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Abstract

Verifiable secret sharing (VSS) protocols enable parties to share secrets while guaranteeing
security (in particular, that all parties hold valid and consistent shares) even if the dealer or
some of the participants are malicious. Most work on VSS focuses on the honest majority case,
primarily since it enables one to guarantee output delivery (e.g., a corrupted recipient cannot
prevent an honest dealer from sharing their value). Feldman’s VSS is a well known and popular
protocol for this task and relies on the discrete log hardness assumption. In this paper, we
present a variant of Feldman’s VSS for the dishonest majority setting and formally prove its
security. Beyond the basic VSS protocol, we present a publicly-verifiable version, as well as
show how to securely add participants to the sharing and how to refresh an existing sharing (all
secure in the presence of a dishonest majority). We prove that our protocols are UC secure, for
appropriately defined ideal functionalities.

1 Introduction

In this paper, we prove the security of Feldman’s verifiable secret-sharing scheme (VSS) [5] in the
ideal/real model paradigm of secure multiparty computation. We prove security for a dishonest
majority, achieving security with abort. More specifically, we consider n parties and a threshold t
required to reconstruct the secret. However, we make no limitation on t, and security is guaranteed
for any t ≤ n (and even t = n). Beyond the basic VSS, we consider a number of variants and
additional operations that are useful in the threshold cryptography setting. In particular, we
construct protocols and prove security for the following:

1. Basic Feldman VSS: This is the basic Feldman secret sharing with a dealer and n parties
who participate. We stress that we do not assume an honest majority, and as such parties
may abort (and some honest parties may abort while others have output). However, as with
standard security with abort, it is guaranteed that the output of all honest parties who do
not abort is consistent with the same valid sharing.

2. Feldman VSS with online and offline parties: In the basic VSS, all n parties send and receive
messages. However, consider a setting where t-of-n parties participate in a distributed key
generation protocol. In this case, t parties actually participate, and the other n − t parties
just receive shares. This is sufficient since anyway any t parties can learn the key, and so it
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suffices for just t parties to generate the key (as we assume that strictly less than t parties
are corrupted). Now, in regular Feldman VSS, it is possible to have the n − t parties be
passive and merely receive their shares. However, what happens if some of those parties are
offline. This can make sense if n ≫ t, or some of those n− t parties are actually just backup
entities. In this case, there is no way to know if a party has received a valid share until
they connect. We utilize publicly-verifiable encryption [4] in order to essentially construct a
publicly-verifiable secret-sharing scheme [11, 10], where the t parties who are online can all
verify that the shared values to the n−t offline parties are valid before the protocol terminates.
This ensures that the sharing is valid, even if not all parties are connected. We note that
the online parties may abort, but we achieve the guarantee that if any honest online party
completes without aborting, then all honest offline parties are guaranteed to generate output
and not abort. This is very significant in practice where an abort for online parties can be
immediately detected and dealt with, but offline parties may discover problems a lot later,
and dealing with it is more challenging.

3. Adding a party: In some real-world applications where a key is shared among parties, it is
necessary to be able to support the addition of new parties (without changing the threshold t).
In particular, the set of parties who can approve a signing operation in a threshold signing
setting may be dynamic (e.g., consider employees of a specific team at a cryptocurrency
custodian). As a result, it is necessary to support adding and removing parties. Our protocol
for adding a party works by having t parties subshare the new share to each other, and then
send the sum of these subshares – which constitutes a random sharing of the new share – to
the new party.

4. Refresh: In order to achieve a level of proactive security where it isn’t possible to slowly
steal shares from one party at a time, we provide a protocol that refreshes an existing secret
sharing. The result of a refresh operation is that the parties all hold shares on an independent
polynomial that defines the same secret. This is achieved by t parties using VSS to share
polynomials that have the secret 0, and then adding all of those shares to the existing one.

5. Removing a party: In the same way that it is sometimes necessary to add a party to an
existing secret sharing, it is also necessary to revoke a share and remove a party from the
sharing. This can be achieved simply by running the refresh operation, without providing the
new share to the party being removed. This works since all other parties now hold shares on
an independent polynomial, rendering the revoked party’s share useless.

We remark that all of our protocols work with more general access structures than just a basic
threshold. In particular, we can support any tree with AND, OR and threshold nodes, using
standard methods.

Feldman’s VSS overview: The idea behind Feldman’s VSS is to augment a regular Shamir
sharing with a broadcast of the sharing polynomial “in the exponent”. That is, let b0 = s and let
b(x) =

∑t−1
k=0 bk · xk. Then, in addition to sending each party their share, the dealer broadcasts

B0, B1, . . . , Bt−1 where each Bk = bk · G. Each party Pj , who is supposed to receive the share
sj = b(αj), then verifies that sj ·G =

∑t−1
k=0(αj)

k ·Bk, ensuring that all shares are consistent with
the single broadcasted polynomial in the exponent.
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The main differences between our protocol and the standard Feldman VSS for an honest ma-
jority are as follows:

� Since we anyway achieve only security with abort, we do not need a full-blown secure broadcast
of the vector (B0, . . . , Bt−1) and it suffices for the parties to run a simple echo-broadcast of
what they received. This ensures consistency between all honest parties that do not abort.

� In order to extract the polynomial that is shared in the proof of security when the dealer
is corrupted, we need to have the dealer prove knowledge of the polynomial with a zero-
knowledge proof of knowledge. In the honest majority setting (with the number of corrupted
being less than half of the quorum required, so less than t/2 here) this isn’t needed since the
polynomial can be extracted by the simulator receiving enough shares to reconstruct directly.
This is because the number of honest parties in that setting is greater than the degree of the
polynomial, something that isn’t guaranteed in our setting (where up to t− 1 parties may be
corrupted).

� Standard Feldman VSS has a “complaint” phase where parties can complain that they re-
ceived an incorrect value and this is fixed by the dealer. In our case with no honest majority,
if this occurs then a party will just abort, and so we don’t need to “fix” anything. Im-
portantly, as described above, we do ensure that all honest parties receive the same vector
(B0, B1, . . . , Bt−1), and this guarantees that all shares are on the same degree-(t − 1) poly-
nomial. In the standard VSS setting, this would require a full-blown secure broadcast (since
guaranteed output delivery is needed), whereas in our setting we can use a simple echo-
broadcast with just one round where all parties send each other the vector they received. If
a party did not receive the same output from everyone, then we just allow it to abort. This
ensures that all honest parties who do output something have received the same vector from
all other parties. The overall number of rounds is just two (over point to point channels).

On the security of Feldman VSS: Feldman VSS is often considered to not be “fully secure”
unless the value being shared is a hard-core bit of the discrete log of the secret. This is because
Feldman secret sharing reveals the value S = s · G, where s is the secret being shared. This does
not meet a standard definition of secret sharing where the secret must remain completely secret,
since s · G reveals some information on s. Nevertheless, in the context of elliptic-curve threshold
cryptography where the sharing is of an elliptic curve key, the secret s being shared is either a
private key or a share of the private key. In such cases, the public key, which is exactly s · G
is supposed to be revealed. In addition, when VSS is used for distributed key generation, then
each party shares some si and the resulting private key is s =

∑
si. In standard distributed key

generation protocols, each si ·G is also revealed. Thus, Feldman VSS can be used without any loss
or compromise in security. Indeed, for these applications, revealing si ·G is exactly what is needed
in order to tie the shared values back to the actual key.

Our formalization of security actually bypasses this issue by having the ideal functionality itself
provide the exponents of the polynomial (B0, . . . , Bt−1) to all parties. Thus, the security guarantees
provided by the functionality are primarily those of correctness and consistency (all honest parties
are guaranteed to have valid shares on the same polynomial). In terms of “hiding”, this is only
suitable for applications where the shares in the exponent can all be revealed. As discussed, this
suffices for applications like elliptic-curve threshold cryptography, which is growing in use today.
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On the use of Feldman VSS for key generation: In general, VSS protocols reveal nothing
about the shared value. As a result, the classic way of running key generation via VSS is for each
party to share a secret in parallel, and to then sum the result. Of course, in the case that one
also needs to obtain the public key, it is necessary to compute that while ensuring that it indeed
matches the sum of the shared values. When using Feldman VSS, this latter task is trivial: as
described above, each party’s sharing reveals its associated “public key share”, and the public key
is just the sum of these values. However, when using Feldman VSS, if all parties just share their
secret in parallel, then it is possible for the adversary to bias the result. This is because they can
see the public shares of the honest parties (i.e., B0, . . . , Bt−1) before they send their own shares. As
a result, in order to obtain distributed key generation with full simulation, each party first sends an
(extractable and equivocal) commitment to their VSS sharing. After receiving all commitments,
the parties decommit, and simply sum the result. This prevents corrupted parties from biasing the
result since they are committed to their sharings before learning anything about the honest parties’
sharings.

