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Abstract. The size of the authentication tag represents a significant overhead for
applications that are limited by bandwidth or memory. Hence, some authenticated
encryption designs have a smaller tag than the required privacy level, which was
also suggested by the NIST lightweight cryptography standardization project. In the
ToSC 2022, two papers have raised questions about the IND-CCA security of AEAD
schemes in this situation. These papers show that (a) online AE cannot provide
IND-CCA security beyond the tag length, and (b) it is possible to have IND-CCA
security beyond the tag length in a restricted Encrypt-then-Encipher framework.

In this paper, we address some of the remaining gaps in this area. Our main result is
to show that, for a fixed stretch, Pseudo-Random Injection security implies IND-CCA
security as long as the minimum ciphertext size is at least as large as the required
IND-CCA security level. We also show that this bound is tight and that any AEAD
scheme that allows empty plaintexts with a fixed stretch cannot achieve IND-CCA
security beyond the tag length.

Next, we look at the weaker notion of MRAE security, and show that two-pass
schemes that achieve MRAE security do not achieve IND-CCA security beyond the
tag size. This includes SIV and rugged PRPs.
Keywords: Chosen Ciphertext Attacks · IND-CCA · AEAD · SIV · Authentication
· Rugged PRP

1 Introduction
Authenticated Encryption with Associated Data (AEAD) is one of the most important
symmetric-key primitives, as it provides privacy and authenticity, simultaneously. It has
gained significant attention over the past 25 years, culminating in two cryptographic com-
petitions to either recommend or standardize AEAD schemes for a variety of applications;
the CAESAR competition [cae19] and the NIST lightweight cryptography standardization
project [nis]. While these projects encouraged cryptographers and designers to diversify
the design space of AEADs, they also helped shine light on some of the less studied
aspects of AEADs. AEAD schemes typically require a nonce N or a random IV , usually
communicated out-of-band, and expand the ciphertext size by λ bits, referred to as the
ciphertext stretch, or stretch for short. The integrity of an AEAD scheme cannot be
ensured with λ = 0, and in terms of bit-security, it is capped at λ bits, as the adversary
can simply try to guess the redundancy in the ciphertext. However, the impact of the
stretch on privacy has been an interesting aspect of the security of AEAD schemes.

Security Notions The security notions of AEAD schemes can be defined using indistin-
guishability games between a real world and an ideal world. An AEAD scheme consists of
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an encryption algorithm and a decryption/verification algorithm. The security notions are
also defined using the use of two idealized oracles; $ and ⊥. The first oracle replaces the
encryption algorithm and returns random strings, while the latter replaces the decryption
algorithm and rejects all ciphertexts. The game is defined between a challenger and an
adversary, where the challenger flips a coin at the beginning of the game, and decides to
operate in the real world or the ideal world. The adversary makes qe queries to the left
oracle and qd queries to the right oracle. It runs in time t. It returns 1 if it thinks the
challenger is ideal. For a security notion n, a scheme Π and an adversary A, the advantage
of A against the challenger is defined as

Advn
Π(A) def= |Pr[AReal ⇒ 1]− Pr[AIdeal ⇒ 1]|.

Table 1 sums up the real and ideal oracles corresponding to four prominent security
notions. IND-CPA refers to indistinguishability against chosen plaintext adversaries, while
IND-CCA refers to indistinguishability against chosen ciphertext adversaries. INT-CTXT
refers to integrity of ciphertexts (regardless of confidentiality) and AEAD refers to a unified
security notion of both IND-CPA and INT-CTXT1. We are mainly interested in IND-CCA
security, which captures confidentiality even when the decryption oracle is always real and
can be occasionally forged.

Table 1: The real-world and ideal-world oracles corresponding to different AEAD security
notions

Notion Real World Ideal World
ind-cpa Enc,⊥ $,⊥
int-ctxt Enc, Dec Enc,⊥

aead Enc, Dec $,⊥
ind-cca Enc, Dec $, Dec

Related Work The security notions of AEADs have been heavily studied. We give a
few highlights that are relevant to our study. In 2000, Bellare and Namprempre [BN00]
studied the relation between different security notions of AEAD, and one of their results is
to show that IND-CPA and INT-CTXT together imply IND-CCA. In particular, if there
is an IND-CCA adversary A against an AEAD scheme Π, then there exist two adversaries
B and C, such that

Advind−cca
Π (A) ≤ Advind−cpa

Π (B) + 2 ·Advint−ctxt
Π (C).

While their result is for a weaker security notion, namely indistinguishability of the
encryption of random plaintexts, the result is still significant and motivates our study,
among others.

During the CAESAR competition, Hoang et al. [HKR15] proposed AEZ, an AEAD
scheme aimed at being a secure AEAD scheme with arbitrary stretch sizes. In fact, they
consider λ as an input from the user/adversary. In order to achieve this, they designed
an enciphering scheme. An enciphering scheme is a variable-block-size Tweakable Block
Cipher (TBC). Then, they apply a framework known as Encode-then-Encipher (EtE),
where the message is encoded with λ bits of redundancy, e.g., the message can be padded
with 0λ, and then encrypted using the enciphering scheme. This approach has a lot of
promise, but their scheme uses an internal fixed-block size TBC with block size of n bits.
The scheme has birthday bound security, capping the security to n/2 bits. Besides, it
follows the proof-then-prune strategy, where the security proof is done assuming an ideal

1While there are other security notions, such as release of unverified plaintexts, they are not relevant to
this work.
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TBC, but in practice they use a 4-round cipher based on the AES round function. This
approach has been shown to lead to birthday-bound key recovery attacks [CG16] and plays
a significant role in the scheme’s excellent practical performance. Nevertheless, we view
their work on defining the robust AE security notion as essential to our work. We will be
referring to a more restricted version known as Pseudo-Random Injection (PRI), where
we consider IND-CCA security when λ can be short, but is fixed as part of the scheme.
In 2016, Abed et al. [AFL+16] proposed the Robust IV (RIV) scheme as more efficient
solution to address similar AEAD goals to AEZ, but the authors provide a security bound
where the AEAD security is upped bounded by the INT-CTXT security. Our construction
can be viewed as a generalization of RIV.

