c = Encpk(m; r) the parties
first reconstruct the randomness r, which in turn enables learning the plaintext
m. This approach, however, apart from revealing the randomness r to the ad-
versary, enables an attacker to anonymously cheat in the reconstruction of r and
thus to deny decryption. Both of the above issues are problematic in most cases,
yet tolerable in some scenarios4.

Lastly we would like to mention previous work by Seres and Burcsi [SB21]
which upgrades the security assumptions of Pietrzak’s proof of exponentiation.

3 We remark that distributed generation of a product of general primes is due to Boneh
and Franklin [BF97] and its improvements [DdSGMRT21, CHI+21, BDF+23].

4 Specifically, in [BDTZ16] such decryption is happening only in the preprocessing
phase of a generic MPC protocol, in which case, neither an abort nor leakage of r
gives the adversary any advantage. Alternatively, the same work proposes a method
to avoid denial of decryption at the cost of two additional rounds and assuming the
primes are safe, a property we wish to avoid in the first place.
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While the reductions share some ideas there are meaningful differences. Most
importantly they assume that ϕ(N) does not have factors in a certain range,
which is okay in their context since a single party holding the factorization of
N can provide a proof of this fact. In our context it is much more involved to
produce such a proof since the factorization of N is shared among the parties.

1.2 Our Contribution

– We present the first practical, efficient, large-scale threshold Paillier encryp-
tion protocol, supporting efficient distributed key generation and threshold
decryption, built upon the same decisional composite residuosity assumption
as the standard Paillier encryption. The protocol is secure in the presence
of a malicious adversary who statically corrupts t < n parties.

– At the heart of our contribution lies a novel proof for the soundness of the
standard proof system of equality of discrete logs over the group QRN2 of
quadratic residues modulo N2, even when N is not a product of safe primes.
Such proof may be of independent interest: First, the same proof can be used
in threshold protocols over RSA groups, such as threshold RSA signature.
Second, the requirement of safe primes in various cryptographic primitives
can be re-assessed, which is left to future work.5 The ramification of that
proof is that distributed Paillier key generation can be implemented using
any distributed bi-prime modulus generation (for ‘general’ primes), and in
particular, we can leverage recent advances, like Diogenes [CHI+21], for key
generation by thousands of parties.

– In a real-world system required to continuously process many ciphertexts,
the parties need to verify decryption shares received from other parties for
each of these ciphertexts. Verification of decryption shares from many parties
across multiple ciphertexts can easily dominate the overall cost of decryption.
To address this issue, we use a batching technique due to [APB+04], which
allows a prover to batch several decryption shares into a single proof. Specif-
ically, proving and verifying B statements using the batched proof system
requires a single ‘large’ exponentiation and O(B) ‘small’ exponentiations,
rather than O(B) large exponentiations (where ‘large’ refers to the size of
the shares, e.g., 4096 bits, and ‘small’ refers to the computational security
parameter, e.g., 128 bits). The original proof of this batching technique has
also assumed safe primes. We provide a new proof which avoids this issue.
This results in the first batched proof system for threshold Paillier decryption
when N is not a product of safe primes. Overall it introduces a significantly
more efficient proof system for the equality of discrete logs (as demonstrated
in Section 5). It reduces the total time complexity of threshold decryption
to roughly that of a semi-honest model with no proof system. E.g., for 1000
parties proof overhead is about 5%.

5 That being said, while similar techniques may be applied to remove the requirement
of safe primes in other cases as well, in some protocols the requirement that the
primes are safe might be crucial, so every protocol must be analyzed on its own.
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Although our contributions are concentrated around threshold decryption,
we briefly discuss the protocol for distributed key generation as well (in Section
3 and in more detail in F), for completeness of the exposition.

Performance comparison. In Table 1 we compare the performance between this
work and previous works that rely on standard assumptions only, namely [FS01]
and [HMR+19]. As the performance is dominated by exponentiations by a large
exponent (thousands bit-length) the table focuses on that metric. Note that the
large exponents in all the protocols are of the same size. Importantly, our protocol
is the only one that supports batch decryption (which essentially requires of
aggregation of proofs). Thus, in [FS01] and [HMR+19] the overhead of decrypting
a batch of ciphertexts grows linearly with the batch size, whereas in our protocol
the overhead remains constant.

Number of Exponentiations

Work In general When κ = 128, σ = 40, B = 216 Supports batching

[FS01] 2 · κ
logB

· (⌈ σ
logB
⌉+ 1) 64 No

[HMR+19] κ 128 No
This work 2 2 Yes

Table 1: The number of exponentiations required for proof generation and ver-
ification in each protocol, where κ represents computational security (i.e., 2κ

is infeasible), and σ represents statistical security (i.e., 2−σ is negligible). For
[FS01], we utilize the guaranteed B-roughness of P−1

2 · Q−12 .
1.3 Technical Overview
Let us begin with the high-level overview of the threshold Paillier decryption.
As mentioned above, Paillier’s public key is a modulus N that is a product of
two large primes P and Q. The secret key d is derived from these primes, and
it is assumed to be computationally infeasible to obtain it from N . In threshold
Paillier key generation protocols, the parties first obtain a sharing of P and Q,
and then derive a sharing of d as well as the productN = PQ in plain. To be more
specific, the generated primes P and Q are required to satisfy gcd (ϕ(N), N) = 1,
where ϕ(N) = (P − 1)(Q − 1). Using this fact, the secret key is computed6 by
d = ϕ(N) · [ϕ(N)−1 mod N ] ∈ Z and shared among the parties using a secret
sharing scheme over the integers7, such that party Pj obtains a share dj . In
addition to the public modulus N , the parties generate a public verification key
vj for every Pj , such that vj = gdj for some basis element g from the group of
quadratic residues modulo N2 (denoted QRN2). Then, when the parties agree
to decrypt a ciphertext ct, party Pj sends the decryption share ctj = ctdj along
with a zero-knowledge proof that ctj is computed correctly using the public ct
and the secret dj .

8 This proof is a proof of equality of discrete logs of the values

6 There are several choices for the exact form of the secret key, which are all variants
of the one described above.

7 Some works assume secret sharing over the ring ZNϕ(N) but this is harder to achieve
without a trusted dealer.

8 When the threshold is smaller than the number of parties each exponent is multiplied
by the appropriate Lagrange coefficient.
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ctj and vj over QRN2 , with respect to the bases ct and g. That is, if Pj computes
its decryption share correctly then logct(ctj) = logg(vj) = dj .

In the following we present in more detail why safe primes are powerful for
efficient proofs, and later we explain how we achieve the same efficiency without
using safe primes and without resorting to additional assumptions.

Suppose that the generated modulus N is a product of two safe primes P,Q,
meaning that P ′ = P−1

2 and Q′ = Q−1
2 are primes as well. There are three main

benefits from the assumption that P ′ and Q′ are primes:

1. In the context of proofs for equality of discrete logs, it is commonly assumed
that the group is cyclic. For any pair P,Q of distinct safe primes, the group
QRN2 is guaranteed to be cyclic, since QRN2 ∼= QRP 2×QRQ2 and the orders
of QRP 2 and QRQ2 are co-prime. However, in the general case these orders
may share a common factor and the group QRN2 may not be cyclic.

2. When the group QRN2 happens to be cyclic, meaning that there exist an
element g, called a generator, such that every element in QRN2 equals gi

for some i. In fact, the probability of a random element g ← QRN2 to not
be a generator, is close to the probability of guessing one of the factors
of N . Having a generator helps when arguing security for zero knowledge
protocols. However, in the general case (where the primes are not safe), even
when QRN2 is cyclic, the probability of a random element to be a generator
is not negligible. This problem is exacerbated by the fact that no known
algorithm exist for finding a generator or determine if an element is one.

3. The standard proof of soundness (see [FPS01]) obtains an equation of the
form xe = 1 mod N2 for a small e (≪ min{P ′, Q′}), and concludes that
x = 1 since e is necessarily co-prime with ϕ(N2)/4 = NP ′Q′. This conclusion
cannot be made when P ′ and Q′ are allowed to be composite numbers.

These three benefits of safe primes are also drawbacks of general primes. The
work [DK01] overcomes these drawbacks and applies the same zero knowledge
proof as in [FPS01], but does not assume that the primes are safe and therefore
relies on the following non-standard assumptions:

1. It is computationally hard to compute an element a ∈ Z∗N such that a ̸= ±1
mod N and the order of a is not divisible by the largest factor of ϕ(N).

2. A random element in QRN is indistinguishable from those elements in QRN

with maximal order.

While these assumptions have not been proven insecure to date, relying on non-
standard cryptographic assumptions that have received very little attention can
potentially pose a risk in practice.

In [FS01] mentioned earlier, which aims at avoiding extra assumptions with-
out requiring the primes to be safe, the efficiency is degraded for two reasons.
First, the protocol has to be repeated with many bases g1, g2, . . ., which together
generate QRN2 with overwhelming probability. Second, the protocol requires
P−1
2 and Q−1

2 to be B-rough (i.e., to have all prime factors larger than B), and
the soundness depends on B. Since all known practical key generation protocols
result in quite a small B, soundness must be amplified via parallel repetitions.
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Our approach. In this work we take the same approach as in [DK01] (as
it applies to the threshold Paillier cryptosystem presented in [DJN10] with
s = 1), but remove their extra assumptions. Specifically, we manage to obtain
an efficient zero knowledge proof of equality of discrete logs over QRN2 , even
when N is a product of general primes.9 By setting minimal and practically
achievable properties to the primes, we overcome the above three drawbacks by
using the following observations.

1. Even though P,Q are not safe-primes, with high (but not overwhelming)
probability P−1

2 and Q−1
2 are co-prime, and therefore QRN2 is a cyclic group

of order Nϕ(N)
4 . During the key generation protocol the parties will reject

prime candidates that do not meet the requirement that P−1
2 and Q−1

2 are
co-prime. The rejection of prime candidates that do not satisfy that condition
incurs only a small constant factor overhead (about 1.2× as calculated in
Appendix F) to the key generation protocol.

2. Even when P,Q are not safe, the order of a random element g ∈ QRN2

is ‘close enough’ to the order of QRN2 , and so for our purpose it can be
used as if it was a generator. Specifically, we prove that with overwhelming
probability, the order of a randomly sampled g ∈ QRN2 is at least |QRN2 |
divided by a sufficiently smooth number (whose prime factors are all small).

3. For similar reasons, in the proof of soundness, instead of obtaining the equa-
tion xe = 1 mod N2 we obtain xe · η = 1 mod N2, where η ∈ QRN2 has
a smooth order δ. This means that xe·δ = 1 mod N2. Then, we divide the
proof into two cases: If xe = 1 (as in the case where g is a generator), then
we can find the factorization of e since e is small, from which we can find the
factorization of N using classical techniques, as long as x ̸= 1. Otherwise,
xe ̸= 1 mod N2 is an element of small smooth order and so we can employ
Pollard’s p− 1 method in order to factor N .

Notice that the above ideas would result in an efficient reduction, albeit non-
polynomial, and thus would only break the sub-exponential factoring problem.
Our simulation carefully chooses challenges such that the size of e has a bound
dependent on the chance of success of the PPT adversary rather directly on
the security parameter, resolving this issue. There is also a dependence on the
smoothness of the order of xe in the statistical security parameters which may
be reduced to a constant by using multiple bases.

As we are concerned with concrete security there are further issues we con-
sider throughout the paper. For example we provide two reductions one to the
uniform factoring problem and another for the non-uniform factoring problem.
The reason is that although we do not require non-uniformity to prove that our
scheme is secure asymptotically, when fixing concrete parameters, the reduction

9 We do require N = PQ to satisfy gcd(P − 1, Q − 1) = 2, which is a much weaker
condition than the common requirement that (P − 1)/2 and (Q − 1)/2 are prime.
This property has a small impact on the efficiency of the key generation protocol,
does not affect the efficiency of the threshold decryption, and does not introduce
additional cryptographic assumptions.
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against a non-uniform PPT adversary is more tight. Specifically, an adversary
P∗ that breaks our scheme in time T (κ) with probability ε(κ) is reduced to a
non-uniform adversary A that breaks the factoring game above in time T ′(κ)

with probability ε′(κ) such that T ′(κ)
ε′(κ) = T (κ)

ε(κ) · poly(κ). That is, the reduction

is linear in T/ε. On the other hand, the reduction against uniform PPTs has
T ′(κ)
ε′(κ) = T (κ)

ε2(κ) · poly(κ). While this reduction is still polynomial, when fixing con-

crete parameters, the computational security parameter has to be doubled. Due
to the sub-exponential hardness of factoring, this in turn requires increasing
the modulus size log2(N) by 8×, and so exponentiation will cost at-least 64×
more. Another subtle issue arises when applying the Fiat-Shamir transform to
the batched proof, which is a 5 rounds protocol. Generically this may cause sig-
nificant loss of soundness which would degrade the parameters of the scheme.
We show this is not the case for the batched protocol by applying concepts from
[AFK22]. The reduction is analyzed such that one may estimate concrete sta-
tistical and computational security based on different parameters of the scheme
(see table 2).

1.4 Organization

In Section 2 we present our notation and the mathematical background that
is necessary in order to understand the rest of the paper. A brief reminder of
basic number theoretic facts can be found in Appendix A. In Appendix B we
recall Shamir Secret Sharing (SSS) over a field along with proving improved
bounds on the size of SSS shares over the integers. In Section 3 we present the
adjusted distributed key generation and threshold decryption with a trustless
setup. Background on the Paillier encryption scheme in can be found in Ap-
pendix C, and a simplified version of threshold scheme using a trusted setup can
be found in Appendix D. For the ideal functionality of threshold decryption and
further details on the distributed key generation protocol we refer to Appen-
dices E and F respectively. In Section 4 we present the zero knowledge protocol
for equality of discrete logs over QRN2 , and provide our new proof of security.
Omitted proofs are in Appendix G. Subsections 4.4 and 4.6 present batch and
optimization techniques, and in Appendix H we further discuss batch verifica-
tion optimization and multi-exponentiation. Finally, we report our experiments
in Section 5.