Rounds of communication and asynchronous computation: In some settings, and in par-
ticular in the threshold signing setting, it is possible that some parties involved in the operations
(distributed key generation, adding a party, and so on) are humans with their personal devices. In
these cases, protocols with many rounds of interaction are problematic, since ensuring that every-
one is online together can be challenging. As a result, we aim for a minimal number of rounds. All
of our protocols have two rounds, making it sufficient for each party to “connect” twice. That is, a
human can connect and participate in the first round, and at a later time connect and participate in
the second round, meaning that the connections can be asynchronous (except for knowing that the
first round has completed). We also support having parties offline and later receiving their output,
as described above. In this paper, we call parties asynchronous if they can be online to carry out
computations, but we cannot require them to be online at the same time. As a result, they can
each connect, download information from some “coordinator machine”, prepare a message to be
sent to other parties that is sent to the coordinator, and then disconnect.

In the specific case of refresh, we also provide a variant with just a single round. This is due
to the fact that distributed key generation, adding a party, and removing a party, are all less
common tasks. In contrast, refresh is something that should be run periodically, and here having
two rounds can be problematic. Clearly, it is impossible to achieve consensus with only a single
round of communication (each party sending something). However, if there are also some “fully
online parties” then we show that it’s possible to run the consensus between these fully online
parties only. The security guarantee is weaker (requiring at least one honest fully online party) but
enables us to achieve practical refresh with asynchronous parties.

Security model and composition: We prove security for the stand-alone definition of secure
multiparty computation [2, 7] for security with abort (where some honest parties may have output
and some may abort) and with no honest majority. In this model, all parties send their inputs
to the ideal functionality (computed by a trusted party). The ideal functionality then sends the
(ideal-model) adversary the corrupted parties’ outputs, and the adversary then instructs the ideal
functionality as to which honest parties should receive output. In some cases, the functionality
may be interactive, with the adversary interacting with the functionality. This is used to model
issues like the fact that the adversary may be able to influence the secret sharing polynomial, but
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in no way that affects security. For example, it can choose its sharing as a function of shares it
receives from the honest parties. This is inconsequential, but must be included in the functionality
definition.

Although we prove security in the stand-alone model that guarantees security under sequential
composition only, we are really interested in UC security [3]; i.e., security under concurrent general
composition. This is achieved by all our protocols, since they are all perfectly secure with straight-
line simulation (i.e., no rewinding). As shown in [8], this implies UC security. We remark that the
actual VSS protocol is only perfectly secure in the ideal zero-knowledge hybrid model. However,
this suffices since it means that as long as the zero-knowledge proof of knowledge is instantiated
with a UC-secure protocol, then everything is UC secure.

A note on novelty: To the best of our knowledge, a formal description and proof of security for
Feldman’s VSS in the case of a dishonest majority has not appeared previously in the literature.
Our protocols are based on well-known techniques, but have not previously been formalized and
proven. This has value, for example, to ensure that zero-knowledge proofs are used in the sharing
(something not always done in naive implementations). In addition, our simple protocols for adding
a party and refreshing a sharing have also, to the best of our knowledge, not appeared previously.

2 Definitions and Preliminaries

2.1 Preliminaries

Lagrange interpolation: Let α1, . . . , αn be distinct field elements. We denote the Lagrange
basis polynomials with respect to a set I ⊆ [n] by

{
LI
i

}
i∈I where LI

i (x) =
∏

j∈I\{i}
x−αj

αi−αj
. The

standard Lagrange interpolation works by the fact that for any set of t distinct points {(αi, βi)}i∈I ,
it holds that f(x) =

∑
i∈I βi · LI

i (x) is the unique degree-(t − 1) polynomial such that f(αi) = βi
for every i ∈ I.

Zero-knowledge: We describe and prove our protocols secure with an ideal functionality for a
(batch) zero-knowledge proof of knowledge of the discrete log of a series of group elements. The
relation is formally defined by:

BatchDL =
{
{Xi}i∈[k] , {xi}i∈[k] : ∀i ∈ [k] xi ·G = Xi

}
.

We denote an ideal zero-knowledge proof of knowledge functionality for this functionality by
FBatchDL
zk . This can be realized with UC security in the random-oracle model by applying the

Fischlin transform [6] to the standard Sigma protocol for discrete log by Schnorr [9], in par-
allel for each value. The functionality is a pairwise functionality, and so the prover Pi sends(
prove, sid, i, j, {Xi}i∈[k]

)
, and FBatchDL

zk sends
(
prove, sid, i, j, {Xi}i∈[k]

)
to party Pj if the proof

is valid, and sends
(
prove, sid, i, j, {Xi}i∈[k] , abort

)
if it is invalid. Practically, we realize this by

having each Pi generate a non-interactive proof and simply send it to each party separately. We
stress that this means that the functionality does not guarantee that all parties receive the same
proof. In our protocols this doesn’t matter, since we anyway guarantee that the statement being
proven is the same for all parties, and this suffices.
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Publicly-verifiable encryption: In the context of our applications here, publicly-verifiable en-
cryption is an encryption scheme with an additional property that it is possible to verify (in zero
knowledge) that the encrypted value is the discrete log of a given point. That is, such a scheme has
standard encrypt and decrypt functionality, denoted c = vencryptpk(x;X) and x = vdecryptsk(c),
along with a verification function enc-verifypk(c,X) that outputs 1 if and only if c is an encryption
of the discrete log of X under public key pk. A simple and canonical construction of such a scheme
(that works with any encryption scheme) can be found in [4]. The following ideal functionality,
denoted FPVE, models publicly-verifiable encryption and runs with parties P1, . . . , Pn:

� Init: after receiving init from all parties P1, . . . , Pn (for setting up a PKI), proceed. (Before
receiving all init messages, ignore all other messages.)

� Encrypt: upon receiving (vencrypt, i, j,m) from a party Pi with m ∈ Zq

1. Compute M = m ·G
2. Store (i, j,m,M)

3. Send (vencrypted, i, j,M) to all parties P1, . . . , Pn

� Decrypt: upon receiving (vdecrypt, i, j,m,M) from party Pj

1. Ignore unless (i, j,m,M) has been stored

2. Send (vdecrypted, i,m) to party Pj

2.2 Ideal Functionality Definitions

In this section we define the ideal functionalities for each of the operations we support. We do not
define a “remove party” functionality since, as we have described, this is easily carried out by just
running refresh without including the party to be removed.

Honest parties’ outputs: As described above, we consider a setting of security with abort,
where some honest parties may abort while others receive output. This is modeled by having the
adversary send the trusted party/ideal functionality the set of honest parties to receive output. This
can be modeled within the instructions of the adversary, or as part of the ideal-model execution. We
choose the latter, with the understanding that these are equivalent. We denote the list of honest
parties sent by the ideal adversary/simulator in the ideal execution that should receive output
by Oh.

2.2.1 VSS

We define a VSS functionality Fvss for sharing a secret s via a degree-(t − 1) polynomial s(x).
The functionality also sends all of the polynomial coefficients “in the exponent” (i.e., bk · G for
k = 0, . . . , t − 1 where s(x) =

∑t−1
k=0 bk · xk)). These additional values help to enforce correct

behavior (in the dishonest majority setting). Recall that, as we have discussed, releasing S = s ·G
is not “leakage” per se in our application, since we use this functionality for the case that s is an
EC private key (or a share of an EC private key). In this case, S is its associated public key which
is supposed to be public.
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Functionality Fvss:

� Upon receiving input from party Pi with i ∈ [n]

– (share, sid, s) if Pi is honest

– (share, sid, s(x)) if Pi is corrupted

operate as follows:

1. If Pi is honest, then choose a random degree-(t− 1) polynomial s(x) with s(0) = s

2. If Pi is corrupted, then ignore the message if deg(s(x)) ≥ t

3. Let s(x) =
∑t−1

k=0 bk · xk1

4. For k = 1, . . . , t− 1, compute Bk = bk ·G
5. Set B = (B0, . . . , Bt−1)

6. For j = 1, . . . , n, compute sj = s(αj)

7. Send (share, sid,B, sj) to party Pj for j = 1, . . . , n

A more minimal functionality? The Fvss functionality reveals to the parties not only S =
B0 = s ·G, but also all of the polynomial coefficients in the exponent B1, . . . , Bt−1 for all parties.
In our uses of Fvss, the value S = B0 = s · G is always revealed, as it is the public key and s
is the private key (or they are shares of the public/private keys but also revealed). However, the
additional B1, . . . , Bt−1 need not be revealed in principle. As such, it may seem that this formulation
reveals more information than necessary, and it would be better to have the functionality send
only (share, sid, S, sj) where S = s · G for the secret s. However, it is easy to see that the basic
Feldman secret sharing does not securely compute a minimal functionality where parties only
receive (share, sid, S, sj) from the ideal functionality. This is because the distinguisher sees all
outputs – of both honest and corrupted parties. Now, in the real execution, the corrupted parties
see the polynomial “in the exponent” and so can compute S1, . . . , Sn where Sj = sj · G for all
parties, including the honest parties. In contrast, in an ideal execution where less than t parties
are corrupted, the simulator cannot compute sj ·G for an honest Pj , given only the points of the
corrupted parties. Thus, this more minimal functionality cannot be computed in this way, and any
application using Feldman VSS will have to be proven secure for the above functionality, where
B0, . . . , Bt−1 (or equivalently, S0, S1, . . . , Sn) are all revealed. Fortunately, for applications like
distributed key generation and the like, this additional information can be simulated by choosing
a random polynomial “in the exponent”, and so it is inconsequential.

