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Abstract

We explore the possibility of obtaining general-purpose obfuscation for all circuits by way of
making only simple, local, functionality preserving random perturbations in the circuit structure.
Towards this goal, we use the additional structure provided by reversible circuits, but no additional
algebraic structure.

We start by formulating a new (and relatively weak) obfuscation task regarding the ability
to obfuscate random circuits of bounded length. We call such obfuscators random input &
output (RIO) obfuscators. We then show how to construct indistinguishability obfuscators for all
(unbounded length) circuits given only an RIO obfuscator — under a new assumption regarding
the pseudorandomness of sufficiently long random reversible circuits with known functionality,
which in turn builds on a conjecture made by Gowers (Comb. Prob. Comp. ’96) regarding the
pseudorandomness of bounded-size random reversible circuits. Furthermore, the constructed
obfuscators satisfy a new measure of security - called random output indistinguishability (ROI)
obfuscation - which is significantly stronger than IO and may be of independent interest.

We then investigate the possibility of constructing RIO obfuscators using local, functionality
preserving perturbations. Our approach is rooted in statistical mechanics and can be thought
of as locally “thermalizing” a circuit while preserving its functionality. We provide candidate
constructions along with a pathway for analyzing the security of such strategies.

Given the power of program obfuscation, viability of the proposed approach would provide an
alternative route to realizing almost all cryptographic tasks under hardness assumptions that are
very different from standard ones. Furthermore, our specific candidate obfuscators are relatively
efficient: the obfuscated version of an n-wire, m-gate (reversible) circuit with security parameter
κ has n wires and poly(n, κ)m gates. We hope that our initial exploration will motivate further
study of this alternative path to cryptography.
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1 Introduction

Program obfuscation [Had00, BGI+01, BGI+12], namely the ability to efficiently purturb a program
in a way that preserves its functionality but hides “all other information” about the program, is
an intriguing beast. At first, perturbing - or randomizing - the internal structure of a program
may appear to be rather mundane and inconsequential. However, with the right formalization of
“sufficiently perturbed”, program obfuscation has proven to be immensely powerful.

As shown in [BGI+01, BGI+12], any polysize representation of a program, even a “perfectly
randomized” one, gives, in general, significantly more computational power than black-box access
to the function computed by the program. However, the more modest goal of perturbing the
program just to the point of making the perturbed versions of any two equal-length, functionally
equivalent programs indistinguishable (namely, obtaining Indistinguishability Obfuscation (IO)
[BGI+01, BGI+12]), is potentially obtainable [GGSW13] and has proven to be immensely powerful.
Indeed, while it is rather weak as a stand-alone cryptographic primitive (it cannot even be used to
construct one way functions or even imply P ̸=NP), IO has proven to be an immensely versatile
conduit for harnessing and molding unstructured (or, minimally structured) computational hardness
to perform almost any cryptographic task. Specifically, combined with one way functions, IO
for all circuits implies public key encryption, trapdoor permutations, general secure multiparty
computation, non-interactive zero knowledge, succinct non-interactive arguments, and deniable
encryption to name only very few, see e.g. [SW14, GGHR14, BPW16]. When combined with lossy
or rerandomizable encryption, it gives also fully homomorphic encryption and more [CLTV15a].

The history of attempts at constructing general purpose program obfuscators is intriguing as
well. The concept of obfuscating programs as a hedge against copying or modification has been
known in the practical security community for decades, in the form of “obfuscation tools” (some
of them commercially available) that modify programs by locally perturbing instructions, variable
names, and memory access patterns. However, these tools carry no formal security guarantees and
have invariably been eventually broken, or “reversed”.

Following the introduction of formal notions of “cryptographic grade” program obfuscation
[Had00, BGI+01], there has been more than a decade where we knew how to cryptographically
obfuscate only very few classes of simple functions such as point functions and related constructs,
e.g. [Can97, LPS04, CRV10]. (These works concentrated on obtaining the stronger notion of VBB
obfuscation.)

The breakthrough works of [SW14, GGSW13] have opened the floodgate to both applications of
IO and candidate constructions thereof, e.g. [BGK+14, AB15, GGH15]. In these “first generation”
constructions the obfuscated program typically follows the instruction structure of the the plaintext
program without modification, while using the algebraic structure to perform the instructions
“homomorphically” while hiding them from an adversary who runs the program and sees its entire
execution trace. However, the analyses of these first generation constructions was invariably
incomplete, often by way of relying on an idealized version of a core primitive, and indeed explicit
attacks have been demonstrated against many proposed instantiations of these candidates (e.g.,
[CGH+15, CVW18, CHVW19]).

The “second generation” constructions (starting from [BV15, AJS15, LPST16]) take a different
approach: Rather than directly follow the steps of the input program, the obfuscated program
is treated as a “compressed store” of “garbled programs”, namely, obfuscated programs that are
valid only for a single input. Given an input, the overall obfuscated program “uncompresses” the
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garbled program for that input, and then runs this garbled program to obtain the desired output.
A number of more recent IO candidate constructions, including the breakthrough works of Jain, Lin
and Sahai [JLS21] that provide the first IO schemes whose security is proven based on relatively
well understood assumptions, as well as [GP21, WW21, DQV+21] and others, use that structure.

This two-stage structure is, however, a bit roundabout and results in prohibitively high space
and time overhead relative to the complexity of the plaintext program, rendering general program
obfuscation as a purely theoretical primitive.

1.1 This work

We propose a new approach to constructing general-purpose program obfuscation. Specifically:

• We formulate two new measures of security for program obfuscation:

– Random output indistingishability (ROI) obfuscation. This measure strengthens plain IO,
providing a natural bridge between IO and VBB obfuscation.

– Random input & output (RIO) obfuscation. This measure is a significant relaxation of IO:
it only requires indistinguishability for random programs, and when the distinguisher
does not have access to the plaintext program.

• We construct ROI obfuscators for all circuits from RIO obfuscators for bounded-length random
circuits. The construction proceeds by way of constructing ROI obfuscators for increasingly
long prefixes of the given circuit, and incurs only linear overhead in complexity. Security
is proven based on a new intractability assumption regarding random circuits with a given
functionality.

• We propose candidate RIO obfuscators. Here we return to the basics: We use very little
algebraic structure and instead concentrate on local, functionality preserving randomized
perturbations of the circuit structure.

Our constructions and analyses make critical use of the structure of reversible circuits. We thus start
the exposition of our results with a brief overview of reversible circuits, followed by an exposition of
our intractability assumptions regarding the same.

1.1.1 Reversible circuits and their pseudorandomness properties

Reversible circuits. Recall that reversible circuits have a fixed number, n, of wires (or, binary
state variables), and each gate γ computes a permutation on the n-bit state. The permutation PC
computed by C = γ1 . . . γm is the composition of the individual permutations, PC = Pγm ◦ . . . ◦ Pγ1 ,
or, in other words, C(x) = γm(. . . γ1(x) . . .). We restrict our attention to Toffoli gates, namely gates
of the form γi,j,k,f (s1 . . . sn) = (s′1 . . . s

′
n) where s1 . . . sn is the old state, s′1 . . . s

′
n is the new state,

i, j, k are distinct indices in [n], f : {0, 1}2 → {0, 1}, s′i = si + f(sj , sk), and s′i′ = si′ for all i
′ ̸= i

[Tof80].

On the one hand, considering only circuits of the above form does not limit the generality of the
treatment: We know that the set Bn of gates of the above form generates the alternating group
A2n of even permutations over {0, 1}n (see e.g. [CG75, Bro04]). Furthermore, any (non-reversible)
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circuit can be embedded in a reversible circuit in a way that preserves both the functionality and
the complexity of the original circuit.1

On the other hand, reversible circuits have some attractive properties which are essential for our
treatment. First, the model enables for a natural notion of random circuits of certain dimensions
(say, numbers of wires and gates), which is efficiently samplable. Furthermore, the fact that all
gates compute permutations makes it plausible that the permutation computed by a random n-wire,
m-gate circuit has some randomness properties, and that the “level of randomness” increases
monotonically with m. (Natural distributions over general Boolean circuits do not appear to exhibit
such properties.) Indeed, the rationale and design of block ciphers makes extensive use of this
property, though not at the level of 3-wire gates (see e.g. [Fei74, CG75]). Furthermore, as we discuss
momentarily, random reversible circuits appear to have some strong pseudorandomness properties
even to observers that see the circuits themselves, rather than having only oracle access to their
functionality. Lastly, random reversible circuits appear to be readily amenable to functionality-
preserving rerandomization via local perturbations. We discuss this property at length later on,
and only note at this point that all base permutations β ∈ Bn are inverses of themselves, namely
ββ = In, where In denotes the identity permutation on {0, 1}n. This also means that, for any circuit
C on n wires, the circuit C|C† computes In, where C† has the gates of C in reverse order and |
denotes circuit concatenation.

Pseudorandomness. Gowers [Gow96] shows that Cn,m, the family of n-wire, m-gate circuits is ε-
close to being strongly t-wise independent whenever m = Ω(n3t3 log(ε−1)). Hoory et al. [HMMR05]
and later Brodsky and Hoory [HB05] improve this bound to m = Ω(n3t2 + n2t log(ε−1)). We note
that Gowers considers all permutations on 3 wires as base permutations (or, gates). In contrast,
Brodsky and Hoory consider the above set Bn of gates.

Furthermore, random circuits in Cn,m appear to have even stronger pseudorandomness properties.
Gowers conjectured that there exist some n∗

κ,m
∗
κ ∈ poly(κ) such that Cnκ,mκ is a cryptographic-grade

pseudorandom permutation family (with κ being the security parameter). That is, given time

polynomial in κ one can distinguish between oracle access to C
R← Cn∗

κ,m
∗
κ
and oracle access to

a random permutation on {0, 1}n∗
κ only with probability that’s negligible in κ.2 Chamon et al.

[CMR22] propose a more structured distribution over circuits and provide quantum-mechanical
evidence that a few as mκ = O(nκ log nκ) may suffice for pseudorandomness whenever nκ = Ω(κ).
Their analysis extends also to completely random circuits with mκ = Õ(nκ) gates.

Still, while these properties may be intriguing, they only relate to the functionality of random
reversible circuits; that is, they only consider attackers with black-box access to the chosen circuit.
Here instead we are concerned with adversaries that have full access to the circuit description, and
can mount attacks that combine the circuit’s functionality and structure.

The good news about random reversible circuits is that their “internal structure” appears to
be largely uncorrelated with their functionality, in the sense that any (not too large) segment of
a sufficiently long random circuit remains pseudorandom even given oracle access to the overall

1More specifically, any circuit C with α input wires, β output wires, µ NAND gates and width ω can be transformed
to a reversible circuit C′ on n = α + β + δ wires and m gates, where n = O(ω) and m = O(µ), and where
C′(x, y, 0δ) = (x,C(x) + y, 0δ) for any x ∈ {0, 1}α, y ∈ {0, 1}β (see e.g. [Ben73, Tof80]). We also show how to make
this transform “obfuscation compatible” by providing the additional guarantee that C′(x, y, z) = (x, y, z) whenever
z ̸= 0δ.

2The conjecture is actually only implicit in [Gow96]. It is made explicit in Barak’s survey [Bar17].
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circuit. For instance, let C
R← Cn∗

κ,mκ , for some mκ > m∗
κ and let Ci denote the circuit C without

the m∗
κ-gate sub-circuit that starts at gate i. It is easy to see that, under Gower’s conjecture and

for any i, polytime adversaries that are given i, oracle access to C and a challenge (mκ −m∗
κ)-gate

circuit C ′, cannot tell whether C ′ = Ci, or else C ′ R← Cn∗
κ,mκ−m∗

κ
, significantly better than a random

guess.3

Furthermore, it is only natural that this same property — pseudorandomness of not-too-
long circuit segments — would extend also to sufficiently long random circuits with some fixed
functionality. For instance, let EP,m denote the set of all m-gate circuits that compute permutation

P , let C
R← EIn∗

κ
,2m∗

κ
, and let C[1,m∗

κ]
denote the m∗

κ-gate prefix of C. While C[1,m∗
κ]

is statistically far
from a random n∗

κ-wire, m
∗
κ-gate circuit, it is plausible that the two distributions are indistinguishable.

By the same token, it seems plausible that

{C : C
R← EIn∗

κ
,2m∗

κ
}κ∈N

c
≈ {C|C ′ : C

R← Cn∗
κ,m

∗
κ
;C ′ R← EC†,m∗

κ
}κ∈N,

namely that a random 2m∗
κ-gate identity circuit is indistinguishable from a random m∗

κ-gate circuit
C followed by the inverse of another random m∗

κ-gate circuit C ′ that’s functionally equivalent to C.
(Here we use EC,m as a shorthand for EPC ,m, where PC is the permutation computed by circuit C.)
Indeed, here we have two instances of the previous distribution, where the instances are correlated
only via the permutation PC .4

Taking this logic a step further, let C be an arbitrary, potentially highly structured m-gate
circuit, and let C

R← EC,m′ be a random m′-gate circuit that is functionally equivalent to C, where
m′ ≥ 2m∗

κm. Then it is plausible that any (m′ −m∗
κ)-gate portion of C is indistinguishable from a

random circuit of the same length. Furthermore, let C1,C2 be m1-gate prefix and m2-gate suffix of
C, m1 +m2 = m. Then it seems plausible that:

{C : C
R← EC,2m∗

κm}κ∈N
c
≈ {C1|C2 : R

R← Cn∗
κ,m

∗
κ
;C1

R← E(C1|R),2m∗
κm1

;C2
R← E(R†|C2),2m∗

κm2
}κ∈N,

namely that a random 2m∗
κm-gate circuit that’s functionally equivalent to C is indistinguishable from

a random 2m∗
κm1-gate circuit C1 that computes the permutation C1|R for a random m∗

κ-gate circuit
R, followed by a random 2m∗

κm2-gate circuit C2 that computes R†|C2. We call this assumption the
Split-Circuit Pseudorandomness (SCP) assumption (see also Figure 1).5

Discussion. We stress that the SCP assumption may not be efficiently falsifiable even if false.
This is so since since it considers indistinguishability of distributions which are not known to be
efficiently samplable. In fact, many of these distributions are not even efficiently recognizable -
e.g. we don’t have a feasible way to know for sure that a given circuit computes even the identity
permutation.

3Indeed, an algorithm Aκ that guesses correctly for some i can be used to break Gower’s conjecture: Given oracle

access to an unknown function F , choose P0, P1
R← Cn∗

κ,i, S0, S1
R← Cn∗

κ,mκ−m∗
κ−i and b

R← {0, 1}, run Aκ on input
(i, P0, S0), and answer each oracle query x of Aκ with Sb(F (Pb(x)). If Aκ guesses b correctly then guess that F is
taken from Gower’s PRF, else guess that F is a random permutation.

4One consequence of the correlation is that here m∗
κ needs to be large enough not only to make Gower’s conjecture

work, but also to make sure that two random instantiations of the same permutation look sufficiently different from
each other. However, this distinction appears to become moot when m∗

κ = Ω̃(|Bn|). See more discussion within.
5The constant 2 above is clearly arbitrary and was only used to underline the progression of the logic underlying

the assumption. Also, the above formulation actually corresponds to a strong version of the SCP assumption, whereas
a somewhat weaker version suffices for our treatment. See more details within.
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C

C
c
≈

C1 C2

+ R↓
C1|R R†|C2

C1|R R†|C2

Figure 1: The Split Circuit Pseudorandomness (SCP) assumption. Circuit C (top left) is an arbitrary n-wire,
m-gate reversible circuit. Circuits C1 and C2 at the top right are the m1-gate prefix and m2-gate suffix of C
(with m1 +m2 = m), and R is a random m#-gate circuit, where m# depends only on n and the security
parameter, while m is an arbitrarily large polynomial. Circuits C1|R and R†|C2 at the bottom right are
random m#m1-gate and m#m2-gate circuits that are functionally equivalent to C1|R and R†|C2, respectively.
The assumption states that the concatenation of these two circuits is computationally indistinguishable from
a random m#m-gate circuit that’s functionally equivalent to C (bottom left), in spite of the fact that each
one of C1|R and R†|C2, taken separately, computes a pseudorandom permutation.

At the same time, this assumption is a fairly minimal instantiation of a more general intuition
regarding the pseudorandomness of sufficiently long random circuits with fixed functionality. This
intuition essentially states that there exist n∗

κ,m
∗
κ ∈ poly(κ) such that for any large enough κ, any

m ≥ m∗
κ, and any fixed circuit C ∈ Cn∗

κ,m, a random O(m∗
κm)-gate circuit C that is functionally

equivalent to C essentially renders “all information on both the structure and functionality of short
and medium range segments of C” inaccessible to polytime observers, while keeping the overall
functionality intact.