2 Preliminaries
General notation. We let N,Z,Zm denote the set of natural numbers excluding
0, integers, and integers modulo m, respectively. In addition, we denote by Z∗m
the multiplicative group modulo m. We denote by primes and primesm the set of
all prime numbers and the set of prime numbers smaller than m, respectively.
For a, b ∈ Z we denote by [a], [a, b], [a, b) and (a, b) the sets {1, . . . , a}, {a, . . . , b},
{a, . . . , b − 1} and {a + 1, . . . , b − 1}, respectively. The bit representation of an
integer x is denoted (xℓ−1, . . . , x0) with xℓ−1 being the most significant bit. We
denote by X ← Ω a uniform sampling from a set Ω. We use κ and σ to denote
computational and statistical security parameters, respectively. We denote by σ0

a preliminary statistical security parameter which is upgraded to σ. We denote
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by time(A(x1, x2, . . .)) the run time of an algorithm A on inputs (x1, x2, . . .). We
may denote a vector of group elements by (g1, . . . , gc) := g ∈ Gc where c := σ

σ0

and gr := (gr1, . . . , g
r
c ).

Mathematical Background. We refer Appendix A for preliminary mathematical
background. Below we list 3 useful definitions.

Definition 2.1 (β-Smooth Number) For β ∈ N, an integer k is called β-
smooth if all the prime factors of k are smaller than β.

Definition 2.2 (Safe Prime) A prime number p is called safe if p−1
2 is prime.

Definition 2.3 (Conforming Bi-Prime) An integer N is a conforming bi-
prime if there exist two primes P,Q such that N = PQ, P = Q = 3 mod 4,
gcd (N,ϕ(N)) = 1, and gcd (P − 1, Q− 1) = 2.

Groups. We use multiplicative notation for groups. Let G be a finite abelian
group. For g1, . . . , gk ∈ G we denote by ⟨g1, . . . , gk⟩ the subgroup H ⊆ G gen-

erated by g1, . . . , gk. That is, H =
{∏k

i=1 g
αi
i

}
αi∈Z,i∈[k]

. We denote by |G| and

ord(g) (or |⟨g⟩|) the order of (number of elements in) G and ⟨g⟩, respectively.
An element y ∈ G is a quadratic residue if there exists an x ∈ G with x2 = y.
For abelian groups, the set of quadratic residues forms a subgroup. For an in-
teger m > 2, we denote by QRm the subgroup of quadratic residues in Z∗m. By
Lagrange’s theorem, if G is a group and H ⊆ G then |H| divides |G|.

Definition 2.4 (Statistical Distance) Let X,Y : Ω → [M ] be two random
variables. The statistical distance between X,Y , denoted SD(X,Y ), is defined
as SD(X,Y ) :=

∑
w∈Ω |Pr[X = w]− Pr[Y = w]|.

Hardness assumptions. Let GenModulus be a polynomial time algorithm that,
on input 1κ, outputs (N,P,Q) where N = PQ, and N is a conforming bi-prime
except with probability negligible in κ.

Definition 2.5 (DCR) We say that the decisional composite residuosity (DCR)
problem is hard relative to GenModulus if for all probabilistic polynomial time al-
gorithms A there exists a negligible function neg such that∣∣Pr [A (N, [rN mod N2]

)
= 1
]
− Pr [A (N, r) = 1]

∣∣ ≤ neg(κ)

where the probabilities are taken over N ← GenModulus(1κ) and r ← Z∗N2 .

Definition 2.6 (Factoring) We say that the factoring problem is hard relative
to GenModulus if for all (uniform / non-uniform) probabilistic polynomial time
algorithms A there exists a negligible function neg such that

Pr
N←GenModulus(1κ),(P ′,Q′)←A(N)

[P ′ ·Q′ = N ∧ P ′, Q′ /∈ {1, N}] ≤ neg(κ).

Remark 2.1. In the classic factoring problem GenModulus is defined by choosing
P,Q as independently, uniformly random ℓ-bits random primes. In the case of
distributed key generation we get a different GenModulus. In a classical paper
[BF97] provide a reduction between the two cases.
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2.1 Shamir Secret Sharing over the Integers
We present Shamir’s threshold secret sharing over a field [Sha79] in Appendix B.1
and present its extension to over the integers [NS10, Rab98, VAS19] below.

Let s ∈ Z ∩ [−b,+b] be a secret. Define ∆n = n! and define some bound
I(σ, n, b) on the (absolute value of the) coefficients of the polynomial. Until
recently (see, e.g., [VAS19]), the bound I(σ, n, b) = 2σ ·∆2

n ·b was used. However,
following [BDO22], we provide a tighter bound for I(σ, n, b) in Appendix B.2.

The algorithm Sharet,n(s) picks a1, . . . , at ← [−I(σ, n, b),+I(σ, n, b)] and out-

puts ([s]1, . . . , [s]n) where [s]j = p(j) and p(x) = ∆n · s+
∑t

i=1 ai · xi.
Reconstruction works as follows. Given a set T ⊂ [n] of t+1 distinct elements

and given points {(j, [s]j)}j∈T , we have p(0) =
∑

j∈T λ0
T,j · [s]j = ∆ns, where

λv
T,j is the Lagrange coefficient corresponding to point j ∈ T , to restore the

polynomial p evaluation at v (see Appendix B). However, since the Lagrange
coefficients might not be in Z, we multiply them first by ∆n, and get∑

j∈T
∆nλ

0
T,j · [s]j

 /∆2
n = s. (1)

For an (n, t)-threshold Shamir sharing over the integers of secret s ∈ [−b,+b],
we denote the upper bound on the absolute value of the shares on s byD(σ, n, t, b),
which is: D(σ, n, t, b) = ∆n · b+

∑t
i=1 I(σ, n, b) · ni ≤ ∆n · b+ 2ntI(σ, n, b)

2.2 Zero Knowledge
A zero knowledge protocol between a prover P and a Verifier V is a protocol
in which the prover convinces the verifier of some fact regarding a public in-
stance without revealing any information to the verifier beyond the correctness
of this fact. A formulation of such property is typically done via three definitions,
namely completeness, soundness and zero-knowledge. Completeness means that
if both the prover and the verifier acts according to the protocol then the verifier
will accept. Soundness means that it’s computationally infeasible for a cheating
prover to convince an honest verifier of a false fact. Lastly zero-knowledge means
that the verifier does not learn any new information about the instance except
the fact. In our context, we are specifically interested in Special honest verifier
zero-knowledge (SHVZK) defined below.

Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation, where (x,w) ∈ R implies
|w| ∈ poly(|x|). We call w a witness for instance x. Define LR to be the set of
inputs x for which there exists a w such that (x,w) ∈ R.

Definition 2.7 A protocol π between a Prover P and Verifier V is a zero-
knowledge argument of relation R if it satisfies the following:

– Completeness. If P and V follow the protocol on input x and private input
w to P, where (x,w) ∈ R, then V always accepts.

– Soundness. For any stateful polynomial time prover P∗ = (P∗1 ,P∗2 ) (i.e.,
P∗1 and P∗2 have an access to the same state)

Pr
x←P∗

1 (1
κ,1σ)

[∀w : (x,w) ̸∈ R ∧ (P∗2 (1κ, 1σ)↔ V(x)) = 1] ≤ neg(κ).

11



While the standard definition of soundness requires the above to hold for
every x, here we require that it holds only for instances x that are output by
the dishonest prover P∗ itself, hinting to the difficulty of finding an instance
x for which the equation does not hold.

– Special honest verifier zero-knowledge. There exists a PPT simulator
S such that for every z ∈ {0, 1}∗ the view of the verifier ViewV [P(x;w) ↔
V(x; z)] is statistically indistinguishable from S(x, z).

It is common to turn a zero-knowledge protocol into a non-interactive zero-
knowledge protocol using the Fiat-Shamir (FS) transform [FS87, CCH+18, AFK22],
for which it is sufficient to consider only an honest verifier. We refer the reader
to [GO94] for further discussion on ZK protocols definitions.

3 Secure Key Generation for Threshold Pallier

As a warm up, we refer the reader to Appendix C for the definition of the Paillier
additively homomorphic encryption scheme, and Appendix D for a threshold
Paillier scheme based on a trusted setup. In this section we present a construction
for a threshold Pallier cryptosystem with a trustless setup.

Next, we describe a protocol to realize the ideal threshold Paillier Functional-
ity E.1 ([HMR+19]). The threshold decryption part remains unchanged from the
case of a trusted dealer. The key generation part of the protocol is a composition
of 2 steps: (i) an RSA UC-secure key-generation from Diogenes [CHI+21]; (ii) a
UC-secure protocol by [HMR+19] to generate the verification keys that are used
in our Paillier decryption protocol. [HMR+19] first generates a none-standard
verification key, namely an El-Gamal encryption of the key share. Nevertheless,
they provide a zk proof in that ties this verification key with the traditional one
that we use. Importantly, the zk proof in [HMR+19] is also a proof of knowledge.
This is crucial as our security proofs require extraction of the adversary’s secret
key shares. Also, this proof does not rely on N being composed of safe-primes.
Hence, proving validity of decryption shares with respect to the traditional ver-
ification keys remains the core issue addressed in this work, in Section 4.

We henceforth give a short summary of the ideals used for key generation
which are presented in further detail in appendix F. Many protocols for dis-
tributed generation of bi-prime (or RSA) modulus were proposed (e.g. [BF97,
DdSGMRT21, BDF+23]). In Diogenes the parties obtain a bi-prime N = PQ for
some large primes P and Q, but in our context (threshold Paillier) we need N
to be a conforming bi-prime (Definition 2.3). Namely, N = PQ should satisfy:
(1) P = Q = 3 mod 4, (2) gcd (P − 1, Q− 1) = 2, and (3) gcd (N,ϕ(N)) = 1.
Generating a conforming bi-prime requires only a minor modification to Dio-
genes that will not affect security. The first condition is already satisfied by
Diogenes, resulting P = Q = 3 mod 4. We ensure that the other two conditions
are satisfied by invoking the GCD test sub-protocol, which receives one secret
and one public value as input and outputs their GCD. The third condition is
easily achieved using that GCD test, by running it on inputs ϕ(N) (which is
secret) and N (which is public) and verifying the result is 1. To verify that the
second condition is met we need to manipulate the inputs, since both P − 1

12



and Q − 1 are secrets. First note that gcd (P − 1, Q− 1) = 2 is equivalent to

gcd
(

Pi−1
2 , Qi−1

2

)
= 1. Now, applying the same trick as in in [FS01]), we note

that gcd (Pi − 1, Qi − 1) = gcd (P − 1 + (Q− 1)P,Q− 1) = gcd (N − 1, Q− 1).
And so we run the GCD test on the secret value Q − 1 and the public value
N − 1. Notably, this additional check is efficient, and fails with probability ≈ 1

5 .
Therefore, it has almost no effect on the time complexity of the key generation.

Then, using the obtained values above, the parties generate the secret key
d and the verification keys. Recall that the secret key should satisfy d = 0
mod ϕ(N) and d = 1 mod N . As ϕ(N) is already shared by the parties, such
secret key can be obtained by computing d = ϕ(N)[ϕ(N)−1 mod N ] ∈ Z, which
satisfies both constraints: d = 0 mod ϕ(N) as it is a multiple of ϕ(N), and d = 1
mod N as ϕ(N) ∈ Z∗N (guaranteed by the fact that N is a conforming bi-prime)
and so ϕ(N) · ϕ(N)−1 = 1 mod N .

The parties obtain a sharing of d using standard techniques, see Hazay et
al. [HMR+19, Appendix C.2]. In the same work ([HMR+19]) it is shown how the
parties obtain the verification keys vj as well; below we briefly describe how it
works. During the key generation phase the parties obtain cj = Encpk(dj) for ev-
ery j, where Enc is the El-Gamal encryption scheme and pk is a joint encryption
public key that was previously generated by the parties. Then, the parties sample
random bases g ∈ QRc

N2 and finally each party publishes vj = gdj and proves
that cj is an encryption of logg(vj). The language LEQ is formally described
in [HMR+19, Section 3] and the zero knowledge protocol πEQ is presented in
[CKY09]. Note that, we could have used the exact same technique of [HMR+19]
for our threshold Paillier protocol, namely, whenever a party sends a decryption
share ctj = ctdj , it also provides a proof that cj is an encryption of logct(ctj).
This, however, would result with an inefficient threshold decryption protocol, as
such proof is at least ×64 more expensive than the proof of the language LEDL

that we use (see Section 4).

4 Zero-Knowledge Proof of Equality of Discrete Logs
In this section we present the proof of equality of discrete logs, which is utilized
to prove the validity of threshold decryptions by the parties. Notably, defining
the appropriate language is somewhat subtle.

4.1 Formalizing the Language

Say that d, the secret decryption key, is upper bounded by d̂, thus, we define
D = D(σ, n, t, d̂) as the upper bound on the shares |dj |, where d̂ < N3 · n.

The näıve approach:

Lnaive
EDL′ [N,g′,a] = {(h′, b′;x′) | h′, b′ ∈ Z∗N2 ∧ a = g′

x′

∧ b′ = h′
x′

} (2)

where (h′, b′) is the (public) prover’s statement, N,g′,a are the language’s pa-
rameters, and x′ is a witness. The meaning of these values follows:

1. g′ are the base elements chosen in the distributed key generation (DKG)
phase.

2. a = vj = g′
2∆ndj is the verification key associated with the prover Pj .

13



3. x′ = 2∆ndj is a witness known by the prover Pj (note that we prove sound-
ness and not knowledge soundness).