Observe also that a corrupted party sends s(x) and not just s (like an honest dealer) since in the
real protocol, nothing forces a corrupted dealer to use a random polynomial. It is possible to securely
realize a stronger functionality where a corrupted dealer sends s to Fvss and the functionality chooses
s(x), like for an honest dealer. Realizing this functionality would require a type of coin tossing
where the dealer commits to a sharing of s and all other parties commit to a sharing of 0, and
then all parties decommit and the sharing is the sum of all sharings. However, this is not needed
in applications of secret sharing we are familiar with, and so would add unnecessarily complexity
and cost.

1We are aware that denoting the polynomial by s(x) and the coefficients by bk and not sk looks strange. However,
we do this since we denote the i’th party’s share by si.
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Public verifiability: Publicly-verifiable secret sharing enables anyone to verify that each party’s
(encrypted) share is valid. This can be achieved canonically (with Feldman’s VSS) by simply having
the dealer encrypt each party’s share under the recipient’s public key using publicly-verifiable
encryption. Then, given the coefficients of the sharing polynomial in the exponent, it is possible for
anyone to compute any party’s share in the exponent, and then verify its validity in the encryption.
We do not model public verifiability any differently in the definition. Rather, we use it as a way of
computing the standard Fvss with only a quorum t of actively participating parties. In particular,
we do not need the n − t additional parties to be online during the secret sharing itself. This is
achieved by having the t online parties verify that the encrypted shares of all parties are valid,
without the n− t additional parties needing to be online. We remark that public verifiability does
not guarantee output delivery. However, it does provide us with a weaker version of guaranteed
output delivery that is very meaningful. In particular, we achieve the property that if any honest
online party does not abort then it is guaranteed that all offline honest parties do not abort.

More general access structure: Our protocols all support access structures of a more general
form of any tree of AND, OR and threshold nodes. The extension of the sharing to access structures
of these types is straightforward. We therefore focus on the basic threshold case only; the proof
remains essentially the same for the general case.

2.2.2 Add Party

We also define a functionality Fadd for adding a new party to the sharing. This involves computing
s(αn+1) for a new Pn+1.

Functionality Fadd: Upon receiving (add, sid,B, si, αn+1) from t parties I ⊆ [n],

1. Verify that all received B and αn+1 are the same

2. Parse B = (B0, . . . , Bt−1)

3. Verify that si ·G =
∑t−1

k=0(αi)
k ·Bk for all i ∈ I

4. Reconstruct s(x) to be the unique degree-(t− 1) polynomial such that s(αi) = si for all i ∈ I

5. Compute sn+1 = s(αn+1)

6. Send (add, sid,B) to the adversary

7. Send (add, sid,B, sn+1) to Pn+1

We remark that in the protocol computing this, Pn+1 is a passive recipient only.

2.2.3 Refresh

Finally, we define a functionality Frefresh for refreshing the sharing. This involves interactively
computing a sharing of a new random polynomial s′ for the sharing, with the constraint that
s′(0) = s(0). As we will see below, this works by having all parties choose a random sharing of 0,
and then defining the refreshed sharing to be the sum of the original sharing plus all the new ones.
This is clearly a new sharing of the same value. A naive definition of this functionality would be for
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Frefresh to simply reconstruct the secret and choose a new random polynomial with the same secret.
However, securely realizing this functionality would be difficult since it would require the result to
be a completely random polynomial. As such, all parties would have to commit to their sharings
of 0 and then decommit (to ensure that no sharing is chosen as a function of the other sharings).
However, there is no real need for the polynomial to be truly random. Therefore, we enable the
ideal model adversary to receive the new sharing chosen by Frefresh and to then send a sharing of 0
to be added to it. This models the adversary’s ability to bias the sharing polynomial in the real
protocol by first seeing the shares of the honest parties and only then sending its sharing. This does
not negatively impact security since adding a known polynomial to a secret random polynomial
does not leak any information about the secret.

Functionality Frefresh:

� Upon receiving (refresh, sid,B, si) from t parties I:

1. Verify that all received B are the same

2. Parse B = (B0, . . . , Bt−1)

3. Verify that si ·G =
∑t−1

k=0(αi)
k ·Bk for all i ∈ I

4. Reconstruct s(x) to be the unique polynomial such that s(αi) = si for all i ∈ I
5. Choose a new random degree-(t−1) polynomial ŝ(x) =

∑t−1
k=0 b̂k ·xk under the constraint

that ŝ(0) = s(0)

6. For k = 1, . . . , t− 1, compute B̂k = b̂k ·G
7. Set B̂ = (B̂0, . . . , B̂t−1)

8. Compute ŝj = ŝ(αj) for all j = 1, . . . , n

9. Send
(
refresh, sid, {ŝ(αi)}i∈Ic , B̂

)
to the adversary, where Ic denotes the set of corrupted

parties, and await the adversary’s response

� Upon receiving (refresh, sid, s̃(x)) from the adversary after sending it
(
refresh, sid, {ŝ(αi)}i∈Ic , B̂

)
(if before that, then ignore):

1. Verify that s̃(x) is a degree-(t− 1) polynomial and that s̃(0) = 0

2. Set s′(x) = ŝ(x) + s̃(x) =
∑t−1

k=0 b
′
k · xk

3. For k = 0, . . . , t− 1, compute B′
k = b′k ·G

4. Set B′ = (B′
0, . . . , B

′
t−1)

5. Compute s′j = s′(αj) for j = 1, . . . , n

6. Send
(
refresh, sid,B′, s′j

)
to party Pj for j = 1, . . . , n

7. Send (refresh, sid,B′) to the adversary

We remark that in the protocol computing this, all parties Pj with j /∈ I are passive recipients,
receiving messages only.
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3 Protocols

3.1 Securely Computing Fvss with n Online Parties

Intuition: The protocol works by the dealer computing Shamir shares of the secret, and then
sending each party its share as well as the coefficients of the polynomial “in the exponent” (in
elliptic-curve notation, this means that each coefficient bk is given as Bk = bk · G). Since groups
support multiplication by a scalar and addition, it is possible for any party to compute the poly-
nomial in the exponent (meaning compute f(a) · G for any a) given a and the coefficients in the
exponent (even without knowing f itself). Thus, each party verifies that its share is consistent with
the polynomial in the exponent, as well as running an echo-broadcast on the coefficients to ensure
that they all received the same polynomial. This ensures that all honest parties hold shares on the
same degree-(t− 1) polynomial, as required.

Protocol 3.1 (Feldman VSS – Πvss)

Parties: P1, . . . , Pn with Pi being the dealer

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero values
α1, . . . , αn ∈ Fq

Pi’s private input: s ∈ Fq

The protocol:

1. Round 1 – party Pi:

(a) Set b0 = s

(b) Choose random b1, . . . , bt−1 ∈ Fq and define s(x)
def
=

∑t−1
k=0 bk · xk

(c) For every j ∈ [n], set sj = s(αj)

(d) For k = 0, . . . , t− 1, compute Bk = bk ·G
(e) Define B = (B0, . . . , Bt−1)

(f) Send
(
prove, sid, i, j, {Bk}t−1

k=0 , {bk}
t−1
k=0

)
to FBatchDL

zk for every j ∈ [n]

(g) Send (share, sid,B, sj) to Pj for every j ∈ [n]

2. Round 2 – each Pj with j ̸= i: Upon receiving (share, sid,B, sj) from Pi and (prove, sid, . . .)
from FBatchDL

zk

(a) Parse B = (B0, . . . , Bt−1)

(b) Verify that all Bk are valid group elements (they are allowed to be the identity)

(c) If sj ·G ̸=
∑t−1

k=0(αj)
k ·Bk, then send abort to all parties and abort

(d) If the message from FBatchDL
zk is

(
prove, sid, {Bk}t−1

k=0 , abort
)
, then send abort to all parties

and abort

(e) If the set {Bk}t−1
k=0 from FBatchDL

zk is not the same as B, then send abort to all parties
and abort

(f) Send B to all Pℓ with ℓ ∈ [n]
(In practice, it suffices to send H(B), where H is a collision-resistant hash function.)
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3. Output – each Pj: upon receiving B1→j , . . . ,Bn→j (where Bℓ→j denotes the set B that Pj

received from party Pℓ)

(a) Abort unless B1→j = · · · = Bn→j = B
(b) Output (share, sid,B, sj)

Security: We now prove the security of the protocol for up to t − 1 corrupted parties. Since t
is the minimum quorum size (and t can even equal n), this is the setting of a dishonest majority
(i.e., security as long as at least one party is honest).