We note that the SCP assumption appears closely related - at least in spirit - to assumptions
regarding the hardness of distinguishing between random strings with different Kolmogorov (respec-
tively, MCSP) complexities (see e.g. [LP20, LP21, IRS22, BLMP23, ILW23]). While some initial
connections are made within, further exploration and exploitation of these apparent connections
may be of independent interest.

1.1.2 New notions of security for circuit obfuscation

Next, we sketch the definitions of ROI obfuscation (which strengthens IO) and RIO obfuscation
(which relaxes IO). Let Cn denote the set of all n-wire reversible circuits. A transformation
O : Cn → Cn is functionality-preserving if O(C) and C are functionally equivalent for any C ∈ Cn.

A functionality-preserving transformation O = {Oκ}κ∈N, Oκ : Cnκ → Cnκ , is a random output
indistinguishability (ROI) obfuscator for a set {Cκ ⊆ Cnκ}κ∈N of circuits and inner-stretch
function ξ if there exists an efficient “post-processing algorithm” π such that for any mκ-gate circuit
Cκ ∈ Cκ we have:

{O(Cκ)}κ∈N
c
≈ {π(Ĉ) : Ĉ

R← ECκ,ξ(κ,nκ,mκ)}κ∈N.

It can be verified that if ξ(κ, n,m) = m then ROI obfuscation coincides with standard in-
distinguishability obfuscation (IO). (In particular, in this case we can set π = O without losing
generality.) However, when ξ(κ, n,m) ≥ m+Ω(κ) ROI obfuscation becomes non-trivial to obtain
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even in situations where IO is trivial (e.g. when the input circuit C is the only one with the same
size and functionality). Furthermore, together with the SCP assumption, ROI obfuscation with
large inner-stretch (namely, when ξ(κ, n,m) = Ω(m∗

κm)) guarantees that both the structure and
the functionality of any not-too-large portion of C are essentially lost. This is a strong, VBB-like
security guarantee – and is obtained without being susceptible to the broad impossibility results
that limit the applicability of VBB obfuscation.

A functionality-preserving transformation O = {Oκ}κ∈N, Oκ : Cnκ → Cnκ , is a random input
and output (RIO) obfuscator with respect to Cnκ,mκ if the following two requirements hold:6

1. {(O(C), O(C)) : C
R← Cnκ,mκ}κ∈N

c
≈ {(O(C), O(C ′) : C

R← Cnκ,mκ ;C
′ R← EC,mκ}κ∈N

2. For any ”advice” circuit Zκ = Z1,κ|Z2,κ we have

O(C), Ĉ1, Ĉ2
c
≈ O(C ′), Ĉ1, Ĉ2

where C
R← Cnκ,mκ , C ′ R← EC,mκ , C1 and C2 are the mκ/2-gate prefix and suffix of C,

respectively, Ĉ1
R← E

(Z1,κ|C†
1),l1,κλκ

, and Ĉ2
R← E

(C†
2 |Z2,κ),l2,κλκ

. Here li,κ is the number of gates

in Zi,κ, i = 1, 2, and λκ is a ‘leeway parameter’ associated with O.

The two requirements from an RIO obfuscator are incomparable and capture different security
aspects: The first requirement makes sure that two obfuscated versions of the same random circuit
C do not look “too much alike” relative to the obfuscated versions of two random circuits C,C ′

with the same functionality and length.

The second requirement makes sure that O(C) remains indistinguishable from O(C ′) even when
given advice that is tantamount to oracle access to C1 and C2, the first and second halves of
C, and their inverses. More specifically, let Z be some a-priori fixed circuit. Then the advice
consists of the following “randomized completion” Ĉ1, Ĉ2 of C to a (sufficiently long) circuit that is
functionally equivalent to Z: Let Z = Z1|Z2; then Ĉ1 and Ĉ2 are sufficiently long random circuits

that respectively compute Z1|C†
1 and C†

2|Z2. (Indeed, while the only “operable information” in

Ĉ1, Ĉ2 appears to be the ability to evaluate C1, C2, this advice has significant additional structure; in
particular, both Ĉ1|C|Ĉ2 and Ĉ1|C ′|Ĉ2 are functionally equivalent to Z. Whether this requirement
can be further simplified (or relaxed) while preserving its usefulness is an intriguing question.)

It is stressed that neither of the two RIO requirements considers a distinguisher that has access
to the input circuit C. This stands in sharp contrast to the case of IO (and ROI) where the
distinguisher sees both C and O(C), making RIO potentially easier to obtain — not only from IO,
but also from IO for random circuits.

1.1.3 From RIO to ROI for all circuits

We show:

Theorem 1 (informal:) If there exist RIO obfuscators for Cn∗
κ,m

∗
κ
, where n∗

κ,m
∗
κ satisfy the SCP

assumption, then there exists an ROI obfuscator O with large inner-stretch for all circuits in Cn∗
κ
.

Furthermore, if C has m gates then O(C) has poly(κ)m gates.

For the construction, we first construct the following building blocks (See Figure 2):

6For simplicity we present here the definition only for the special case where there is no inner-stretch requirement
and the input is uniform. A more general formulation appears within.
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I. RIG: R S
O

, S′ S†|S II. ROI(β): I β

β

III. Solder(C1, C2): C1

C̃1

O

C2

C̃2

O

C̃1,1 C̃1,2 C̃2,1 C̃2,2

C̃1,1 C̃2,2C̃1,2|C̃2,1

O

Figure 2: The building blocks for constructing ROI obfuscation for all reversible circuits from RIO obfuscation
for bounded length random circuits. The first building block is random identity generators (RIGs), constructed
by concatenating two RIO-obfuscated versions of a random circuit, one in reverse. The second building
block is ROI obfuscators for single gates, constructed by sampling a RIG with the desired first gate and
removing that gate. The third building block is soldering ROI-obfuscated versions of circuits C1 and C2 into
an ROI-obfuscated version of C1|C2 by concatenating the individual obfuscations and re-obfuscating the
circuit segment around the seam. These basic building blocks are then iterated to solder obfuscated versions
or arbitrarily long circuits.

• A random identity generator (RIG), which is an ROI obfuscator for the identity permutation

with inner-stretch 2m∗
κ. This is done by choosing C

R← Cn∗
κ,m

∗
κ
, then sampling C ′, C ′′ R← O(C)

where O is an RIO obfuscator, and finally outputting C ′|C ′′†. Security is proven using the
RIO security of O and the SCP assumption.

• A gate obfuscator GO, namely an ROI obfuscator for β, per each gate β ∈ Bn∗
κ
. This can be

done simply by sampling random itentities using the previous step, until an identity circuit
that starts with β is sampled. Then, remove the leading β gate (or alternatively replace it
with an identity gate) and output the result.

• A procedure for “soldering” ROI-obfuscated circuits, namely combining an ROI obfuscator
O1 for a circuit C1 and an ROI obfuscator O2 for a circuit C2 into an ROI obfuscator for
the circuit C1|C2. The idea is again simple: Let C̃1

R← O1(C1), C̃2
R← O2(C2). Now, let

C̃1 = C1,1|C1,2 and C̃2 = C2,1|C2,2, where C1,2 and C2,1 have m∗
κ-gates each. Now, compute

G
R← O(C1,2|C2,1) where O is an RIO obfuscator, and output the circuit C1,1|G|C2,2. Security

is proven based on the security properties of the building blocks, using the SCP assumption.
(While the proof is conceptually straightforward, care has to be taken to the fact that several
of the intermediate distributions are not efficiently samplable.)

Now, to obfuscate a circuit C = γ1 . . . γm, first sample Γi
R← GO(γi) for i = 1..m, and then solder

the circuit pieces one by one: Let C1 = Γ1, and for i = 2..m let Ci be the result of soldering Ci−1

and Γi. Finally output Cm.

The use of ROI obfuscation with large inner-stretch for the intermediate steps in the obfuscation
process (rather than, say, plain IO) is critical for this approach to work. In particular, we critically
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use the fact that, after each step, the intermediate circuit Ci has essentially lost “all polynomially
accessible information” on its structure (i.e. on γ1 . . . γi) other than the overall functionality of
γ1 . . . γi. This may be viewed as evidence for the power of ROI obfuscation.

1.1.4 Constructing RIO obfuscators

Reversible circuits admit a wide variety of functionality preserving local perturbations. For instance,
given a circuit C = γ1 . . . γi . . . γi+ℓ . . . γm one can replace a circuit segment γi . . . γi+ℓ with any
circuit C ′ = γ′1 . . . γ

′
ℓ′ that is functionally equivalent to γi . . . γi+ℓ (i.e. PC′ = Pγi...γi+ℓ

), obtaining a
perturbed circuit C ′′ = γ1 . . . γi−1|C ′|γi+ℓ+1 . . . γm that is functionally equivalent to C (i.e. PC′′ =
PC). When ℓ, ℓ′ are small enough (say, constants), it is possible to sample uniformly from all - or
sufficiently many - ℓ′-gate circuits that are functionally equivalent to any given ℓ-gate circuit so as
to make for effective randomization of that particular segment. It is thus tempting to explore the
possibility that the space of functionally equivalent circuits within a given length is ergodic — namely
that iterative replacements of randomly chosen small circuit segments with random functionally
equivalent alternative segments may provide more global mixing (and hence obfuscation) properties.

One drawback of a literal implementation of this idea is that much of the randomness in a random
circuit can be effectively “factored out”, say via efficiently computable cannonical representations
of circuits. For instance, note that many pairs of gates β, β′ ∈ Bn commute, namely Pββ′ = Pβ′β.
(In fact, all but O(1/n) of them do.) Thus applying the above process with segments of size up
to o(

√
n) and ℓ′ = ℓ will end up only re-ordering commuting gates, almost always. However, such

re-randomization is easily factored out by using a cannonical representation that fixes the order for
each pair of commuting gates (say, starting from the left and using some lexicographic ordering of
the gates).

A natural approach to get around the above “attack” is to consider circuit segments that are not
consecutive: for instance, pick a random gate γi in the circuit and a random direction (left/right),
and let γj be the nearest gate in that direction that “collides” (i.e., does not commutes) with γi.
Then remove γi and γj , and replace them by a functionally equivalent sequence of gates (say, as
in Figure 3), placed anywhere between locations i and j. Such a strategy may appear harder to
reverse, but it is again ultimately reversible (at least in and of itself) since it leaves behind clusters
of “collision debris” gates that are relatively easy to identify.

A more general issue with naive realizations of local rerandomization of circuit segments is that,
for most ℓ-gate circuits C, the set EC,ℓ is relatively small. (As we demonstrate within, this is in fact
a general property that holds for all values of ℓ; but it is perhaps most prominent when ℓ is small.)
This means that, when ℓ = ℓ′ the above process may again not provide sufficient randomization. On
the other hand, when ℓ < ℓ′, the circuit would continually grow in size, which means that there
is little hope to reach any stationary distribution — or to even to guarantee more basic mixing
properties such as having each segment in the final circuit depend on all gates in the original circuit.

Furthermore, it is unlikely to be the case any two functionally equivalent circuits of the same
size are connected via a “path”, or a sequence of polynomially many local transformations that
are quaranteed to be functionality preserving. Indeed, if this were the case, then we would have
a polysize witness for the fact that two circuits are functionally equivalent, implying NP=coNP.
(Note that this rules out the very existence of such a sequence, not just the feasibility of finding one.
This observation is a slight variant of a more general result by Goldwasser and Rothblum [GR14],
which demonstrates, in a similar way, that perfect IO for all circuits implies NP=coNP.)
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Still, these arguments leave open the possibility that a somewhat more nuanced or structured
local perturbation process could actually provide sufficient “confusion and diffusion” so as to satisfy
the relatively weak requirements of RIO obfuscation for random circuits that have sufficiently many
gates so as to make the Gowers conjecture hold.

We heuristically propose such a process. First, we formulate a representation of circuits that
facilitates generalizing the above “colliding gates” method to identifying sets of nearby (albeit not
necessarily consecutive) gates that form structured sub-circuits that are amenable to rerandomization.

Second, we split the mixing process into two stages. In the first, “inflationary” stage, the size ℓout

of the sub-circuits to be replaced is a relatively small constant, and the size ℓin of the replacement
circuit is only slightly larger - just enough for effective re-randomization of the structure of the
replaced sub-circuit while preserving its functionality. In the second, “kneading” stage, the size ℓknd

of the replacement circuit is set to be identical to the size of the circuit to be replaced, and both are
set to be significantly larger than ℓin — say ℓknd = Θ(log log n), where n is the number of wires.

In a nutshell, the rationale here is the following. The inflationary stage adds a significant amount
of “random redundancy” to the circuit. (We measure the “level of redundancy” in a circuit by
way of the “complexity gap”, or the difference between the number of gates in the circuit and the
number of gates in the smallest functionally equivalent circuit.) As noted above, this stage alone
does not suffice since the complexity gap is concentrated in small sub-circuits of the overall circuit
and may thus still be removable with feasible computational overhead. Still, the structure of the
replaced sub-circuits enables the kneading stage to spread the already-existing complexity gap over
successively larger sub-circuits, thus making it computationally hard to localize and remove.

We provide more detailed rationale within. It is stressed however that the analysis is far from
rigorous, and that the proposed process is merely an exploration meant to demonstrate the viability
of the approach rather than well-analyzed candidate circuit obfuscator. We leave further analysis to
future work.

1.2 Related work

The randomizing power of permutation groups is not new to cryptography, with a prominent
examples being the seminal work of Kilian that shows how to use Barrington’s S5 representation of
branching programs to randomize general NC1 computations [Bar86, Kil88]. Kilian’s randomization
technique has been widely used, including in early candidate obfuscation schemes [CV13].

Alagic, Jeffery and Jordan [AJJ14] use the randomizing power of permutation groups (in the
more restricted context of Braid permutations) to show unconditional “partial inditinguishability
obfuscation” mechanisms for programs that are within the same equivalence class of a certain
normal-form representation.

Chamon, Muccciolo and Ruckenstein [CMR22] study pseudorandomness properties of random
reversible circuits, and provide evidence that as little as m = O(n log n) gates suffice for the family
Cn,m to be an SPRP, when n is taken to be the security parameter.

Chamon et al. [CJMR22] use local perturbation techniques of a different flavor of the ones
proposed here to construct a candidate “homomorphic pseudorandom permutation family” and
use it as a basis for a symmetric homomorphic encryption scheme. It is stressed though that the
security requirements needed in that application are significantly weaker than the ones needed for
general program obfuscation, or even RIO obfuscation.

Finally, [CRMC23] takes a thermodynamic approach to circuit complexity, and in particular
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studies mixing of polynomial-sized reversible circuits of a given functionality through the iterative
equilibration of concatenated short subcircuits described via local equilibrium distributions of
reversible gates. In particular, that work uses the thermodynamics framework to argue that the
set of functionally equivalent reversible circuits of some size is partitioned to sectors where each
sector is ergodic with mixing time that’s polynomial in the circuit size. In other words, that
work suggests that viability of the local mixing approach as an obfuscation method reduces to the
indistinguishability of random circuits from different sectors.

2 Reversible Boolean circuits

This section recalls the model of reversible Boolean circuits and its relationship with standard
Boolean circuits.

A reversible Boolean circuit C on n wires consists of a sequence of permutations C = γ1 . . . γm
where each γi is a permutation on {0, 1}n, taken from a predetermined set B of base permutations.
The permutation PC computed by C is the composition of the individual permutations, PC =
γm ◦ . . . ◦ γ1, or in other words C(x) = γm(. . . γ1(x) . . .).

We concentrate on circuits where the base permutations consist of applying a Toffoli gate to
three chosen wires, where a Toffoli gate is a permutation on {0, 1}3 of the form τϕ(a1, a2, a3) =
(a1 + ϕ(a2, a3), a2, a3) where ϕ : {0, 1}2 → {0, 1} is the control function of the gate. (We often refer
to the three wires of a Toffoli gate as pins, where the first pin is active and the second and third
pins are non-active.) That is, we consider the set of base permutations defined by

Bn = {βw1,w2,w3,ϕ : w1, w2, w3 ∈ [n]3, w2 ̸= w1 ̸= w3, w2 ̸= w3, ϕ : {0, 1}2 → {0, 1}}

where βw1,w2,w3,ϕ(x1 . . . xn) = y1 . . . yn such that (yw1 , yw2 , yw3) = τϕ(xw1 , xw2 , xw3), and yj = xj
for each j ∈ [n] \ {w1, w2, w3}. (We note that, as defined above, Bn is actually a multi-set since
βw1,w2,w3,ϕ and βw′

1,w
′
2,w

′
3,ϕ

′ may well describe the same permutation. In fact, while there are

16 different control functions ϕ, there are roughly 8n3 different base permutations overall. For
convenience we use the convention where only a single representative of each base permutation is

used, i.e. bn
def
= |Bn| ≈ 8n3. However this convention does not appear essential for the treatment.)