4. h′ = ct is the ciphertext to be decrypted.
5. b′ = ctj = ct2∆ndj is the claimed partial decryption of the prover Pj .

The above formalization raises two issues:

1. The Paillier ciphertext h′ = ct is in Z∗N2 and so it would be most natural
to prove equality of discrete logs over this group. However, since Z∗N2 is
not a cyclic group, we work over the subgroup QRN2 , which raises another
issue: deciding membership to QRN2 is assumed to be a computationally
hard problem, known as quadratic residuosity problem (QRP).

2. The goal of the zero knowledge proof of the language is to make sure the
prover provides (h′, b′) such that b′ = h′

2∆ndj . Since g′ might not contain
a generator of QRN2 , we may have that for every g′ ∈ g′ ord(g′) < |QRN2 |.
In such case an adversary may find x′′ ̸= 2∆ndj mod |QRN2 | yet g′

x′′
=

g′
2∆ndj = a. This means that for some h′s, picking b′ = h′

x′′
gives (h′, b′;x′′)

in the language although b′ ̸= h′
2∆ndj .

To solve the first issue, in the DKG and threshold decryption phases the
parties will publish the roots of the elements, and prove statements on their
squares. This ensures that the whole proof holds over QRN2 . We stress that we
do not need to roll back and prove any statement in Z∗N2 . Instead, after combining
the (squared) decryption shares, the reconstructed plaintext will end up being
multiplied by 2, and so a final multiplication by 2−1 mod N is needed to restore
the plaintext. To be more specific, random elements g′ ← (Z∗N2)c is sampled and

published in the DKG phase, and we set g̃ = g′
∆n , and g = g̃2 = g′

2∆n ∈ QRc
N2 .

Similarly, we set h̃ = ct2∆n and h = h̃2 = ct4∆n ∈ QRN2 . Finally, we define
b̃ = ctj = ct2∆ndj = h̃dj and b = b̃2 = hdj . Under the new syntax, we have:

1. g′ is some vector of elements chosen from (Z∗N2)c in the DKG phase, and
g = g′2∆n .

2. a = gdj is the verification key vj = g′
2∆ndj associated with the prover Pj ,

which is generated in the DKG phase.
3. x = dj is a witness known by the prover Pj .

4. h̃ = ct2∆n .
5. b̃ = ctj = ct2∆ndj is the claimed partial decryption of the prover Pj .

We get that logh b = logg a = dj , and to make sure that g ∈ QRc
N2 , h, b ∈ QRN2

we define the language with g̃, h̃, b̃ (instead of g, h, b):

LEDL2 [N, g̃,a] = {(h̃, b̃;x) | h̃, b̃ ∈ Z∗N2 ∧ a = g̃2x ∧ b̃2 = h̃2x}. (3)

As a side effect of that formulation we enjoy a shorter witness, that is, in Eq.
(2) the witness was x′ = 2∆ndj whereas here (Eq. (3)) the witness is x = dj .

To address the second issue, our soundness argument in Theorem 4.8 implies
that (h̃, b̃; dj) ∈ LEDL2 [N, g̃,a] for every (h̃, b̃) provided by the (potentially ma-
licious) prover. That is, we essentially prove that the prover must use dj as its
witness in order for the verifier to accept.
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In Section 4.2 we describe the setup phase; we present and prove a zero-
knowledge protocol for LEDL2 in Section 4.3; in Sections 4.4-4.6 we show how
to batch the protocol over multiple ciphertexts; and finally we present a non-
interactive version of the protocol via the Fiat-Shamir transform in Section 4.7.

4.2 Setup Phase
Let us define the Setup algorithm for generating the parameters of the language.
We break the setup into two separate phases Setup = (Setup1,Setup2). The first
one is responsible for generating the conforming bi-prime N ← Setup1(1

κ, 1σ).
The second one is responsible for generating all the rest, given N : (g̃,a;x) ←
Setup2(1

κ, 1σ, N). This algorithm takes 1κ and 1σ as inputs and outputs:

– A conforming bi-prime N = P ·Q.
– g′ is drawn uniformly at random from (Z∗N2)c and computes g̃ = g′∆n and

g = g̃2. We stress that g does not necessarily contain a generator of QRN2 .
– x is drawn from [−D,+D].
– a := gx.

We note that g′
2
is a random vector of elements in QRc

N2 due to the absence
of any known algorithm for computing a generator within this group. This obser-
vation underscores the challenge previously mentioned, as conventional protocols
for the equality of discrete logarithms with a low soundness error typically as-
sume g contains a generator (see, for example, [FPS01, DJN10]). We address
this challenge by demonstrating that a randomly selected vector of elements
contains an “almost generator” of the group with overwhelming probability, as
defined below:

Definition 4.1 Let β ∈ N, let N be a conforming bi-prime, let g ∈ G be an

element. We say that g is a β-almost generator if |G|
ord(g) is a β-smooth number.

Setting g = (g′
2
)∆n , Corollary 4.3 below implies that g contains a βσ0

-almost
generator with probability > 1− 2−(σ+1) where βσ0 ≤ 2σ0+3 logN . It turns out
that assuming g to contain an almost generator may suffice to obtain a low
soundness error.

Lemma 4.2 Let G be a cyclic group and let g ∈ G be a uniformly random

element, then |G|
ord(g) is β-smooth with probability at least 1− log ord(G)

β log β .

By Lemma 4.2, if we let βσ0
:= 2σ0+2 log(|G|), then |G|

ord(g) is βσ0
smooth with

probability greater than 1− 2−(σ0+1).

Corollary 4.3 Let G be a cyclic group, g ∈ G be a uniformly random element,

and β > n, then |G|
ord(g∆n )

is β-smooth with probability at least 1− log ord(G)
β log β .

Omitted proofs are in Appendix G. To conclude, the algorithm may fail with
probability 2−σ. Specifically, failure means that either N is not a bi-prime or g
does not contain a βσ0

-almost generator. The modulus generation phase can be
taken to provide a failure probability of 2−σ+1 which by the union bound gives
the desired failure probability.
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4.3 The Protocol

The formal description is given in Protocol 4.1.

PROTOCOL 4.1
(
ΠEDL2 : ZKP of Equality of Discrete Logs over QRN2

)
Inputs. P has (N, g̃,a, h̃, b̃;x) and V has (N, g̃,a, h̃, b̃) where (N, g̃,a;x) ←
Setup(1κ, 1σ) and arbitrary h̃, b̃. Denote g = [g̃2 mod N2], h = [h̃2 mod N2]
and b = [b̃2 mod N2].

Protocol.

1. P samples r ← [−22κD,+22κD) and sends u = [gr mod N2], v = [hr

mod N2] to V.
2. V samples e← [0, 2κ) and sends e to P.
3. P sends z = r − e · x ∈ Z to V.
4. V verifies that:

– h, b, v ∈ Z∗
N2 ,u ∈ (Z∗

N2)
c (it suffices to check that h, b, v, u1, . . . , uc ̸=

0 mod N as otherwise we can use these values to factor N),
– z ∈ (−D(22κ + 2κ),+D(22κ + 2κ)),
– u = gz · ae mod N2 and v = hz · be mod N2.

We prove the following.

Theorem 4.4 The protocol ΠEDL2 (Protocol 4.1) is a zero-knowledge argument
for relation EDL2 (Definition 2.7) under the factoring assumption.

Proof. In the following we show that all the properties of a zero-knolwdge proof
of relation are satisfied.

Completeness.
Let (N, g̃,a;x) be the output of Setup(1κ, 1σ), then, for every h̃ ∈ Z∗N2 and

b̃ = [h̃x mod N2] the protocol’s transcript is accepting. The range check of
h̃, b̃,u and v obviously goes through, as well as the range check of z, which
follows immediately from the ranges of r, e and x. Then, we have

[gz · ae mod N2] = [gr−ex · gex mod N2]

= [gr mod N2] = u

and

[hz · be mod N2] = [h̃2(r−ex) · h̃2ex mod N2]

= [h̃2r mod N2] = [hr mod N2] = v.

Special Honest-verifier zero-knowledge (SHVZK). We show that there exists a
PPT simulator S, such that for every (h̃, b̃) ∈ LEDL2 [N, g̃,a] and e′ ∈ {0, 1}κ it
holds that

S(N,g̃,a)(h̃, b̃, e
′)

c≡
{
View(P(h̃, b̃;x)↔ V(h̃, b̃, e′))

}
.
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The simulator S samples z′ ← (−D(22κ + 2κ),+D(22κ + 2κ)), and computes
u′ = [gz′ ·ae′ mod N2] and v′ = [hz′ ·be′ mod N2]. We argue that the statistical
distance between (u, v, e′, z) (of the real execution) and (u′, v′, e′, z′) (of the
simulation) is negligible in κ. Note that (u, v) and (u′, v′) are fully determined
by (N, g̃,a, h̃, b̃, e′, z) and (N, g̃,a, h̃, b̃, e′, z′), respectively. We have that z′ (in
the simulation) is uniformly distributed from (−D(22κ + 2κ),+D(22κ + 2κ))
independent of e′, whereas z (in the real execution) is computed by z = r− e′x,
where x ∈ [−D,+D] and r is drawn uniformly from [−22κD,+22κD). In the
following we show that z and z′ are statistically close for every x and e. The
distribution of z is as follows:

– x ≥ 0: z is uniformly distributed over (−D(22κ+2κ)−e|x|, D(22κ+2κ)−e|x|).
– x < 0: z is uniformly distributed over (−D(22κ+2κ)+e|x|, D(22κ+2κ)+e|x|).

In both cases there are 2D(22κ + 2κ) − e|x| values ζ in the range (−D(22κ +
2κ),+D(22κ + 2κ)) for which Pr[z = ζ] = Pr[z′ = ζ] = 1/

(
2D(22κ + 2κ)

)
. For

the rest e|x| ≤ 2κD values ζ we have Pr[z = ζ] = 0. Therefore, the distance is

1

2

∑
ζ

|Pr[z = ζ]− Pr[z′ = ζ]| ≤ 2κD

2D(22κ + 2κ)
< 2−κ,

where ζ iterates over (−D(22κ + 2κ)− e|x|,+D(22κ + 2κ) + e|x|). ⊓⊔

Soundness. Before moving to our main theorem we present some lemmas used
during it’s proof. The proofs of the Lemmas are in Appendix G.

Lemma 4.5 Let G be cyclic group and let |G| =
∏k

i=1 p
ri
i where pi ∈ primes

are distinct and ri ∈ N for all i ∈ [k]. Let a ∈ G be an element, and denote

ord(a) =
∏k

i=1 p
αi
i where αi ≤ ri for all i. Then there exists b ∈ G such that

⟨a, b⟩ = G and ord(b) =
∏

i:αi ̸=ri
prii .

Corollary 4.6 Let Factor be a factoring algorithm. There exists an algorithm
Factor′ that, given inputs N, x, e such that

– N = PQ is a conforming bi-prime; and
– x ∈ QRN2 satisfies x ̸= 1 mod N2, e ̸= 0, but xe = 1 mod N2,

outputs P,Q and has a time complexity time(Factor′(N, x, e)) ≤ time(Factor(e))+
polylog(N).

Lemma 4.7 There exists an algorithm Factor′, that given N, x, β as input, where
N = PQ is a conforming bi-prime, 1 ̸= x ∈ QRN2 , and ord(x) is β-smooth for
some β < N , outputs P,Q in time(Factor′(N, x, β)) ≤ β log3(N).

We prove the following theorem, which constitutes the main contribution of
this work:
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Theorem 4.8 Let P∗ = (P∗1 ,P∗2 ) be a stateful probabilistic prover such that

Pr
(N,g̃,a;x)←Setup(1κ,1σ),

(h̃,b̃)←P∗
1 (x)

 (h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a]

(P∗2 (x)↔ V(h̃, b̃)) = 1

∣∣∣∣∣
N is a conforming
bi-prime and
g̃2 contains a βσ0

almost generator

 ≥ ε = ε(κ),

where P∗1 ,P∗2 and V receive (1κ, 1σ, N, g̃,a) implicitly as inputs, and such that
time(P∗1 ) + time(P∗2 ) ≤ T = T (κ). Assume further that ε− 2−σ > 2−κ+3. Then
there exists a non-uniform adversary A that solves the factorization problem
(Definition 2.6) with respect to Setup1(1

κ, 1σ). The adversary A first applies
(g̃,a;x) ← Setup2(1

κ, 1σ, N). Algorithm A solves this problem with probability

≥ ε′ = ε′(κ) and time(A) ≤ T ′ = T ′(κ) such that T ′

ε′ ≤ Õ(
32κc(T+βσ0

)

ε−2−σ ).
Moreover, there exists a uniform adversary A2 that solves the factorization

problem with probabaility ≥ ε′2 = ε′2(k) and time(A2) ≤ T ′2 = T ′(k) such that
T ′
2

ε′2
≤ Õ( 16κc(T+βσ0

)

ε(ε−2−σ) ).

As noted earlier and demonstrated in Lemma 4.2, Setup generates a non-
conforming bi-prime N or g̃2 which does not contain a βσ0 -almost generator
with a probability of at most 2−σ. However, the setup phase occurs only once,
and the prover cannot affect its outcome. Assuming the setup phase succeeds
and that the factoring problem is hard, the theorem states that the probability
of a malicious prover cheating the verifier is neg(κ). The distinction between the
probability of the setup failing and the probability of the prover cheating plays
a crucial role in Section 4.7, where we apply the Fiat-Shamir transform to make
the protocol non-interactive.

In addition, the theorem states that except a negligible probability, if the
verifier accepts the proof then the prover not only provided (h̃, b̃) ∈ LEDL2 [N, g̃,a]
but also it used the specific witness x that is given from Setup(1κ, 1σ). Notably,
there may exist statements (h̃, b̃;x) /∈ LEDL2 [N, g̃,a] for which an adversary is
able to convince the verifier. However, this does not contradict the above theorem
since such statements are computationally hard to find, as it reduces to factoring
N .