In CRYPTO 2022, Degabriele and Karadžić [DK22] proposed the concept of a rugged
Pseudo-Random Permutation (PRP); a variable-block-length PRP scheme that is not
secure against IND-CCA attacks, but can be used in the EtE framework when part of the
encoded plaintext text is encrypted using an IND-CCA-secure PRP. They, then, propose
two EtE-like AEAD schemes based on there construction, one with λ-bit AEAD security
and one with λ/2-bit AEAD security.

Last but not least, two recent papers appeared in ToSC22 addressing the IND-CCA se-
curity of online AEAD schemes. An online AEAD scheme is a scheme that is parameterized
by a small integer m, where the first m bits of the ciphertext depend only on the first m bits
of plaintext, the first 2m bits of ciphertext, depend on the first 2m bits of plaintext,...etc.
In [Kha22], Khairallah showed that online AEAD schemes cannot have IND-CCA security
more than λ bits. He also showed that the Combined Feedback (COFB) [CIMN20] AEAD
scheme has at most n/2-bit IND-CCA security when instantiated with an n-bit block
cipher. In [HII+22], Hosoyamada et al. showed a similar result and showed an attack on
the ROCCA AEAD scheme [SLN+21] with 2λ queries. They also showed that it is possible
to build a nonce-based AEAD scheme using the EtE framework with 256-bit IND-CCA
security and 128-bit INT-CTXT security, if the underlying enciphering scheme is a fixed
length strong Tweakable PRP (TPRP).

Contributions In this paper, we start from the same question in [HII+22]: Can we
design an AEAD scheme with 256-bit IND-CCA security and 128-bit INT-CTXT security?
But we expand on the problem, and redefine it as follows:

Can we have an AEAD scheme with λ-bit INT-CTXT security and more than λ-bit
IND-CCA security?

Table 2: Different types of AEAD schemes and whether thay can achieve IND-CCA
security beyond the tag length. "Yes" requires a sufficiently large minimum plaintext length

Definition CCA Security > λ bits Ref
Online AE No [Kha22]

Encipher-then-Encrypt Yes [HII+22]
MRAE with online encryption No This work

Rugged PRP No This work
PRI Yes This work

To address this question, we contribute multiple results:

1. While typical practical AEAD schemes can encrypt arbitrary messages, including
empty string, we show a negative result that no AEAD scheme can have IND-CCA
security more than λ bits when empty strings are part of the plaintext space and λ
is fixed. More generally, we show that any AEAD scheme can have at most s + λ
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IND-CCA security when λ is fixed and s is the minimum plaintext size, in the nonce
respecting model, and the security of that scheme degrades linearly with the number
of nonce repetitions. We show this by modelling the best possible fixed-stretch
AEAD scheme, dubbed as Pseudo-Random Injection (PRI), and proving an upper
bound on the adversarial IND-CCA advantage and a matching attack.

2. Since [Kha22] and [HII+22] address online AEAD, a natural next step is to study
two-pass AEAD. The most popular such scheme is the Synthetic IV (SIV) scheme
proposed by Rogaway and Shrimption [RS06]. Peyrin and Seurin proposed a nonce-
based generalization of SIV [PS16], dubbed nSIV. We show an IND-CCA attack on
SIV when the underlying encryption scheme is IND-CCA-insecure, and show that
when the encryption scheme is stream-cipher-like, the attack can be used to decrypt
any messages, capping the IND-CCA security of SIV in these cases to λ bits.

3. We also show that while the recently proposed rugged PRPs [DK22] share a similar
philosophy to this paper, they are not sufficient to address our security goals. We do
this by proposing matching attacks in the IND-CCA model.

While our results are mostly negative, they help paint a clearer picture of the IND-CCA
security with short tags landscape. We show that two-pass schemes do not achieve the
required security in this model and that the enciphering assumption in [HII+22] is not
needed. However, the PRI assumption we need is very close to the enciphering assumption.
Besides, we show by both security proof and attack that in order to achieve the required
security we must constrain the minimum size of the plaintext. It is possible to have a
different security argument based on variable stretch size and the minimum ciphertext size
in general, but we leave that approach out of our scope. Table 2 shows a summary of the
implications of [Kha22, HII+22] and our work.

2 Preliminaries
Notations We use small case letters, e.g., v, to refer to integer variables. We use
uppercase letters , e.g., V , to refer to variables that are bit-strings. We use calligraphic
letters, e.g., V , to refer to sets of values. We use boldface uppercase letters, e.g., V, to refer
to adversaries. ε refers to an empty bit-string. {0, 1}b is the set of all bit-strings of size
exactly b. {0, 1}b+ is the set of all bit-strings of greater than or equal b. {0, 1}∗ ≡ {0, 1}0+ is
the set of all bit-strings including ε. For two bit-strings X and Y , X∥Y is the concatenation
of X and Y . |X| is the length of the bit-string X expressed by the number of bits. ⌊X⌋n is
the bit-string composed of the n-leftmost bits of X, while ⌈X⌉n is the bit-string composed
of n-rightmost bits of X. ← is an assignment from a statement on the right hand side
to a variable on the left hand side. $←− samples a value uniformly from the set on the
right hand side and assigns it to the variable on the left hand side. X ⇒ X means the
algorithm/adversary on the left hand side returns X.