The natural evaluation of C = γ1 . . . γm, where each γi = βw1,i,w2,i,w3,i,ϕi
, on input x = x1, ..., xn ∈

{0, 1}n is described iteratively as follows. For j = 1..n we have x
(0)
j = xj , and for each i = 1..m we

have (x
(i)
1 . . . x

(i)
n = γi(x

(i−1)
1 . . . x

(i−1)
n ). The value of wire j after gate i is defined as x

(i)
j . It may be

useful to envision reversible circuits as a sequence of n horizontal parallel wires, where each gate
connects three wires, and where the computation proceeds from left to right.

Since all base permutations (or, gates) are even, reversible circuits can only compute even
permutations on {0, 1}n. Still, considering only circuits of the above form does not limit the
generality of the treatment. Indeed, the set Bn of gates generates all even permutations over {0, 1}n,
namely the alternating group A2n (see e.g. [CG75, Bro04]).

Furthermore, any circuit C with α input wires, β output wires, µ NAND gates and width ω
can be transformed to a reversible circuit C ′ on n = α+ β + δ wires and m gates, where n = O(ω)
and m = O(µ), and where C ′(x, y, 0δ) = (x,C(x) + y, 0δ) for any x ∈ {0, 1}α, y ∈ {0, 1}β (see
e.g. [Ben73, Tof80, Ben89, Bro04]). In the Appendix we show how to “harden” the standard
transformation so as to guarantee that C ′(x, y, z) = (x, y, z) for z ̸= 0δ, and how to use the hardened
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transform to show that obfuscation of reversible circuits suffices for general-purpose obfuscation of
all circuits. 7

Let C† denote the natural inverse (or, “reverse”) of circuit C. That is, if C = γ1, ..., γm then
C† = γm, ..., γ1. Indeed, note that PC|C† = PC†|C = In, where In denotes the identity permutation
on {0, 1}n. This is so since the base permutations are the inverses of themselves, i.e. Pβ|β = In for
all base permutations β. (Here ‘|’ denotes the natural concatenation, or composition, of gates or
circuits.) Let Cn,m denote the set of all m-gate circuits on n wires, and let Cn =

⋃
m>0 Cn,m.

For a circuit C = γ1 . . . γm, let |C| = m denote the number of gates in C. For i, l ∈ [m], let
C[i,l] = γi . . . γi+l(mod m) denote the l-gate segment of C that starts at the ith gate, taken modularily;
in particular, i < 0 refers to m− i. We also use C[i,∗] as a shorthand for C[i+1,m−i].

A note about asymptotics. Throughout we treat n, the number of wires, m, the number of
gates, and the runtimes of adversaries as functions of (specifically, polynomials in) the security
parameter κ. We will also be mostly interested in the regime where m is polynomial in n. While
our treatment is mostly asymptotic in κ, a non-asymptotic treatment with concrete values can be
naturally derived.

3 Hardness assumptions

This section presents and motivates the hardness assumptions used in this work. We first take a
moment to define a measure of complexity for reversible circuits and then use it to estimate the
sizes and makeup of the clusters of functionally equivalent reversible circuits of a given length. This
detour will be useful both as a basis for our hardness assumptions, and as a basis for the local
perturbation mechanisms developed in Section 6.

We start off with a reminder of the standard definition of computational indistinguishability,
and a natural extension thereof. Let A = {Aκ}κ∈N and B = {Bκ}κ∈N be distribution ensembles.
(More precisely, we think of each Aκ (resp., Bκ) as a sampling algorithm. The distribution is
defined via the probability of obtaining each possible output value when running the algorithm
on an input which is drawn uniformly from {0, 1}†.) A and B are said to be computationally

indistinguishable, denoted A
c
≈ B, if there exists a negligible function ε(κ) such that for any polysize

family of distinguishing algorithms D = {Dκ}κ∈N and all large enough values of κ it holds that
Prob[Dκ(Aκ) = 1]− Prob[Dκ(Bκ) = 1] < ε(κ).

3.1 On the distribution of functionally equivalent reversible Circuits

Let A2n denote the set of even permutations on {0, 1}n. For a permutation P ∈ A2n , let EP,m
denote the set of all m-gate circuits that compute P , namely EP,m = {C ∈ Cn,m : PC = P}. Slightly
abusing notation, for a circuit C we let EC,m = EP(C),m.

We would like to estimate the size of EC,m. Towards this, we define the Computational
Complexity CC(P ) of a permutation P as the number of gates in the smallest circuit that

7Note that not all 16 control functions are needed for completeness to hold. In fact, the functions ϕ(x, y) = xy,
ϕ(x, y) = x, ϕ(x, y) = 1 suffice. However, considering all 16 control functions will be convenient for our treatment. In
particular, this way the value of the active wire of τϕ for a random control function is uniformly distributed regardless
of the values of the input wires. Furthermore, having the identity as a base permutation (with ϕ(x, y) = 0) will be
convenient as well. This set of permutations is also the one considered by Brodsky and Hoory [HMMR05, HB05].
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computes P . Similarly, let CC(C) = CC(PC) denote the number of gates in the smallest circuit that
computes PC . The complexity gap of an m-gate circuit C is defined to be CG(C) = m− CC(C).

While CC(C) is clearly distinct from the Kolmogorov complexities of string representations of
a circuit C, these notions have many similarities. For one, it is easy to see that bm > |EP,m| >
b
1
2
(m−CC(P )) for any permutation P , where b ≈ 8n3 is the number of base permutations. (For the

lower bound, let C be a circuit of length CC(P ). Then for any sequence of base permutations β1 . . . βl
where l = (m− CC(P ))/2, the circuit Cβ1β1 . . . βlβl is functionally equivalent to C.) Furthermore,

for all but a negligible faction of the circuits C we actually have bm > |EC,m| > b
(1−o(1))(m−CC(C)

log b
)
:

Claim 2 For all but a negligible fraction of the circuits C ∈ Cn,m we have |EC,m| > b
(1−o(1))(m−CC(C)

log b
)
.

Proof: Note that any string σ = {0, 1}s can be interpreted as a description of a reversible circuit
Cn,σ on n wires and m gates where s = m log b. (Recall that b ≈ 8n3 is the number of base
permutations.) Furthermore, for any such n,m, the string σ is fully determined via a circuit δ of
size CC(Cn,σ) that’s functionally equivalent to Cn,σ, plus the ordinal of Cn,σ among all m-gate
circuits that are functionally equivalent to Cn,σ. This means that K(σ) ≤ CC(Cn,σ)+ log(|ECn,σ ,m|),
or equivalently that

|ECn,σ ,m| ≥ 2K(σ)−CC(Cn,σ) = b
1

log b
(K(σ)−CC(Cn,σ)) = b

m
s
(K(σ)−CC(Cn,σ)

log b
)

where K(σ) denotes the Kolmogorov complexity of σ. The bound follows by noting that K(σ) >
(1− o(1))s for all but a negligible fraction of the strings σ ∈ {0, 1}s. □

In essence, Claim 2 says that, for almost all permutations P ∈ A2n , the size of EP,m grows at
almost the same rate (up to lower order terms) as the overall growth in the size of Cn,m. In other
words the ratio FP,m = |EP,m|/|Cn,m| is almost constant: 1 ≥ FP,m ≥ 2−CC(C)(1+ω(1)).

This “almost uninhibited” exponential growth of EP,m supports the conjecture (formalized later
in this section) that relatively short segments of random circuits in EP,m, where m >> CC(P ), are
nearly random.

Another conclusion from this state of affairs is that |{C ∈ Cn,m : CC(C) = m}|b−m ≤ negl(m),
namely that the fraction of m-gate circuits whose computational complexity is m, out of all m-gate
circuits, tends to zero rather quickly as m grows (see more discussion in [CRMC23].) This fact
becomes handy in Section 6.

3.2 Hardness assumptions regarding random reversible circuits

Limited independence. We start by recalling the works that serve as the mathematical and
intuitive basis for our analysis. Intrigued by the potential pseudorandomness of random reversible
circuits, Gowers [Gow96] showed that Cn,m, the family of m-gate permutations on n wires, is
ε-close to being strongly t-wise independent for any t < 2n and m = Ω(n3t3 log(ε−1)). That is,

for any sequence of distinct values x1 . . . xt ∈ {0, 1}n, and for C
R← Cn,m, the statistical distance

between C(x1) . . . C(xt) and a random sequence of distinct values r1 . . . rt, is at most ε. Hoory et al.
[HMMR05] and later Brodsky and Hoory [HB05] improve this bound to m = Ω(n3t2+n2t log(ε−1)).
(We note that, while Gowers considered all 8!

(
n
3

)
permutations on 3 wires as base permutations,

Brodsky and Hoory [HMMR05, HB05] consider the same set Bn of base permutations considered
here.)
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Pseudorandomness. Gowers conjectured that the family of permutations defined by m-gate
reversible circuits on n wires might be pseudorandom (in the cryptographic sense) for some
m = poly(n). While to the best of our knowledge this conjecture has so far not been related to
other hardness assumptions used in cryptography (beyond, of course, the obvious implication of
the existence of pseudorandom functions), we will adopt this conjecture as a starting point for our
investigation. We first restate the standard definition of strong PRPs using our notation:

Definition 3 (Strong pseudorandom permutations (SPRPs)) An ensemble F = {Fκ}κ∈N
of circuit families, where the family Fκ ⊂ Cnκ consists of circuits on nκ wires, is a strong
pseudorandom permutation family if there exists a negligible function ν(κ) such that for any
family of polynomial-size adversaries A = {Aκ}κ∈N, and all large enough value of κ we have

Prob[AC,C†
κ = 1 : C

R← Fκ]− Prob[AP,P−1

κ = 1 : P
R← A2nκ ] < ν(κ). (1)

Here A2n denotes the set of even permutations on the set {0, 1}n and poly(κ) denotes the set of
polynomials in κ. Next we state Gowers’ conjecture from the Introduction):

Assumption 4 (Polysize random reversible circuits are SPRPs [Gow96]) There exist n∗
κ,

m∗
κ ∈ poly(κ) such that the ensemble F = {Fκ}κ∈N where Fκ = Cn∗

κ,m
∗
κ
is an SPRP.

We note that, while our analysis remains valid for any polynomial values of n∗
κ,m

∗
κ, the assumption

does not appear to be easy to refute even for relatively shallow circuits with n∗
κ = Θ(κ) and

m∗
κ = Θ̃(κ). Additional argumentation for the viability of this assumption for the case where

m∗
κ = Θ̃(n∗

κ) appears in [CMR22].

Pseudorandomness of correlated SPRPs. As a first step towards presenting our main
assumption regarding pseudorandomness of split random circuits with fixed functionality, we
demonstrate that a milder form of that assumption actually follows from a mild extension of
Assumption 4. Rather than considering only the family of all circuits of a given lenth, the extension
considers circuits that are sufficiently long prefixes of a sufficiently long random circuit that computes
some fixed permutation. Specifically, let Q = {Qκ}κ∈N with Qκ ∈ Cn∗

κ,mκ be an ensemble of circuits,

and let C
R← EQκ,m be a random m-gate circuit that computes Qκ, where m ≥ mκm

∗
κ for a “long

enough cushion” m∗
κ, akin to the number of gates needed to obtain pseudorandomness in Assumption

4. We assume that, for any ℓ such that m∗
κ ≤ ℓ ≤ (mκ − 1)m∗

κ, the ℓ-gate prefix of C is an SPRP:

Assumption 5 (Prefixes of random circuits with fixed functionality are SPRPs) There ex-
ist n∗

κ,m
∗
κ ∈ poly(κ) such that for any ensemble Q = {Qκ}κ∈N of circuits with Qκ ∈ Cn∗

κ,mQκ
for

mQκ ∈ poly(κ), and any mκ, ℓκ such that mκ ≥ mQκm
∗
κ and m∗

κ ≤ ℓκ ≤ mκ −m∗
κ, the ensemble

{Gκ}κ∈N where Gκ = {C[1,ℓκ] : C ∈ EQκ,mκ} is an SPRP.

We note that circuits drawn from Gκ (for some fixed Qκ) are in general statistically far from
random ℓκ-gate circuits.8 Still, it appears that Assumption 5 is only a mild generalization of

8As a simple example, compare a random n-wire, 2m-gate circuit R that computes In to a circuit C1|C2 where
C1 is a random m-gate circuit and C2 is a random m-gate circuit such that C1|C2 computes In. Observe that R1,
the m-gate prefix of R, is more likely to compute a permutation that’s computed by many m-gate circuits, or in
other words a permutation with smaller circuit complexity than C1. (Indeed, let α ∈ Cn,m. Then Pr[C1 = α] = b−m

(where b is the number of gates on n wires), whereas Pr[R1 = α] is the number of m-gate circuits R2 such that
Pα|R2

= In divided by the number of 2m-gate identity circuits, namely |Eα,m|/|EIn,2m|. By Claim 2, for most α the

latter probability is proportional to b−CC(α).)
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Assumption 4.

An immediate consequence from Assumption 5 is that, for any ensemble of fixed circuits {Qκ}κ∈N
where Qκ ∈ Cn∗

κ,mQκ
, polysize adversaries can distinguish between the following two cases only with

negligible advantage.

Oracle access to a prefix and remainder of a random circuit for Qκ: The adversary has
oracle access to C1, C2 (and their inverses), where C = C1|C2 is a random mκ-gate circuit for
Qκ ∈ A2n∗ (κ), where |C1| = ℓκ, and where n∗

κ,m
∗
κ,mκ, ℓκ satisfy the length requirements of

Assumption 5.

Oracle access to two SPRPs that jointly compute Qκ: Let {Q1,κ, Q2,κ}κ∈N be an ensemble
of pairs of circuits where Qκ = Q1,κ|Q2,κ, and let F = {Fκ}κ∈N be an SPRP ensemble where
Fκ ⊆ Cn∗ . The adversary has oracle access to P1, P2 (and their inverses), where P1 = Q1,κ|C
and P2 = C†|Q2,κ, and C

R← Fκ.

That is:

Claim 6 Let n∗
κ,m

∗
κ ∈ poly(κ) and Q = {Qκ}κ∈K be as in Assumption 5 with Qκ = Q1,κ|Q2,κ,

and let F = {Fκ}κ∈N where Fκ ⊂ Cn∗
κ
be an SPRP. Then for any mκ, ℓκ s.t. mQκm

∗
κ ≤ mκ and

m∗
κ ≤ ℓκ ≤ mκ−m∗

κ there exists a negligible function ν(κ) such that for any family of polynomial-size
adversaries A = {Aκ}κ∈N, and all large enough value of κ we have

Prob[A
C1,C

†
1 ,C2,C

†
2

κ = 1 : C ∈ EQκ,mκ ;C1 = C[1,ℓκ], C2 = C[ℓκ,∗]]− (2)

Prob[A
P1,P

−1
1 ,P2,P

−1
2

κ = 1 : C
R← Fκ;P1 = Q1,κ|C;P2 = C†|Q2,κ] < ν(κ).

Proof: Since {Fκ}κ∈N is an SPRP ensemble then so is the ensembles {P1,κ|C : C
R← Fκ}κ∈N. It

follows that:

Prob[A
C1,C

†
1

κ = 1 : C ∈ EQκ,mκ ;C1 = C[1,ℓκ]]− Prob[A
P1,P

†
1

κ = 1 : P1
R← Fκ] < ν(κ).

The claim follows by observing that oracle access to the last two oracles in (2), namely either C2, C
†
2

in the left hand side experiment or P2, P
−1
2 in the right hand side experiment, can be emulated

given oracle access to the first two oracles in that experiment and advice in the form of a polysize
circuit CQκ that computes Qκ. (Specifically, let O1, O2, O3, O4 denote the four oracles. Then,

O3(x) = CQκ(y) where y = O2(x). Similarly, O4(x) = O1(y) where y = C†
Qκ

(x).) □

Pseudorandomness of split random ciruits with fixed functionality. We now turn to
considering observers that, rather than only having oracle access to the permutations in (2), have
access to a random circuit (of a certain size) that computes each permutation. Clearly, having
access to a polysize circuit that computes a permutation provides significantly more “computational
power” than oracle access to the permutation (for one, the permutation is now easily distinguishable
from a random permutation). Still, intuitively, the added power provided by sufficiently long
random circuits that compute the two permutations in question (either PC1 ,PC2 or alternatively
P1, P2) should not be of any help in distinguishing (2). This intuition is formalized in the next
assumption, which states that for any ensemble of fixed permutations {Qκ}κ∈N, which are defined
by way of an ensemble of pairs of polysize circuits {P1,κ, P1,κ}κ∈N where Pi,κ ∈ Cnκ,mi,κ , i = 1, 2,
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and PP1,κ|P1,κ
= Qκ, polysize adversaries can distinguish between the following distributions only

with negligible advantage.