Before proving Theorem 4.8, we prove a similar statement, where N is fixed
and P∗ is deterministic:

Lemma 4.9 There exists an oracle machine A(·) with the following property:
Let κ > 0, and let ε ≥ 4

2κ . Let P
∗ = (P∗1 ,P∗2 ) be a stateful deterministic prover,

and let us fix a tuple (N, g̃,a;x) ← Setup(1κ, 1σ) produced by Setup. Suppose
that N is a conforming bi-prime, g̃2 contains a βσ0

-almost generator and

Pr
(h̃,b̃)←P∗

1 (x)

[
(h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a]

(P∗2 (x)↔ V(h̃, b̃)) = 1

]
≥ ε,

where P∗1 ,P∗2 and V receive (1κ, 1σ, N, g̃,a) implicitly as inputs. Then A(P∗),
given the input (N, g̃,a, ε), outputs a non-trivial factorization of N with proba-
bility at least 1

8c in time Õ(Tε + βσ0
), where T = time(P∗(1κ, 1σ, N, g̃,a;x)).
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Proof. First, we introduce an algorithm called A(·)
1 , such that for every deter-

ministic prover P∗, the machine A(P∗)
1 has a time complexity of Õ

(
T
ε

)
(following

the notations of the lemma). The purpose of algorithm A(P∗)
1 is to find an ele-

ment d ∈ QRN2 and an exponent 0 < e′ < 2
ε , such that d ̸= 1 and ord(de

′
) is

a βσ0
-smooth number. We show that A1 does so with probability at least 1

8c .

Then we describe algorithm A(·) that applies A(·)
1 to factor N . Algorithm A(P∗)

1

works as follows:

1. Receiving the claim:A(P∗)
1 calls P∗1 (1κ, 1σ, N, g̃,a;x) and receives h̃ and b̃.

Since P∗1 is deterministic and (N, g̃,a;x) is fixed, the values h̃ and b̃ are fixed
as well. Since we have (h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a] with a positive probability,
we may deduce that b̃2 ̸= h̃2x. We denote b := b̃2, h := h̃2, and d = b

hx .

2. Receiving proofs: A(P∗)
1 calls P∗2 and receives a (deterministic) claim u, v.

A(P∗)
1 then forks the protocol and sends at most ε−1 random challenges,

until receiving the first valid response. If none of the responses is valid, then

A(P∗)
1 outputs the failure symbol ⊥. Otherwise, for one of the challenges e1 it

received a valid response. In this case, A(P∗)
1 forks the protocol and sends the

challenges e1 +1, e1 +2, . . . ,min(e1 +
2
ε − 1, 2κ− 1). If none of the responses

to these challenges is valid, then A(P∗)
1 outputs ⊥. Otherwise, A(P∗)

1 has
two accepting transcripts (e1, z1) and (e2, z2), such that e1 < e2 < e1 +

2
ε .

Output (d, e2 − e1).

The time complexity of A(P∗)
1 is dominated by that of P∗ and the expo-

nentiation by x modulo N2, and is hence bounded by Õ
(
T
ε

)
. Let us prove that

whenever A1 does not return ⊥, its output is valid with high probability. Clearly,
d ∈ QRN2 , e′ ∈ (0, 2

ε ), and d ̸= 1, so it remains to show that ord(de
′
) is a βσ0

-
smooth number.

Since the transcripts (e1, z1) and (e2, z2) are both accepting, the following
equations hold (modulo N2):

u = gz1 · ae1 , v = hz1 · be1 , u = gz2 · ae2 , and v = hz2 · be2 .

Denoting e′ = e2 − e1, z
′ = z2 − z1, we obtain

1 = gz′
· ae

′
mod N2 and 1 = hz′

· be
′

mod N2.

Since g contains a βσ0-almost generator, we may pick i ← [c] and set g =
gi, a = ai, and deduce that g is a βσ0-almost generator with probability at least
1
c . For which by Lemma 4.5, there exists an element η ∈ QRN2 such that ord(η)
is βσ0

-smooth and ⟨g, η⟩ = QRN2 . Therefore, there exist α, δ such that h = gαηδ

and consequently

1 = gz
′
· ae

′
mod N2 and 1 = gα·z

′
ηδ·z

′
· be

′
mod N2.

Recall that α, δ and η are unknown to A1. Dividing the second equation by the
first equation raised to the power of α we get

1 =
gα·z

′
ηδ·z

′ · be′

gα·z′ · aα·e′
= ηδz

′
(

b

aα

)e′

mod N2. (4)
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Recall that a = gx. We may deduce that

b

aα
=

b

hx
· h

x

aα
= d · g

αxηδx

gαx
= dηδx mod N2.

Then, substituting b
aα = dηδx in Eq. (4), we obtain

1 = ηδz
′ (
dηδx

)e′
= ηδ(z

′+xe′)de
′

mod N2.

Finally, raising to the power of ord(η), we conclude that

1 =
(
ηδ(z

′+xe′)de
′

mod N2
)ord(η)

= dord(η)e
′

mod N2.

Since ord(de
′
)|ord(η) We may conclude that ord(de

′
) is βσ0-smooth.

It remains to bound the probability that A(P∗)
1 succeeds. With probability

at least 1
c A

(P∗)
1 picks g = gi which is a βσ0

-almost generator, otherwise we

will assume that it fails. In the first part, A(P∗)
1 sends ε−1 challenges. Since P∗

is deterministic, we may define an accepting challenge to be a challenge e for
which P∗ returns a valid response. Each of the ε−1 challenges is accepting with
probability at least ε, and the challenges are independent, so the probability that

none of them is accepting is at most (1− ε)ε
−1 ≤ e−1 ≈ 0.37. Otherwise, A(P∗)

1

receives e1 which is sampled uniformly from the set of the accepting challenges.

In the next step, A(P∗)
1 sends the challenges e1 + 1, e1 + 2, . . . ,min(e1 +

2
ε −

1, 2κ − 1), and fails if none of them is accepting. Let us denote by ℓ the number
of accepting challenges e1 for which all the challenges e1+1, e1+2, . . . ,min(e1+
2
ε − 1, 2κ − 1) are not accepting, and bound ℓ: The distance between any such
two accepting challenges is at least 2

ε , and they all lie in [0, 2κ), so 2
ε (ℓ−1) ≤ 2κ,

implying that ℓ ≤ ε2κ

2 + 1. There are at least ε2κ accepting challenges, so the
probability that a uniform accepting transcript fails in this step is at most

ℓ

ε2κ
≤

ε2κ

2 + 1

ε2κ
= 0.5 +

1

ε2κ
≤ 3

4
.

To conclude, A(P∗)
1 succeeds with probability at least c−1 1

4 (1− e−1) ≥ 1
8c .

Now we describe the required algorithm A(P∗): It calls A(P∗)
1 and obtains

d and e′ as above with a probability of at least 1
8c . If A

(P∗)
1 outputs ⊥ then

A(P∗) outputs ⊥. Otherwise, A(P∗) obtains elements d and 0 < e′ < 2
ε such that

ord(de
′
) is βσ-smooth. If de

′
= 1 mod N2 then, by Corollary 4.6, A(P∗) may

factorN in time complexity time(Factor(e′))+polylog(N) = Õ(ε−0.5). Otherwise,
A(P∗) obtains that the element 1 ̸= de

′ ∈ QRN2 has a βσ0
-smooth order. Thus,

by Lemma 4.7, A(P∗) may factor N with time complexity βσ0
log3(N). ■

Now we are ready to prove Theorem 4.8:
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Proof (Proof of Theorem 4.8). Our proof is based on ideas that are derived from
the proof of Theorem 3 in [BG11].

Let P∗ be such a prover. We denote by P∗ω = (P∗1,ω,P∗2,ω) the deterministic
prover obtained by fixing the random tape of P∗ to ω. We denote by ωV the
random tape of the verifier V. We denote by Ã(·) the oracle machine described
in Lemma 4.9. We further denote

p(ω,N, g̃,a, x) = Pr
ωV

[
(h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a]

(P∗2 (x)↔ V(h̃, b̃)) = 1

]
if N is a conforming bi-prime and g̃2 contains a βσ0

-almost generator, and
p(ω,N, g̃,a, x) = 0 otherwise.

First, for i ∈ N, denote Ii = (2−i, 2−i+1], and describe an algorithm Ai that
receives N , samples ω and g̃,a, x (according to Setup2), and tries to factor N
assuming p(ω,N, g̃,a, x) ∈ Ii. Algorithm Ai(N) works as follows:

1. Sample ω and (g̃,a;x)← Setup2(1
κ, 1σ, N).

2. Call Ã(P∗
ω)(N, g̃,a, 2−i) and return its output.

By Lemma 4.9, time(Ai) = Õ(T2i + βσ0
). Moreover, if p(ω,N, g̃,a, x) ∈ Ii

and i ≤ κ− 2 then Ai outputs a non-trivial factorization of N with probability
at least 1

8c . Next, we claim that for every κ, there exists i ≤ κ− 2 such that

Pr
ω

$←−{0,1}∗,(N,g̃,a,x)←Setup(1κ,1σ)

[p(ω,N, g̃,a, x) ∈ Ii] ≥
2i(ε− 2σ)

4κ
.

Let us assume by contradiction that no i satisfies this inequality. Since Setup
fails with probability at most 2−σ, we obtain that E(p(ω,N, g̃,a, x)) ≥ ε− 2−σ.
However,

E(p(ω,N, g̃,a, x)) ≤
κ−2∑
i=1

Pr[p(ω,N, g̃,a, x) ∈ Ii] · 2−i+1 +

Pr[p(ω,N, g̃,a, x) ≤ 2−κ+2] · 2−κ+2

≤ 0.5(ε− 2−σ) + 2−κ+2 < ε− 2−σ,

since ε− 2−σ > 2−κ+3, in contradiction. We may conclude that for every κ,

there exists a value i ≤ κ− 2 such that Pr[p(ω,N, g̃,a, x) ∈ Ii] ≥ 2i(ε−2−σ)
4κ . For

this value of i, algorithm Ai succeeds with probability at least 2i(ε−2−σ)
32κc =: εi

and has time(Ai) = Õ(T2i + βσ0
), and so time(Ai(N)

εi
≤ Õ( 32κc(T+βσ0

)

ε−2−σ ). We
define an advice function advice(κ) that returns this value of i. We also define a
non-uniform algorithm A as follows:

1. A receives N,κ and i := advice(κ).

2. A calls Ai(N).
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We obtain that A succeeds with probability ε′(κ) such that time(A(N))
ε′ ≤

Õ( 32κc(T+βσ0
)

ε−2−σ ).

Finally, we observe that advice(κ) can be computed in T
ε2 . This can be

done by running Ai for each i ≤ κ − 2, for O(2i) sampled random tapes (for
Setup1,Setup2,P∗), and observing which i succeeds in factorization. Hence, we
can define a uniform adversary A2 that computes advice(κ) and then calls A,
yielding time(A2)/ε

′
2 ≤ Õ(

32κc(T+βσ0
)

ε(ε−2−σ) ), where ε′2 is the success probability of

A′2 rather than A. ■

4.4 Batching

Batching techniques allow a prover to convince a verifier of the correctness of
many statements in an efficient way, i.e., much faster then it would take to
prove (and verify) each statement alone. In the context of threshold decryption,
a good batching technique may shift the bottleneck from the verification of the
validity of a partial decryption to the combination of the parties’ verified partial
decryption into the plaintext.

Recall (from Protocol 4.1) that proving (h̃, b̃;x) ∈ EDL2 requires raising g
and h to the power of r, which is a large exponents. Then, without batching,
proving B statements (h̃i, b̃i;x) requires performing 2B exponentiations with
large exponents: namely, raising g and each hi to the power of the correspond-
ing large exponent ri. To improve efficiency, we use the ‘small exponent’ (SE)
technique, introduced in [BGR98] and followed by [APB+04]. The idea of the
technique is to combine the (h̃i, b̃i) statements into a single statement (h̃, b̃) using
a random linear combination, such that h̃ =

∏
h̃ti
i and b̃ =

∏
b̃tii , and then use

Protocol 4.1 only once, on the combined (h̃, b̃). Hence, raising to the power of a
large exponent r happens only twice, just like in a proof of a single statement.
The efficiency gain by that combination depend on the size of the coefficients ti,
which we show can be much smaller than the size of r without increasing the
soundness error of the proof. The resulting proof of B statements requires the
prover to raise 2B times to the power of a small exponent and then only twice
to the power of a large exponent (instead of raising 2B times to the power of
a large exponent). The same efficiency gain affects the verifier’s computational
cost as well.

While our batching protocol is similar to existing protocols, our security
analysis is novel. Similarly to Theorem 4.8, we use the notion of conforming
bi-primes and present a reduction to the factoring problem, without assuming
N is a safe bi-prime. Intuitively, the soundness of the batched protocol relies on
the fact that it is not possible for the prover to pick statements (h̃i, b̃i;x), of
which at least one is incorrect, such that their random combination (h̃, b̃;x) is a
correct statement (except for a negligible probability).

We note that using the small exponents technique requires the verifier to
pick the coefficients ti only after the prover committed to its statements, which
incurs two additional rounds over Protocol 4.1. We show, however, that even this
protocol (with five rounds) can be turned non-interactive using the Fiat-Shamir
transform without significantly increasing soundness error (see Section 4.7).
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The batched proof of equality of discrete logs is formally described in Proto-
col 4.2.

PROTOCOL 4.2
(
ΠB

EDL2 : Batched Proof for EDL2.
)

Inputs. P has (N, g̃,a;x) and (h̃i, b̃i)i∈[B], and V has (N, g̃,a) and

(h̃i, b̃i)i∈[B], where (N, g̃,a;x)← Setup(1κ, 1σ) and arbitrary (h̃i, b̃i)i∈[B].