Theorem 3.2 Protocol Πvss realizes the functionality Fvss in the FBatchDL
zk -hybrid model with perfect

security-with-abort, in the presence of a static malicious adversary corrupting up to t − 1 parties,
for any t ≤ n.

Proof: Let I = [n] denote the set of all parties, let Ic ⊆ I denote the set of corrupted parties,

and let Ih
def
= I \ Ic denote the set of honest parties. If Ic is empty, then simulation is trivial; we

therefore assume that there is at least one corrupted party. We separately consider the case that
the dealer Pi is honest, and the case that the dealer Pi is corrupted.

Case 1 – the dealer Pi is corrupted: The simulator for this case works simply by running the
honest parties (this is easy since they have no secret input) and seeing which would abort or not,
and by extracting the polynomial from the adversary via the zero-knowledge proofs of knowledge
to send to the ideal functionality Fvss. Let A be the real-world adversary. We construct an ideal
world adversary/simulator S, as follows:

1. S invokes A with sid and receives the messages
(
prove, i, j, sid, {Bk}t−1

k=0 , {bk}
t−1
k=0

)
intended

for FBatchDL
zk and (share, sid,Bj , sj), for all j ∈ Ih.

2. For every j ∈ Ih:

(a) S verifies that sj · G =
∑t−1

k=0(αj)
k · Bk and that Bk = bk · G for every k = 0, . . . , t − 1

in the prove message for Pj

(b) If yes (to both), S simulates Pj sending Bj to all parties

(c) Else, S simulates Pj sending abort to all parties, and sends abort to Fvss (and after
simulating all honest parties sending their message in this round, S simulates all honest
parties aborting)

3. S receives the message
{
Bℓ
j

}
j∈Ic

from A for every ℓ ∈ Ih, where Bℓ
j is the vector sent from

the corrupted party Pj to honest party Pℓ (note that Pj may send different vectors Bj to
different honest parties)

4. For every ℓ ∈ Ih

(a) S verifies that the B vectors received by Pℓ are all the same (based on the Bj values
computed for the honest parties, and the Bℓ

j values received for Pℓ)

(b) If yes, S adds ℓ to Oh (the set of honest party to receive output, initially empty)
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5. S defines s(x) =
∑t−1

k=0 bk · xk and sends (share, sid, s(x)) to Fvss, together with the list of
honest parties Oh to receive output

6. S outputs whatever A outputs

If A sends an incorrect proof to FBatchDL
zk to an honest party, or sends an incorrect sj to an honest

party, then in the real execution all honest parties abort (since they instruct all honest parties to
abort). Likewise, in the ideal execution, S sends abort to Fvss and so all honest parties abort in the
ideal execution. Next, if A sent a share message with different sets B and B′ to two different honest
parties, then all honest parties abort in the output phase, in both the real and ideal executions.
This holds since all honest parties receive different B and B′ in the second round. If none of the
above happens, then it is guaranteed that all honest parties received the same set B, and they all
received a valid share sj such that sj ·G =

∑t−1
k=0(αj)

k · Bk. Thus, any honest party not aborting
will output (share, sid,B, sj) with the same set S, as in the ideal execution (since Fvss computes B
in the same way based on s(x)). Finally, note that if any corrupt party sends a different B′ value
to an honest party in the last step, then that party will abort in both the real and ideal executions.
Thus, the distribution over the adversary and honest party’s outputs are identical in both cases.

Case 2 – the dealer Pi is honest: The simulation in this case works by simulating the messages
that the corrupted parties would receive, using the shares received from Fvss. Let A be the real-
world adversary. We construct an ideal world adversary/simulator S, as follows:

1. S receives (share, sid,B, sj) from Fvss, for every j ∈ Ic, where B = (B0, . . . , Bt−1)

2. S invokes A with sid and simulates FBatchDL
zk sending it

(
prove, sid, i, j, {Bk}t−1

k=0

)
for every

j ∈ Ic, and the honest dealer Pi sending it (share, sid,B, sj) for every j ∈ Ic

3. S simulates all honest parties sending B to all corrupted parties in round 2

4. S receives the messages
{
Bℓ
j

}
ℓ∈Ih

that A sends for every j ∈ Ic to all honest parties ℓ ∈ Ih

5. For every ℓ ∈ Ih, if A sends B as received to the honest party Pℓ from every corrupted Pj ,
then S adds ℓ to Oh (the set of honest party to receive output, initially empty)

6. S sends Oh to Fvss to indicate which honest parties receive output

7. S outputs whatever A outputs

In order to see that the distribution over the messages in the real and ideal executions is identical,
observe that the honest dealer in the real protocol chooses the polynomial s(x) identically to
the way that the functionality Fvss chooses the polynomial (given only s) in the ideal execution.
Furthermore, the only impact that the corrupted parties can have in this execution is to send
incorrect B values. These are easily simulated perfectly by S, as they only impact who receives
output and who aborts. This completes the proof. □

Observe that the simulator S in the proof of Theorem 3.2 is straight line (it does not rewind
A). Since perfect security with a straight-line simulator implies UC security, as proven in [8], we
have the following corollary:

Corollary 3.3 Protocol Πvss UC realizes with abort the functionality Fvss in the FBatchDL
zk -hybrid

model, in the presence of a static malicious adversary corrupting up to t− 1 parties, for any t ≤ n.
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3.2 Securely Computing Fvss with t Online Parties and n− t Offline Parties

Intuition and security goal: Our above protocol considers a scenario where all n parties are
online and interacting. However, given that we only obtain security for up to t − 1 corrupted
parties (since we want to be able to reconstruct with any t parties), it actually suffices to have
only t parties interact in an online manner in the VSS, and to have the remaining n− t parties be
passive and merely receive output. This can be achieved naively by simply having the dealer send
its round 1 message to only the online parties, and then having all online parties send their round 2
messages (and the dealer send its round 1 messages) to the offline parties as well (encrypted under
each offline party’s public encryption key). Upon receiving all of the messages from online parties,
the offline parties can just verify that everything is consistent and output their share if yes.

The above simple extension has a disadvantage in practical settings. In particular, offline
parties in practice may take a long time until they come online. The desired property would be
that whenever they come online, they should be able to receive their share and join any needed
computation. However, if the dealer or one of the online parties sends an offline party an incorrect
value, then the offline party would abort. Given that this may happen a long time after the shares
were generated, dealing with this at that time is costly and painful. As such, we would like to
ensure that the offline parties can successfully obtain their shares later. This is of course a problem
since in the setting of a dishonest majority, it is impossible to achieve guaranteed output delivery.
In particular, in our VSS sharing protocol above, it suffices for a corrupted party to send a different
B′ vector in round 2 and all honest parties will abort. This is in some sense unavoidable. However,
it is possible to achieve a guarantee that if any honest online party accepts then so will all honest
offline parties later on. This can be achieved by having all parties sign on the public B, and then
each online party sends each offline party all of the signatures. If there are t valid signatures on
some B then the offline party accepts that as the value. This prevents a corrupted party sending
an invalid B′ in round 2. However, this still doesn’t solve the problem that the dealer may send
an offline party an incorrect share sj . This can be prevented by having the dealer send a publicly-
verifiable encryption of the share for each offline party. Such an encryption has the property that
it’s possible to efficiently verify that some ciphertext is a valid encryption of the discrete log of
some group element. This enables all online parties to verify all offline party shares, and to sign on
these ciphertexts together with B. The protocol is described formally below.

Protocol 3.4 (Πoff
vss)

Parties: P1, . . . , Pn with Pi being the dealer, with Ion ⊆ [n] the set of t online parties, and
Ioff = [n] \ Ion the set of n− t offline parties; note that i ∈ Ion
Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, a vector of public keys PKI =

(pk1, . . . , pkn) and unique non-zero values α1, . . . , αn ∈ Fq

Pi’s private input: s ∈ Fq

Each Pj’s private input: a private key skj (associated with pkj in PKI)
The protocol:

1. Round 1 – party Pi:

(a) Set b0 = s

(b) Choose random b1, . . . , bt−1 ∈ Fq and define s(x)
def
=

∑t−1
k=0 bk · xk
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(c) For every j ∈ [n], set sj = s(αj)

(d) For k = 0, . . . , t− 1, compute Bk = bk ·G
(e) Define B = (B0, . . . , Bt−1)

(f) Send
(
prove, sid, i, j, {Bk}t−1

k=0 , {bk}
t−1
k=0

)
to FBatchDL

zk for every j ∈ Ion
(g) For every ℓ ∈ Ioff , compute the publicly-verifiable encryption Vℓ = vencryptpkℓ(sℓ;Sℓ) for

Sℓ = sℓ ·G
(h) Set V = {Vℓ}ℓ∈Ioff
(i) Compute σi = Signski (share, sid,B,V)
(j) Send (share, sid,B,V, σi, sj) to Pj for every j ∈ Ion