Authenticated Encryption An Authenticated Encryption (AE) scheme [BN00] is a
symmetric-key algorithm that provides both privacy and authenticity. An AEAD scheme
[Rog02] is similar except that both algorithms take an extra input called associated data
A which is a public portion of the message, used for authentication only. In this paper,
we focus on nonce-based AEAD, sometimes known as NAE, which takes a third input N
called nonce. An AEAD scheme Π is a triplet (K, Enc, Dec), where K is the key space,
Enc : K×N×A×M→ C is the encryption algorithm and Dec : K×N×A×C →M∪{⊥}
is the decryption algorithm, which returns ⊥ if the input is not a valid ciphertext. Let
M = {0, 1}s+, then C = {0, 1}(s+λ)+, where s is the minimum-plaintext size and λ is the
ciphertext stretch. For every Enc(K, N, A, M)⇒ C, |C| = |M |+ λ. For some schemes,
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the ciphertext can be separated into two distinctive bit-strings, in which case we redefine
C ≡ T × C′ , where C = T∥C ′ , |T | = λ and |C ′ | = |M |. In this case, T is referred to as the
tag, and |T | is the stretch. In some scheme, we define a tweak space T = N ×A and we
combine each pair (N, A) in one variable Tw. In such cases, we refer to Tw as the nonce
and we count how many times a nonce repeats accordingly.

Let $ : N ×A×M→ C be a random oracle that returns a uniformly random ciphertext
of the same size as Enc and ⊥: N ×A× C → {⊥} is an oracle that rejects all ciphertexts.
Let A be an adversary against Π. We define four security notions:

Advind−cpa
Π (A) def= |Pr[K $←− K : AEnc,⊥ ⇒ 1]− Pr[A$,⊥ ⇒ 1]|

Advint−ctxt
Π (A) def= |Pr[K $←− K : AEnc,Dec ⇒ 1]− Pr[K $←− K : AEnc,⊥ ⇒ 1]|

Advaead
Π (A) def= |Pr[K $←− K : AEnc,Dec ⇒ 1]− Pr[A$,⊥ ⇒ 1]|

Advind−cca
Π (A) def= |Pr[K $←− K : AEnc,Dec ⇒ 1]− Pr[K $←− K : A$,Dec ⇒ 1]|

The last one captures IND-CCA security and is the focus of our work.

3 CCA Security of Pseudo-Random Injections
In this section, we study the IND-CCA security of a Pseudo-Random Injection (PRI). We
start by defining tweakable PRIs. Then, we define their security. We refer to one of the
results of [RS06] that addresses the security gap between PRIs when the tweak is fixed
and ideal Deterministic AEAD (DAE). While the ideal AEAD scheme is defined according
to AEAD security, we can argue that tweakable PRIs capture the best possible notion of
AEAD in practice. An ideal AEAD scheme rejects all decryption queries that have not
been generated by its encryption random oracle. In practice, an AEAD scheme should be
able to decrypt valid ciphertexts that have not been generated yet.

Definition 1. A tweakable fixed-stretch injection is a keyed function π̃ : K×T ×{0, 1}s+ →
{0, 1}(s+λ)+, where K is the key space, T is the tweak space, s is the minimum plaintext
length expressed in bits, and λ is referred to as the ciphertext stretch, such that π̃(K, Tw, ·)
is an injective function from {0, 1}s+ to {0, 1}(s+λ)+. ∀M ∈ {0, 1}s+, K ∈ K, Tw ∈ T ,
|π̃(K, Tw, M)| = |M |+ λ. We sometimes refer to π̃(K, Tw, M) as π̃Tw

K (M).

Definition 2. The security of a tweakable fixed-stretch injection π̃ : K × T × {0, 1}s+ →
{0, 1}(s+λ)+ for a given key K selected randomly from K is defined by its indistinguishability
from a tweakable fixed-stretch injection f selected randomly from the set of injections
with the same domain, co-domain and stretch. f : T × {0, 1}s+ → {0, 1}(s+λ)+ is a set
of independent uniform random fixed-stretch injections indexed by the tweak Tw ∈ T .
Let Advpri

π̃ (A) denote the Pseudo-Random Injection (PRI) advantage of π̃ against an
adversary A. It is defined as

Advpri
π̃ (A) def= |Pr[K $←− K : Aπ̃(K,·,·),π̃−1(K,·,·) ⇒ 1]− Pr[Af(·,·),f−1(·,·) ⇒ 1]|

where π̃−1(K, Tw, C) returns M if π̃(K, T, M) = C, and ⊥ if no such point exists, and
similarly for f−1.

We note that PRI security is similar to robust AE security. However, the two differ in
that robust AE considers a variable stretch that is given by the user/adversary as an input,
as pointed out in [HKR15]. In [RS06], the authors showed that when the tweak is fixed, a
PRI is almost an ideal DAE. However, the bound is quite large when the stretch is short.
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Theorem 1. ([RS06, Theorem 7]) Let π̃ : K× T × {0, 1}s+ → {0, 1}(s+λ)+ be a PRI. Let
A be an adversary that makes at most qe queries to π̃ and qd queries to π̃−1, with a total
of q = qe + qd queries. Then,

|Advpri
π̃ (A)−Advdae

π̃ (A)| ≤ q2

2s+λ+1 + 4qd

2λ
.