Protocol.

1. V checks that h̃i, b̃i ∈ Z∗
N2 , and sends ti ← [0, 2κ) to P for every i ∈ [B].

Then P and V compute h̃ =
∏

i∈[B] h̃
ti
i , b̃ =

∏
i∈[B] b̃

ti
i .

2. P and V run ΠEDL2 (Protocol 4.1) to prove (h̃, b̃;x) ∈ LEDL2 [N, g̃,a].

Completeness follows by the fact that if b̃i = h̃x
i for all i ∈ [B] then b̃ =(∏

i∈[B] b̃
t
i

)
=
(∏

i∈[B] h̃
tx
i

)
=
(∏

i∈[B] h̃
t
i

)x
= h̃x, and so (h̃, b̃;x) ∈ EDL2.

As for HVZK, we show that for every (h̃i, b̃i)i∈[B] such that (h̃i, b̃i;x) ∈
LEDL2 [N, g̃,a] for all i, there exists a PPT simulator S, such that

S(N,g̃,a)({h̃i, b̃i}i∈[B])
c≡
{
View(P({h̃i, b̃i}i∈[B];x)↔ V({h̃i, b̃i}i∈[B]))

}
.

The simulator S simply computes h̃ and b̃ as in the protocol, and runs the sim-
ulator associated with ΠEDL2 (Protocol 4.1) on (h̃, b̃) and outputs (u′, v′, e′, z′)
as output by that simulator. The transcript produced by S and the one under
the real execution are statistically close with the exact same analysis as in the
proof of Theorem 4.4.

Next, we argue soundness:

Theorem 4.10 Let P∗ = (P∗1 ,P∗2 ) be a stateful prover such that:

Pr
(N,g̃,a;x)←Setup(1κ,1σ),

(h̃i,b̃i)i∈[B]←P∗
1 (x)

 ∃i : (h̃i, b̃i;x) ̸∈ LEDL2 [N, g̃,a](
P∗2 (x)↔ V((h̃i, b̃i)i∈[B])

)
= 1

∣∣∣∣∣
N is a conforming
bi-prime and
g̃2 contains a βσ0

almost generator

 ≥ ε,

where P∗1 ,P∗2 and V receive (1κ, 1σ, N, g̃,a) implicitly as inputs. Then assuming
factorization is hard, ε = neg(κ).

Notably, if b̃i = −h̃x
i for some i, then (h̃i, b̃i;x) ∈ LEDL2 [N, g̃,a] (recall the

definition of LEDL2 from Section 4.1) and Protocol 4.2 may succeed. However, as
mentioned earlier, decryption shares are squared before being used, so multiply-
ing a decryption share by (−1) does not affect the decryption.

Proof. For brevity, denote the event that the prover attempts to cheat the verifier
(assuming a successful setup) by

Cheat = ∃i ∈ [B] : (h̃i, b̃i;x) ̸∈ LEDL2 [N, g̃,a],
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and the event that P∗ breaks soundness by

Break = [(P∗2 ()↔ V((h̃i, b̃i)i∈[B])) = 1]
∣∣Cheat.

Then, the theorem states that ε = Pr[Break] is negligible, because:

Pr[Break] = Pr
[
Break|(h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a]

]
· Pr[(h̃, b̃;x) ̸∈ LEDL2 |Cheat]

+ Pr
[
Break|(h̃, b̃;x) ∈ LEDL2 [N, g̃,a]

]
· Pr[(h̃, b̃;x) ∈ LEDL2 |Cheat]

≤ Pr
[
Break|(h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a]

]
+ Pr[(h̃, b̃;x) ∈ LEDL2 |Cheat].

Hence, we bound Pr[Break] by the sum of ε1 := Pr
[
Break|(h̃, b̃;x) ̸∈ LEDL2 [N, g̃,a]

]
and ε2 := Pr[(h̃, b̃;x) ∈ LEDL2 |Cheat]. We have ε1 = neg(κ) by Theorem 4.8 (oth-
erwise we can construct an adversary P∗ who breaks the soundness of ΠEDL2

(Protocol 4.1)). In addition, ε2 ≤ 2−κ by Lemma 4.11 below, assuming factor-
ization is hard, which concludes the proof. ■

Lemma 4.11 Let P∗1 be a PPT for which

Pr
(N,g̃,a;x)←Setup(1κ,1σ),

(h̃i,b̃i)i∈[B]←P∗
1 (1

κ,1σ,N,g̃,a;x),

{ti}←[0,M)

∃i : (h̃i, b̃i;x) ̸∈ LEDL2 [N, g̃,a]

∧ (h̃, b̃;x) ∈ LEDL2 [N, g̃,a]

∣∣∣∣∣N is a confor-
ming bi-prime

 = ε,

where M ∈ N is the coefficients domain, h̃ =
∏

i∈[B] h̃
ti
i and b̃ =

∏
i∈[B] b̃

ti
i .

If ε ≥ 2
M , then there exist an algorithm that factors N with a time complexity

Õ(ε−0.5).

Proof. Let (N, g̃,a;x) ← Setup(1κ, 1σ), and let (h̃i, b̃i)}i∈[B] be the statements

produced by P∗1 . Let us assume that (h̃i0 , b̃i0 ;x) ̸∈ LEDL2 [N, g̃,a] for some index
i0 and that the probability of (h̃, b̃;x) ∈ LEDL2 [N, g̃,a] is at least ε ≥ 2

M . Follow-

ing the definition of LEDL2 , we may denote hi = h̃2
i , bi = b̃2i , h = h̃2, b = b̃2, and

obtain that hx
i0
̸= bi0 and that the probability of hx = b is at least ε ≥ 2

M .
WLOG, we may assume that i0 = 1. By definition, hx = b if and only if

(Πi∈[B]h
ti
i )

x = Πi∈[B]b
ti
i , which is equivalent to Πi∈[B]

(
hx
i

bi

)ti
= 1. By isolating

the i0 = 1 term we get: (
hx
1

b1

)t1

=
∏

i∈[B]\{1}

(
hx
i

bi

)−ti
.

(5)

There exists a choice of t2, . . . , tB , for which Equation (5) holds with a proba-
bility of at least ε where t1 is uniformly distributed. Therefore, there exist at least

εM choices of t1 ∈ [0,M) such that
(

hx
1

b1

)t1
yields the same result. Assuming

ε ≥ 2
M , we may deduce that ord

(
hx
1

b1

)
≤
(
ε− 1

M

)−1 ≤ 2
ε .
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To conclude, ord
(

hx
1

b1

)
= O(ε−1). While

hx
1

b1
is known to A, its order may

not be known. Nevertheless, A can find the order using Pollard’s rho algorithm

with a time complexity of Õ(ε−0.5). Next, A has an element
hx
1

b1
∈ QRN2 with

hx
1

b1
̸= 1 mod N2, and knows its order, which is O(ε−1). Therefore, A can factor

ord
(

hx
1

b1

)
(naively) in time Õ(ε−0.5). Therefore, by Corollary 4.6, A can factor

N in time Õ(ε−0.5). ■

4.5 Concrete Parameters

In Table 2 we refer to possible instantiations of the Tiresias scheme and com-
pute the concrete statistical and computational security ensured by following
the reductions.

Modulus Size Number of gi’s Computational Security Statistical DKG Security

log2(N) c κ− log2(32cκ) σ = σ0c
2048 1 112 – 12 = 100 40
3072 2 128 – 13 = 115 80

Table 2: Possible parameter instantiations for Tiresias with σ0 := 40. The com-
putational security parameter is controlled by the complexity of factoring (by
NIST) as a function of the modulus size κ(log2(N)). The non-uniform reduc-
tion in Theorem 4.8 suggests a multiplicative overhead of 32cκ. The statistical
security of the DKG is controlled by c, the number of βσ0

-almost generator
candidates.

4.6 Batch Verification
Batch verification is a technique that allows a verifier to simultaneously verify
proofs from multiple non-interactive provers, thereby reducing computational
load. It is somewhat analogous to the batching procedure done using the ‘small
exponent’ method, however since different provers have different verification keys
aj , instead of digesting multiple exponentiation operations into a single one, we
get a multi-exponentiation, see [Pip80]. Essentially, instead of validating two (or
more) equations gx = 1 and hy = 1 separately, we may sample randomizers
r1, r2 ∈ [0, 2κ] and verify gr1x ·hr2y = 1, and with 1−neg(κ) probability this im-

plies the validity of both (or all) equations. An algorithm for computing
∏C

i=1 g
ti
i

is called a C-multi-exponentiation and can be computed more efficiently than
performing C individual exponentiations (namely, gtii ) and then multiplying the
results.

It is important to note that if batch verification fails, the verifier does not
know the identity of the cheaters, since all claims were merged into one. In that
case, the verifier ‘falls back’ to verifying each proof individually.
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Since the technique is known and security proof is analogous to that of the
batching technique, we refer to Appendix H for more details.

4.7 Fiat-Shamir Transform for Batched Proofs

The Fiat-Shamir Transform ([FS87]) is a general tool which enables to transform
any public-coin interactive proof into a non-interactive proof in the random
oracle model (ROM). A proof with soundness error ε becomes a proof with
soundness error at most Qµε after the transform, where 2µ + 1 represents the
number of rounds, and Q is the number of oracle queries performed by the
adversary. In Protocol 4.1 we have µ = 1, which yields the bound Qε to the
soundness error. However, in the batched ZKP protocol (Protocol 4.2) we have
µ = 2, and so we get a soundness error of 2−κ/2 (that is, for an adversary who
queries the random oracleQ = 2κ/2 times, the soundness error is at most 2κϵ). To
get a soundness error of 2−κ after the transform, one may aim to get soundness
error of ϵ = 2−2κ in the interactive version, and then after the transform it gets
soundness error of 2−κ. Therefore, a tighter bound is desired.

The increase of soundness error is inevitable for some protocols (e.g., the
non-parallel k-fold repetition of a Σ protocol), but this is not the case for all
multi-round protocols. In particular, as shown by Attema et al. [AFK22], if
a protocol has ‘(k1, . . . kµ)-out-of-(N1, . . . , Nµ)-special soundness’ then applying
the Fiat-Shamir transform does not admit a large increase in soundness error.
In the following we give the definition from [AFK22] and explain why Protocol
4.2 fits that definition.

Definition 4.12 (Def. 7 in [AFK22]) A 2µ+1 rounds public-coin interactive
proof Π for relation R, where V samples the ith challenge from a set of cardinality
Ni > ki, is said to have ‘(k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-special soundness’ if
there exist a polynomial time algorithm that, on input a statement (x,w) and a
(k1, . . . kµ) tree of accepting transcripts outputs a witness w such that (x,w) ∈ R
with overwhelming probability.

Note that in [AFK22] they aim to achieve knowledge-soundness (a.k.a extraction
of the witness) whereas in our case we do not achieve extraction, but rather a
break of the factoring problem.

By the following theorem, applying the Fiat-Shamir transform on a protocol
with (k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-special soundness only increases soundness
error by a factor of Q:

Theorem 4.13 (Thm. 2 in [AFK22]) The Fiat-Shamir transformation of a
(k1, . . . kµ)-out-of-(N1, . . . Nµ) special sound interactive proof Π with soundness
2−κ, has soundness of (Q+ 1)2−κ.

By examining the proof of soundness of Protocol 4.2 (and particularly the
proof of Theorem 4.10) one can observe that the protocol has (2, 2)-out-of-
(2κ, 2κ)-special soundness and so the Fiat-Shamir does not affect it significantly.
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It is important to note that the Fiat-Shamir transform is not applied on
the setup phase that generates (N, g̃, a;x). Consequently, any potential attacker
cannot influence the failure probability of this phase, which remains at most
2−σ. This illustrates why one might opt for σ to be significantly smaller than κ,
as it serves as a statistical bound rather than a computational one.

5 Performance
We implemented our threshold Paillier scheme in Rust; the implementation is
released as open source at https://github.com/odsy-network/tiresias. In
our implementation we use crypto-bigint10 for constant-time computations over
sensitive data to avoid leakage. In addition, we use rayon11 for parallelism, and
our evaluation demonstrates that the scheme can greatly leverage that.

We evaluate the performance of our scheme with number of parties, n, varying
from 10 to 1000, and batch sizes, B, varying from 1 (without batching) to 1000.
In cases where it applies, we use t = (2/3)n as the threshold. All experiments are
conducted over two machine types: (1) AWS EC2 instance of type c6i.24xlarge12

with 96 3rd generation Intel Xeon Scalable vCPUs @ 3.50GHz, and (2) MacBook
Pro Apple M1 Max with 10 Cores @ 3.22GHz.

Our experiments use a 2048-bit bi-prime modulus N (equivalent to 4096-bit
Paillier modulus N2) where the secret Paillier decryption key d = ϕ(N)[ϕ(N)−1

mod N ] ∈ Z is (t, n)-Shamir shared over the integers using the tighter bound on
the coefficients as analysed in Appendix B.2 above. All presented runtimes are
the average over 10 runs.

As presented in Table 1, existing protocols, notably [FS01] and [HMR+19],
which are based on standard hardness assumptions and do not assume a trusted
dealer, closely resemble our protocol but require extensive repetitions. Conse-
quently, a performance comparison with these protocols is unnecessary, as our
approach is clearly more efficient. Instead, we compare our performance with
the “ideal” one, of a semi-honest model with no proofs.

Figures & tables. In Figure 1 and the supporting Table 3 we report the run time
for a single party to produce B decryption shares (for B different ciphertexts)
when there are n parties.

Then, in Figure 2 and the supporting Table 5 we report the run time for
combining the decryption shares from the parties. In the malicious security model
the parties also provide a proof of equality of discrete logs to prove the correctness
of the decryption shares, in which case we use B-batched proofs, and the ‘Mal’
columns include the time it takes to verify these.