2. Round 2 – each Pj with j ∈ Ion \ {i}: Upon receiving (share, sid,B,V, σi, sj) from Pi and
(prove, sid, . . .) from FBatchDL

zk

(a) Parse B = (B0, . . . , Bt−1) and V = {Vℓ}ℓ∈Ioff
(b) Verify that all Bk are valid group elements (they are allowed to be the identity) and that

all Vℓ are valid ciphertexts

(c) If sj ·G ̸=
∑t−1

k=0(αj)
k ·Bk, then send abort to all parties and abort

(d) If the message from FBatchDL
zk is

(
prove, sid, {Bk}t−1

k=0 , abort
)
, then send abort to all parties

and abort

(e) If the set {Bk}t−1
k=0 from FBatchDL

zk is not the same as B, then send abort to all parties
and abort

(f) If there exists Vℓ ∈ V such that enc-verifypkℓ(Vℓ, Sℓ) = 0 where Sℓ =
∑t−1

k=0(αℓ)
k ·Bk, then

send abort to all parties and abort

(g) Compute σj = Signskj (share, sid,B,V)
(h) Send (share, sid,B,V, σj) to all Pℓ with ℓ ∈ Ion

3. Round 3 and online party output – each Pj with j ∈ Ion: Upon receiving (share, sid,Bℓ,Vℓ, σℓ)
from Pℓ for all ℓ ∈ Ion

(a) Each Pj verifies that Verifypkℓ(share, sid,Bℓ,Vℓ, σℓ) = 1 and that Bℓ = B and Vℓ = V for
all ℓ ∈ Ion \ {i}, where (Bℓ,Vℓ) are the values received from Pℓ and (B,V) are the values
received from Pi. If no, it aborts.

(b) Each Pj sends
(
share, sid,B,V, {σk}k∈Ion

)
to each offline Pℓ

(c) Each Pj outputs (share, sid,B, sj)

4. Output for offline parties – each Pj with j ∈ Ioff: Upon receiving
(
share, sid,B,V, {σℓ}ℓ∈I

)
from one or more parties,

(a) If there exists a message
(
share, sid,B,V, {σℓ}ℓ∈I

)
such that Verifypkℓ(share, sid,B,V, σℓ) = 1

for all ℓ ∈ I and I is of size t, then compute sj = vdecryptskj (Vj) for Vj ∈ V, and output
(share, sid,B, sj)
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Security: The proof of security with abort is almost identical to that of Theorem 3.2. The
only difference is that some messages are sent as publicly-verifiable encryptions, but these can be
simulated in the same way. Regarding the property that if at least honest online party accepts
then so do all honest offline parties, this follows immediately from the fact that the message(
share, sid,B,V, {σk}k∈Ion

)
sent to all offline parties by any honest online party is valid, and will

result in the offline party accepting and outputting its decryption. Now, since this message has t
valid signatures, it follows that all honest online parties viewed the same B and V, and thus all
outputs of online and offline honest parties are consistent, as required. Note that there cannot be
more than one (B,V) with this property, except with negligible probability, since at most t − 1
parties are corrupted and all honest parties sign on the same (B,V) that they agree upon in the
echo-broadcast consensus. Thus, there can be more than one valid pair (B,V) only if the adversary
can forge honest parties’ signatures. The proof of the following theorem is essentially the same as
Theorem 3.2, with the addition regarding guaranteed output following the above discussion (FPVE

denotes the publicly-verifiable encryption ideal functionality).

Theorem 3.5 Protocol Πoff
vss realizes the functionality Fvss in the FBatchDL

zk ,FPVE-hybrid model with
perfect security-with-abort, in the presence of a static malicious adversary corrupting up to t − 1
parties, for any t ≤ n. Furthermore, if at least one honest online party accepts then so do all honest
offline parties.

A setting with a coordinator machine instead of point-to-point channels: In a setting
where the parties do not have direct point-to-point channels, but rather communicate by sending
encrypted-and-signed messages via some central “coordinator machine”, there are a few changes
that need to be highlighted. First, in such a case, it isn’t necessary for the set of online parties
Ion to be fixed ahead of time. Rather, the dealer Pi can prepare its message (share, sid,B,V, σi, sj)
for all j ∈ [n] (including publicly-verifiable encryption for all parties) and the first t− 1 parties to
connect to the coordinator become the “online parties”. Second, although communicating via such
a coordinator machine makes no difference regarding the messages sent (since messages are signed
they cannot be modified, and since they are encrypted the coordinator machine sees nothing), it
does mean that the coordinator can block or erase messages at will. This means that the property
that we desire – that if any honest online party accepts then so do all honest offline parties –
cannot actually be achieved (specifically, the coordinator can refuse to deliver any valid message
to an offline party). This means that the property achieved in this case is different and states that
if any honest online party accepts and the coordinator is semi-honest then all honest offline
parties are guaranteed to accept. However, once this is the case, the third round – where all parties
exchange all signatures – can be avoided. Rather, the coordinator receives all (share, sid,B,V, σj)
at the end of round 2, and prepares the message

(
share, sid,B,V, {σk}k∈Ion

)
which it sends to all

offline parties. This therefore simplifies the protocol, and all online parties need to only connect
once and then later download their output. We stress that if the coordinator is malicious, then
the only thing that can go wrong is for the parties to abort.

3.3 Adding a Party

We describe this protocol directly for t online parties, with the new party being added being a
passive recipient only. The protocol requires each of the t parties to send and receive a message

15



to the quorum, and to then prepare a final message for the new member. Thus, in the case of
asynchronous parties, each party has to connect twice.

Idea: The idea behind this protocol is as follows. Let I ⊆ [n] be a set of online parties with
|I| = t, with respective shares {si}i∈I on a polynomial s(x). The aim of the parties is to generate
s(αn+1) for the new party. By Lagrange interpolation, we have that s(x) =

∑
i∈I si · LI

i (x) and
thus s(αn+1) =

∑
i∈I si ·LI

i (αn+1). Thus, each party Pi with i ∈ I can simply send the new party
Pn+1 the value sn+1

i = si ·LI
i (αn+1), and Pn+1 can compute the sum sn+1 =

∑
i∈I s

n+1
i = s(αn+1).

Unfortunately, this simple solution is insecure, since Pn+1 can also compute∑
i∈I

sn+1
i · LI

i (0)

LI
i (αn+1)

=
∑
i∈I

si · LI
i (αn+1) ·

LI
i (0)

LI
i (αn+1)

= si · LI
i (0) = s(0) = s

thereby revealing the secret itself. As a result, instead of each party directly sending si · LI
i (αn+1)

to Pn+1, the parties first subshare their shares amongst each other. Each party then locally sums
the shares they receive, and the result is sent to Pn+1. With this method, Pn+1 receives a random
additive sharing of s(αn+1) which reveals nothing beyond that value, as required.

The simple way to implement this is for each Pi to generate additive shares of si · LI
i (αn+1) to

Pn+1 to all of the participating parties. Each party can then sum up the sub-shares that it receives,
and send to Pn+1. By the fact that sn+1 = s(αn+1) =

∑
i∈I si · LI

i (αn+1), it is immediate that
Pn+1 receives a random additive sharing of sn+1 as required. Our actual protocol works differently,
since this would require that all parties know who the participating parties are ahead of time. In
practice, we wish to enable the first t parties to connect to participate (asynchronously), and so we
therefore have each Pi generate Shamir shares of si. By multiplying by the appropriate Lagrange
coefficients, the same effect is achieved.

Protocol 3.6 (Πadd)

Parties: A set of t parties {Pi}i∈I with I ⊆ [n], and a new party Pn+1

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero values
α1, . . . , αn+1 ∈ Fq

Pi’s private input: (B, si), as output from Fvss

(The protocol assumes that all parties have the same B and that si is the correct share as defined by B. If this may

not be the case, then parties need to begin by echo-broadcasting B (to ensure that all honest parties hold the same

vector), and each party needs to locally verify that si ·G =
∑t−1

k=0(αi)
k ·Bk where B = (B0, . . . , Bt−1).)

The protocol:

1. Each party Pi subshares its share:

(a) Pi chooses a random polynomial si(x) of degree-(t− 1) such that si(0) = si

(b) For every j ∈ I, Pi computes si→j = si(αj)

(c) Pi sends (sid, si→j) to party Pj, for every j ∈ I.

Note that if the set of participating parties I ⊆ [n] is not known ahead of time, then each Pi

subshares to all parties, and the first t to connect continue to the next round

2. Pi generates the new party’s subshare: upon receiving (sid, sj→i) from t− 1 parties Pj
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(a) Pi computes sn+1
i =

∑
j∈I sj→i · LI

j (αn+1)

(b) Pi sends (B, sn+1
i ) to Pn+1

(If Pn+1 is not online, then this message is encrypted under Pn+1’s public key, and signed with Pi private

signing key, using secure signcryption.)