In order to get a better and more practical bound, we consider the restricted case of
nonce-misusing adversaries, where the adversary makes at most µ encryption queries with
the same tweak Tw and consider IND-CCA security rather than AEAD security. The next
theorem is a generalization of Theorem 1 in [HII+22]. It is also influenced by and uses
techniques from Theorem 7 of [RS06]. Afterwards, we give a matching attack.

Theorem 2. Let π̃ : K× T × {0, 1}s+ → {0, 1}(s+λ)+ be a PRI. Then, for any IND-CCA
adversary A that makes qe queries to π̃ and qd queries to π̃−1,

Advind−cca
π̃ (A) ≤ Advpri

π̃ (B) + (µ− 1)qe

2s+λ
+ 5µqd

2s+λ
+ 2qd

2s+λ
,

given (qd + qe) < 2s+λ−1. For any Tw ∈ T , A makes at most µ queries to π̃.

Proof. First, we replace π̃ with an ideal random injection, which gives us the first term.
Next, we describe the PRI oracles and the ideal world oracles, then we describe two bad
events where that are used to analyze the adversarial advantage. The oracles of both
worlds are described in Algorithm 1.

Adversarial Queries: The adversary makes queries to its two oracle with the following
conditions: it does not repeat queries and does not forward queries, i.e. if C ← Enc(Tw, M),
the adversary cannot make the query Dec(Tw, C) and if M ← Dec(Tw, C), the adversary
cannot make the query Enc(Tw, M).

PRI oracles: The oracles of the PRI are the oracles of Algorithms 1 including the
highlighted lines. They are based on the PRI oracles proposed in [RS06, Theorem 7].
These oracles are a implementation of lazy sampling of a a random injection with the
desired domain and range. The first oracle Enc selects a valid image for the injection with
tweak Tw and the input M . For each tweak Tw and ciphertext length c, it maintains a
list VTw,c of queried inputs. The second oracle Dec simulates a decryption function. It
determines the list of valid ciphertexts and the list of valid plaintexts. Valid ciphertexts
are ciphertexts that have not generated by an Enc query and have not been queried to
Dec. The list of valid plaintexts are plaintexts that have been queried to Enc or have
been generated by Dec and are not equal to ⊥. The Dec oracle then samples a biased
coin with bias |Me|/|Ce| based on the sizes of these two lists and decides whether the
forgery is valid or not. If the forgery is valid, it sames a valid plaintext and assigns it as a
corresponding input. If not, it outputs ⊥ and adds the queried ciphertext to the list of
invalid ciphertexts.

The Ideal-World Oracles: From the definition of IND-CCA security, the decryption
oracle must be exactly the same. Thus, only modifications are in the Enc oracle. The
oracle samples random ciphertexts and does not update the lists of valid inputs and
outputs.

Bad Events: We define two bad events:
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Algorithm 1 PRI and Ideal World Oracles

1: Initialize
2: Lc = {|C||C ∈ {0, 1}(s+λ)+}
3: for (Tw, c) ∈ T × Lc do
4: MTw,c ← ϕ
5: CTw,c ← ϕ
6: ITw,c ← ϕ
7: VTw,c ← ϕ
8: OTw,c ← ϕ
9: end for

10: bad1← false
11: bad2← false
12: badF← false

1: Enc(Tw, M)
2: c← |M |+ λ

3: C
$←− {0, 1}c

4: if C ∈ OTw,c ∪ CTw,c ∪ ITw,c then
5: bad1← true
6: C

$←− {0, 1}c \ (OTw,c ∪ CTw,c ∪ ITw,c)
7: end if
8: VTw,c ← VTw,c ∪ {M}
9: OTw,c ← OTw,c ∪ {C}

10: MTw,c ←MTw,c ∪ {M}
11: CTw,c ← CTw,c ∪ {C}
12: return C

1: Dec(Tw, C)
2: M ←⊥
3: c← |C|
4: m← |C| − λ
5: Me ← {0, 1}m \MTw,c

6: Ce ← {0, 1}c \ (CTw,c ∪ ITw,c)
7: x

$←− {1, · · · , |Ce|}
8: if x ≤ |Me| then
9: badF← true

10: M
$←−Me

11: if M ∈ VT,c then
12: bad2← true
13: end if
14: MTw,c ←MTw,c ∪ {M}
15: CTw,c ← CTw,c ∪ {C}
16: else
17: ITw,c ← ITw,c ∪ {C}
18: end if
19: return M

1. bad1: This happens if the Enc oracle samples randomly a ciphertext that corresponds
to a previously assigned point to the random injection, or a ciphertext that have
been deemed invalid by the Dec oracle. In the real-world, the oracle performs a
corrective step, while in the ideal-world such step is not performed.

2. bad2: This happens if the Dec oracle samples a decrypted message that has been
outputted by the Enc for the same Tw.

3. badF: This is the event that a successful forgery occurs.

Note that bad2 is impossible in the real world, since all the inputs to Enc are automatically
excluded from the valid plaintexts. Thus, this event can only happen in the ideal world,
when the adversary queries C ← Enc(Tw, M), then makes a subsequent query M

′ ←
Enc(Tw, C

′) such that C
′ ̸= C and M

′ = M . On the other hand, bad1 can happen in
both worlds in two ways:

1. bad1a: Two queries C1 ← Enc(Tw, M1) and C2 ← Enc(Tw, M2), such that C1 = C2
and M1 ̸= M2.

2. bad1b: A query M1 ← Dec(Tw, C1) is followed by a query C2 ← Enc(Tw, M2), such
that C1 = C2 and M1 ̸= M2.