Finally, in Table 4 we isolate the time it takes to verify a B-batched proof.
Apart for run time, we report on the secret decryption key size and the proof

size in bits, which both depend on the number of parties. For n = {10, 100, 1000}
parties, the size in bits of the key d (which is shared over the integers) is
{4295, 5324, 19937} and the proof size in bits is {12743, 13772, 28385}.
10 https://github.com/RustCrypto/crypto-bigint
11 https://github.com/rayon-rs/rayon
12 https://aws.amazon.com/ec2/instance-types/c6i/
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Explaining the results. Note that in all figures and tables the number of parties,
n, affects the run time. This is due to the fact that n affects the party’s share
size of the Paillier decryption key when shared over the integers (see Section 2.1
and Appendix B.2), which in turn affects both prover’s and verifier’s exponent
size.

The attentive reader may observe an abrupt jump in run time when increasing
from a batch of B1 = 100 ciphertexts to a batch of B2 = 1000 in the C6i machine,
and when increasing from B1 = 10 ciphertexts to B2 = 100 in the M1 machine.
This jump is due to the parallelism of our implementation, which utilizes up
to 96 cores of the C6i machine and up to 10 cores of the M1 machine. Up to
B1 ciphertexts, the workload is quite concurrent and runs simultaneously for
all ciphertexts in the batch, whereas above B1 ciphertexts the work becomes
sequential.

Importantly, the figures show that adding protection against a malicious
adversary does not incur high overhead. For all n and B this overhead is a small
constant and as n and B grow (toward n = 1000 or B = 1000) this constant
reaches 1.5. We present the precise factors in the tables under the ‘×’ column.

The batching technique (along the multi exponentiation described in Section
H.1) proves itself necessary if a truly scalable solution is needed. For decryp-
tion share computation (Table 3) with n = {10, 100, 1000}, the prover’s time
for generating a decryption share for a single ciphertext is {134, 355, 1434} mil-
liseconds on M1 machine, respectively. When generating decryption shares for
B = 1000 ciphertexts, the cost is only {12.5, 32.5, 144} milliseconds for each one,
respectively, which is about 10× improvement. Similar results are obtained for
the combination of decryption shares (Table 2) and for proof verification (Table
4).

6 Conclusion

This paper introduces a novel security reduction technique, from the soundness
of the proof of equality of discrete logs to the factoring problem. Combining our
zero-knowledge proof (and its batching capabilities) with a large scale modulus
generation (e.g., Diogenes [CHI+21]), we show for the first time, that threshold
Paillier encryption scheme is practical under standard assumptions. In fact, we
demonstrate that threshold Paillier is not only practical, but also ready for a
large scale deployment with thousands of parties.
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Compute Decryption Share (ms)
AWS C6i MBP M1

n B S.H. Mal × S.H. Mal ×
10 1 47.7 151.93 3.19 41.8 134.3 3.21
10 10 66.8 233.02 3.49 56.9 210.76 3.70
10 100 160.8 873.98 5.44 526.8 1218.2 2.31
10 1000 1198.4 7424.6 6.20 6336.7 12531.0 1.98

100 1 69.1 193.28 2.80 246.3 355.2 1.44
100 10 85.9 272.0 3.17 336.4 506.59 1.51
100 100 221.6 959.41 4.33 2153.4 2861.2 1.33
100 1000 1666.8 7909.8 4.75 26455.9 32585.0 1.23

1000 1 383.7 790.67 2.06 1081.2 1434.1 1.33
1000 10 415.0 884.33 2.13 2060.3 2475.0 1.20
1000 100 1122.1 2138.8 1.91 13100.6 14058.0 1.07
1000 1000 8034.3 14558.0 1.81 137575.7 143970.0 1.05

Table 3: Computation time, in milliseconds, of B de-
cryption shares when there are n parties (and up to
t = 2n/3 are corrupted). Times are measured on two
types of machines: AWS C6i, with 128 vCPU’s and
MacBook Pro M1 with 10 cores. S.H and Mal stand
for semi-honest and malicious, where the ‘malicious’
column includes the time it takes to generate the
proof of equality of discrete logs, and the × column
is the overhead factor Mal/S.H.

Proof Verification (ms)

n B AWS C6i MBP M1

10 1 63.8 57.2
10 10 126.1 118.3
10 100 674.0 655.4
10 1000 6188.4 6069.6

100 1 73.7 65.6
100 10 136.0 126.5
100 100 683.6 664.1
100 1000 6215.7 6079.2

1000 1 215.3 187.4
1000 10 277.6 248.5
1000 100 824.9 789.4
1000 1000 6344.5 6224.4

Table 4: Proof verification time
in milliseconds, when there are n
parties (of which t provides their
proofs), each providing a batch
proof of B decryption shares. Times
are measured on two types of ma-
chines: AWS C6i, with 128 vCPU’s
and MacBook Pro M1 with 10 cores.

Fig. 1: Time in milliseconds to generate a decryption share with and without
proof of equality of discrete logs (e.g., in the presence of a malicious and semi-
honest adversaries, resp.).
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Fig. 2: Time in milliseconds to combine decryption shares from t = 2n/3 parties
of B ciphertexts, with and without proof of equality of discrete logs (e.g., in the
presence of a malicious and semi-honest adversaries, resp.).

Combining Decryption Shares (ms)
AWS C6i MBP M1

n B S.H. Mal × S.H. Mal ×
10 1 21.517 89.517 4.16 25.027 216.82 8.66
10 10 21.958 152.28 6.94 95.336 473.6 4.97
10 100 61.703 763.5 12.37 953.03 3178.2 3.33
10 1000 450.11 6746.1 14.99 10303.0 31480.0 3.06

100 1 82.635 262.53 3.18 100.69 2653.4 26.35
100 10 84.031 397.24 4.73 455.83 5124.2 11.24
100 100 270.96 1559.8 5.76 4173.4 11409.0 2.73
100 1000 2449.3 12362.0 5.05 13083.0 80335.0 6.14

1000 1 5997.6 9722.5 1.62 5249.1 20851.0 3.97
1000 10 6064.8 10709.0 1.77 7201.5 28201.0 3.92
1000 100 22178.0 35058.0 1.58 69940.0 135580.0 1.94
1000 1000 169050.0 266640.0 1.58 884770.0 1345200.0 1.52

Table 5: Time it takes, in milliseconds, to combine a batch of B decryption
shares (of t-out-of-n-Shamir sharing, with t = 2n/3). S.H and Mal stand for
semi-honest and malicious, where the ‘malicious’ column includes the time it
takes to verify the proof, and the × column is the overhead factor Mal/S.H.
Times are measured on two types of machines: AWS C6i, with 128 vCPU’s and
MacBook Pro M1 with 10 cores.
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SB21. István András Seres and Péter Burcsi. A note on low order assump-
tions in RSA groups. Rad Hrvatske akademije znanosti i umjetnosti.
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A Mathematical background.

Let a, b ∈ Z. If a = b · q + r for some q ∈ Z and r ∈ [0, b) then r = [a mod b]
represents the reduction of a modulo b. If r = 0 we say that b divides a and
denote it by b|a. If, in addition, b /∈ {1, a}, then b is a non-trivial factor of a.
We write a1 = a2 = . . . = ak mod b if [ai mod b] = [aj mod b] for all i, j.
The values gcd (a, b) and lcm (a, b) are the greatest common divisor and least
common multiple of a and b, respectively. If gcd (a, b) = 1 we say that a and b
are co-prime. In the following we present some basic number theoretic properties
that can be found in introductory books (e.g., [KL14, Section 7]).

Proposition A.1 Let a, b ∈ Z. if c = [ab mod b2] then a = c/b mod b.

Proposition A.2 Let m ∈ Z and x, r ∈ [0,m− 1]. Then:

– Euclidean algorithm: gcd(m,x) = gcd(m, [x mod m]).

– gcd(m,xr) = 1 if and only if gcd(m,x) = 1 and gcd(m, r) = 1.

Proposition A.3 Let a,m1,m2, . . . ∈ Z and gcd(mi,mj) = 1 for all i ̸= j.
Then, gcd(a,

∏
i mi) =

∏
i gcd(a,mi).

Corollary A.4 Let a ∈ Z and p1, p2, . . . ∈ primes: gcd(a, pi) = 1 for all i if
and only if gcd(a,

∏
i pi) = 1.

Number classification and properties. We use some classical number theoretic
notions. The reader is referred to [MV06, Section 7] for more information.

B Shamir Secret Sharing

B.1 Shamir Secret Sharing over a Prime Field

Shamir t-out-of-n secret sharing over the field F (where t < n ∈ N) is defined by
a tuple of algorithms SSF = (Share,Reconstruct), where [s] = ([s]1, . . . , [s]n) =
Sharet,n(s; r) denotes a sharing of s using randomness r, and s = Reconstruct
([s]j1 , . . . , [s]jt+1

) denotes the reconstruction using t+1 shares, which may result
with ⊥ if the shares are inconsistent. With more details:

– [s] = Sharet,n(s; r). Given a secret s ∈ F and a random tape r = (a1, . . . , at) ∈
Ft, output [s] = ([s]1, . . . , [s]n), where [s]j = p(j) and p(x) = s+a1x+a2x

2+
. . .+ atx

t.

– s = Reconstruct({(j, [s]j)}j∈T ). Let T ⊂ [n] be a set of t+1 distinct elements
from [n]. Let p be the unique interpolation polynomial such that p(j) = [s]j
for all j ∈ T . Output s = p(0).
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Lagrange interpolation is used in order to get p(j) directly. For a set T ⊂ [n] of
t + 1 distinct elements, given points {(j, [s]j)}j∈T , the polynomial that passes
through them is p(x) =

∑
j∈T [s]j · ℓT,j(x), where

ℓT,j(x) =
∏
i∈T
i ̸=j

x− i

j − i
.

Now, for any subset T of size t+1, every j ∈ T and every evaluation point v ∈ F,
the Lagrange coefficient is defined as λv

T,j = ℓT,j(v). Consequently, we can write
p(v) =

∑
j∈T λv

T,j · [s]j .

Local operations over sharings. Given two polynomials p1(x) and p2(x)
with secrets s1 = p1(0) and s2 = p2(0), the secret sharing of s = s1 + s2 can be
locally computed by having each party Pj compute [s]j = [s1]j+[s2]j so that the
secret s is shared using the polynomial p(x) = (p1 + p2)(x). In addition, given
a polynomial p(x) and a (public) constant α ∈ F, the secret sharing of α · s can
be locally computed by having each party Pj compute [αs]j = α[s]j . Similarly,
the above is extended to any affine operation over the secrets.

B.2 A Tighter Bound of Shamir Shares Over the Integers

Recall that [0, b], b ∈ N, is the range of the secret, n is the number of parties and
σ is the statistical security parameter. We analyze the required value of I(σ, n, b)
mentioned in Section 2.1 for the security of the Shamir sharing over the integers.

Our analysis is based on [BDO22]. First we cite the relevant definitions:

Definition B.1 ([BDO22, Definition 8]) A secret sharing scheme is statis-
tically private if for any set of corrupted parties C ⊆ {P1, . . . , Pn} with |C| ≤ t,
any two secrets α, α′ ∈ [0, b] and independent random coins r, r′, we have that the
statistical distance between {Sharei(α, r) | i ∈ C} and {Sharei(α′, r′) | i ∈ C}
is negligible in σ.

Definition B.2 ([BDO22, Definition 9]) Let C ⊆ [n] such that |C| = t.
Then we define the sweeping polynomial hC(X) =

∑t
i=0 hC,iX

i as the unique
polynomial of degree at most t such that h(0) = ∆n and h(i) = 0 for all i ∈ C.
Moreover, let hmax be an upper bound on the coefficients of the sweeping poly-
nomials, i.e., hmax ≥ max{|hC,i| | i ∈ [0, t], C ⊆ [n], |C| = t}.

In our analysis we use the following result (restated):

Theorem B.3 ([BDO22, Theorem 16]) The protocol described in Section 2.1
is statistically private when the coefficients are sampled from [0, I(σ, n, b)] for
I(σ, n, b) ≥ 2σ+2bhmaxt.

Therefore, in order to derive concrete bound for I(σ, n, b), it suffices to bound

hmax. For a set C ⊆ [n], denote ∆C = ∆n

(∏
j∈C j

)−1
. We bound hmax using

the following lemma:
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Lemma B.4 (implied in [BDO22, Theorem 16]) For every set C ⊆ [n]
with |C| = t, we have

hC(X) = ∆C ·
∏
j∈C

(j −X).

which is trivially correct by evaluating on 0 and C. Then:

Lemma B.5 hmax < (t+ 1)∆n.

Proof. Let C ⊆ [n] with |C| = t. By Lemma B.4, we may write

hC(X) =

t∑
i=0

hC,iX
i = ∆C ·

∏
j∈C

(j −X).

In order to prove that |hC,i| ≤ (t+1)∆n, it suffices to prove
∑

i |hC,i| ≤ (t+1)∆n.
Notice that hC(−X) = ∆C ·

∏
j∈C(j +X) and therefore all hC ’s coefficients are

positive and we can write hC(−X) =
∑t

i=0 |hC,i|Xi. Therefore,

t∑
i=0

|hC,i| = hC(−1) = ∆C ·
∏
j∈C

(j + 1) = ∆n ·
∏
j∈C

(
j + 1

j

)
≤ (t+ 1)∆n.

where the first two equalities hold by applying hC(−1) =
∑t

i=0 |hC,i| · 1 =

∆C ·
∏

j∈C(j+1), the third equality holds by substituting ∆C = ∆n

(∏
j∈C j

)−1
and the inequality holds since

∏
j∈C

(
j+1
j

)
≤
(
2
1

)
·
(
3
2

)
· . . . ·

(
t+1
t

)
= (t+ 1).