• A circuit of the form Ĉ1|Ĉ2 where Ĉ1 is a random ℓ1,κ-gate circuit that computes PP1,κ|C ,

where C
R← Fκ for an SPRP ensemble {Fκ}κ∈N, where ℓ1,κ is larger than (m1,κ + |C|) by a

sufficiently large margin, Ĉ2 is a random ℓ2,κ-gate circuit that computes PC†|P2,κ
and ℓ2,κ is

larger than (m2,κ + |C|) by a sufficiently large margin.

• A random (ℓ1,κ + ℓ2,κ)-gate circuit Ĉ that computes Qκ.

A bit more formally:

Assumption 7 (Split Pseudorandom Circuits are Pseudorandom (SPCP)) For any SPRP

ensemble F = {Fκ}κ∈N where Fκ ⊂ Cnκ,mκ there exist m#
κ ∈ poly(κ) such that for any ensem-

ble of pairs of circuits Q = {P1,κ,P2,κ}κ∈N where Pi,κ ∈ Cnκ,mi,κ, and any ℓ1,κ, ℓ2,κ such that

ℓi,κ ≥ mi,κm
#
κ , i = 1, 2, we have:

{Ĉ1|Ĉ2 : C
R← Fκ; Ĉ1

R← E(P1,κ|C),ℓ1,κ ; Ĉ2
R← E(C†|P2,κ),ℓ2,κ}κ∈N

c
≈

{Ĉ : Ĉ
R← E(P1,κ|P2,κ),ℓ1,κ+ℓ2,κ}κ∈N. (3)

In the present work we only need a restricted variant of this assumption, where F is the family
of all m∗

κ gate circuits from Assumption 4. Still, the more general statement appears to more closely
match the intuition for the nature of the hardness.

Finally, we combine Assumptions 4 and 7 to one:

Assumption 8 (Split Circuit Pseudorandomness (SCP):) There exist n∗
κ, m

∗
κ ∈ poly(κ) that

satisfy Assumption 4, as well as m#
1,κ ∈ poly(κ) that satisfies Assumption 7 with respect to the

SPRP in Assumption 4.

We also consider a somewhat stronger variant of the SCP assumption, where m∗
κ = m#

κ . To
see why this variant is stronger, consider again the case of comparing a random nκ-wire, m

#
κ gate

identity circuit R
R← E

Inκm
#
κ
to the split version C ′|C ′′† : C

R← Cnκ,m∗
κ
;C ′, C ′′ R← E

C,m#
κ
, and recall

that, when m∗
κ = m#

κ , the split version tends to be skewed towards circuits C whose computational
complexity is higher than that of R1, the m∗

κ-gate prefix of R, or in other words |EC,m∗
κ
| < |ER1,m∗

κ
.

(See the exposition in Footnote 8.) This also means that C ′′ is likely to be “more similar” to C ′

than R2 to R1, making distinguishing R from C ′|C ′′† potentially easier than distinguishing R1 from

C ′ alone. When m#
κ grows relative to m∗

κ, this discrepancy tapers off and CC(C) (which is at most

m∗
κ) eventually drops below CC(R1) (which keep growing with m#

κ ). Furthermore, the discrepancy
between |EC,m∗

κ
| and |ER1,m∗

κ
| is prominent only when m∗

κ < b. When m∗
κ ≫ b, e.g. m∗

κ = Ω(n4), we
have that |EC,m∗

κ
| is sufficiently large so as to make the discrepancy moot.9

On the other hand, we note that this somewhat stronger assumption enables demonstrating that
a weaker variant of RIO obfuscation suffices for obtaining full-fledged obfuscation for all circuits.

9Observe that the computational complexity of a random n=wire, m=gate circuit C is at most Θ̃(m/n2). Indeed,
it is easy to verify that a each gate γi cancels out with an earlier identical gate γj = γi for some j < i with probability

Θ(n−2). By Claim 2, this means that if C
R← Cn,n4 then |EC,n4 | > bn

2

.
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Assumption 9 (Strong Split Circuit Pseudorandomness (SSCP):) Assumption 8 holds with

m∗
κ = m#

κ .

4 Notions of obfuscation for reversible circuits

A (randomized) transformation O : Cn → Cn on reversible circuits has stretch σ if for any C ∈ Cn,m
we have O(C) ∈ Cn,m+σ(n,m). O is said to be functionality preserving on a set C of circuits
if PO(C) = PC for any C ∈ C. An obfuscator O = {Oκ}κ∈N for C = {Cκ}κ∈N is an ensemble
of transformations on reversible circuits where Oκ is functionality preserving on Cκ. We start by
recalling the standard definition of Indistinguishability obfuscation (IO):

Definition 10 (Indistingiushability Obfuscation (IO):) An obfuscator O = {Oκ}κ∈N is an
indistingusihability obfuscator (IO) for C = {Cκ}κ∈N if for any ensemble of pairs of circuits
{C0,κ, C1,κ}κ∈N that are equal size (i.e., C0,κ, C1,κ ∈ Cκ ∩ Cnκ,mκ for some nκ,mκ) and functionally
equivalent (i.e. PC0,κ = PC1,κ for all κ), we have

{Oκ(C0,κ)}κ∈N
c
≈ {Oκ(C1,κ)}κ∈N.

An alternative and equivalent formulation of this definition requires that Oκ(C) ≈c RC for any
circuit C ∈ Cκ, where RC is a circuit drawn from some (not necessarily efficiently computable)
reference distribution that depends only on PC and the size of C:

Definition 11 (IO - an alternative formulation:) An obfuscator O = {Oκ}κ∈N is an indis-
tingusihability obfuscator (IO) for C = {Cκ}κ∈N if there exists a (not necessarily polytime)
sampling algorithm D such that for any ensemble C = {Cκ}κ∈N of circuits such that Cκ ∈ Cκ∩Cnκ,mκ

we have:
{Oκ(Cκ)}κ∈N

c
≈ {R : R

R← D(κ,mκ,PCκ)}κ∈N.

Claim 12 An obfuscator satisfies Definition 11 for an ensemble C of circuits iff it satisfies Defiition
10 for C. □

This alternative formulation provides a stepping stone towards presenting two new notions of
obfuscation that will be key to our construction and analysis: Random Output (RO) and Random
Input (RI) obfuscation.

Random Output Obfuscation. In the rest of this work we will be mostly interested in obfuscators
where the output distribution D is of a particular form. Ideally, we would have liked to require
that the distribution D(n,m,P ) be the uniform distribution over EP,m′ for some m′ ≥ m. However,
this turns out to be a bit too ideal, as the local random perturbations technique of Section 6 does
not appear to support this property (see discussion there). We thus settle for a relaxation that
on the one hand appears to be plausible, and on the other hand suffices for obtaining IO for all
circuits. Specifically, we focus on distributions D(κ,m,P ) where the output circuit is the result of
applying some efficient (i.e., polytime) post-processing algorithm to a circuit Ĉ drawn uniformly
from EP,m′ for some m′ ≥ m. We further restrict attention to post-processing algorithms that are
applied separately to different segments of C, rather than to the entire circuit C. (We later use
this property together with Assumption 8 to argue about properties of separate segments of an
obfuscated circuit.) Specifically:
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Definition 13 (Random Output obfuscators:) An IO obfuscator O = {Oκ}κ∈N for C =
{Cκ}κ∈N is a Random Output Indistinguishability (ROI) obfuscator with inner-stretch
function ξ : N3 → N and post-processing algorithm π : Cnκ → Cnκ if for any ensemble {Cκ}κ∈N of
circuits where Cκ ∈ Cκ ∩ Cnκ we have:10

{Oκ(Cκ)}κ∈N
c
≈ {π(Ĉ) : Ĉ

R← ECκ,ξ(κ,nκ,|Cκ|)}κ∈N.

We note that ROI obfuscation where ξ(κ, nκ,mκ)−mκ = Ω(κ) is a non-trivial strengthening of
plain IO. In particular, it seems to be both meaningful and challenging even in situations where
plain IO is trivial, e.g. when the input circuit is the only circuit with the same functionality and
length. (In particular recall that, by Claim 2, for each Cκ ∈ Cκ ∩ Cnκ,mκ we have that the size of
CCκ,ξ(κ,nκ,mκ) is exponential in κ.)

Separable ROI obfuscators. The following variant of ROI obfuscators will be useful for our
soldering-based construction. An ROI obfuscator O is called mκ-left-separable if:

1. The computational complexity of the mκ-gate prefix of obfuscated circuits is low: for any C,
CC((Oκ(C))[1,mκ]) ≤ mκ/2.

2. The post-processing algorithm is of the form π = (π1, π2) where π(C) = π1(C[1,mκ])|π2(C[mκ,∗]).

Obfuscator O is mκ-right-separable if O† is left-separable, where O†(C) = (O(C†))†. An mκ-
separable obfuscator is both mκ-left-separable and mκ-right-separable.

For a function f : C → C, let f †(C) = (f(C†))†. Observe that if O = {Oκ}κ∈N is an mκ-left-

separable ROI obfuscator then O† = {O†
κ}κ∈N is an m′

κ-right-separable ROI obfuscator (and vice
versa).

Random Input & Output obfuscators. Here we consider obfuscators (namely, functionality
preserving transformations on circuits) where security is required only with respect to circuits drawn
from a specific distribution. Furthermore, in contrast with IO where security must hold against an
observer who sees both the plaintext circuit and the obfuscated circuit, here the observer sees only
the obfuscated circuit plus some limited information on the plaintext circuit. More specifically, we
consider two (incomparable) security requirements, made with respect to a circuit C chosen from
some base distribution Rκ over Cnκ,2mκ , and output distribution D

• The observer should not be able to distinguish between two obfuscated versions of C and two
circuits drawn from D(κ, 2mκ,PC). (In essence, this requirement says that two obfuscated
versions of the same random circuit should not look “too much alike” compared to two
independent draws from the underlying distribution D(κ, 2mκ,PC).)

• The observer should not be able to distinguish between an obfuscated version of C and a circuit
drawn from D(κ, 2mκ,PC), even given the “halfway functionality” of the original circuit C,
namely the permutation computed by the mκ-gate prefix of C. In fact, we consider only the

10Note that the overall stretch of O is the composition of the inner-stretch function ξ and the stretch of the
post-processing algorithm π. That is, if π : Cnκ,m′

κ
→ Cnκ,τ(κ,n,m′

κ) then the stretch of O is σ(κ, nκ,mκ) =
τ(κ, nκ, ξ(κ, nκ,mκ)).
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following partial information on that permutation: the observer is given Ĉ1
R← E(Z1|C[1,m]),|Z1|λκ

),

Ĉ2
R← E(C[m,∗]|Z2),|Z2|λκ

for some fixed circuits Z1, Z2 and sufficiently large “leeway” λκ. (Indeed,

with the premise that there exists λκ ∈ poly(κ) such that a random (CC(P )λκ)-gate random
circuit for a permutation P provides “no useful computational ability other than the ability
to evaluate P”, this requirement essentially says that an obfuscated version of C should not
be correlatable with the functionality of the mκ-gate prefix of C.)

Definition 14 (Random Input (RI) obfuscators:) An obfuscator O = {Oκ}κ∈N is Random
Input (RI) for nκ, 2mκ, input distribution ensemble R = {Rκ}κ∈N where Rκ ⊆ Cnκ,2mκ, and
output distribution D, if:

I. (C1, C2) :

C
R← Rnκ,2mκ ;C1, C2

R← Oκ(C)


κ∈N

c
≈

(Ĉ1, Ĉ2) :

C
R← Rκ; Ĉ1, Ĉ2

R← D(κ, nκ, 2mκ,PC)


κ∈N.

II. There exists a leeway function λκ ∈ poly(κ) such that for any two circuit ensembles Z1 =
{Z1,κ}κ∈N,Z2 = {Z2,κ}κ∈N with Zi ∈ Cnκ,mi,κ for some mi,κ, i = 1, 2, and any λ ≥ λκ we have:

(Oκ(C), Ĉ1, Ĉ2) :

C
R← Rκ;

Ĉ1
R← EP(C[1,mκ]|Z1,κ

),m1,κλ;

Ĉ2
R← E(PZ2,κ|C[mκ,∗]

),m2,κλ


κ∈N

c
≈



(Ĉ, Ĉ1, Ĉ2) :

C
R← Rκ; Ĉ

R← D(PC , |C|);

Ĉ1
R← EP(C[1,mκ]|Z1,κ

),m1,κλ;

Ĉ2
R← E(PZ2,κ|C[mκ,∗]

),m2,κλ


κ∈N.

Definition 15 (Random Input & Output (RIO) obfuscators:) An RI obfuscator O = {Oκ}κ∈N
for nκ,mκ is Random Input Output (RIO) with inner-stretch function ξ : N3 → N and post-
processing algorithm π : Cnκ → Cnκ if its output distribution D is of the form D(κ, nκ,mκ, P ) = π(C)

for C
R← EP,ξ(κ,nκ,mκ).

Requirements (I) and (II) appear to be incomparable. Furthermore, each use of RIO obfuscators
within our construction needs only one of the two requirements, with respect to a specific input
distribution. This means that in principle one could have two different constructions of RIO
obfuscation, where each construction is geared towards realizing only one of the two requirements.
Still, for simplicity of the treatment we only consider obfuscators that satisfy both requirements.
(Indeed, our current candidate RI obfuscators do not distinguish between the two requirements.)

5 From RIO obfuscation to ROI for all circuits

This section presents the construction of ROI obfuscators for all circuits from RIO obfuscators.
More specifically, Let n∗

κ,m
∗
κ,m

#
κ be length functions that satisfy Assumption 8. Our starting point

is two obfuscators, O1 and O2, such that:
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• O1 is an RIO obfuscator that satisfies property I with respect to the uniform input distribution
C

R← Cn∗
κ,m

∗
κ
, with inner-stretch ξ(κ, n∗

κ,m
∗
κ) = m#

κ and with post-processing algorithm π.

• O2 is an an RIO obfuscator that satisfies property II with respect to the input distribution
C = π(C ′)|π†(C ′′) : C ′, C ′′ R← Cn∗

κ,m
∗
κ
and leeway λκ ≤ m#

κ .

That is, we show:

Theorem 16 Let n∗
κ,m

∗
κ,m

#
κ be length functions that satisfy Assumption 8. If there exist algorithms

O1, π,O2 such that:

• O1 satisfies property I of RIO obfuscation for input distribution ensemble {C : C
R← Cn∗

κ,m
∗
κ
}κ∈N,

with inner-stretch ξ(κ, n∗
κ,m

∗
κ) = mκ ≥ m#

κ and post-processing algorithm π,

• O2 is an an RIO obfuscator that satisfies property II with respect to the input distribution
C = π(C ′)|π†(C ′′) : C ′, C ′′ R← Cn∗

κ,m
∗
κ
and leeway λκ ≤ m#

κ .

then there exists an ROI obfuscator O for all reversible circuits. Furthermore, the inner-stretch of
O for m-gate circuits is Ω(m#

κ m).

We present the construction and its analysis in four steps. First, we show how to construct
ROI obfuscators for the identity function, with some specific parameters. (We call such obfuscators
pseudrandom identity generators.)

Next we use random identity generators to construct ROI obfuscators for single gate circuits.

Nest we show how to use RIO obfuscators with the above parameters to combine, or “solder”
obfuscated circuits to obtain obfuscated versions of the concatenation of these circuits.

Next we combine the last two steps to construct full-fledged ROI obfuscation for all reversible
circuits.

Claim 22 in the Appendix demonstrates how to use an indistinguishability obfuscator for all
reversible circuits obtain an indistinguishability obfuscator for all Boolean circuits.

5.1 Random Identity Generators

Random identity generators (RIGs) are separable ROI obfuscators for the identity permutation
with specific parameters: Let Inκ denote the identity permutation on nκ wires. An (nκ,mκ)-RIG is
an mκ-separable ROI obfuscator for Inκ with inner-stretch ξ(κ, nκ, 1) ≥ 2mκ.

In other words, an RIG is a sampling algorithm that, given κ, generates circuits that are
indistinguishable from π(C), where C is a random circuit with nκ wires and 2mκ gates that
computes the identity permutation, and π is a post-processing algorithm. Furthermore, π is of the
form π = (π1, π2) where π1 is applied to C[1,mκ] and π2 is applied to C[mκ,∗], and the computational
complexities of both C[1,mκ] and C[mκ,∗] are less than mκ/2,

Definition 17 (random identity generators) An algorithm {Gk}κ∈N is an (nκ,mκ)-RIG if it
is an mκ-separable ROI obfuscator for {Inκ}κ∈N, with inner-stretch ξ(κ, nκ, 1) ≥ 2mκ.

