
X-Wing
The Hybrid KEM You’ve Been Looking For

Manuel Barbosa1,2,3 , Deirdre Connolly6 , João Diogo Duarte1,2 ,
Aaron Kaiser3 , Peter Schwabe3,4 , Karolin Varner3,5 and

Bas Westerbaan7

1 University of Porto, Portugal
2 INESC TEC, Portugal

3 Max Planck Institute for Security and Privacy, Germany
4 Radboud University, The Netherlands

5 Rosenpass e.V., Germany
6 SandboxAQ, USA

7 Cloudflare, USA

Abstract. X-Wing is a hybrid key-encapsulation mechanism based on X25519 and
ML-KEM-768. It is designed to be the sensible choice for most applications. The
concrete choice of X25519 and ML-KEM-768 allows X-Wing to achieve improved
efficiency compared to using a generic combiner. In this paper, we introduce the
X-Wing construction and provide a proof of security. We show (1) that X-Wing is
a classically IND-CCA secure KEM if the strong Diffie-Hellman assumption holds
in the X25519 nominal group, and (2) that X-Wing is a post-quantum IND-CCA
secure KEM if ML-KEM-768 is itself an IND-CCA secure KEM and SHA3-256 is
secure when used as a pseudorandom function. The first result is proved in the ROM,
whereas the second one holds in the standard model. Loosely speaking, this means
X-Wing is secure if either X25519 or ML-KEM-768 are secure.
Keywords: Hybrid KEM · Post-Quantum Cryptography · Public-Key Cryptography

1 Introduction
To counter the potential threat of store-now/decrypt-later attacks using quantum comput-
ers, industry has started to deploy post-quantum key-encapsulation mechanisms (KEMs)
for key agreement (cf. [O’B23, WR22]). The post-quantum cryptography that is now
being considered for widespread adoption is relatively young compared to the public-
key cryptography that has protected applications until now. RSA and (elliptic-curve)
Diffie-Hellman might not be secure against quantum-computers, but these schemes have
undergone decades of cryptographic analysis. For this reason, many opt to deploy a hybrid
of traditional and post-quantum schemes: if the post-quantum component turns out to be
weak, security falls back to the (non-post-quantum) security of traditional constructions.

As pointed out by Giacon, Heuer, and Poettering [GHP18], under the standard IND-
CCA security definition for KEMs1, creating a KEM combiner is subtler than one might

Warning. X-Wing depends on the NIST standard ML-KEM, which has not been finalised yet. Thus,
X-Wing is not final yet.

E-mail: mbb@fc.up.pt (Manuel Barbosa), durumcrustulum@gmail.com (Deirdre Connolly), joao@dio
goduarte.pt (João Diogo Duarte), aaron.kaiser@mpi-sp.org (Aaron Kaiser), peter@cryptojedi.org
(Peter Schwabe), karo@cupdev.net (Karolin Varner), bas@westerbaan.name (Bas Westerbaan)

1Here, IND-CCA means the standard notion of ciphertext indistinguishability under adaptive chosen-
ciphertext attacks for KEMs.

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-01-09.

https://orcid.org/0000-0002-6848-5564
https://orcid.org/0009-0004-5745-1432
https://orcid.org/0000-0001-5236-260X
https://orcid.org/0009-0004-6141-4861
https://orcid.org/0000-0002-1310-0997
https://cryptojedi.org/
mailto:mbb@fc.up.pt
mailto:durumcrustulum@gmail.com
mailto:joao@diogoduarte.pt
mailto:joao@diogoduarte.pt
mailto:aaron.kaiser@mpi-sp.org
mailto:peter@cryptojedi.org
mailto:karo@cupdev.net
mailto:bas@westerbaan.name
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 X-Wing

expect. They show that the obvious combiner KDF(k1∥k2) is not IND-CCA secure in all
cases, but that such a combiner can be made secure by mixing in the ciphertexts into
the KDF input, e.g., as KDF(k1∥k2∥c1∥c2). As typical post-quantum KEMs have large
ciphertexts, this second combiner comes with a noticeable performance penalty.