We conclude that the coefficients for Shamir secret sharing over the integers,
when the secret is from [0, b], are uniformly sampled from [0, I(σ, n, b)] where
I(σ, n, b) ≥ 2σ+2 · b · t · (t+1) ·∆n. From this we conclude that the shares to the
parties are bound by

t∑
i=0

aix
i ≤

t∑
i=0

I(σ, n, b)ni = I(σ, n, b)

t∑
i=1

ni = I(σ, n, b)
nt+1 − 1

n− 1

≤ I(σ, n, b)
nt+1

n/2
= 2I(σ, n, b)nt

where the first inequality is since the coefficients ai’s are bounded by I(σ, n, b)
and the party’s evaluation point is at most n; the first equality is trivial; the
second equality is the result of the sum of a geometric series n0, n1, n2, . . . , nt;
then the second inequality is by reducing 1 from both nominator and denomina-
tor (which increases the value) and writing n/2 instead of n in the denominator
(which again increases the value as long as n > 2); and the last equality is trivial.
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C The Paillier Encryption Scheme

In this section we present the Paillier encryption scheme [Pai99], which is char-
acterized by the following tuple of algorithms Paillier = (Gen,Enc,Dec).

– Gen(1κ). Given a security parameter 1κ, sample ℓ = poly(κ)-bit primes P,Q
such that gcd (N,ϕ(N)) = 1. The algorithm outputs the public encryption
key N = P ·Q and the secret decryption key (N ; d) where d = 0 mod ϕ(N)
and d = 1 mod N .

– Enc(N, pt; r). Given the public key N , a plaintext pt ∈ ZN and randomness
r ∈ Z∗N , output ciphertext

ct =
[
(1 +N)pt · rN mod N2

]
.

– Dec((N, d), ct). Given the secret key d and a ciphertext ct, output

pt =

[
[ctd mod N2]− 1

N
mod N

]
.

Correctness. Decryption is always correct because:[
[ctd mod N2]− 1

N
mod N

]
=

[[
(1 +N)d·pt · rd·N − 1 mod N2

]
N

mod N

]

=

[[
d · pt ·N mod N2

]
N

mod N

]
= [d · pt mod N ] = pt

where equalities (top to bottom) hold by replacing ct with the definition of
encryption; the binomial expansion (1 + N)k = 1 + Nk mod N2 and the fact
that rd·N = 1 mod N2 (since ϕ(N)|d and ord(ZN2) = Nϕ(N)); Proposition A.1;
and the fact that d = 1 mod N and that pt < N .

D Warm-Up: Threshold Paillier with a Trusted Setup

Here we present the standard approach for threshold decryption of Paillier ci-
phertexts by [FPS01], and for simplicity assume the key generation is done
by a trusted dealer. Namely, consider a trusted dealer, who runs (N ; d) ←
Paillier.Gen(1κ). Then the dealer publishes N and shares d over the integers
to n parties, P1, . . . , Pn, using a (t, n)-sharing scheme (cf. 2.1), resulting with [d]
such that Pj receives dj . The sharing of d is over Z rather than over Z|QRN2 | as
the parties cannot compute the Lagrange coefficients over Z|QRN2 | because the
order |QRN2 | is unknown.

In the following we assume that the parties behave honestly and later we
describe how to handle malicious behaviour. Given a ciphertext ct ∈ Z∗N2 , party
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Pj broadcasts its decryption share ctj = ct2∆ndj (recall that ∆n = n!). Given
ctj for all j ∈ T , where T ⊂ [n] and |T | = t+ 1, decrypt by computing:

ct′ :=

∏
j∈T

ct
2∆nλ

0
T,j

j mod N2

 =

∏
j∈T

(ct2∆ndj )2∆nλ
0
T,j mod N2


=

∏
j∈T

ct4∆
2
ndjλ

0
T,j mod N2


=
[
ct4∆n

∑
j∈T ∆ndjλ

0
T,j mod N2

]
=
[
ct4∆

3
nd mod N2

]
=

[(
ct4∆

3
n

)d
mod N2

]
= Enc

(
N, 4∆3

npt; r
4∆3

n

)d
,

where the first equality holds since ctj = ct2∆ndj , the third follows by Lagrange

interpolation in the exponent, since we have
(∑

j∈T ∆ndjλ
0
T,j

)
= ∆2

nd) by Eq.

(1), and the last one follows by the encryption definition.
Then, obtain the plaintext by computing[(

ct′ − 1

N

)
· (4∆3

n)
−1 mod N

]
=
[
pt · 4∆3

n · (4∆3
n)
−1 mod (N)

]
= pt,

as the first equality is derived from the correctness of the Paillier scheme.

Handling corrupted parties. To detect a malicious party Pj that sends an incor-
rect decryption share ctj , we require Pj to send a zk-proof that ctj is computed
correctly using the public base ct and the secret share dj . As discussed in Sec-
tion 1.1, several approaches were proposed in the literature, and here we follow
the one taken by Damg̊ard et al. [DJN10], which uses a single verification key.
In more detail, in addition to the sharing [d], the trusted dealer computes and
publishes g and vj = g∆ndj for every Pj , where g is a random element in QRN2 .
Then, whenever Pj wishes to send its decryption share ctj = ct2∆ndj , it also
sends a proof that the discrete log of ctj in the basis ct2 equals the discrete log
of vj in the basis g. In that sense, vj is a commitment to Pj ’s secret share dj .

We remark that the discrete logarithm equality described above does not
assure that Pj behaves honestly, and a slightly stronger claim needs to be proved.
See Section 4 for the exact formulation of the language and the proof protocol.

E Threshold Decryption Ideal Functionality

We describe an ideal functionality for threshold decryption based on [HMR+19]
and modified to the threshold regime.
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FUNCTIONALITY E.1
(
Threshold Decryption Functionality Fthresh

)
The functionality interacts with a set of n parties {Pi}i∈[n] and an adversary
A which corrupts a subset U of the parties.

1. Key Generation. Upon receiving (generate, sid,Pi) from each party
send to A (randinput) an awaits for the adversary to reply with
(geninput, {ri}i ∈ U). The functionality then runs the key generation al-
gorithm using the adversary randomness for parties in U . It then saves
the result (pk, sk, sid) to memory and sends pk to A. Upon receiving the
public key the adversary may reply with continue in which case it sends
pk to all parties. Else it sends abort to all parties.

2. Decryption. Upon receiving (decrypt, c, sid,Pi) check if there exist a se-
cret key for sid, if so save (c, sid,Pi) to memory. If there t+1 such messages
saved to memory calculate pt = Dec(c) to the adversary and await to re-
ceive (abort, U ′). If U ′ ∩ U = ∅ broadcast (pt, sid) to all parties. Else
broadcast (abort, sid, U ′ ∩ U) to all parties.

F Full Description of the DKG protocol

In this section we describe the DKG protocol in detail. Since the DKG protocol
is composed of sub-protocols from existing literature, we first review those and
then describe the overall protocol.

F.1 Bi-Prime Generation Protocol

A protocol (N ;Pi, Qi) ← BiPrimeGen(n, 1κ, 1σ, sid) is an interactive protocol
between n parties which returns N = PQ such that:

1. Denoting P :=
∑

i∈[n] Pi, Q :=
∑

i∈[n] Qi, it holds that N = PQ.
2. P,Q are prime numbers of size ℓ corresponding to a computational security

parameter κ of the factoring problem.
3. P ≡ Q ≡ 3 mod 4.
4. N is a bi-prime with probability ≥ 1− 2−σ.

The protocol should be UC-secure and tolerate t corrupted parties. In par-
ticular, there should be a reduction from an adversary that factors challenges
N generated from BiPrimeGen to an adversary that factors challenges N gener-
ated by GenModulus, the challenger in the factoring game. We refer the reader
to [BF97] and [CHI+21] for full details.

In addition, we require the protocol to have identifiable abort. Since the
parties in the protocol have no secret input, this can be trivially achieved by
letting each party Pi reveal the random tape H(ri, sid) in case a DKG protocol
with session id sid fails.

F.2 GCD Test Protocol

A protocol b← GCD(n, 1κ, 1σ, t, x; yi) is an interactive protocol between n par-
ties which returns a boolean value b ∈ {0, 1} such that:
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1. If b = 1 then gcd
(
x,
∑

i∈[n] yi

)
|t.

2. If gcd
(
x,
∑

i∈[n] yi

)
= t then b = 1 with probability α(x) > 0.

Notice that one may reduce the false negative probability 1 − α(x) as close to

zero as is optimal for a specific use-case. In our context we will take α(x) > π2

10 .
Such protocol is often used as a part of a bi-prime generation protocol. We refer
to [CHI+21] for the protocol details.

F.3 Factorization Sharing to Paillier Sharing Protocol

A protocol ({ci}i∈[n];xi) ← F2P(N,G, 1κ, 1σ;Pi, Qi) is an algorithm which re-
ceives a bi-prime and shares on it’s non-trivial factors and returns {ci}i∈[n] ∈ G
and xi ∈ Z such that:

1. G is a DDH group.
2. for every i ∈ [n] and every ci ∈ ci we have that ci = Encpk(xi). Where pk is

a public key for El-Gamal in the exponent encryption with a corresponding
private key which is unkown to the participants.

3. {xi}i∈[n] is a Shamir Secret Sharing over the integers for the value x.
4. [x ≡ 1 mod N ], [x ≡ 0 mod ϕ(N)].

Such a protocol is presented in [HMR+19].

F.4 ZK Proof for DL-Encryption Relation

Lastly we need a ZK proof for the following language

LEQ(g,a, c) = {(x, r) : c = Enc(x, r) ∧ ax = g}

Description of such proof can be found in [CKY09].

F.5 The Protocol

We split the protocol into two steps Setup1 and Setup2. The first setup is re-
sponsible to the generation of a conforming bi-prime and an additive sharing
over its factors. The second one is responsible for the generation of the Shamir
secret sharing over the integers of the Paillier secret key, and the corresponding
verification keys.

Let us analyze the expected running time of Setup1 algorithm. We assume
that P−1

2 , Q−1
2 behave as random odd integers. As such the chance of them being

co-prime is Πp ̸=2(1− 1
p2 ) =

8
π2 , and so the success probability in each iteration

is 8
π2 ·α > 4

5 . This gives that the expected running time is 5
4 (time(BiPrimeGen)+

time(GCD)). Typically we have that time(BiPrimeGen)≫ time(GCD). The secu-
rity of the above protocol follows from UC-security of BiPrimeGen and GCD. The
only non-trivial part is that the distribution of N is different, as we add a condi-
tion. However, since this condition is fulfilled with non-negligible probability, the
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ALGORITHM F.1
(
Conforming bi-prime generation

)
Input: (n, 1κ, 1σ).

Algorithm: Each party does the following:

1. Init sid← 0
2. Run (N ;Pi, Qi)← BiPrimeGen(n, 1κ, 1σ, sid)
3. Run b← GCD(n, 1κ, 1σ, 2, N − 1;Qi − δi,1)
4. If b = 1 output (N ;Pi, Qi) else increment sid and return to (1).

ALGORITHM F.2
(
Paillier Key Generation Given a Bi-Prime

)
Input: (n,N, 1κ, 1σ;Pi, Qi).

Algorithm: Each party does the following:

1. Run ({ci}i∈[n];xi)← F2P(n,N, 1κ, 1σ;Pi, Qi)
2. Sample gi ← (Z∗

N )c and broadcast com(gi).
3. Broadcast gi and verify that the commitment is valid. If so set

g = Πi∈[n]gi. Then set ai = gxi . In addition calculate a zk-proof
πEQ(ai,g, ci;xi, ri)

4. Verify the proofs of all other parties.

identity reduction suffices. That is, given an adversary for the factoring problem
with respect to Setup1, we may use it on BiPrimeGen as well. Conditioned on
whether gcd (P − 1, Q− 1) = 2, which happens with probability ≈ 0.8, the bi-
prime challenges of Setup1 and BiPrimeGen have the same distribution. We can
bound the success probability when the condition doesn’t hold by zero.

Notably, [CHI+21] provide a UC secure protocol BiPrimeGen, which includes
a UC-simulation for the GCD sub-protocol, but they do not prove that the GCD
subroutine is UC-secure by itself. However, similar proof techniques applies. As
for Setup2 the running time is dominated by time(F2P). The security proof is
straight forward given a secure protocol F2P. We note that in particular, there
exist a simulator for the protocol, that given N can generate all public keys as
well as the secret key-shares for the adversary. This is referred as Setup2 in 4.2.

G Omitted Proofs

G.1 Proof of Lemma 4.2

Proof. Let h ∈ G be a generator, and fix a prime factor p > β of ord(G). Given
an element g ∈ G, we can write g = hi for 0 ≤ i < ord(G). Clearly, p divides
|G|

ord(g) if and only if p|i. Therefore, the probability that p divides |G|
ord(g) is 1

p < 1
β .

Next, we denote the prime factors of ord(G) that are larger than β by
p1, . . . , pk. Since gcd(pi, pj) = 1 for all i ̸= j and since pi|ord(G) for all i, we
may deduce that (

∏
i pi)|ord(G), so

∏
i pi ≤ ord(G). By the assumption, pi > β

for all i, so βk ≤ ord(G) and k ≤ log ord(G)
log β .