If none of bad1 or bad2 occur, the all the queries are compatible with a random injection
description. However, the two games are not identical, since the probability distribution of
successful forgery is slightly different in different worlds. The real world decryption oracle
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Algorithm 2 Intermediate World Oracles
1: Initialize
2: Lc = {|C||C ∈ {0, 1}(s+λ)+}
3: for (Tw, c) ∈ T × Lc do
4: MTw,c ← ϕ
5: CTw,c ← ϕ
6: ITw,c ← ϕ
7: VTw,c ← ϕ
8: OTw,c ← ϕ
9: nTw,c ← 0

10: end for
11: bad1← false
12: bad2← false
13: badF← false

1: Enc(Tw, M)
2: c← |M |+ λ

3: C
$←− {0, 1}c

4: if C ∈ OTw,c ∪ CTw,c ∪ ITw,c then
5: bad1← true
6: end if
7: VTw,c ← VTw,c ∪ {M}
8: OTw,c ← OTw,c ∪ {C}
9: nTw,c ← nTw,c + 1

10: return C

1: Dec(Tw, C)
2: M ←⊥
3: c← |C|
4: m← |C| − λ
5: Me ← {0, 1}m \MTw,c

6: Ce ← {0, 1}c \ (CTw,c ∪ ITw,c)
7: x

$←− {1, · · · , |Ce| − nTw,c}
8: if x ≤ |Me| − nTw,c then
9: badF← true

10: M
$←−Me

11: if M ∈ VTw,c then
12: bad2← true
13: end if
14: MTw,c ←MTw,c ∪ {M}
15: CTw,c ← CTw,c ∪ {C}
16: else
17: ITw,c ← ITw,c ∪ {C}
18: end if
19: return M

does not exclude plaintexts and ciphertexts used during encryption queries from the lists
of valid plaintexts and ciphertexts. For this purpose, we introduce an intermediate world
in Algorithm 2. We shall apply the triangle inequality as follows:

|Pr[Areal ⇒ 1]− Pr[Aideal ⇒ 1]| ≤ |Pr[Areal ⇒ 1]− Pr[Aintermediate ⇒ 1]|+

|Pr[Aintermediate ⇒ 1]− Pr[Aideal ⇒ 1]|

Distinguishing the Intermediate and Ideal Worlds We note that the only difference
between the two worlds is in the bias of the coing that determines whether the forgery
is successful. Let (Ti, Ci) be the ith decryption query. Let F1,i be the event that the
adversary gets a successful forgery in the intermediate world, while F2,i is the event that the
adversary gets a successful forgery in the ideal world. Thus, we bound the distiniguishing
advantage using the statistical distance between the distributions of these events.

|Pr[Aintermediate ⇒ 1]− Pr[Aideal ⇒ 1]| ≤

1
2

qd∑
i=1
|Pr[F1,i = true]− Pr[F2,i = true]|+

|Pr[F1,i = false]− Pr[F2,i = false]|

= 1
2

qd∑
i=1
|Pr[F1,i = true]− Pr[F2,i = true]|+
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|1− Pr[F1,i = true]− 1 + Pr[F2,i = true]|

=
qd∑

i=1
|Pr[F1,i = true]− Pr[F2,i = true]|

Let qi
d be the number of decryption queries with the same tweak Ti prior to the ith query,

qi
f is the number of successful forgeries with the same tweak prior to the ith query.

Pr[F1,i = true] =
2mi − qi

f − nTi,ci

2ci − qi
d − nTi,ci

and

Pr[F2,i = true] =
2mi − qi

f

2ci − qi
d

Thus,

|Pr[F1,i = true]− Pr[F2,i = true]| = |
2mi − qi

f

2ci − qi
d

−
2mi − qi

f − nTi,ci

2ci − qi
d − nTi,ci

|

= |
(2ci − qi

d)(2mi − qi
f )− nTi,ci(2ci − qi

d)− (2ci − qi
d)(2mi − qi

f ) + nTi,ci(2mi − qi
f )

(2ci − qi
d)(2ci − qi

d − nTi,ci)
|

= nTi,ci

(2ci − qi
d)(2ci − qi

d − nTi,ci)
|(2mi − qi

f )− (2ci − qi
d)|

≤ 4µ

22ci
|(2mi − qi

f )− (2ci − qi
d)| ≤ 4µ2ci

22ci
= 4µ

2ci
≤ 4µ

2s+λ
.

Thus,

|Pr[Aintermediate ⇒ 1]− Pr[Aideal ⇒ 1]| ≤ 4µqd

2s+λ
(1)

Distinguishing the Intermediate and Real Worlds The forgery bias in the real
and intermediate worlds is the same. Thus, the adversary can only distinguish the two
worlds if bad1 or bad2 occur. Otherwise, the two worlds are indistinguishable.

Winning Condition: We restrict the game to the case where the game terminates if any
of the bad events bad1 or bad2 occur. This can only increase the adversary’s advantage.