Despite this, in specific applications such as TLS 1.3, the simpler combiner is taken
to be secure because the ciphertexts are mixed into the transcript hash. This has
lead to the current situation where there are two different hybrid KEMs, both called
X25519Kyber768Draft00: one for HPKE where the ciphertext is used in the key derivation
input, and one for use in TLS where security relies on the transcript hash outside the
combiner instead. This is an undesirable situation.

In this paper, we show that there is a class of KEMs where the best of both worlds
can be achieved: For these KEMs, the simple, more efficient combiner yields an IND-CCA
secure hybrid KEM despite not using the KEM ciphertext during key derivation. We
call these KEMs ciphertext collision resistant (CCR) and show that ML-KEM provides
ciphertext collision resistance. We use this observation to design an efficient, hybrid KEM
suitable for a broad range of applications.

Besides the choice of combiner, the KEMs used in the combiner have to be decided
upon as well, which involves several choices. To start the scheme. Then the paramters
and security levels have to be fixed. There might be further details. For instance, for
ECDH, designers need to decide upon how a KEM is to be created from the Diffie–Hellman
operation like X25519 [Ber06, LHT16].

Although there is value in having a standardized recipe to create bespoke hybrid KEMs
using a black-box combiner from existing KEMs [OWK23], for most use cases a single
choice is beneficial for increased interoperability, and reduced engineering efforts. With
X-Wing we are making concrete choices, and we provide a proof of security for these
choices specifically. This simplifies our proof and yields a performance level unmet by
previous constructions at the same security level.

X-Wing is a concrete KEM. Its simplicity and performance ensures it is a good choice
in most use cases, including TLS and HPKE. X-Wing targets 128-bit security, and achieves
this goal by combining X25519 and ML-KEM-768 using SHA3-256 as the key derivation
function. ML-KEM-768 is chosen over ML-KEM-512, to hedge against advances in
cryptanalysis, and to match X25519Kyber768Draft00 which already found real-world usage.

In this paper, we show that X-Wing achieves IND-CCA security based on either X25519
or ML-KEM. In the pre-quantum case, we model SHA3-256 as a random oracle and reduce
the IND-CCA security of the scheme to the strong Diffie-Hellman problem in the X25519
nominal group. To achieve this result, we also show that ML-KEM-768 retains a ciphertext
collision resistance, if its secret key is known to the attacker. In the post-quantum case,
we give a standard model reduction from the IND-CCA security of X-Wing to IND-CCA
security of ML-KEM-768 while assuming SHA3-256 to be a PRF. Here we closely follow
the proof idea for KEM combiners given by Giacon, Heuer, and Poettering [GHP18], while
extending it to KEMs that may allow for a small decryption error probability.

Structure of this paper: To start, in Section 2 we describe the design of X-Wing, and
explain the choices made. Before getting into the details of our construction, in Section 3,
we give an intuitive explanation for the security of our scheme as well as a sketch of
the proof. Notation and definitions are introduced Section 4. The QSF framework is
introduced in Section 5; our generic construction – termed quantum superiority fighter –
constitutes a generalization of the X-Wing construction. In Section 6 we prove the security
of QSFs in general, and finally, in Section 7 we show that X-Wing is a quantum superiority
fighter.



M. Barbosa et al. 3

2 Design

X-Wing private key (2432 bytes):

ML-KEM-768 private key
(2400 bytes)

X25519 private key
(32 bytes)

X-Wing public key (1216 bytes):

ML-KEM-768 public key
(1184 bytes)

X25519 public key
(32 bytes)

X-Wing ciphertext (1120 bytes):

ML-KEM-768 ciphertext
(1088 bytes)

X25519 ciphertext
(32 bytes)

X-Wing shared key (32 bytes):

SHA3-256

 \./
/^\

(6 bytes)

ML-KEM-768
shared key
(32 bytes)

X25519
shared key
(32 bytes)

X25519
ciphertext
(32 bytes)

X25519
public key
(32 bytes)


The initial X-Wing label is encoded as 6-byte ASCII string “\.//^\”.

Figure 1: The X-Wing KEM private key, public key, ciphertext, and shared key.