Let n∗
κ,m

∗
κ,m

#
κ be length functions that satisfy Assumption 8. We construct an (n∗

κ, 2mκ)-RIG
Gκ given an obfuscator O that satisfies property I of RIO obfuscation (see Definition 14) for uniformly

chosen inputs in Cn∗
κ,m

∗
κ
, with inner-stretch ξ such that ξ(κ, n∗

κ,m
∗
κ) = mκ where mκ ≥ m#

κ . The
construction is straightforward:
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1. Sample C
R← Cn∗

κ,m
∗
κ

2. Sample C ′, C ′′ R← Oκ(C)

3. Output C ′|C ′′†.

We show:

Claim 18 Let n∗
κ,m

∗
κ,m

#
κ be length functions that satisfy Assumption 8, and let O = {Oκ}κ∈N

satisfy property I of RIO obfuscation for input distribution Rκ = Cn∗
κ,m

∗
κ
, and with inner-stretch

ξ(κ, n∗
κ,m

∗
κ) = mκ where mκ ≥ m#

κ . Then G = {Gk}κ∈N described above is an (n∗
κ,mκ)-RIG.

Proof: We show that Gκ is an mκ-separable ROI obfuscator for the identity function {In∗
κ
}κ∈N,

with inner-stretch ξ(κ, n∗
κ, 1) = 2mκ, and with post-processing algorithm π′ = (π, π†). That is, we

show:

{C : C
R← Gκ}κ∈N = {C ′|C ′′† : C

R← Cn∗
κ,m

∗
κ
;C ′, C ′′ R← Oκ(C), }κ∈N

c
≈ (6)

{π(C ′)|π(C ′′)† : C
R← Cn∗

κ,m
∗
κ
;C ′, C ′′ R← EC,mκ}κ∈N

c
≈ (7)

{π(Î[1,mκ])|(π(Î[mκ,∗]))
† : Î

R← EIn∗
κ
,2mκ}κ∈N . (8)

Indistinguishability of experiment (6) and experiment (7) follows directly from the RIO security
of O (property I). Indistinguishability of experiment (7) and experiment (8) follows from Assumption

8. Indeed, by Assumption 4, {C : C
R← Cn∗

κ,m
∗
κ
}κ∈N is an SPRP. Since |C ′| = |C| = mκ ≥ m#

κ , we
can use Assumption 7 to conclude that:

{C ′|C ′′ : C
R← Cn∗

κ,m
∗
κ
;C ′, C ′′ R← EC,mκ}κ∈N

c
≈ {Ĵ[1,mκ]|(Ĵ[mκ,∗])

† : Ĵ
R← EIn∗

κ
,2mκ}κ∈N . (9)

Now, an algorithm Aκ that distinguishes between experiments (7) and (8) can be used to distin-
guish between the two distributions in (9): Given a circuit C ∈ Cn,2mκ , outputAκ(π(C[1,mκ])|π†(C[mκ,∗])).
Observe that if C was drawn from the l.h.s. distribution in (9) then Aκ’s input is drawn from (7)
and if C was drawn from the r.h.s. distribution then Aκ’s input is drawn from (8). The claim
follows by transitivity of computational indistinguishability, along with verifying that Gκ is indeed
both mκ-right-separable and mκ-left-separable. □

5.2 ROI obfuscation of single gates

Next we show how to use a random identity generator G to construct ROI obfuscators of single
gates, namely an algorithm GO = {GOκ}κ∈N where, for some nκ,mκ ∈ poly(κ) and each base
permutation β ∈ Bnκ , GOκ(β) samples circuits that are indistinguishable from π(C) for a random

circuit C
R← Eβ,mκ for some post-processing algorithm π. We additionally make length and

separability requirements that are similar to those of random identity generators (RIGs): GOκ

should have inner-stretch ξ where ξ(κ, n∗
κ,m

∗
κ) = 2mκ with mκ ≥ m∗

κ; furthermore, it should be
mκ-separable.

Definition 19 (Gate Obfuscators.) An algorithm GO = {GOk}κ∈N is an (nκ,mκ)-gate ob-
fuscator if, for any β = {βκ ∈ Bnκ}, we have that GOκ(βκ) is an mκ-separable ROI obfuscator for
βκ, with inner-stretch ξ(κ, nκ, 1) ≥ 2mκ.
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The construction is simple: GOκ(β) keeps sampling identity circuits using Gκ until the first gate
in the generated circuit is β. Once this happens, GO replaces that first gate with the identity gate βI
and outputs the resulting circuit. Note that in order for GOκ(β) to terminate in polynomial time we
need to further assume that the circuits generated by Gκ start with β with polynomial probability.
The random identity generators constructed in this work satisfy this property unconditionally.

Claim 20 Let {Gκ}κ∈N be an (nκ,mκ)-random identity generator such that Prob[C[1,1] = β : C
R←

Gk] ∈ poly(κ) for all β ∈ Bnκ. Then GO is an (nκ,mκ)-gate-obfuscator.

Proof: To see that GOκ(β) is an mκ-separable ROI obfuscator for β, let π = (π1, π2) be the
post-processing algorithm guaranteed by Definition 17, such that

{C R← Gκ}κ∈N
c
≈ {π1(C[1,mκ])|π2(C[mκ,∗]) : C

R← EInκ ,2mκ}κ∈N. (10)

Consider the post-processing algorithm π = (π′
1, π2) where π′

1(C) = βI |π1(β|C). We argue that

{βI |C[1,∗] : C
R← Gκ s.t. C[1,1] = β}κ∈N

c
≈ (11)

{π′
1(C[1,mκ])|π2(C[mκ,∗]) : C

R← Eβ,2mκs.t. C[1,1] = β}κ∈N.

Indeed, an algorithm Aκ that distinguishes between the two distributions in (11) can be used to
distinguish between the two distributions in (10): given a circuit C, if C[1,1] = β, output Aκ(βI |C[1,∗]);
else, output a random bit. Observe that if C was drawn from the l.h.s. distribution in (10) then,
whenever C[1,1] = β, we have that C[1,∗] is drawn from the l.h.s. distribution in (11). If C was drawn
from the r.h.s. distribution in (10) then, whenever C[1,1] = β, we have that C[1,∗] is drawn from the
r.h.s. distribution in (11). □

We note that both the efficiency and security of GO can be significantly improved with little
effort: Once the first base permutation β′ = (w′

1, w
′
2, w

′
3, ϕ) in the sampled circuit has the same

control function ϕ as the given β = (w1, w2, w3, ϕ), can remove β′ and then ”rotate” the remaining
circuit so that the wires w′

1, w
′
2, w

′
3 will become w1, w2, w3. That is, if the sampled circuit is of

the form β′|C then output the circuit C ′ that is the result of renaming the wires in C via the
permutation σ = (w1, w

′
1)(w2, w

′
2)(w3, w

′
3) on [n]. This way, the random identity generator needs

to be run at most 16 times in expectation (assuming that the control function of the first gate
is distributed uniformly). The expected number of samples needed can be further reduced (for
“nice” post-processing functions) by noting that any circular shift of an identity circuit is an identity
circuit.

5.3 Soldering obfuscated circuits

Next we show how to combine (or, “solder”) obfuscated circuits to obtain obfuscated versions

of the concatenation of these circuits. Specifically, let n∗
κ,m

∗
κ,m

#
κ satisfy Assumption 8 and let

C1 = {C1,κ}κ∈N,C2 = {C2,κ}κ∈N be circuit ensembles such that Ci,k ∈ Cn∗
κ,mi,κ for i = 1, 2.

Consider the following building blocks, with respect to some mκ ≥ max(m∗
κ,m

#
κ ):

• an mκ-right-separable ROI obfuscator RO1 for ensemble C1, with post-processing algorithm
π1 = (π1,1, π1,2) and inner-stretch ξ1 such that ξ1(κ, n

∗
κ,m) ≥ mκm,
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• an mκ-left-separable ROI obfuscator RO2 for ensemble C2, with post-processing algorithm
π2 = (π2,1, π2,2) and inner-stretch ξ2 such that ξ2(κ, n

∗
κ,m) ≥ mκm,

• an RIO obfuscator O that satisfies Property II with leeway function λκ ≤ mκ, for auxiliary
circuits C†

1,κ, C
†
2,κ, and for input distribution ensemble:

{(π1,2(Ĉ1,2)|π2,1(Ĉ2,1)) : C1,2, C2,1
R← Cn∗

κ,m
∗
κ
; Ĉ1,2

R← EC1,2,mκ ; Ĉ2,1
R← EC2,1,mκ}κ∈N. (12)

We use RO1, RO2, O to construct an ROI obfuscator RO1|2 for C = {Cκ}κ∈N, where Cκ = C1,κ|C2,κ.
Obfuscator RO1|2,κ proceeds as follows:

1. Sample C1
R← RO1,κ(C1,κ) and C2

R← RO2,κ(C2,κ).

2. Let τi,j denote the stretch of the post-processing algorithm πi,j , let ti,j = τi,j(κ, n
∗
κ,mκ), and

let C1,1 = (C1)[1,−t1,2], C1,2 = (C1)[−t1,2,∗], C2,1 = (C2)[1,t2,1], C2,2 = (C2)[t2,1,∗].

Sample G
R← Oκ(C1,2|C2,1).

3. Output C1,1|G|C2,2.

Claim 21 Let n∗
κ,m

∗
κ,m

#
κ satisfy Assumption 8, and let mκ ≥ m#

κ . For i = 1, 2, let Ci = {Ci,κ}κ∈N
be a circuit ensemble where Ci,k ∈ Cn∗

κ,mi,κ , and let ROi = {ROi,κ}κ∈N be an ROI obfuscator for Ci

with inner-stretch ξi such that ξi(κ, n
∗
κ,m) = mκm and with post-processing algorithm πi = (πi,1, πi,2);

furthermore, RO1 is mκ-right-separable and RO2 is mκ-left-separable. Let O be an RIO obfuscator
with inner-stretch fuction ξ3 and with post-processing algorithm π3, for the input distribution ensemble
in (12). Then RO1|2 defined above is an ROI obfuscator for the circuit ensemble {C1,κ|C2,κ}κ∈N,
with inner-stretch function

ξ(κ, n∗
κ,m) = mκ(m− 2) + ξ3(κ, n

∗
κ, 2mκ)

and post-processing algorithm

π(C) = π1(C[1,ξ1(κ,n∗
κ,m1,κ)−mκ])|π3(C[ξ1(κ,n∗

κ,m1,κ)−mκ+1,ξ3(κ,n∗
κ,2m

∗
κ)]

)|π2(C[−(ξ2(κ,n∗
κ,m2,κ)−mκ),∗]).

Futhermore, if RO1 is mκ-left-separable then so is RO1|2. If RO2 is mκ-right-separable then so is
RO1|2.

Proof: Conceptually, the proof is a straightforward application of the security properties of the
components used by RO1|2. However, since some of the distributions involved are not efficiently
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generatable, the actual proof requires some care. We show:

{C : C
R← RO1|2,κ(C1,κ|C2,κ)}κ∈N =

{C1,1|G|C2,2 : C1,1|C1,2
R← RO1,κ(Ci,κ);C2,1|C2,2

R← RO2,κ(C2,κ);G
R← Oκ(C1,2|C2,1)}κ∈N

c
≈ (13)

{π1,1(Ĉ1,1)|G|C2,2 : (14)

(Ĉ1,1|Ĉ1,2
R← EC1,κ,m1,κmκ ;C2,1|C2,2

R← RO2,κ(C2,κ);G
R← Oκ(π1,2(Ĉ1,2)|C2,1)}κ∈N

c
≈

{π1,1(Ĉ1,1)|G|π2,2(Ĉ2,2) : Ĉ1,1|Ĉ1,2
R← EC1,κ,m1,κmκ ; (15)

Ĉ2,1|Ĉ2,2
R← EC2,κ,m2,κmκ ;G

R← Oκ(π1,2(Ĉ1,2)|(π2,1(Ĉ2,1))}κ∈N
c
≈

{π1,1(Ĉ1,1)|G|π2,2(Ĉ2,2) : (16)

C1,2, C2,1
R← Cn∗

κ,m
∗
κ
; Ĉ1,2

R← EC1,2,mκ ; Ĉ2,1
R← EC2,1,mκ ; Ĉ1,1

R← E
(C1,κ|C†

1,2),m1,κmκ
;

Ĉ2,2
R← E

(C†
2,1|C2,κ),m2,κmκ

;G
R← Oκ(π1,2(Ĉ1,2)|(π2,1(Ĉ2,1))}κ∈N

c
≈

{π1,1(Ĉ1,1)|π3(Ĝ)|π2,2(Ĉ2,2) : (17)

C1,2, C2,1
R← Cn∗

κ,m
∗
κ
; Ĉ1,2

R← EC1,2,mκ ; Ĉ2,1
R← EC2,1,mκ ; Ĉ1,1

R← E
(C1,κ|C†

1,2),m1,κmκ
;

Ĉ2,2
R← E

(C†
2,1|C2,κ),m2,κmκ

; Ĝ
R← E(C1,2|C2,1),ξ3(κ,n∗

κ,2mκ)}κ∈N
c
≈

{π1,1((Ĉ1+)[1,m1,κmκ])|π3((Ĉ1+)[m1,κmκ,∗])|π2,2(Ĉ2,2) : (18)

C2,1
R← Cn∗

κ,m
∗
κ
; Ĉ1+

R← E(C1,κ|C2,1),m1,κmκ+ξ3(κ,n∗
κ,2mκ); Ĉ2,2

R← E
(C†

2,1|C2,κ),m2,κmκ
}κ∈N

c
≈

{π1,1(C[1,m1,κ+mκ])|π3(C[m1,κmκ+1,ξ3(κ,n∗
κ,2mκ)])|π2,2(C[−(m2,κ−mκ),∗]) : (19)

C
R← E(C1,κ|C2,κ),m1,κmκ+ξ3(κ,n∗

κ,2m
∗
κ)+m2,κmκ

}κ∈N =

{π(C) : C
R← E(C1,κ|C2,κ),ξ(κ,n∗

κ,m1,κm2,κ)}κ∈N.

Experiment (14) differs from experiment (13) in that the application of RO1,κ is replaced by a
draw from EC1,κ,ξ1(κ,n∗

κ,m1,κ) (where ξ1(κ, n
∗
κ,m1,κ) = m1,κmκ) and applying π1 = (π1,1, π1,2) to the

result. Indistinguishability follows from the security of of RO1. Indeed, by security of RO1 we have:

{RO1,κ(C1,κ)}κ∈N
c
≈ {π1,1(C[1,−mκ])|π1,2(C[−mκ,∗]) : C

R← EC1,κ,m1,κmκ}κ∈N, (20)

whereas a distinguisher Aκ between (13) and (14) can be used to distinguish between the two ensem-

bles in (20): Given a circuit X, sample C2,1|C2,2
R← RO2,κ(C2,κ), compute G = Oκ(X[−t1,2,∗]|C2,1),

and output Aκ(X[1,−t1,2]|G|C2,2). (Recall that ti,j = τi,j(κ, n
∗
κ,mκ) where τi,j is the stretch of πi,j .)

If X is drawn from RO1,κ(C1,κ) then Aκ’s input is drawn from (13); in the other case, Aκ’s input is
drawn from (14).

Experiment (15) differs from experiment (14) in that the application of RO2,κ is replaced by a
draw from EC2,κ,m2,κmκ and applying π2 = (π2,1, π2,2) to the result. By security of RO2 we have:

{RO2,κ(C2,κ)}κ∈N
c
≈ {π2,1(C[1,mκ])|π2,2(C[mκ,∗]) : C

R← EC1,κ,m2,κmκ}κ∈N. (21)

As above, a distinguisher Aκ between (14) and (15) can be used to distinguish between the two
ensembles in (20). Here however the straightforward reduction would require drawing a sample from
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EC1,κ,m1,κmκ , which is not known to be doable in polynomial time. We thus resort to a non-uniform
reduction: by averaging, for any Aκ there must exist a polysize string z = z1|z2 such that Aκ

distinguishes between

{z1|G|C2,2 : C2,1|C2,2
R← RO2,κ(C2,κ);G

R← Oκ(z2|C2,1)}κ∈N}κ∈N (22)

and
{z1|G|π2,2(Ĉ2,2) : Ĉ2,1|Ĉ2,2

R← EC2,κ,m2,κmκ ;G
R← Oκ(z2|π2,1(Ĉ2,1)}κ∈N (23)

with the same advantage that it distinguishes between (14) and (15). This means that Aκ can
be used to break RO2 as follows: Given a circuit X, compute G = Oκ(z2|X[1,t2,1]), and output
Aκ(z1|G|X[t2,1,∗]). Indeed, if X is drawn from RO2,κ(C2,κ) then Aκ’s input is drawn from (21); in
the other case, Aκ’s input is drawn from (21).