3. Pn+1 prepares its output: upon receiving t values (B, sn+1
i ) from parties I,

(a) Pn+1 verifies that all B values are the same from all parties, and aborts if not

(b) Pn+1 computes sn+1 =
∑

i∈I s
n+1
i · LI

i (0)

(c) Pn+1 verifies that sn+1 · G =
∑t−1

k=0(αn+1)
k · Bk, where B = (B0, . . . , Bt−1), and aborts

if not

(d) Pn+1 outputs (B, sn+1)

Correctness: Before proving security, we show (for the sake of clarity) that the protocol output
is correct. Observe that

sn+1 =
∑
i∈I

sn+1
i · LI

i (0) =
∑
i∈I

∑
j∈I

sj→i · LI
j (αn+1) · LI

i (0) =
∑
j∈I

LI
j (αn+1) ·

∑
i∈I

sj→i · LI
i (0).

In the protocol, each sj→i is generated by sj→i = sj(αi) where sj(0) = sj . Thus,
∑

i∈I sj→i ·LI
i (0) =

sj where sj = s(αj) is a point on the original sharing polynomial s(x) for which s(0) = s (and s is
the original shared secret). Thus,

sn+1 =
∑
j∈I

LI
j (αn+1) ·

∑
i∈I

sj→i · LI
i (0) =

∑
j∈I

LI
j (αn+1) · sj = s(αn+1)

as required.

Security: We prove the security of the protocol under the assumption that all parties begin with
consistent and valid input. That is, each party Pi is given input (B, si) where si ·G =

∑t−1
k=0(αi)

k ·Bk

and B = (B0, . . . , Bt−1), and all parties are given the same vector B. This makes sense in practice
since this input is the output of a previous VSS execution. However, as described in the protocol,
if this may not be the case, then it needs to be separately verified. If the above holds, then we say
that the input is consistent and valid.

Theorem 3.7 Assume that the parties’ inputs are consistent and valid. Then, protocol Πadd real-
izes functionality Fadd with perfect security-with-abort, in the presence of a static malicious adver-
sary corrupting up to t− 1 parties, for any t ≤ n.

Proof: Let I ⊆ [n] denote the set of online parties participating in the protocol, let Ic ⊆
I ∪ {n+ 1} denote the set of corrupted parties, and let Ih

def
= I ∪ {n+ 1} \ Ic denote the set of

honest parties.2 If Ic is empty, then simulation is trivial; we therefore assume that there is at least
one corrupted party. We separately consider the case that the recipient (new party) Pn+1 is honest,
and the case that Pn+1 is corrupted.

2In this protocol, only participating parties and Pn+1 receive any messages. Therefore, we can ignore any other
parties that may be corrupted.
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Case 1 – the new party Pn+1 is corrupted: The simulation in this case works by generating
random values for all sij values from honest parties, under the constraint that all values sum to
sn+1. This can be computed since sn+1 is given to S by Fadd in this case of a corrupted Pn+1, and
all corrupted sj values are also known (by the assumption on valid and consistent inputs). Thus,
it is possible to compute the sum of all the values the corrupted parties should send, and the sum
of all values sent by the honest parties is just the difference between sn+1 and that sum. All the
other messages can be honestly generated once these sij values are computed.

Let A be the real-world adversary. We construct an ideal world adversary/simulator S as
follows.

1. S sends (add, sid,B, sj , αn+1) to Fadd for every j ∈ Ic
(These inputs are consistent and valid by the assumption in the theorem.)

2. S receives (add, sid,B, sn+1) from Fadd (since Pn+1 is corrupted)

3. S computes sh = sn+1 −
∑

j∈Ic L
I
j (αn+1) · sj

4. S chooses random {sj}j∈Ih under the constraint that
∑

j∈Ih\{n+1} sj · LI
j (αn+1) = sh

(This implies that
∑

j∈I LI
j (αn+1) · sj = sn+1 and so the simulation will result in the correct output.)

5. S runs the honest parties in the protocol, following the exact protocol instructions but while
using input (B, sj) for honest party Pj

6. S outputs whatever A outputs

The distribution over the messages seen by A is identical to a real protocol, since the input values
chosen for the honest parties in the simulation sum up to the correct sum sh (computed from sn+1

and the corrupted parties’ inputs). These input values differ from the real inputs of the honest
parties. However, since the honest parties subshare each share, including subshares amongst each
other (between the honest parties), the distributions are identical. Formally, this holds because
for every set of sj→i messages from the honest parties to the corrupted parties, these can be the
result of the real sharing or of the simulated sharing with the same probability, by adjusting a
single message between two honest parties. Since there are at least two honest participating parties
(because Pn+1 is corrupted and a participating party is corrupted, at most t−2 participating parties
are corrupted), such a message exists and is not seen by the adversary.

Case 2 – the new party Pn+1 is honest: The simulation in this case works by just providing
random sj→i values from honest parties to corrupted parties. However, in this case, the simulator
needs to determine if the honest Pn+1 would output sn+1 or would abort. It can verify this by
checking if the sum of all values sent by corrupted values equals what it is supposed to. We stress
that the corrupted party may send incorrect values, but this doesn’t matter since the honest party
will output sn+1 if and only if the overall sum for all corrupted parties is correct. Let A be the
real-world adversary. We construct an ideal world adversary/simulator S, as follows:

1. S sends (add, sid,B, sj , αn+1) to Fadd for every j ∈ Ic
(These inputs are consistent and valid by the assumption in the theorem.)

2. S sends the round 1 messages that A should receive from the honest parties:
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(a) S chooses sj→i randomly for all j ∈ Ih and i ∈ Ic
(b) S simulates each honest party Pj sending sj→i to each corrupted party Pi

3. S verifies that the sum of the messages sent by A is correct:

(a) Compute the sum of messages from A:

i. S receives from A messages (sid, si→j) for all i ∈ Ic and j ∈ Ih; all the messages
sent by corrupted parties to honest parties in round 1 of the protocol

ii. S receives from A the messages (B, sn+1
i ) for all i ∈ Ic that the corrupted parties

send to the honest Pn+1

iii. S computes sc =
∑

j∈Ic
∑

i∈Ih sj→i · LI
j (αn+1) · LI

i (0) +
∑

i∈Ic L
I
i (0) · s

n+1
i

(b) Compute the sum of messages when playing corrupted parties honestly:

i. S runs the corrupted parties Ic honestly, given the correct inputs {sj}j∈Ic and the
first round messages {sj→i}j∈Ih,i∈Ic that it generated in Step 2b of the simulation
above (and using fresh randomness for the corrupted parties)

ii. Let {ŝj→i}j∈Ic;i∈Ih be the round 1 messages and let
{
ŝn+1
i

}
i∈Ic be the round 2

messages sent by the corrupted parties in the execution by S where it runs all
corrupted parties honestly

iii. S computes ŝc =
∑

j∈Ic
∑

i∈Ih ŝj→i · LI
j (αn+1) · LI

i (0) +
∑

i∈Ic L
I
i (0) · ŝ

n+1
i

4. Completion of simulation:

(a) If ŝc = sc then S instructs Fadd to provide the output to Pn+1; else, it instructs Fadd to
provide abort / not provide output to Pn+1

(b) S outputs whatever A outputs

It is immediate that the distribution over the messages {sj→i}j∈Ih,i∈Ic received by the corrupted
parties from the honest parties is identical in the real and ideal executions. This holds since these
values are less than t secret shares on a random degree-t polynomial. It remains to show that the
honest party Pn+1 outputs (B, sn+1) in a real execution if and only if it outputs (B, sn+1) in an
ideal execution. Since the adversary can decide to cause an abort or not depending on the values
sent by the honest parties in the first round, we also need to ensure that the joint distribution
over the messages from the honest parties and whether or not Pn+1 aborts or not is also identical.
However, under the assumption (that we prove below) that S detects accurately whether or not
Pn+1 aborts, this follows from the fact that the adversary (with randomness fixed at the beginning of
the execution) is fully determined by the honest parties’ messages. Thus, the view of the adversary
fully determines whether or not Pn+1 aborts. We now conclude by showing that S accurately
predicts if Pn+1 would abort or not. Intuitively, this holds since once the honest parties’ round 1
messages are fixed, the sum of what the corrupted parties send must be a fixed value. This is due to
the fact that otherwise Pn+1 would not receive the correct sn+1 (in which case it certainly aborts).
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Formally:

sn+1 =
∑
i∈I

sn+1
i · LI

i (0)

=
∑
i∈I

∑
j∈I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑

(j,i)∈I×I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑

(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) · LI

i (0) +
∑

(j,i)∈Ic×Ih

sj→i · LI
j (αn+1) · LI

i (0)

+
∑

(j,i)∈I×Ic

sj→i · LI
j (αn+1) · LI

i (0).