The primary goal of X-Wing is to be usable in most applications. There are many
aspects to being ‘usable’, which can be in conflict.

First, there are the security guarantees and performance, which we already covered
in the introduction: targeting IND-CCA at 128 bits with extra margin for ML-KEM, we
have a solid security guarantee with comfortable margin, while retaining performance.

Secondly, there is implementation simplicity. We designed X-Wing so that it is straight-
forward to implement with X25519 and ML-KEM-768 as black boxes. In particular, we
opted not to use the DHKEM(X25519) construction from HPKE [BBLW22, ABH+21] that
turns X25519 into a KEM. Also, these considerations steered us away from utilising a stan-
dard combiner. Compared to a scheme based on DHKEM and the GHP-combiner [GHP18],
we achieve the same security at a lower computational cost and implementation complexity.
We stress that this optimization is possible, because of the concrete choices we made, and
it may not apply in general.

We chose X25519 as it is currently the de-facto standard traditional key-agreement
with excellent performance. ML-KEM [NIS23] is currently NIST’s only choice for a post-
quantum KEM. More importantly, these choices match closely with X25519Kyber768Draft00,
which is used in the current wide-scale early deployment of post-quantum cryptography
in TLS by Google and Cloudflare [O’B23, WR22]. A summary of the X-Wing design is
depicted in Figure 1.

While we could further improve performance, by opening up ML-KEM and merging the
key derivation phase of ML-KEM with that of X-Wing, we decided against this optimization
since it would require the implementer to open up the ML-KEM implementation abstraction,
which might not always be possible.



4 X-Wing

The final key-derivation includes the X25519 public key and ciphertext (i.e., both the
DH long-term and ephemeral public keys). The first is added as a measure of security
against multi-target attacks, similarly to what is done in the ML-KEM design.2 Removing
the X25519 ciphertext from the final key-derivation step is not possible, as X25519, if seen
as a KEM, is not ciphertext collision resistant. Removing either or both tokens would not
improve performance by much, since in the KDF call, we are already processing only a
single SHA3-256 input block.

3 Security Intuition

Collision attacks against KEM-Combiners. Hashing public keys, shared keys, and
ciphertexts are natural steps in creating a KEM combiner, but one might think that the
key-derivation stage could be as uncomplicated as concatenating both shared keys before
applying a key-derivation function. Let us call this the pedestrian combiner. Giacon,
Heuer, and Poettering [GHP18] showed that such a combiner would not robustly provide
IND-CCA security. Instead, the GHP-combiner [GHP18] that is proved secure, additionally
mixes both ciphertexts into the key-derivation step.

The paper provides an in-depth explanation of the attack that can be performed if
the ciphertexts are omitted. To briefly illustrate the attack, recall that a robust combiner
is meant to combine two schemes so that security is preserved if either scheme (but not
both) is replaced by an arbitrarily bad scheme. Consider a hypothetical bad scheme,
which is broken in the following sense: given a challenge ciphertext c1, it is easy to find
another ciphertext c′1 ̸= c1 that decapsulates to the same shared key k1. Then, an attacker
could win the IND-CCA game against the KEM combiner as follows: Given (c1, c2) as the
challenge ciphertext, where c2 is the ciphertext for a secure KEM, the adversary knows
this will decapsulate to KDF(k1, k2) for unknown k2. However, the attacker can simply
call its decapsulation oracle on (c′1, c2), which is a legitimate query, and obtain the correct
shared key.

Ciphertext Collision Resistant KEMs. The fact that the previous attack works for
a degenerate insecure KEM does not mean that omitting a corresponding ciphertext from
the KDF input always leads to an attack. Indeed in this paper we show that, for X-Wing,
this is not the case: we can omit the (large) ML-KEM-768 ciphertext from the KDF
input, and still prove that X-Wing is an IND-CCA secure KEM. Intuitively, this is because
ML-KEM-768 has the following property: even if ML-KEM-768 is broken as a KEM, we
show that its internal structure—based on the Fusijaki-Okamoto transform—guarantees
that it is impossible to find colliding ciphertexts as described above. We call this notion
ciphertext collision-resistance for KEMs.