Experiment (16) differs from experiment (15) in the way that the circuits Ĉi,j (for i, j = 1, 2) are

chosen. Rather than choosing Ĉi,1|Ĉi,2
R← ECi,κ,mi,κmκ (for i = 1, 2), we now choose C1,2,

R← Cn∗
κ,m

∗
κ
,

then Ĉ1,2
R← EC1,2,mκ , and then randomly choose Ĉ1,1 so that Ĉ1,1|Ĉ1,2 computes PC1,κ . Similarly,

we choose C2,1,
R← Cn∗

κ,m
∗
κ
, then Ĉ2,1

R← EC2,1,mκ and then randomly choose Ĉ2,2 so that Ĉ2,1|Ĉ2,2

computes PC2,κ .

Indistinguishability follows by applying Assumptions 4 and 7. First, by Assumption 4, each of
C1,2, C2,1 is, individually, an SPRP. Furthermore, for each i, j = 1, 2 the circuit Ĉi,j is longer than
the SPRP that defines its functionality by sufficiently many gates for Assumption 7 to hold. (That is,

|Ĉ1,1| ≥ (|C1,κ|+ |C1,2|)m#
κ , |Ĉ1,2| ≥ |C1,2|m#

κ , |Ĉ2,1| ≥ |C2,1|m#
κ , and |Ĉ2,2| ≥ (|C2,κ|+ |C2,1|)m#

κ .)
We thus obtain:

{Ĉ1,1|Ĉ1,2 : Ĉ1,1|Ĉ1,2
R← EC1,κ,m1,κmκ}κ∈N

c
≈

{Ĉ1,1, Ĉ1,2 : C1,2
R← Cn∗

κ,m
∗
κ
; Ĉ1,2

R← EC1,2,mκ ; Ĉ1,1
R← E

(C1,κ|C†
1,2),m1,κmκ

}κ∈N

and similarly:

{Ĉ2,1, Ĉ2,2 : Ĉ2,1|Ĉ2,2
R← EC2,κ,m2,κmκ}κ∈N

c
≈

{Ĉ2,1, Ĉ2,2 : C2,1
R← Cn∗

κ,m
∗
κ
; Ĉ2,1

R← EC2,1,mκ ; Ĉ2,2
R← E

(C†
2,1|C2,κ),m2,κmκ

}κ∈N.

By transitivity it follows that

{Ĉ1,1, Ĉ1,2, Ĉ2,1, Ĉ2,2 : (24)

Ĉ1,1|Ĉ1,2
R← EC1,κ,m1,κmκ ; Ĉ2,1|Ĉ2,2

R← EC2,κ,m2,κmκ}κ∈N
c
≈

{Ĉ1,1, Ĉ1,2, Ĉ2,1, Ĉ2,2 : C1,2, C2,1
R← Cn∗

κ,m
∗
κ
; Ĉ1,2,

R← EC1,2,mκ ; Ĉ2,1,
R← EC2,1,mκ ; (25)

Ĉ1,1
R← E

C1,κ|Ĉ†
1,2,m1,κmκ

; Ĉ2,2
R← E

C†
2,1|C2,κ,m1,κmκ

}κ∈N.

Now, consider the following distinguisher A′
κ between (24) and (25), given a disinguisher Aκ

between (15) and (16): A′
κ(Ĉ1,1, Ĉ1,2, Ĉ2,1, Ĉ2,2) = Aκ(π1,1(Ĉ1,1)|Oκ(Ĉ1,2|Ĉ2,1)|π2,2(Ĉ2,2)). Indeed,

if the input of A′
κ is drawn from (24) then the input of Ak is drawn from (15); if the input of A′

κ is
drawn from (25) then the input of Ak is drawn from (16).

Experiment (17) differs from experiment (16) in that Oκ(C1,2|C2,1) is replaced by π3(Ĉ) where

Ĉ
R← EC1,2|C2,1,ξ3(κ,n∗

κ,2m
∗
κ)
. Indistinguishability follows from the premise that O is an RIO obfuscator
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that satisfies property II for the input distribution ensemble Rκ from (12), with inner-stretch ξ3
and post-processing algorithm π3, and with respect to auxiliary circuits Z1,κ = C†

1,κ,Z2,κ = C†
2,κ

and leeway λ = mκ ≥ λκ.

Indeed, let Aκ be an adversary that distinguishes (16) from (17), and construct the following
Oκ-adversary A′

κ. Recall that A
′
k is given input (X, Ĉ1, Ĉ2), where X is either drawn from Ok(C)

for C
R← Rκ or X = π3(Ĉ) for Ĉ

R← EC,ξ3(κ,n∗
κ,2mκ), and where Ĉ1

R← E
C†

1,κ|C[1,mκ],ℓ1,κ
and Ĉ2

R←

E
C[mκ,∗]|C

†
2,κ,ℓ2,κ

where ℓi,κ = mi,κmκ. Adversary A′
κ will now output Aκ(π1,1(Ĉ

†
1)|X|π2,2(Ĉ

†
2)). If

X = Oκ(C) for C
R← Rκ then the input of Ak is drawn from (16); in the other case, the input of Ak

is drawn from (17).

Experiment (18) differs from experiment (17) in how the first two components of the overall
circuit are chosen, before the application of the post-processing algorithms: in experiment (17) the
two components are chosen separately as Ĉ1,1|Ĝ where Ĝ is a random circuit of the appropriate

length that computes C1,2|C2,1, whereas in experiment (18) we have a single component Ĉ1+ , which
is a random circuit of the appropriate length that computes C1|C2,1. Indistinguishability follows
from Assumption 8. Indeed, by Assumption 8, for any circuit ensemble {Zκ}κ∈N where Zκ ∈ Cn∗

κ,m
∗
κ

we have:

{Ĉ1,1|Ĝ : C1,2
R← Cn∗

κ,m
∗
κ
; Ĉ1,2

R← EC1,2,mκ ; Ĉ1,1
R← E

(C1,κ|C†
1,2),m1,κmκ

;

Ĝ
R← E(C1,2|Zκ),ξ3(κ,n∗

κ,2mκ)}κ∈N
c
≈ {Ĉ1 : Ĉ1+

R← E(C1,κ|Zκ),m1,κmκ+ξ3(κ,n∗
κ,2mκ)}κ∈N. (26)

Now any adversary Aκ that distinguishes between (18) and (17) can be used to distinguish between

the two distributions in (26) for randomly chosen {Zκ
R← Cn∗

κ,m
∗
κ
}κ∈N, using Ĉ2,2

R← EC2,κ,m2,κmκ as
non-uniform advice. By averaging, there exists also a singe sequence of circuits {Zκ}κ∈N for which
the reduction holds.

Experiment (18) again differs from experiment (19) in how the two components of the overall
circuit are chosen, before the application of the post-processing algorithms: in experiment (18)
we have Ĉ = Ĉ1+ |Ĉ2,2, whereas in experiment (19) Ĉ is chosen uniformly from all circuits of
the appropriate length that compute C1,κ|C2,κ. Indistinguishability again follows directly from
Assumption 8.

The claim follows by transitivity of computational indistinguishability. □

5.4 ROI for all circuits

The ROI obfuscator for all circuits combines a single gate obfuscator GO with the soldering process
in the natural way. Specifically, consider the append-and-solder obfuscator AS that, to obfuscate an
n-wire, m-gate circuit C = γ1 . . . γm with security parameter κ, proceeds as follows:

1. Let n∗
κ,m

∗
κ,m

#
κ satisfy Assumption 8. Without loss of generality assume that n = n∗

κ. (If
n < n∗

κ then embed the circuit in n∗
κ wires. If n > n∗

κ then proceed with the smallest κ′ > κ
such that n ≤ n∗(κ′).)

2. Let GO be a (n∗
κ,mκ)-gate obfuscator for mκ ≥ max(m∗

κ,m
#
κ ). For each gate γi, i = 1 . . .m,

let Γi
R← GO(γi) be a 2mκ-gate circuit such that PΓi = γi.
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3. Solder the circuits Γ1 . . .Γm one by one, using an RIO obfuscator O for the input distribution
ensemble in (12). That is:

(a) Let C1 = Γ1.

(b) For i = 2..m, let Ci = (Ci−1)[1,−t1,κ]|Oκ((Ci−1)[−t1,κ,∗]|(Γi)[1,t2,κ])|(Γi)[t2,κ,∗] be the result
of soldering Ci−1 and Γi, where t1,κ and t2,κ are the lengths of the left and right margins
for soldering, namely π1 : Cn∗,mκ → Cn∗

κ,t1,κ and π2 : Cn∗,mκ → Cn∗
κ,t2,κ , where π = (π1, π2)

is the post-processing algorithm of GOκ.

4. Output Cm.

It follows from Claim 21 that AS is an mκ-separable ROI obfuscator for all reversible circuits,
with inner-stretch ξ(κ, n,m) ≥ mκm. When GO is instantiated via the RIG and RIO described in
Sections 5.2 and 5.1 above, Theorem 16 follows from Claims 18 and 20.

Furthermore, observe that the stretch of AS grows only linearly in m. Specifically, it follows
from Claim 21 that |Ci| = |Ci−1|+ σ2(κ, n

∗
κ, t1,κ + t2,κ), where σ2(κ, n

∗
κ,m

∗
κ) is the overall stretch of

the RIO obfuscator used in the soldering operation. When instantiating the construction with the
single-gate obfuscator and random identity generator described in Sections 5.2 and 5.1, based on
an RIO obfuscator with stretch σ1(κ, n

∗,m∗
κ), we obtain |Cm| ≤ mσ2((κ, nκ, 2σ1(κ, nκ,m

∗
κ)), where

n∗
κ,m

∗
κ are length functions that satisfy Assumption 8.

Finally, straightforward hybrids argument demonstrates that the security level of AS decreases
only linearly in the number of gates. That is, to guarantee distinguishing probability of at most ϵ
between an obfuscated m-gate circuit C and a circuit drawn from DPC ,|C|, it suffices to use building
blocks (RIO and GO obfuscators) with security Ω(ϵ/m).

6 Constructing RIO obfuscators

This section presents a general approach for constructing RIO obfuscators, along with a family
of candidate RIO obfuscators with parameters that make them a viable basis for ROI (and in
particular IO) obfuscators for all circuits as in Theorem 16.

Recall that Theorem 16 requires two types of RIO obfuscators: (a) an obfuscator O1 that
satisfies property I with respect to a random n-wire, m-gate input and with inner-stretch m′, and
(b) an obfuscator O2 that satisfies property II when its input circuit has the distribution of two
concatenated circuits that are an output of O1. The parameter m is the number of gates needed for
Assumption 4 to kick in, while m′ is the number of gates needed for Assumption 7 to kick in. While
we have evidence that m can be as low as m = Õ(n) [CMR22], it appears that m′ might need to be
at least Ω(n3). (As discussed in Section 3 following Assumption 8, when m′ = o(n3) there might
not be sufficiently many - and sufficiently diverse - m′-gate circuits that are functionally equivalent
to a random m-gate circuit.)

For concreteness we thus concentrate on the case where m = O(n log4 n) and m′ = n3. Further-
more, we first focus on realizing O1, as this appears to be the more demanding requirement. (As
we’ll see, the construction scales naturally to differnt values of m and m′. Furthermore, the same
construction also appears to satisfy the requirements of O2.) Recall that, for this setting of the
parameters, property I boils down to coming up with a post-processing algorithm π such that:

{O(C), O(C) : C
R← Cnκ,nκ logn4

κ
}κ∈N

c
≈ {π(C), π(C ′) : C

R← Cnκ,n3
κ
;C ′ R← RC,n4

k
}κ∈N.
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That is, for large enough n it should be infeasible to distinguish between two obfuscated versions of
a random n-wire, n log n4-gate circuit C, and the post-processed versions of two random n4-gate
circuits that are functionally equivalent to C.

6.1 Towards a mixing scheme

The general template. We proceed to describe the general template of the obfuscation process.
As sketched in the Introduction, the template is to repeat the following process polynomially many
times:

1. Pick an ℓout-gate sub-circuit Cout of the current circuit C.

2. Pick an ℓin-gate circuit C in that’s functionally equivalent to Cout (but is otherwise independent
of Cout), and update C by replacing C in for Cout.

This process clearly rerandomizes the way in which Cout realizes the permutation it computes,
PCout . Furthermore, since the start and end locations of each new randomly chosen sub-circuit
Cout to be replaced will likely be unaligned with the start and end locations of the sub-circuits
chosen in previous iterations, the permutation computed by each subsequently replaced Cout will
be randomized as well, as it will depend on the functionality of somewhat random sub-circuits
of several replacement circuits C in made in previous iterations. The hope is then that this local
randomization of both the functionality and the structure of short circuit segments will then cause
the information about each segment of the circuit to be diffused throughout the mixed circuit.

Still, recall that, for most pairs of functionally equivalent circuits C0, C1, the corresponding
perturbed variants C̃0, C̃1 of are unlikely to be statistically close. Indeed, had this been the case
then, as discussed in the Introduction, then NP would equal coNP (at least in a distributional sense).
This of course also means that the statistical distance between (C̃0, C̃1) and two draws from C̃0 is
likely to be significant.

We thus settle for the more modest goal for of trying to get some confidence that two independent
draws from C̃ do not bear any “efficiently discernable” resemblance to each other, aside from their
overall functionality. Note that resemblance can come in any number of ways that combine structural
and functional properties of corresponding sub-sequences of the two circuits, or even the circuits as
a whole. At the same time, since our goal is only to make similarities hard to detect (rather than
eliminate them altogether), it makes sense to concentrate on creating “limited diffusion” of the
structure of relatively short segments of the given circuit, without attempting to obtain more global
statistical mixing properties such as approaching some stable distribution over the space of perturbed
versions of functionally equivalent circuits. (On the other hand, more modest statistical goals, such
as having the random variable describing each gate in the mixed circuit depend on all the gates in
the original circuit, may still be within reach.) Here the premise that the permutations computed by
medium-length sub-circuits of the original circuit are pseudorandom becomes handy: it means that
The mixing process only needs to be effective with respect to sub-circuits of short-to-medium size.

While the above template appears robust and realizable in a variety of ways, we describe a
concrete realization method.

The skeleton graph. To facilitate describing the proposed mixing method, we introduce an
alternative, somewhat more condensed representation of circuits that will make it easier to describe
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and visualize the effect of different perturbation methods. The idea is to factor out the ordering
of gates that commute with each other. Indeed, while this ordering adds a significant amount of
“nominal randomness” to circuits (namely it allows generating many different functionally equivalent
variants of a given random circuit), this randomness is useless from the point of view of obfuscation
since all variants generated this way can be easily traced back to the original. The alternative
representation, called the skeleton graph of a circuit, factors out this randomness. Furthermore, it
will provide useful structure for directing the choice of the sub-circuits Cout in the perturbation
process.

Recall that each base permutation β ∈ Bn is defined by way of a control function ϕ, the wire
w1 ∈ [n] connected to the active pin and the two wires w2, w3 ∈ [n] connected to the non-active
pins. Observe that if two base permutations β = (ϕ,w1, w2, w3) and β′ = (ϕ′, w′

1, w
′
2, w

′
3) collide

(namely, they do not commute) then either w1 ∈ w′
2, w

′
3 or else w′

1 ∈ w2, w3. For p ∈ [3], we say that
β collides with β′ on pin p if wp = w′

p′ for some p′.

Let C = γ1 . . . γm, where each γi ∈ Bn, be an n-wire, m-gate circuit. The skeleton graph of C,
denoted SC = (VC , EC), has the vertex set VC = g1 . . . gm gi is labeled by the gate γi. The set of
edges EC contains a directed edge from gi to gj iff i < j, γi and γj collide, and no gate γk, i < k < j,
collides both with γi and with γj . The edge (gi, gj) is labeled by the pins that γi and γj collide with
each other on.

We say that circuits C = γ1 . . . γm and C ′ = γ′1 . . . γ
′
m have the same skeleton if their skeleton

graphs are isomorphic, namely if there exists a permutation π on [m] such that γπ(i) = γ′i for all i,
and furthermore (gπ(i), gπ(j)) ∈ EC if and only if (g′i, g

′
j) ∈ EC′ . Observe that circuits that have the

same skeleton are functionally equivalent. In the same way, any permutation π on [m] that is an
isomorphism on SC results in a graph which is the skeleton graph of a circuit C ′ that is functionally
equivalent to C. Furthermore, sampling randomly from all the circuits that have the same skeleton
as a given circuit is easily doable in polynomial time.