From this description, we know from [Sho04, Lemma 1]

|Pr[Areal ⇒ 1]− Pr[Aintermediate ⇒ 1]| ≤ Pr[bad1a] + Pr[bad1b] + Pr[bad2]

bad1a: For a given queries Enc(Ti, Mi), there are at most (µ− 1) previous queries with
the same Ti. Thus, the probability of the event is bounded by

Pr[bad1a] ≤ (µ− 1)qe

2s+λ
(2)

bad1b: Let the ith encryption query be (Ti, Mi), ci = |Mi| + λ and qi
d be the number

of decryption queries made before the ith encryption query with the same tweak Ti and
ciphertext length ci. Let Ei be the event that bad1b is set in the ith encryption query. Let
nEi be the even that bad1b is not set in any of the first i− 1 encryption queries. Given
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the game terminates if bad1b is set, the probability that bad1b is set in any encryption
query is

Pr[bad1b] = Pr[E1] +
qe∑

i=2
Pr[Ei|nEi] Pr[nEi] ≤

q1
d

2c1
+

qe∑
i=2

qi
d

2ci
=

qe∑
i=1

qi
d

2ci
≤ µqd

2s+λ
. (3)

The last inequality follows from the worst case when all the encryption queries are performed
after all the decryption queries and each tweak appears in at most µ encryption queries.

bad2: For any decryption query with tweak Tj , there are at most µ encryption queries
with the same tweak. Let qj

d be the number of decryption queries with tweak Tj before the
jth decryption query and qj

f is the number of such queries that did not output ⊥. For the
oracle description, nTj ,c is the number of encryption calls that use the same tweak Tj . In
the case of decryption oracle, the probability that bad2 is set in the jth decryption query
in the intermediate world is the probability that the conditions on lines 8 and 10 are set,
which is given by

2mj − qj
f − nTj ,cj

2cj − qj
d − nTj ,cj

× 1
2mj − qj

f

≤ 1
2cj − qj

d − nTj ,cj

≤ 2
2s+λ

.

Let Dj be the event that bad2 is set in the jth decryption query, and nDj be the even
that bad2 is not set in the first j− 1 decryption queries, then, given the game terminates if
bad2 is set, the probability that bad is set during the first qd decryption queries is given by

Pr[D1] +
qd∑

j=2
Pr[Dj |nDj ] Pr[nDj ] ≤

qd∑
j=1

2
2s+λ

= 2qd

2s+λ
. (4)

The overall bound follows from Equations 1, 2, 3 and 4.

This result gives the first main ingredient of building schemes with IND-CCA security
with a fixed stretch; set a minimum plaintext length. However, we have to be careful
when using this result. One tempting approach to bound the IND-CCA security is to
first bound the PRI security, then rely on Theorem 2 to get the final bound. However,
this approach may lead to loose bounds. In the IND-CCA game, we allow the decryption
oracle to be as weak as the scheme itself. This means that forged messages may exhibit
non-random patterns, without the scheme being considered insecure. However, by making
the transition to PRI first, we penalize the scheme for potentially having such non-random
patterns in forged messages. Thus, for a given scheme, it is still useful to performs a
dedicated IND-CCA analysis.

3.1 Matching Attack on the Minimum Plaintext Length
The result from Theorem 2 presents a somewhat bad news for instantiating AEAD in
general, since the standard AEAD syntax allows for messages to be short and even empty
strings. In this section, we show that, unfortunately, this dependence on the minimum
plaintext length is tight, by giving a nonce-respecting adversary that breaks IND-CCA
security with O(2s+λ) queries.

Theorem 3. For any AEAD scheme Π with plaintext domain {0, 1}s+ and a fixed stretch
λ, there is a nonce-respecting IND-CCA adversary A such that

Advind−cca
Π (A) >

0.5qd

2s+λ
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where qd is the number of decryption oracle queries. In the special case where the plaintext
space is {0, 1}∗, which includes the empty string,

Advind−cca
Π (A) >

0.5qd

2λ
.

Proof. We construct an adversary A as follows:

1. A selects a random ciphertext C
′ , such that |C ′ | = s + λ.

2. A selects a random tweak Tw and asks for the decryption Dec(Tw, C
′)⇒M

′ .

3. A selects a random message M , such that |M | = s and M ̸= M
′ , and asks for the

encryption Enc(Tw, M).

4. A terminates and returns 1 if C = C
′ .

A repeats this attack qd times, with a different Tw each time. In the real-world, the
condition in step 4 can never occur. In the ideal-world, since A selected both C

′ and M
randomly, Pr[C = C

′ |M ̸= M
′ ] = 1/2s+λ. Since A performs qd independent attempts,

Advind−cca
Π (A) = 1− (1− 1

2s+λ
)qd >

0.5qd

2s+λ
.

4 Insufficiency of MRAE security
An MRAE scheme is a scheme that that allows the adversary to repeat the nonce while
maintaining AEAD security. If the nonce is treated as a constant, the scheme becomes a
DAE scheme. While [RS06] showed that a DAE scheme and a PRI are indistinguishable,
PRIs can be quite expensive, and DAE/MRAE can be achieved using cheaper methods. In
this section, we give a few examples of schemes that achieve MRAE security, while having
their IND-CCA attacks with 2λ queries.

4.1 Generalized nonce-based synthetic IV schemes
In this section, we study the SIV structure in different variations, and generalize it to be
nonce-based. This generalization is not new, as it was proposed in [PS16] and used in the
SCT and Romulus-M [IKMP20] modes. We start by defining nonce-IV-based encryption,
then consider the different instances.

Definition 3. A nonce-IV-based encryption scheme is a tuple Π(K, E ,D), where E :
K×N×A×IV×{0, 1}s+ → IV×{0, 1}s+ is a keyed encryption function with key space K,
plaintext/ciphertext space {0, 1}s+, nonce space N , header space A and IV space IV , while
D : K×N×A×IV×{0, 1}s+ → IV×{0, 1}s+ is its decryption function. E(K, N, A, ·, ·) is a
permutation for its fourth and fifth inputs, and D(K, N, A, E(K, N, A, IV, M)) = (IV, M).