Now, ∑
(j,i)∈I×Ic

sj→i · LI
j (αn+1) · LI

i (0) =
∑
i∈Ic

∑
j∈I

sj→i · LI
j (αn+1) · LI

i (0)

=
∑
i∈Ic

LI
i (0) ·

∑
j∈I

sj→i · LI
j (αn+1)

=
∑
i∈Ic

LI
i (0) · sn+1

i

and so

sn+1−
∑

(j,i)∈Ih×Ih

sj→i ·LI
j (αn+1) ·LI

i (0) =
∑

(j,i)∈Ic×Ih

sj→i ·LI
j (αn+1) ·LI

i (0)+
∑
i∈Ic

LI
i (0) · sn+1

i . (1)

Observe that sn+1 is a fixed value (determined fully by the input sharing polynomial), albeit
unknown to S. In addition,

∑
(j,i)∈Ih×Ih sj→i · LI

j (αn+1) is fully determined by the messages sj→i

sent by S to A in the simulation of the round 1 messages, albeit again unknown to S. This holds
because3 ∑

(j,i)∈Ih×Ic

sj→i · LI
j (αn+1)

is fully determined by the messages sent from the honest parties to the corrupted parties in round 1
(by definition {sj→i}(j,i)∈(Ih×Ic) is the set of all sj→i messages sent by the honest to the corrupted).
Next, we have∑

(j,i)∈Ih×I

sj→i · LI
j (αn+1) =

∑
(j,i)∈Ih×Ih

sj→i · LI
j (αn+1) +

∑
(j,i)∈Ih×Ic

sj→i · LI
j (αn+1).

Thus, if
∑

(j,i)∈Ih×I sj→i ·LI
j (αn+1) is fully determined by the input values, then

∑
(j,i)∈Ih×Ih sj→i ·

LI
j (αn+1) is fully determined by the input values and first message from the honest parties to the

corrupted parties.

3This may seem obvious and therefore not require a proof. However, note that this sum refers to the messages
sent between the honest parties alone, whereas the messages sent by S to A are from the honest parties to the corrupt
parties.
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In order to see that
∑

(j,i)∈Ih×I sj→i ·LI
j (αn+1) is fully determined from the input, observe that

the t values {sj→i} with j ∈ Ih and i ∈ I define a polynomial sj(x) with sj(0) = sj . This implies
that for any j ∈ Ih, ∑

i∈I
sj→i · LI

j (αn+1) = sj(αn+1)

and thus ∑
(j,i)∈Ih×I

sj→i · LI
j (αn+1) =

∑
j∈Ih

sj(αn+1)

which depends only on the input.
We conclude that the left-hand side sn+1−

∑
(j,i)∈Ih×Ih sj→i ·LI

j (αn+1) ·LI
i (0) of Eq. (1) is fixed

and independent of the messages sent by the adversary. This implies that after fixing the messages
{sj→i}(j,i)∈(Ih×Ic) from the honest parties to the corrupted parties in round 1, the simulator S
can choose all random values {si→j}(i,j)∈Ic×I from the corrupted parties (independently of what

A sends) and recompute ∑
(j,i)∈Ic×Ih

sj→i · LI
j (αn+1) · LI

i (0) +
∑
i∈Ic

LI
i (0) · sn+1

i

using the input values {si}i∈Ic and these chosen random values, playing the corrupted parties
“honestly”. If this sum equals the sum of values received from the corrupted parties, then the
output will be correct for Pn+1 and so S instructs Fadd to provide output. Otherwise, it instructs
Fadd to not provide output to Pn+1. This completes the proof. □

Observe that the simulator S in the proof of Theorem 3.7 is straight line (it does not rewind
A). Since perfect security with a straight-line simulator implies UC security, as proven in [8], we
have the following corollary:

Corollary 3.8 Assume that the parties’ inputs are consistent and valid. Then, protocol Πadd UC
realizes with abort the functionality Fadd in the presence of a static malicious adversary corrupting
up to t− 1 parties, for any t ≤ n.

3.4 Refresh

3.4.1 Secure Refresh in the Fvss-Hybrid Model

Intuition: The refresh protocol works by the parties generating a random secret sharing of 0 and
adding it to the initial secret sharing. This clearly generates a random polynomial with the same
constant term. In order to generate a random secret sharing of 0, we simply use Fvss, verifying that
each secret sharing is of 0 (this is easy to do, since s ·G is revealed, and so all that is needed is to
verify that this equals the identity point O).

Protocol 3.9 (Πrefresh)

Parties: A set of t online parties Pi with i ∈ I
Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero values

α1, . . . , αn ∈ Fq
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Pi’s private input: (B, si), as output from Fvss

(The protocol assumes that all parties have the same B and that si is the correct share as defined by B. If this may

not be the case, then parties need to begin by echo-broadcasting B (to ensure that all honest parties hold the same

vector), and each party needs to locally verify that si ·G =
∑t−1

k=0(αi)
k ·Bk where B = (B0, . . . , Bt−1).)

The protocol:

1. Phase 1 (two rounds) – each party Pi deals a sharing of zero:

(a) Each online Pi sends Fvss the message (share, sid∥i, 0)

(b) Every (online and offline) Pi receives
{(

share, sid∥j, B̃j , s̃j→i

)}
i∈I

, where B̃j =
(
B̃j

0, B̃
j
1, . . . , B̃

j
t−1

)
and s̃j→i is Pi’s private share in the secret sharing from Pj

2. Phase 2 – each Pi generates output:

(a) If not all t outputs
{(

share, sid∥j, B̃j , s̃j→i

)}
i∈I

are received (i.e., if any aborts), then

output abort and halt

(b) Let B̃j =
(
B̃j

0, B̃
j
1, . . . , B̃

j
t−1

)
and let B = (B0, . . . , Bt−1)

(c) Abort if any B̃j
0 ̸= O (i.e., if any of the secret sharings are not to zero)

(d) For k = 0, . . . , t− 1, set B′
k = Bk +

∑
j∈I B̃

j
k

(e) Set B′ = (B′
0, B

′
1, . . . , B

′
t−1)

(f) Set si = si +
∑

j∈I s̃j→i

(g) Output (refresh, sid,B′, si)

We remark that Protocol Πrefresh can be instantiated with Πvss or Π
off
vss for Fvss, thereby yielding

two variants with all online or only t parties online. This works since the parties only run local
operations (to compute output) after the VSS output is received.

Security: We prove the security of the protocol under the assumption that all parties begin with
consistent and valid input. That is, each party Pi is given input (B, si) where si ·G =

∑t−1
k=0(αi)

k ·Bk

and B = (B0, . . . , Bt−1), and all parties are given the same vector B. This makes sense in practice
since this input is the output of a previous VSS execution. However, as described in the protocol,
if this may not be the case, then it needs to be separately verified. If the above holds, then we say
that the input is consistent and valid.

Theorem 3.10 Assume that the parties’ inputs are consistent and valid. Then, protocol Πrefresh re-
alizes functionality Frefresh in the Fvss-hybrid model with perfect security-with-abort, in the presence
of a static malicious adversary corrupting up to t− 1 parties, for any t ≤ n.

Proof: Let I ′ ⊆ [n] denote the set of t online parties, let Ic ⊆ [n] denote the set of corrupted
parties, and let Ih = [n] \ Ic denote the set of honest parties. If Ic is empty, then simulation is
trivial; we therefore assume that there is at least one corrupted party. Since not all parties are
online and participate in the protocol, we denote by I ′

c and I ′
h the respective sets of online corrupted

and honest parties (i.e., I ′
c = I ′ ∩ Ic and I ′

c = I ′ ∩ Ic).
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The idea behind the simulation is as following. The ideal functionality Frefresh chooses a new
random sharing, and provides the ideal adversary with its shares. The adversary can then choose
to add any valid zero-sharing of its choice in order to determine the final polynomial. This reflects
the fact that the real adversary can see the VSS shares of the honest parties before choosing its
own shares. Thus, the sharing received by the ideal adversary/simulator S from Frefresh reflects the
sum of the original sharing and what the honest parties share. Thus, the simulator S subtracts
the original sharing from the sharing received to receive a sharing of zero, and then simulates the
honest parties sharings such that they sum to this sharing of zero. Finally, after receiving the
corrupted parties’ sharings from A, the simulator sums them up and sends them as the polynomial
to be added to the sharing by the ideal functionality.

We construct a simulator S as follows:

1. Prepare values for simulating honest parties’ sharings:

(a) S invokes A upon input {(refresh, sid,B, si)}i∈I′
c

(These inputs are consistent and valid by the assumption in the theorem.)

(b) S sends {(refresh, sid,B, si)}i∈I′
c
to the trusted party computing Frefresh, and receives

back
(
refresh, sid, {ŝi}i∈Ic , B̂

)
; let B̂ = (B̂0, B̂1, . . . , B̂t−1)

(c) S computes Bh =
(
B̃h

0 , B̃
h
1 , . . . , B̃

h
t−1

)
, the public sum of the “honest parties’ sharings”,

by B̃h
k = B̂k −Bk for k = 0, . . . , t− 1, where B̂k is from B̂ received from Frefresh and Bk

is from B in the input

(d) S computes
{
shi
}
i∈Ic the sum of the honest parties’ shares sent to the corrupted parties

by shi = ŝi − si for every i ∈ Ic, where ŝi is the new share received from Frefresh and si
is the corrupted party’s previous share
(Note that for every i ∈ Ic it holds that shi ·G =

∑t−1
k=0(αi)

k · B̃h
k .)