Observe that both the in-degree and the out-degree of a vertex in the skeleton graph of an
m-gate circuit can in principle be as large as m− 1. However, in the skeleton graph of a random
circuit the expected in-degree of a vertex that is not a source is at most 4. Similarly, the expected
out-degree of a non-sink vertex is at most 4. For all i the expected number of vertices that are at
level i (i.e., vertices that are at distance i from the closest source) is roughly n/4. Similarly, the
expected level of a sink is roughly 4m/n.

Mixing using skeleton graphs. The skeleton graph provides a useful language both for describing
the goal of the sub-circuit replacement process and on its mechanics.

Recall that the goal of the mixing process is to diffuse the structure and functionality of short
circuit segments over large portions of the perturbed circuit (or even over the entire circuit). Restated
in the language of skeleton graphs, a “circuit segment” translates to a neighborhood of vertices in the
skeleton graph, namely a weakly connected set of vertices. (Recall that two vertices in a directed
graph are weakly connected if they are connected in the underlying undirected graph.) That is, the
mixing process is aimed at diffusing the structure and functionality of each small neighborhood across
larger and larger portions of the mixed circuit, where these larger portions are in fact neighborhoods
in and of themselves.

Indeed, the fact that the gates in a neighborhood collide (and in particular share wires) makes sure
that, in either direction of the computation, the values of some output wires are likely to depend on
the values of multiple input wires. Furthermore the overall connectivity within a neighborhood make
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it hard to find functionally equivalent alternatives to a neighborhood by factoring the neighborhood
out to smaller subsets of gates and separately finding functionally equivalent realizations of the
subsets. In other words, restricting attention to neighborhoods counters at least naive attempts to
“reverse” (or otherwise break) obfuscation in time that is less than doubly exponential in the size of
the circuit portion considered.

For the mechanics of the replacement process, observe that any convex subset of vertices in the
skeleton graph of a circuit C naturally induces a sub-circuit Cout of C that’s fit for replacement using
the general template, in spite of the fact that Cout may consist of gates that are not consecutive
in C.

That is, recall that a subset H of the vertices in a graph G is convex if for any two vertices
u, v ∈ H, all vertices on any (directed) path from u to v are also in H. Now, let H be a convex set of
vertices in the skeleton graph S of some circuit C. Since H is convex, we can rename (i.e., reorder)
the vertices in S to obtain a graph S′ that’s isomorphic to S and in addition the vertices in H ′,
the reordered version of H, are consecutive. Let H ′ = g1 . . . gℓout , let C

out be the circuit γ1 . . . γℓout

where γi is the gate that labels gi, let circuit C
in = γ′1 . . . γ

′
ℓin be functionally equivalent to circuit

Cout, and let SC in denote the skeleton graph of C in. Then, let Ŝ be identical to S′ except that the
subgraph SC in is replaced for H ′. That is, all the vertices in H ′ (and the edges connecting them)
are removed, and instead the vertices in SC in are inserted, in sequence, such that the first vertex in
SC in is the same ordinal in Ŝ as the first vertex of H ′ in S′. The edges in Ŝ are now determined by
the gate labels of the vertices in the usual way for skeleton graphs. (In addition to the edges among
the vertices of S′ and edges among the vertices of SC in , Ŝ may have edges that connect vertices of
SC in and vertices of S′.) Observe that, at the end of the process, the graph Ŝ is the skeleton graph
of a circuit Ĉ that has m− ℓout + ℓin gates and is functionally equivalent to C.

Furthermore, although the circuits Cout and C in are n-wire circuits, the numbers wout and win of
active wires (i.e. the number of wires that are used by some gate) in Cout and C in, respectively, are
bounded; specifically, wout ≤ 3ℓout and win ≤ 3ℓin. This means that, as long as ℓout, ℓin = O(log logn),
the computational cost of choosing C in out of some distribution over ℓin-gate circuits that are
functionally equivalent to Cout is polynomial in n (and therefore in κ).11

6.2 The proposed scheme

We are now ready to describe the mixing process in more detail. We partition the process to two
stages, as follows.

Inflationary stage. This stage provides initial mixing and randomization of the input circuit.
The main goal here is to make sure that small neighborhoods are fully randomized, in the sense that
both their structure and their functionality will be essentially independent of the input circuit. To
do that, we let Cout be a relatively small random neighborhood in the skeleton graph of the current
circuit, and let C in be a (functionally equivalent) circuit with more gates and more active wires.
Specifically, fix ℓout to be some small constant. Then:

1. Pick a random gate γ in the current circuit C.

11The most computationally intensive part here is verifying that a candidate C in is functionally equivalent with

Cout, which can be done in O(22
win

) time.
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2. Pick a random ℓout-gate convex, weakly connected subset Cout of C that contains γ.12 Let
P = PCout ∈ A2n be the permutation computed by Cout.

3. Let ℓin = cℓout, where c is another small constant. Let C in be a random ℓin-gate, n-wire circuit
that is functionally equivalent to Cout, and whose skeleton graph is weakly connected.

4. Update C ← C \ Cout ∪ C in.

It is stressed that C in can have a different (and potentially larger) set of active wires than Cout.
Still, since it has only ℓin gates it can have at most 2ℓin active wires. It is thus useful to view
the choice of C in as a two stage process, as follows. Let P̄ ∈ A22ℓin be the projection of P
on 2ℓin dimensions that include all the active dimensions of P . (A dimension i is active for P
if there exist x1 . . . xn such that either P (x1 . . . xn)i ̸= xi or else there exists j ̸= i such that
P (x1 . . . xn)j ̸= P (x1 . . . xi−1, 1 − xi, xi+1 . . . xn)j . It follows that if i is an active dimension of P
then i is an active wire in any circuit that computes P .) To choose C in, first choose a random
2ℓin-wire, ℓin-gate weakly connected circuit C̄ that computes P̄ . Next, extend C̄ to an n-wire circuit
by mapping each active dimension in P to the appropriate active wires in C̄ so as to preserve
functionality, and then mapping the remaining active wires in C̄ to random unused wires in [n].

Figure 3 depicts a simplified version of the replacement process for the case where ℓout = 2 and
ℓin = 10 (which corresponds to c = 5). We note that larger values of ℓout and c would naturally yield
a larger set of replacement patterns.

As argued above, the restriction of C in to have a weakly connected skeleton graph (i.e., to consist
of a single neighborhood) is aimed at creating larger and more densely connected neighborhoods that
will make it harder to “reverse” the mixing process. The restriction of Cout to be single-neighborhood
circuits to start with makes sure that PCout is realizable by many single-neighborhood circuits that
are not much larger than Cout.

We conjecture that, after Õ(mκ) iterations of the inflationary stage, the permutation PCout
i

computed by each new circuit Cout
i is distributed almost independently of the m-gate input circuit.

Furthermore, we conjecture that the same holds for the joint distribution of any collection of t
permutations PCout

i1
. . .PCout

it
, for any t = o(m). (That is, there exists some fixed distribution Dn,m,t

such that for most input circuits C, the statistical distance between PCout
i1

. . .PCout
it

and Dn,m,t is

negligible in κ.) Setting κ = n and m = Õ(n), we conclude that Õ(n2) iterations suffice for that
property to hold. However, since our goal is to construct an obfuscator with inner stretch of O(n3),
we let the inflationary stage proceed for Õ(n4) iterations, resulting in an Õ(n4)-gate obfuscated
circuit.

We note however that, local statistical mixing properties aside, the mixing process as described
so far can be effectively undone as follows. Given a mixed circuit C, search for neighborhoods
C ′ of ℓin vertices in the skeleton graph of C, such that CC(C ′) ≤ ℓout. Once such a neighborhood
C ′ is found, replace it with the shortest functionally equivalent C ′′, and iterate. This reversing
strategy is likely to be effective: a random O(1)-gate convex sub-circuit C ′ of a random circuit C is
likely to have zero complexity gap, so ℓin-gate neighborhoods with a significant complexity gap are
likely to be the result of a replacement operation.13 Furthermore, all same-size circuits C ′′ that
are functionally equivalent to C ′ are very likely to have the same skeleton as C ′. This holds even

12Here and for the rest of this section we conflate the circuit C and its skeleton graph SC whenever there is little
danger of confusion.

13Recall that The complexity gap of an m-gate circuit C is CG(C) = m− CC(C).
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(a) (b)

(c) (d)

(e)

Figure 3: Some possible replacements for the case of ℓout = 2 (namely, colliding pairs of gates), for the
special case where the control function is ϕ(a, b) = ab (namely, logical conjunction). A gate is depicted as a
vertical line connecting several wires, where the control wires are identified by black dots and the active wire
is identified via a circle. Panels (a) and (b) show possible replacements for one-headed collision, i.e. for the
case where the active wire of one gate is also a control wire of the other gate. Panels (c) and (d) correspond
to a two-head collision, when the active wires of both gates are also control wires of the other gate. Notice
that in panels (a) and (c) the circuit on the right includes a 3-control gate. As shown in panel (e), this
3-control gate can be decomposed into four base gates, while using an additional wire (to be chosen out of
the n− 4 remaining wires in the circuit). Overall, in case (c) the figure depicts 62

(
n−4
2

)
replacement circuits.

if C ′ is restricted to have a weakly connected skeleton graph. (Note that this attack is inherently
non-local, in that it requires access to the entire circuit. Consequently it does not contracdict the
above conjectures regarding the staistical local mixing properties of the first stage.)

Kneading stage. As exemplified by the above attack, the “redundancy”, or complexity gap
introduced in the inflationary stage is still “too chunky:” it is concentrated in small neighborhoods
and can thus be easily identified and removed. The second stage of the mixing process is aimed
a spreading the complexity gap over increasingly larger neighborhoods so as to make it harder to
recognize and remove. In particular, this stage counters the above attack and others like it.

The sub-circuit replacement operation in this stage is the same operation from the inflationary
stage, but with (a) larger Cout and (b) C in of the same size as Cout. Specifically, we set a new
parameter ℓknd, that is a significantly larger constant than ℓin from the first stage. (In fact, we
can have ℓknd be as large as Θ(log log n).) We then repeat the same process as in the inflationary
stage, with the exceptions that Cout is a random ℓknd-gate, weakly connected, convex sub-circuit of
C that contains the chosen gate γ, and C in is a random ℓknd-gate, weakly connected circuit that is
functionally equivalent to Cout.
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Recall that at the kneading stage the circuit has Õ(n4) gates. This stage proceeds for Õ(n5)
iterations. Finally, apply a random isomorphism to the nodes of the final skeleton graph, and output
the resulting graph (or, equivalently, the resulting circuit).

6.3 Arguments for security

While we keep a more rigorous security analysis of the proposed scheme out of scope for this work,
we provide arguments supporting its security. We first describe the overall rationale (building on
the observations made so far), and then discuss the specific properties needed for Theorem 16.

The idea underlying the two-stage structure of the scheme is to have the first stage inject initial
randomization to the circuit. While randomization (or, complexity gap) is injected everywhere, it
is injected in small pieces, where the pieces remain relatively localized and thus identifiable and
removable. The second stage does not inject additional complexity gap, but instead mixes the
complexity gap across larger and larger neighborhoods, thus making it computationally harder to
identify and remove.

The argument proceeds as follows. First observe that the complexity gap is super-additive.
That is, say that two convex neighborhoods in some circuit C are adjoining if their union is
also a convex neighborhood in C. Then, for any adjoining neighborhoods C1, C2 in C, we have
CG(C1) + CG(C2) ≤ CG(C1 ∪ C2).

Next, define the inclusion set si of iteration i in the mixing process as follows: Initialize T ← Cout
i .

Now for j = i − 1 . . . 1 do: if C in
j ⊆ T then add j to si and update T ← T \ C in

j . It follows that
CG(Cout

i ) ≥
∑

j∈si CG(C in
j ).

Finally, observe that the partition set of each one of the first few iterations i of the second stage
is bound to be relatively large (specifically, its size is expected to be proportional to ℓknd/ℓin). This
means that, in these iterations, CG(Cout

i ) is expected to be proportional to ℓknd(ℓin − ℓout)/ℓin, or in
other words a significant fraction of ℓknd.

As the second stage continues, the inclusion set of the chosen circuit Cout
i is expected to shrink

in size, since more and more of the C in
j ’s from the first stage have been incorporated within earlier

iterations from the second stage. This means that CG(Cout
i ) is expected to decrease.14 Still, we

conjecture that: (a) since the inclusion sets of Cout
i are initially large, CG(Cout

i ) decreases only
gradually, and furthermore any putative variations in the complexity gap are only a function of the
randomness in the mixing process itself rather than of the input circuit; (b) after Θ̃(n5) iterations,
the complexity gap of random ℓknd-gate neighborhoods is bound to stabilize below a small threshold;
(c) once the complexity gap of random ℓknd-gate neighborhoods has been consistently small for Θ̃(n5)
iterations, the complexity gap of ℓ-gate neighborhoods remains a small fraction of ℓ/ℓknd even for
ℓ≫ ℓknd.15

14Another potential contribution to the complexity gap of Cout
i can come from neighborhoods of the form Cout

i ∩C in
j

for a previous iteration j in the second stage. However, we don’t expect such contribution to make up for the shrinking
of the inclusion set. Indeed, if CG(C in

j ) is significant then for a random partitioning of C in
j into two neighborhoods

C1, C2 we expect that CG(C1) + CG(C2) < CG(C in
j ).

15Indeed,any ℓ-gate neighborhood for ℓ > ℓknd can be partitioned to neighborhoods C1 . . . Ct such that each Ci is
contained in at most a single C in

i for some i, which means that CG(Ci) ≈ 0. Furthermore, as long as, say, ℓ < |C|/2,
the permutations PC1 . . .PCt are distributed essentially independently from each other. Finally, for any two adjoining
neighborhoods C1, C2 such that PC1 and PC2 are random and independent from each other, and both CG(C1) ≈ 0
and CG(C1) ≈ 0, we expect that CG(C1 ∪ C2) ≈ 0 as well (that is, there would no significant new “shortcuts” in
computing PC1∪ C2).
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Conjectured properties (a) and (b) mean that the naive reversing attack described above will
no longer work, since there are no “ends of a thread” to start the unwinding process. Property (c)
makes the stronger claim that any attack that’s based on finding patterns in the complexity gaps of
even medium-to-large circuit portions is doomed.

We proceed to consider the two specific properties of RIO obfuscation required in Therem 16.
Since we opted to construct an obfuscator with inner stretch n3 that’s larger than the input size
n log4 n, RIO obfuscation requires providing a post-processing algorithm, namely a “simulated
obfuscation” algorithm, π, that takes as input a circuit Ĉ

R← EC,n3 for C
R← Cn,n log4 n, and outputs

a ‘simulated obfuscated circuit’ π(Ĉ) that is supposed to mimic O(C) in the security experiments.

The proposed algorithm π is identical to the obfuscator O, except that π runs the inflationary
stage for somewhat fewer iterations so as to make sure that the output of π on an n3-gate circuit
will have the same length as the output of O on an n log4 n-gate circuit. We proceed to consider the
two properties:

Property I, for random n log4 n-gate circuits: It should be infeasible to distinguish, given two
functionally equivalent circuits (C0, C1), whether (C0, C1) are two obfuscated versions of a
random n-wire, n log4 n-gate circuit C, or else the post-processed versions of two random
n3-gate circuits that are functionally equivalent to C.

We first study the distribution of pairs of circuits Ĉ0, Ĉ1
R← EC,m′ , for C

R← Cn,m, in the case
where Assumption 4 holds for n,m and Assumption 8 holds for n,m′. (Recall that here we
further let m = n log4 n and m = n3.) In this case, it follows from the two assumptions that
even large portions of the two circuits look completely independent from each other. In fact,
any portion of, say, Ĉ0 of size smaller than m′−m gates is indistinguishable from a completely
random circuit of the same size, even given the entire other circuit, Ĉ1. Consequently, the pair
(π(Ĉ0), π(Ĉ1) exhibits similar independence properties: any portion of π(Ĉ0) of size smaller
than m′ −m gates is indistinguishable from a portion ofπ(R) (where R is a random circuit of
the same size as C0) — even given π(Ĉ1) in its entirety.

Conjectured properties (a), (b), (c) indicate that the pair C1, C2, where C1, C2
R← O(C) and

C
R← Cn,n log4 n, exhibits a similar behavior in face of a computationally bounded distinguisher.

Indeed, these conjectures indicate that the only way to find similarities between any large-
but-incomplete portion of one sample from O(C) and another complete sample from O(C)
necessitates analyzing the functionalities and structures (in particular, the complexity gaps)
of neighborhoods that are significantly larger than ℓknd — however such analysis is infeasible
in polynomial time.