Definition 4. Let Π(K, E ,D) be a nonce-IV-based encryption scheme. Let A be an
IND-CCA adversary against Π. In the real world, A interacts with EK and DK , while in
the ideal world, interacts with $ and DK . $ behaves the same as EK except that it replaces
the ciphertext generated in each encryption query by a random string of the same length.
Let Advind−cca

Π (A) denote the IND-CCA advantage of Π against A. It is defined as

Advind−cca
Π (A) def= |Pr[K $←− K : AEK ,DK ⇒ 0]− Pr[K $←− K : A$,DK ⇒ 1]|
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Note that the definition of IND-CCA security here differs from the definition of sTPRP
security, in that the sTPRP security compares a scheme to a family of random permutation,
while IND-CCA compares it to a random oracle. Besides, sTPRP security assumes the
decryption oracle is ideal and outputs random strings (up to the being a permutation),
while IND-CCA security, as defined above, assumes the decryption is always real and can
have weaknesses.

Definition 5. Let f : K1 × N × A × {0, 1}s+ → {0, 1}λ be a PRF, and Π(K2, E ,D)
be a nonce-IV-based encryption scheme, where E : K2 × N × A × {0, 1}λ × {0, 1}s+ →
{0, 1}λ × {0, 1}s+ is a keyed encryption function with key space K2, plaintext/ciphertext
space {0, 1}s+, nonce space N , header space A and IV space IV , while D : K2 × {0, 1}λ ×
N ×A× {0, 1}s+ → {0, 1}λ × {0, 1}s+ is its decryption function. Then the nonce-based
Synthetic IV (nSIV) scheme is a tuple (K, Enc, Dec), described in Figure 3.

Algorithm 3 Algorithmic description of the nSIV scheme
1: nSIV.Enc(K, N, A, M)
2: K1 ← K[1]
3: K2 ← K[2]
4: IV ← f(K1, N, A, M)
5: (T, C)← E(K2, N, A, IV, M)
6: return (T, C)

1: nSIV.Dec(K, N, A, T, C)
2: K1 ← K[1]
3: K2 ← K[2]
4: (IV ⋆, M)← D(K2, N, A, T, C)
5: IV

′ ← f(K1, N, A, M)
6: if IV

′ = IV ⋆ then
7: return M
8: else
9: return ⊥

10: end if

Matching attacks on nSIV with IND-CCA-insecure encryption nSIV achieves
MRAE security even is the underlying encryption scheme is not IND-CCA secure. An
interesting question is whether nSIV can achieve IND-CCA security beyond the tag length.
This is also motivated by the results of [Kha22] and [HII+22], which show that online
AE cannot achieve such security. We now show that if the underlying encryption scheme
of nSIV is not IND-CCA secure, then it cannot achieve the required security level. In
this section, we discuss two examples. First, we attack SIV from [RS06] where Ẽ is
online. Second, we discuss how to apply this attack to SIV when Ẽ is a stream-cipher-like
encryption scheme e.g., counter mode. In Section 5, we discuss a recently proposed scheme
in CRYPTO 2022, namely UIV [DK22] and apply a variant of the second attack to it.

Definition 6. Let e be an nonce-IV-based encryption scheme. We say e is online if
∃n ∈ Z+, s.t. e satisfies that for two queries C = e.EN

K (IV, M) and C
′ = e.EN

K (IV, M
′),

⌊M⌋n = ⌊M
′
⌋n ←→ ⌊C⌋n = ⌊C

′
⌋n

Theorem 4. Let nSIV[f, e] be the AEAD encryption scheme given in depicted in Figure 1.
There is an IND-CCA adversary A against nSIV[f, e] that makes 1 encryption query and
qd decryption queries such that

Advindcca
nSIV[f,e](A) ≥ 0.5qd

2λ
(1− 1

2n
).

Proof. We construct A as follows:

1. A asks for an encryption query (T, C) = Enc(N, A, M) such that |M | = max(2n, 2λ).
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fN,A
Kf

eNKe

M

C T

Figure 1: The nSIV scheme with an online encryption scheme

2. A selects C⋆ $←− {0, 1}|M |−n and sets C
′ = ⌊C⌋n∥C⋆.

3. A asks for a decryption query M
′ = Dec(N, A, T, C

′).

4. If M
′ =⊥, repeats steps 2 and 3.

5. If M
′ ̸=⊥ and ⌊M ′⌋n = ⌊M⌋n, return 0, otherwise return 1.

After each decryption query, the probability of step 5 getting executed is 1/2λ. After qd

decryption query, the probability that A executes step 5 is lower bounded by 0.5qd/2n. If
step 5 gets executed in the real world, the condition is always satisfied, while it is satisfied
in the ideal world with probability 1/2n.

The adversary described above breaks the IND-CCA game with about 2λ decryption
queries. However, if e is a stream-cipher-like encryption scheme, such as the one in Figure 2,
the adversary can be adapted to act as a decryption oracle. The adversary receives a
ciphertext corresponding an unknown message. Then, the adversary performs steps 2-4,
with n = 0. Once it gets M

′ ̸=⊥, it decrypts M = M
′ ⊕C

′ ⊕C. This attack also shows a
matching attack on the encode-then-encipher scheme based on UIV proposed in [DK22].
We study matching attacks on plain AEAD schemes proposed in [DK22] in Section 5.

fN,A
Kf

eNKe

0λM

Figure 2: The nSIV scheme with an stream-cipher-like encryption scheme
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5 Matching Attacks on Rugged PRPs
In CRYPTO 2022, Degabriele and Karadžić [DK22] proposed the concept of rugged PRPs
as a new security notion that helps achieve some of the security goals required from and
encode-then-encipher scheme, without the underlying enciphering scheme being a strong
TPRP, which sounds like a similar problem to the problem we are studying. They proposed
an underlying IND-CCA-secure encryption scheme called UIV and proposed two AEAD
modes based on this scheme, the first is the normal encode-then-encipher scheme, while
the second is an encode-then-decipher scheme, where the the AEAD encryption uses the
decryption algorithm of the underlying encryption scheme and vice-versa. In the former
case, the redundancy bits can be set to a constant, while in the latter case, the redundancy
bits are set by hashing the nonce, associated data and plaintext using a collision-resistant
hash function. In this section, we give a description of the UIV encryption scheme, then
we show matching attack on its encode-then-encipher mode that is a variant of the attack
in Theorem 4, and two matching attacks on its encode-then-decipher mode; one on the
original mode and another for the strengthened case where the key stream generation PRF
takes the nonce as an auxiliary input. These constructions are depicted in Figure 3.