Now we are ready to conclude the proof: For an element g ∈ G, we have

that |G|
ord(g) is not β-smooth if and only if there exists a prime factor p > β of
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ord(G) that divides |G|
ord(g) . The probability that a fixed p divides |G|

ord(g) is at most
1
β , and there are at most log ord(G)

log β such primes. Thus, by the union bound, the

probability that |G|
ord(g) is not β-smooth is at most log ord(G)

β log β . ■

G.2 Proof of Corollary 4.3

Proof. By Lemma 4.2, it follows that |G|
ord(g) is β-smooth with probability 1 −

log ord(G)
β log β . We note that |G|

ord(g∆n )
= |G|

ord(g)/ gcd(∆n,ord(g))
= |G|·gcd(∆n,ord(g))

ord(g) . In par-

ticular, since ∆n is a β-smooth number (as all factors of ∆n are smaller than n),
so is gcd (∆n, ord(g)) and the product of two β-smooth numbers is a β-smooth
number. ■

G.3 Proof of Lemma 4.5

Proof. Since G is a cyclic group and
∏

i:αi ̸=ri
prii divide |G|, there exists b such

that ord(b) =
∏

i:αi ̸=ri
prii . The groups generated by g and b, namely, ⟨g⟩ and

⟨b⟩, are subgroups of ⟨g, b⟩, which implies that |⟨g, b⟩| is divisible by both ord(g)
and ord(b). Thus, |⟨g, b⟩| is also divisible by lcm (ord(g), ord(b)) = |G|. ■

G.4 Proof of Corollary 4.6

In order to prove Corollary 4.6, we first present and prove a similar lemma over
Z∗N :

Lemma G.1 Let Factor be a factoring algorithm. There exists an algorithm
Factor′ that, given inputs N, x, e, such that

– N = PQ is a conforming bi-prime;
– |e| < N ;
– x ̸= ±1 mod N , e ̸= 0, but xe = 1 mod N ,

outputs P,Q and has a time complexity time(Factor′(N, x, e)) ≤ time(Factor(e))+
polylog(N).

Note that the conditions on x between this Lemma and Corrolary 4.6 are
different.

Proof. We can assume w.l.o.g that e ≥ 0 by taking the inverse (x−1)e = (xe)−1 =
1−1 = 1 if necessary. Also, e ̸= 1 since xe = 1 and x ̸= 1. If e = 2 then x is
a non-trivial square root of 1, and we can compute gcd (N, x± 1) to get the
factors of N in time polylog(N). Therefore, in the following we assume e > 2

and [x2 ̸= 1 mod N ]. Since |QRN | = (P−1)(Q−1)
4 is odd (and so 2 is co-prime

to |QRN |), the function f : QRN → QRN defined by f(a) = a2 is a bijection.
Now, if 4|e then xe = (xe/2)2 and xe/2 ∈ QRN (with xe/4 being a square root),
so xe/2 = f−1(1) = 1. Thus, given (N, x, e), define e0 = e and ei = ei−1/2; we
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can solve for (N, x, e′) where e′ = ei and i is the minimal index for which 4 ∤ ei.
Define s, t ∈ Z such that e′ = s · 2t, where t ≥ 0 and s is odd (there must exist
such s and t). The above analysis implies that t ≤ 1, so either e′ = s (in case
t = 0) or e′ = 2s (in case t = 1). Consider algorithm Factor′(N, x, e′) below.

1. Call Factor(e′) to obtain p1, · · · , pk such that e′ =
∏k

i=1 pi and p1 ≤ · · · ≤ pk.
2. For i = 1 to k:

– If xpi = 1, return P = gcd (N, x− 1) and Q = N/P .
– Otherwise, update x← [xpi mod N ].

The call to Factor(e′) results with p1 ≤ · · · ≤ pk where pi > 2 for all i > 1

(since 4 ∤ ei). Define e′0 = e′ and e′i+1 =
e′i

pi+1
(alternatively, e′i = e′∏i

j=1 pi
)

and similarly x0 = x and xi+1 = (xi)
pi+1 (alternatively, xi = x(

∏i
j=1 pi)); note

that (xi)
ei = xk = 1 mod N . Let i be the minimal index such that xi = 1,

and set y = xi−1. We get that y ̸= 1 mod N and ypi = 1 mod N ; since pi
is prime we have pi = ord(y). If pi = 2 then i = 1 and we have a non-trivial
square root of 1, so we can factor N as above. Therefore, continue by assuming
pi > 2. Since N is a conforming bi-prime, we have gcd (P − 1, Q− 1) = 2. In
addition, ord(y) = pi|(P − 1)(Q − 1) and pi > 2; therefore, either pi|(P − 1) or
pi|(Q−1). Wlog assume pi|(Q−1) (implying pi ∤ (P −1) as otherwise pi > 2 is a
common divisor for (P − 1) and (Q− 1)), so gcd(pi, P − 1) = 1 and the function
g : ZP → ZP defined by g(a)→ api is a bijection. Since ypi = 1 mod N we get
ypi = 1 mod P and so g(y) = g(1) = 1 mod P , implying y = 1 mod P . On
the other hand, y ̸= 1 mod Q as otherwise (combining y = 1 mod P and y = 1
mod Q) we have y = 1 mod N , in contradiction to the fact that i is the minimal
index for which xi = ypi = xpi

i−1 = 1 mod N (i.e., if y = 1 mod N then the
condition already holds at i− 1). We summarize that gcd(y − 1, N) = P .

To conclude, the aforementioned algorithm factors N . Since it begins with
factoring e and the rest of the algorithm has a time complexity of polylog(N),
the total time complexity of Factor′ is at most time(Factor(e)) + polylog(N). ■

Now we are ready to prove Corollary 4.6:

Proof. Again note that e < N . xe = 1 mod N2 implies xe = 1 mod N , there-
fore, if x ̸= ±1 mod N then we apply algorithm Factor′ from the proof of
Lemma G.1.

We argue that x ̸= −1 mod N : we have the Legendre symbol
(−1

P

)
=

[(−1)(P−1)/2 mod P ] = −1 since (P − 1)/2 is odd, so (−1) ̸= QRP . An ele-
ment g ∈ ZN2 belongs to QRN2 if and only if g ∈ QRP and g ∈ QRQ. Therefore,
we have (−1) /∈ QRN2 and x ̸= −1 mod N2.

It remains to address the case where x ̸= 1 mod N2 and x = 1 mod N . This
implies that x = 1+ kN for some 0 < k < N , so xe = (1+ kN)e = 1+ kNe = 1
mod N2. It means that (1 + kNe) − 1 = kNe = k′N2 for some k′ ∈ Z, so
ke = k′N and thus PQ|ke. Since 0 < k, e < N , we may deduce that N ∤ k and
N ∤ e, so WLOG we may assume that P |e and Q ∤ e. In that case, a factoring
algorithm could find P = gcd (N, e). ■
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G.5 Proof of Lemma 4.7

Proof. The algorithm Factor′ is based on the Pollard’s p−1 factorization method
[Pol74]. It receives N, x, β as inputs and runs as follows:

1. For all pi ∈ primes ∩ [0, β]:
(a) Repeat ⌈logpi

(N2)⌉ times:
i. If xpi = 1 mod N2 and x = 1 mod N , return P = pi andQ = N/P .
ii. If xpi = 1 mod N2 and x ̸= 1 mod N , return P = gcd (x− 1, N)

and Q = N/P .
iii. Otherwise, assign x← [xpi mod (N2)] and continue.

2. Return ⊥.

The algorithm certainly reaches x for which x ̸= 1 mod N2 and xpi = 1
mod N2. Since pi < β < N , Corollary 4.6 implies that, wlog, either x = 1
mod N and gcd (pi, N) = P , or x ̸= 1 mod N and gcd (x− 1, N) = P . ■

H Batch Verification in Detail

In Algorithm H.1 below we present the batched verification algorithm, which
takes as input a B-batched proof from C provers.

ALGORITHM H.1
(
C-Batched Verification of B-Batched Proofs

)
Input: The transcripts

(
g̃j ,aj , (h̃i,j , b̃i,j)i∈[B],uj , vj , zj

)
j∈[C]

. a

Algorithm:

1. V proceeds as follows:
(a) Computes h̃j :=

∏
i∈[B] h̃

ti,j
i,j , b̃j =

∏
i∈[B] b̃

ti,j
i,j , as in Protocol 4.2, and

{ti,j}j∈[B], ejj∈[B] as in Protocol 4.2 after FS transform.
(b) Samples sj ← [0, 2κ) for each j ∈ [C].
(c) Computes using multi-exponentiation (all computation is modulo

N2):

ˆ̃g =
∏

j∈[C] g̃
zj ·sj
j ,

ˆ̃
h =

∏
j∈[C] h̃

zj ·sj
j , û =

∏
j∈[C] u

sj
j , v̂ =

∏
j∈[C] v

sj
j ,

â =
∏

j∈[C] a
ej ·sj
j ,

ˆ̃
b =

∏
j∈[C] b̃

ej ·sj
j , and ĝ = ˆ̃g2, ĥ =

ˆ̃
h2, b̂ = b̃2.

(d) Accepts if
– h̃i,j , b̃i,j , uj , vj ∈ (0, N2) \ {N} for all i, j,
– zj ∈ (−D(22κ + 2κ),+D(22κ + 2κ)) for all j,
– û = ĝ · â mod N2 and v̂ = ĥ · b̂ mod N2.

a In our case, g̃j ≡ g̃, h̃i,j ≡ h̃i across all provers.

The complexity of the batch verification in Algorithm H.1 consists of two

separate C-multi-exponentiations with large exponents for ˆ̃g and
ˆ̃
h, other four

separate C-multi-exponentiations with small exponents for û, v̂, â and b̂, and
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the additional cost of computing h̃j and b̃j per batch proof (which incurs B-
multi-exponentiation with small exponents C times). We note that in our case

we assume g̃j = g̃, implying that we can compute ˆ̃g = g̃
∑

j zjsj and save one
multi-exponentiation. We also note that we can combine the six separate multi-
exponentiations in Step (c) into a single one.

Following [Pip80], a C-multi-exponentiation with E-bits exponents can be
done in time O(E · C

log(C) ). Therefore, the total overhead in our case is O( C
log(C) ·

logD+ BC
log(B) ·κ). In the following we show that the batch verification algorithm

accepts only if each individual transcript is accepting (except for a negligible
probability in κ).

Assume there exist i, j such that logg̃(aj) ̸= logh̃i
(b̃i,j). Then by Theo-

rem 4.10, assuming factorization is hard, logg̃(aj) ̸= logh̃j
b̃j . Therefore, h̃

xj ·ej
j ̸=

b̃
ej
j . Analogously to the proof of Lemma 4.11,

Pr
(sj′ )j′∈[C]

 ∏
j′∈[C]

(ĥ
xj′ ·ej′
j′ )sj′ =

∏
j′∈[C]

(b̂
ej′

j′ )sj′

 ≤ 2−κ

Otherwise, there exist s′j ̸= sj such that the above equation holds, and by rear-

ranging we get
(
ĥ
xj

j /b̂j

)ej∆sj
= 1. Again, if

(
ĥ
xj

j /b̂j

)ej
= 1 we use Corollary 4.6.

Otherwise, we use Pollard’s rho algorithm on
(
ĥ
xj

j /b̂j

)ej
, which has a low order

that divides ∆sj < 2κ. In both cases we get a factorization of N . Therefore
by union bound, all BC statements about EDL relations hold with probability
≥ 1 − BC · 2−κ = 1 − neg(κ) for B,C = poly(κ), therefore the probability to
cheat is negligible.

Remark H.1 (Possible Trade-off) In case many provers want to prove mul-
tiple statements at the same time, we can further improve the verifier’s com-
putational overhead, so it performs only two large exponentiations instead of
two C-multi-exponentiations, at the cost of an additional communication round.
Namely, each prover Pj first broadcasts its statement ((h̃i,j)i∈[B], (b̃i,j)i∈[B]).
Then, all provers derive the same randomizers ti by hashing all statements, and
compute the same combinations h̃j =

∏
i∈[B] h̃

ti
i,j and b̃j =

∏
i∈[B] b̃

ti
i,j for every

j. Each party then completes its proof on its statement (h̃j , b̃j), which results

with (uj , vj , ej , zj). V may then compute h̃j , b̃j, sample sj ← [0, 2κ), set z :=∑
j∈[C] zj · sj, and compute û =

∏
j∈[C] u

sj
j , v̂ =

∏
j∈[C] v

sj
j , â =

∏
j∈[C] a

ej ·sj
j ,

b̂ =
∏

j∈[C] b
ej ·sj
j , and verify that û = gz · â and v̂ = ĥz · b̂ (as well as the other

range checks). Note that here there are only two large exponentiations (with z
as the large exponent). HVZK and soundness arguments are similar to those in
the Fiat-Shamir transform and the batch verification.
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H.1 Multi-Exponentiation

Suppose we want to compute:

pt =
t∏

j=0

ct
∑m−1

i=0 ei,j ·Bi

j

This is the type of computation required to preform decryption from partial
Paillier decryptions, which is the bottleneck of our scheme, where we write each
Lagrange coefficient (multiplied by ∆n = n!) in base B = 2b, and so the bit-
length of each exponent is m·b. A naive computation for pt would take O(t·m·b)
multiplications. Consider the following algorithm:

1. For each 0 ≤ j ≤ t, and each 0 ≤ k ≤ B, compute yj,k = ctkj . This takes Bt
multiplications.

2. For each 0 ≤ i < m, compute zi =
∏t

j=0 ct
ei,j
j =

∏t
j=0 yj,ei,j . This takes m · t

multiplications.
3. Compute:

pt =

((((zm−1)B · zm−2)B · zm−3)B

. . .

)B

· z1

B

· z0

This takes m multiplications and m · b squares.

Complexity Analysis. If for example, B = 28 and m = 29 so that the bit-length
of each Lagrange coefficient is m · b = 212 = 4096. A naive computation with t
decryption shares would therefore take 4096t multiplications and squares. The
above approach would take 256t multiplications for the first step, 512t for the
second, and 4096 squares for the last part plus 512 multiplications. Overall, an
improvement of about ≈ 80% for t ≫ 1 parties. In general, we want m ≈ B,
so 2b · b is the bit-length of the Lagrange coefficients. This results in about × 1

b
speed-up.
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