Property II, for Õ(n4)-gate circuits: Essentially, property II requires that distinguishing be-

tween O(C) for C
R← Cn,m and π(Ĉ) for Ĉ

R← EC,m′ be infeasible, even with oracle access
to the m/2-gate prefix of C and its inverse. (This is a somewhat over-simplified version of
the requirement: the actual requirement provides the distinguisher with two circuits, Z ′, Z ′′,
where Z ′ is a sufficiently long random circuit that computes M ′|C ′† and Z ′′ is a sufficiently
long random circuit that computes C ′′†|M ′′, and M ′,M ′′ are arbitrary, known circuits.)

However, while this simplistic version of the requirement is unlikely to formally imply the
actual one, for all practical purposes the two appear to be equivalent, since a distinguisher
has no way to make use of Z ′, Z ′′ other than using them as oracles to the m/2-gate prefix and
suffix of C, and their inverses.)
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We first observe that, without the auxiliary information Z ′, Z ′′ or oracle access, indistin-
guishability essentially follows from Property I: O(C) : C

R← Cn,m
c
≈ π(Ĉ) : Ĉ

R← EC,m′ .
(The implication is not immediate, since we need property II to hold with respect to input
circuits that are the concatenation of two obfuscated n-wire n log4 n-gate random circuits,
namely C = (O(C ′)|O(C ′′)) : C ′, C ′′ R← Cn,n log4 n, whereas the above argumentation considered
property I with respect to randomly chosen circuits. However: (a) the above justification that
the scheme satisfies property I appears to hold whenever most ℓout-gate neighborhoods in the
input circuit have zero complexity gap, and (b) the output of the obfuscation scheme is likely
to have that property as well.)

It remains to argue that the auxiliary information Z ′, Z ′′ does not help in distinguishing
O(C) : C

R← Cn,m from π(Ĉ) : Ĉ
R← EC,m′ . While making such an argument rigorous appears

out of reach (in particular, the ability to generate Z ′, Z ′′ appears to require the existence of
perfect obfuscators), we instead argue that having oracle access to C ′, C ′′, C ′†, C ′′†, where C ′

and C ′′ are the m/2-gate prefix and suffix of C, respectively, does not help. In particular,
we argue that oracle access to C ′, C ′′, C ′†, C ′′† is indistinguishable from oracle access to
R,R†C,R†, C†R, where R

R← A2n is a random permutation; furthermore, this is the case both
when the distinguisher sees π(Ĉ) and when the distinguisher sees O(C).

When the distinguisher sees π(Ĉ), the claim follows from Assumption 4. (In fact, the claim
holds even if the distinguisher sees Ĉ directly.) For the case where the distinguisher sees O(C),
we observe that oracle access to C ′, C ′′, C ′†, C ′′† remains indistinguishable from oracle access
to R,R†C,R†, C†R even if all but Õ(n) out of the Θ(n4) gates in C ′ and C ′′ were known. This
means that distinguishing between the two cases given O(C) essentially implies a complete
reversal of O, one that would also violate property I.

Unifying the two stages. The separation between the two stages has been made mainly for
clarity of exposition of the ingredients of the scheme and the underlying rationale. However, it
does not appear to be essential: consider instead the alternative mixing process that performs the
following “unified” replacement step for Õ(mκ) times, where m is the number of gates in the input
circuit and κ ≈ n is the security parameter.

1. Pick ℓout
R← {2 . . . ℓmax} where ℓmax = O(log log n).

2. Choose a random gate γ in the current circuit and let Cout be a random ℓout-gate weakly
connected, convex circuit that contains γ.

3. Let ℓ, w be the minimum number of gates and wires such that |ECout,ℓ,w| ≥ L(ℓout, wout, w),
where ECout,ℓ,w is the set of ℓ-gate, w-wire circuits that are functionally equivalent to the
w-wire version of Cout, wout is the number of active wires in Cout, and L is a predetermined
function.16 Let ℓin = min{ℓ, ℓmax} and Let C in be a random single-neighborhood, ℓin-gate,
circuit with w active wires that’s functionally equivalent to Cout.

This process combines the ingredients of the above two-stage process, providing for a more
gradual transition from the first stage to the second. At first, when the complexity gap of small
neighborhoods in the circuit is still small, we will have ℓin > ℓout, allowing for effective functionality-
preserving randomization of Cout. Later on, as the complexity gap grows, ℓin will likely be not much

16By extension of the example given in Figure 3, we would like to have L(n, ℓout, w) ≥ cℓoutw for some constant c.
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larger than ℓout, and even potentially smaller at times, allowing for the kneading process (namely,
removing the complexity gap from small neighborhoods and shifting it to larger and larger ones) to
take place.

7 Open questions and future directions

This work leaves open a number of intriguing open questions and research directions. We briefly
mention some of them.

1. An immediate question that arises from this line of research is exploring the power of ROI
obfuscation of reversible circuits. Indeed, ROI obfuscation with significant inner stretch,
together with the SCP assumption, provide strong VBB-like hiding properties (as exhibited
in the proof of Theorem 16). While a similar effect to ROI obfuscation can in principle be
obtained using generic IO and one way functions with sub-exponential security (say, using
Probabilistic IO [CLTV15b]), the interplay between ROI obfuscation and the SCP assumption
appears powerful.

In particular, can we use ROI obfuscation together with the SCP assumption to realize
cryptographic primitives in ways that are simpler than known realizations based on plain
IO for general circuits? Can the use of ROI security together with the SCP assumption get
around the need for sub-exponential hardness assumptions? Can it avoid structural barriers
that apply to generic IO schemes (e.g. [AS16])? Can it enable new applications?

2. Another immediate question is gaining better understanding of the local perturbation method
for obtaining RIO obfuscation. Can we put this method on firmer ground? In particular, can
we formulate a simple computational hardness assumption that provably suffices for the security
of an obfuscation scheme based on local, functionality preserving random perturbations of the
given circuit? In particular, can the security of the proposed scheme be based on the hardness
of distinguishing between circuits with different computational complexities? Or even on one
of the existing hardness assumptions regarding Kolmogorov complexity and MCSP (such as
the ones in [LP20, LP21, IRS22, BLMP23, ILW23])?

Also, can some variant of the local perturbation method be applied directly to arbitrary
reversible circuits (as opposed to random circuits, as done in this work) and still provide
concrete security guarantees? Alternatively, are there concrete counter examples of circuits
for which some variant of this method - say, the one proposed in this work - would necessarily
fail?

3. Can we obtain RIO obfuscation for short random circuits, based on more traditional computa-
tional hardness assumptions, such as, say, Learning With Errors? Recall that Assumption
8 might well hold for for m∗ = Õ(n) and m# = Õ(n3), in which case RIO obfuscation for
circuits with n wires, Õ(n) gates, and inner stretch Õ(n3) would suffice for obtaining fully
fledged ROI obfuscation.

4. Can we improve on the the various constructions proposed in this work? For instance:

(a) Do there exist efficient Random Identity Generators (RIGs, see Section 5.1) that provide
statistical security?
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(b) Alternatively, can ROI obfuscation for all circuits be constructed only from RIGs?

(c) Can a weaker version of RIO obfuscation suffice for obtaining ROI for all circuits? For
instance, can property I of RIO obfuscation suffice in and of itself?

5. Obtaining better understanding of the SCP assumption, its potential relations to the hardness
of Kolmogorov complexity and the MCSP problem, is another intriguing research direction.
For instance, is it necessary to have a multiplicative computational gap m#

κ (see Assumption
7), or can an additive gap suffice? It would also be interesting to find other ways to exploit
this assumption in cryptographic applications — even ones that appear unrelated to program
obfuscation.

6. Another intriguing direction is whether quantum techniques can be used to obtain more
effective (or easier to analyze) obfuscation by way of locally applying functionality-preserving
random perturbations. This question can in fact be asked at two different levels:

(a) Can we have an obfuscator that uses quantum perturbations, but still takes a classical
circuit as input and generates an obfuscated classical circuit?

(b) Alternatively, Can we have an obfuscator that, using quantum perturbations, transforms
a classical circuit into an obfuscated quantum circuit that, on any classical input, outputs
a quantum state that has high fidelity with the output of the input circuit?

7. Yet another question is whether notions and techniques from this work can be extended to
the case of obfuscating quantum circuits (as in, say, [BK21])? Furthermore, can they result
in an obfuscation process where both the input and the output are classical descriptions of
quantum circuits? Can the obfuscation process itself be classical?
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A From IO for reversible circuits to IO for all circuits

We demonstrate how an obfuscation scheme for reversible circuits can be used as a general-purpose
obfuscation scheme for all Boolean circuits.

There is a substantial body of literature regarding the synthesis of reversible circuits, and
in particular regarding how to represent general computation within a reversible one, see e.g.
[Ben73, Tof80, Ben89, Bro04, AHP10, Xu15, Sel18]. This study has a variety of motivations,
ranging from basic feasibility results to the optimization of various parameters, mostly either for
the purpose of minimizing energy consumption or to enable quantum computation.

However, while it is in principle possible to represent any even permutation on {0, 1}n using only
base permutations (specifically Toffoli gates with at most two control wires), all methods that we
are aware of for embedding general Boolean circuits in reversible ones in an “efficiency preserving
way” (namely in a way that preserves the number of gates and wires up to polynomial factors) are
only guaranteed to preserve correctness when some input wires are “mantissa wires”, i.e. have a
fixed value (wlog, 0). Such a guarantee does not suffice in and of itself for the purpose of using an
obfuscator for reversible circuits to obfuscate non-reversible circuits, since it leaves the functionality
of the reversible circuit unspecified when some of the mantissa wires have other values. Indeed, this
under-specification opens the door to situations where even a perfectly obfuscated version of the
reversible embedding of a non-reversible circuit C would leak information on the internals of C
when the mantissa wires are set to “illegitimate” values.

We describe a simple way around this caveat, by demonstrating how to embed general Boolean
circuits within reversible circuits in an efficiency preserving way, so that the embedded versions of
any two functionally equivalent Boolean circuits are functionally equivalent as well (as reversible
circuits). More specifically, whenever fed with illegitimate mantissa values the embedded circuit’s
output will be identical to its input.

We first sketch (a somewhat rephrased version of) Toffoli’s method for embedding any general
Boolean circuit within a reversible circuit [Tof80]. Consider the following transform TO that, given
a general Boolean circuit C with α input wires, β output wires, µ NAND gates, and width ω,
generates a reversible circuit C ′ = TO(C) with n = 4ω wires and m = O(µ) gates, and such that
C ′(x, 0β+δ) = (x,C(x), 0δ) for any x ∈ {0, 1}α. (Here δ = n− α− β.)

Without loss of generality we assume that the original circuit C is layered, namely that the
input wires of each NAND gate at layer i connect to output wires of NAND gates at layer i− 1 (or
to input wires of the circuit if i = 1); similarly, the output wires of a NAND gate at layer i connect
to input wires of NAND gates at layer i+ 1 (or to output wires of the circuit if i is the last layer).
In this setting, ω is the maximum (over all i) number of wires from layer i to layer i+ 1.

The construction proceeds as follows. We partition the workspace wires z into two batches of ω
wires each. For each NAND gate g at the first layer of C, where g has fanout ϕ, append ϕ Toffoli
gates T1 . . . Tϕ to the reversible circuit C ′, where the control wires of each Ti correspond to the
input wires of g, the control function is NAND, and the active wire of Ti is a free workspace wire
from the first batch.

For each gate g in a subsequent even (resp., odd) layer j of C, except for the last one, follow the
same process except that the control wires for each Ti are the corresponding workspace wires from
the first (resp., second) batch of workspace wires, and the control wires are fresh wires from the
second (resp., first) batch of workspace wires. Next, uncompute the Toffoli gates of the previous
layer by writing these gates again in reverse order. (This will revert all the active wires in that layer
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to their original value of 0, ahead of using these wires again as active wires in the next layer).

For the last layer of gates in C, follow a similar process as above except that the active wires
are taken to be fresh output wires out of y1 . . . yβ.

Observe that, for any Boolean circuit C, TO implicitly defines a function fC : {0, 1}α+δ → {0, 1}β
such that TO(C)(x, y, z) = (x, y ⊕ f(x, z), z) for any x ∈ {0, 1}α, y ∈ {0, 1}β, z ∈ {0, 1}δ. In
particular, we have that (a) the values of x, z do not change under C ′, and (b) TO(C) is the inverse
of itself, i.e. TO(C)|TO(C) computes the identity permutation. Finally, fC satisfies fC(x, 0

δ) = C(x)
for all x ∈ {0, 1}α.

It remains to “harden” TO to make sure that f(x, z) does not “leak unintended information on
C” even when z ̸= 0δ. More concretely, we would like to have a transform where the transformed
versions of any two functionally equivalent Boolean circuits are functionally equivalent as well (as
reversible circuits). This is done via the following “hardened Toffoli” transform, HTO. Given a
general Boolean circuit C with the same parameters as above, C” = HTO(C) is a reversible circuit
with n” = α+ β + 2δ wires and such that:

C”(x, y, z, u) =

{
(x, y + C(x), z, u) if z = 0δ

(x, y, z, u) if z ̸= 0δ

where u = u1 . . . uδ, and each ui ∈ {0, 1}. In other words, HTO makes sure that fC(x, z) = 0δ

whenever z ̸= 0δ (while still guaranteeing that fC(x, 0
δ) = C(x)).

Circuit C” = HTO(C) is composed of two sub-circuits, where each sub-circuit is run twice.
That is, C” = S|T |S|T , where S is a “controlled TO(C)” circuit where the control wire is the last
input wire (i.e uδ), and T flips uδ iff z = 0δ. Neither of these circuits require any mantissa wires.
Specifically:

S(x, y, z, u) =

{
(C ′(x, y, z), u) if uδ = 0
(x, y, z, u) if uδ = 1

T (x, y, z, u) =

{
(x, y, z, u1 . . . , uδ−1, uδ ⊕ 1) if z = 0δ

(x, y, z, u) if z ̸= 0δ

Indeed, consider an input value (x, y, z, u). if z ̸= 0δ then the value of uδ remains unchanged
throughout, which means that HTO(C)(x, y, z, u) = S(S(x, y, z, u)) = (x, y, z, u). (Here we use the
fact that TO(C) always preserves the value of z and that PTO(C)|TO(C) = In”.) On the other hand,

if z = 0δ then both applications of T flip the value of uδ, in which case exactly one out of the two
instances of S computes the identity function and so HTO(C)(x, y, 0δ, u) = (TO(x, y, 0δ), u)) =
(x, y ⊕ C(x), 0δ, u).

It remains to describe how S and T are implemented. To construct S, first modify TO(C) by
adding a control wire to each gate g and connecting that control wire to uδ - i.e. for each gate
g(a, b, c) = a⊕ f(b, c) in TO(C) add the gate g′(a, b, c) = a⊕ f(b, c) ·uδ to S. Next, factor each such
three-control-wires gate in S to a functionally equivalent sequence of gates with two control wires.17

To construct T , we observe that in the special case of computing the OR over i wires it is
possible to gradually accumulate partial results using i− 1 uninitialized “borrowed wires”, without
relying on any initialized mantissa wires.

17For instance, the sequence [uδ = uδ ⊕ a; a = a⊕ ϕ(b, c);uδ = uδ ⊕ a; a = a⊕ uδ;uδ = uδ ⊕ ϕ(b, c); ] is functionally
equivalent to [a = a⊕ ϕ(b, c) · uδ].
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That is, let z = z1 . . . zδ, and let Z1 be the circuit Z1 = [u1 = u1 ⊕ (z1z2 ⊕ 1)]. For i > 1 let
Zi = [ui = ui ⊕ (ui−1zi+1 ⊕ 1));Zi−1;ui = ui ⊕ (ui−1zi+1 ⊕ 1))]. It can be seen by induction that Zi

flips the value of ui if and only if z1 = . . . = zi+1 = 0.

Circuit T now first computes Zδ−1, then transfers the information from wire uδ−1 to wire uδ,
and then uncomputes Zδ−1. More specifically T = [uδ = uδ ⊕ uδ−1;Zδ−1;uδ = uδ ⊕ uδ−1;Z

†
δ−1].

Now, let O be an obfuscator for all reversible circuits, and let OHTO be the following obfuscator
for all circuits. Given a (not necessarily reversible) circuit C with α input bits and β output bits,

first transform C to a layered circuit C ′ consisting of NAND gates. Next sample C”
R← O(HTO(C ′))

and output the circuit Ĉ that, given input x ∈ {0, 1}α, computes y = C”(x, 0n−α) and outputs
yα+1 . . . yα+β . The following claim follows immediately from the fact that HTO(C1) and HTO(C2)
are same size and functionally equivalent whenever C1, C2 are same size and functionaly equivalent:

Claim 22 If O is an indistinguishability obfuscator for all reversible circuits then OHTO is an
indistinguishability obfuscator for all circuits. □
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