(e) S chooses random {s̃j→i}j∈I′
h;i∈Ic

under the constraint that for every i ∈ Ic,
∑

j∈I′
h
s̃j→i = shi

(f) S finds random polynomials
{
B̃j

}
j∈I′

h

under the constraint that they sum to Bh and

that for every j ∈ I ′
h and i ∈ Ic it holds that s̃j→i ·G =

∑t−1
k=0(αi)

k · B̃j
k, as follows:

i. Let j′ ∈ I ′
h

ii. For every j ∈ I ′
h\{j′}, S chooses a random degree-(t−1) polynomial b̃j(x) such that

b̃j(0) = 0 and for every i ∈ Ic it holds that b̃j(αi) = s̃j→i. S sets B̃j = (B̃j
0, . . . , B̃

j
t−1)

by B̃j
k = b̃jk ·G where b̃j(x) =

∑t−1
k=0 b̃

j
k · x

k.
(Note that S can always find such a polynomial. If t−1 parties are corrupted, then this polynomial

is fully determined from s̃j→i values and the fact that b̃i(0) = 0.)

iii. S computes S̃j′→i = s̃j′→i ·G for j′ ∈ I ′
h specified above, and for every i ∈ Ic. S then

interpolates “in the exponent” to find a random polynomial B̃j′ =
(
B̃j′

0 , . . . , B̃
j′

t−1

)
such that B̃j′

0 = O (the additive identity) and for every i ∈ Ic it holds that S̃j′→i =∑t−1
k=0(αi)

k · B̃j′

k .
(As above, S can always find such a polynomial since at most t− 1 parties are corrupted and so at

most t points are fixed, and since Lagrange interpolation can be computed “in the exponent” (i.e.,

on the group elements).)
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2. Simulate the refresh protocol:

(a) S simulates the protocol playing Fvss using the B̃j and s̃j→i values for all j ∈ Ih computed
above (including aborting if any invalid messages are sent, as specified in the protocol
and in the Fvss description)

(b) Let {(share, sid∥i, si(x))}i∈I′
c
be the messages the adversary A sends as the online cor-

rupted parties sharings sent to Fvss

(If not all sharings are sent, then S just waits.)

3. S interacts with Frefresh:

(a) S computes s̃(x) =
∑

i∈I′
c
si(x) and sends s̃(x) to Frefresh (the si(x) polynomials are from

the sharings sent by A to Fvss above)

(b) S instructs Frefresh to provide output to an honest party Pj if and only if A instructs
Fvss to provide output to Pj in all sharings of 0 from corrupted parties

4. S outputs whatever A outputs, and halts

If the distribution over the polynomials
{
B̃j

}
j∈I′

h

and values {s̃j→i}j∈I′
h;i∈Ic

is the same as in a

real execution, then it is clear that the output distribution is identical. This is due to the fact that
the rest of the simulation merely follows the instructions of the protocol, and due to the fact that
the resulting sharing is guaranteed to match the output from the ideal functionality by how these
values are chosen. However, since all s̃j→i values are chosen at random under the constraint that
they sum to the correct value, and since all other values are derived from these, the distribution of
values seen by the adversary in the real and ideal executions is the same. Furthermore, the sum of
the values chosen by the simulator match exactly the output received from the ideal functionality,
as required. □

Observe that the simulator S in the proof of Theorem 3.10 is straight line (it does not rewind
A). Since perfect security with a straight-line simulator implies UC security, as proven in [8], we
have the following corollary:

Corollary 3.11 Assume that the parties’ inputs are consistent and valid. Then, protocol Πrefresh

UC realizes with abort the functionality Frefresh in the Fvss-hybrid model in the presence of a static
malicious adversary corrupting up to t− 1 parties, for any t ≤ n.

A note on the case that t− 1 parties are corrupted: Observe that in this case, the refresh
protocol is meaningless. This is due to the fact that since the polynomials shared by the honest
parties go via (0, 0), the adversary can learn the exact polynomials shared. However, this is also
true in the ideal model. In particular, given the new sharing and the old sharing, the adversary
can compute the difference. This is a degree-(t − 1) polynomial with a zero constant term. Since
here too the adversary has t− 1 shares and the polynomial goes through (0, 0), the adversary with
t points can interpolate to compute the polynomial itself. Thus, this same property holds in both
the real and ideal models. Thus, there is no rerandomization of the polynomial sharing the secret
here. Nevertheless, refresh is only of interest if at least two honest parties are honest, as shown
in [1]. This is therefore not an issue.
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Refresh with offline parties and a coordinator machine: In the case of asynchronous parties
communicating via a coordinator machine that receives all (encrypted and signed) messages and
forwards them to their appropriate destination, the refresh protocol can be implemented using
Πoff

vss. This protocol guarantees that if any honest online party does not abort and if the coordinator
machine is semi-honest, then all offline parties are guaranteed to not abort. However, in this
protocol, each online party only needs to connect twice: in the first connection it plays the dealer,
and in the second connection it receives the shares, signs the bundles and sends them to the
coordinator. This can be a challenge for asynchronous parties, and we present a proposal for
dealing with it in Section 3.4.2.

3.4.2 Refresh with ℓ Fully Online Parties, t − ℓ Asynchronous Online Parties, and
n − t Offline Parties

Aim: Our aim is to construct a refresh protocol that requires asynchronous online parties to only
connect once, since connecting more than once for an operation that should happen regularly (like
refresh) is very problematic. Clearly, if we assume that all participating parties are asynchronous,
then this cannot be achieved. In particular, there is no way to ensure consensus between the
values shared by the parties in a single round. However, if we assume that there are some fully
online parties (we call them fully online parties to differentiate them from the asynchronous online
parties who connect and disconnect), and we assume that at least one of these fully online parties
is semi-honest then the consensus can be verified by them. We remark that the consensus could
also be verified by the coordinator, and recall that in Πoff

vss we also had the assumption that the
coordinator was semi-honest. However, that protocol had the guarantee that if the coordinator
was malicious, then the only bad thing that can happen is that parties abort. In contrast, here,
if the coordinator verifies the consensus and it is malicious, then parties may output shares that
are not consistent (i.e., do not lie on the same degree-(t − 1) polynomial). Therefore, rather than
relying on a single machine, we assume that there are some ℓ fully online parties, and as long as
one of them is semi-honest – and not all of them malicious, security (and even output delivery) is
guaranteed.4 We do stress, however, that if all fully online parties are malicious, then security is
not guaranteed. (Although it is hard to separate correctness and privacy in secure computation,
the aspect that breaks is only that of correctness. This means that the parties may end up having
inconsistent shares, and so will not be able to operate. However, this can only happen if all fully
online parties are corrupted.)

Protocol: The above discussion yields the following protocol for refresh.

Protocol 3.12 (Π′
refresh)

Parties: A set of ℓ fully-online parties {Pi}i∈Iperm-on
, a set of t − ℓ asynchronous online parties

{Pi}i∈Iasync-on, and n− t offline parties {Pi}i∈Ioff . The sets Iperm-on, Iasync-on, Ioff are disjoint, and

their union is [n].

Common input: sid ∈ {0, 1}∗, parameters t, n ∈ N with t ≤ n, and unique non-zero values
α1, . . . , αn ∈ Fq

4As with the Πoff
vss , output delivery is guaranteed in the sense that if at least one of the honest online parties does

not abort, then all offline honest parties do not abort.
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Pi’s private input: (B, si), as output from Fvss

(The protocol assumes that all parties have the same B and that si is the correct share as defined by B. If this may

not be the case, then parties need to begin by echo-broadcasting B (to ensure that all honest parties hold the same

vector), and each party needs to locally verify that si ·G =
∑t−1

k=0(αi)
k ·Bk where B = (B0, . . . , Bt−1).)

The protocol:

1. Phase 1 (single round) – each asynchronous online party Pi shares a zero-sharing:

(a) Each online Pi computes the first round of Protocol Πoff
vss for a sharing of zero, and with

the offline parties defined to be all in [n] (i.e., all parties’ shares are encrypted using
publicly-verifiable encryption)

(b) Each online Pi signs their sharing values, and sends them to the fully-online parties

2. Phase 2 – fully-online parties:

(a) Each fully-online party runs rounds 2 and 3 of Protocol Πoff
vss: the parties check all values

and ZK proofs, echo-broadcast among themselves to verify consistency of all sharings,
and gather signatures (of the fully-online parties and the asynchronous online party who
shared)

(b) Each fully-online party sends the bundle to the coordinator, for all parties to download

3. Output:

(a) Each party (asynchronously-online or offline) downloads the bundle from the coordinator

(b) Each party verifies that the bundle has the signature of all the fully-online parties, that
the bundle contains t sharings of zero (i.e., verifying that each B0 = O), and that each
sharing is signed by a different asynchronous-online party.

(c) For each of the t sharings, each party decrypts their publicly-verifiable encryption and
verifies its consistency with the sharing polynomial vectors B

(d) Each party runs phase 2 (generate output) in Πrefresh, and outputs the result

Security: The proof of security of Protocol Π′
refresh is essentially the same as that of Theorem 3.10,

with the only difference being which subset of parties carries out the consistency checks.
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