We would like to highlight that the rugged PRP study and our study share a similar
philosophy; can we design AEAD schemes that have security similar to that of an encode-
then-encipher mode instantiated with a strong TPRP using weaker primitives? However,
the two studies deviate in terms of what are the security goals they actually try to achieve.
Both studies target IND-CCA security, but [DK22] targets IND-CCA security when the
stretch is sufficiently large and (in the case of encode-then-decipher) unverified plaintexts
are leaked. We, on the the other hand, focus on the IND-CCA security when the stretch is
not long enough for the required security. This section serves to show that rugged PRPs
are not sufficient to achieve our goal.

Unilaterally-Protected IV (UIV) The scheme uses a fixed n-bit block length and
variable tweak length TBC and a variable output length, fixed input length PRF. It is
depicted in Figure 3 (a), where X is treated as the IV of the scheme. Informally, the
goal of the scheme is to behave as a PRP over X, while being IND-CPA-secure over M .
However, we observe that if X is treated as part of the nonce, or fixed to a constant,
then the scheme can be described using the SIV paradigm. This is exactly the case of
the encode-then-encipher mode. We can adapt the attack from Theorem 4 to attack the
encode-then-encipher mode. The adversary operates the same way until the decrypted
message (when used as tweak to the TBC) maps T to 0n. In this case, λ = n and the
analysis of the attack is the same.

Encode-then-Decipher from UIV The authors of [DK22] propose using UIV in
the reverse direction in the encode-then-decipher mode shown in Figure 3 (c). In this
case, X = H(N, A, M) where H is a deterministic collision-resistant hash function, and
λ = n = |H(N, A, M)|. This already shows the issue, where to get the security of the
scheme depends on the collision-resistance of H, which limits the security to at most λ/2.
We show that even for a nonce-respecting adversary, if it runs in time ≥ 2λ/2, the security
is tight. The adversary A operates as follows:

1. A finds a collision H(N1, A1, M1) = H(N2, A2, M2), ensuring N1 ̸= N2 and |M1| =
|M2| = 2λ.

2. A asks for the encryption query (T1, C1) = Enc(N1, A1, M1).

3. A asks for the encryption query (T2, C2) = Enc(N2, A2, M2).

4. If M1 ⊕M2 = C1 ⊕ C2, A returns 0, otherwise, it returns 1.
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Figure 3: The constructions from [DK22]. (a) The UIV encryption scheme. (b) The
UIV-based encode-then-encipher scheme. (c) The UIV-based encode-then-decipher scheme.
(d) The UIV-based encode-then-decipher scheme strengthened with nonce-based keystream
generation.

In the real world, this happens with probability 1, while in the ideal world this happens
with probability 2−2λ. A makes only two encryption queries and runs in roughly the time
it needs to find the hash collision. For a practical hash function, after about 2λ/2 hash
attempts, the collision can be found with high probability.

Strengthened Encode-then-Decipher from UIV In Figure 3 (d), we envision a
slightly strengthened version, where the nonce is also included as an input to f . This pre-
vents the previous attack. However, we show that while this makes the attack qualitatively
harder, it does not affect the security level. We consider an adversary B that operates as
follows:

1. B finds a collision H(N, A1, M1) = H(N, A2, M2), and |M1| = |M2| = 2λ.

2. B asks for the encryption query (T1, C1) = Enc(N, A1, M1).

3. B sets C2 = C1 ⊕M1 ⊕M2.

4. B samples T$ from {0, 1}λ without replacement.

5. B asks for the encryption query M
′ = Dec(N, A2, T$, C2).

6. If M
′ = M2, it returns 0, otherwise, it repeats steps 4 and 5.
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In the ideal world, B can only return 0 with probability approximately qd/23λ, where
the forgery has to succeed and M

′ = M2 has to happen when C1 is selected randomly.
In the real world, since T is generated using a permutation, there must exist a value T$

where H(N, A2, M2) = ˜E−1N,A2
Ke

(T$). Hence, by trying all possible values until such value
is found, B always returns 1 after at most qd = 2λ. B runs in the time needed to find the
collision plus the time needed to perform 2λ decryption queries and 1 encryption query.

6 Conclusions
In this paper, we studied some of the gaps in the area of IND-CCA security of AEAD
schemes. We expanded on the results of [Kha22] and [HII+22], which dealt with online AE
and fixed-length Encrypt-then-Encipher schemes. We first show that PRI security implies
IND-CCA up to the minimum ciphertext length. This generalizes and tighten the result
of [HII+22], showing that (2) an enciphering scheme is not needed, but close to optimal,
and (b) IND-CCA security beyond the tag size with a fixed tag length is impossible unless
the plaintext space is restricted with a minimum size. Then, we show a matching attack
that breaks any AEAD scheme with O(2s+λ) queries where s is the minimum plaintext
size and λ is the tag size. On a different note, we show that two-pass schemes, such as
SIV and rugged PRP cannot achieve IND-CCA security beyond the tag length.
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