Inlining the Diffie-Hellman based KEM. The X-Wing construction is not a generic
KEM combiner because we do not treat the DH component as a black-box KEM. We
instead take the direct route, reducing the X25519-based security of our construction to the
hardness of breaking the Strong Diffie-Hellman [AP05] (SDH) problem in a nominal group.
Intuitively, this means that we prove security based on a computational-Diffie-Hellman-like
problem, but no assumption is made about the format of the generated group element.
In particular, no assumption is made that the shared group element is indistinguishable
from random bytes. Indistinguishability of the final shared secret from a random key is
established by modelling the key-derivation function as a random oracle.

2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W1KoINY/m/99kIvydoAwAJ

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/C0D3W1KoINY/m/99kIvydoAwAJ


M. Barbosa et al. 5

Proof-strategy. As is customary for hybrid protocols, the proof is split into two cases,
one covering the possibility of quantum computers becoming a reality (and thus break-
ing X25519), and the other one covering the possibility of post-quantum cryptography,
specifically ML-KEM-768, being classically broken.

Pre-Quantum Security: This the case case where X25519 is assumed to be secure
but ML-KEM-768 may not offer any security. This proof is itself presented in two steps
and, in both cases, the attacker is assumed to be classical. We first prove that X-Wing is
IND-CCA secure when:

1. The SHA3-256 KDF is modelled as a Random Oracle;

2. X25519 is modelled as a nominal group in which the strong Diffie-Hellman assumption
holds; and

3. ML-KEM-768 is modelled as a possibly broken KEM that provides no security beyond
ciphertext collision resistance.

We then show that ML-KEM-768 satisfies the ciphertext collision resistance property,
again in the ROM.

Post-Quantum Security: This is the case where ML-KEM-768 is assumed to be post-
quantum secure, but X25519 offers no security. This proof is itself presented in two steps
and, in both cases, the attacker is assumed to be able to perform quantum computations,
but it interacts with X-Wing classically. We prove in the standard model that X-Wing is
secure when:

1. The SHA3-256 KDF is modelled as a (post-quantum) PRF;

2. There is no assumption on the X25519 component; and

3. ML-KEM-768 is assumed to provide (post-quantum) IND-CCA security.

We present the above proofs in a modular way, by first justifying the X-Wing design
as a generic construction, and then argue that SHA3-356, X25519 and ML-KEM-768 are
good instantiations.

4 Preliminaries
4.1 Notation and conventions
For an integer n, we denote by Zn the residual ring Z/nZ. a ←$ A denotes sampling a
uniformly at random from a non-empty finite set A. ← denotes a deterministic assignment
of a variable. {0, 1}n is the set of all bitstrings of length n. (x, y) denotes a tuple of two
elements x and y. X[y] denotes access into the table X at position y. Tables are denoted
with bold uppercase variable names or

∑
. An uninitialized position in a table is denoted

with the bottom symbol ⊥. X[·]← y sets all positions of table X to y. All algorithms are
probabilistic polynomial time (PPT) unless stated otherwise. o←$A(I) denotes running
the algorithm A with input I with uniform random coins and o describing its output. If
A has additionally access to an oracle O, this is denoted as o ←$ AO(·)(I). A security
game consists of a main procedure and optionally some oracle procedures. When a game is
played, the main procedure is run and adversary A is given some inputs and access to the
oracle procedures. Based on the output of the adversary A and its oracle calls, the main
procedure outputs 1 or 0 depending on whether the adversary A won the game. If a game
aborts at any time, it means that the adversary has no advantage in winning this game. In
case of a decision game, this means that the game returns a random bit indicating whether



6 X-Wing

Game IND-CCAb
KEM,A

(sk, pk)←$ KEM.KeyGen( )
(k0, c∗)←$ KEM.Enc(pk)
k1 ←$ K
b′ ←$ ADec(·)(pk, c∗, kb)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
k ← KEM.Dec(c, sk)
return k

Figure 2: IND-CCA security game for KEMs.

the adversary has won or not. Whenever an adversary algorithm executes "stop with x", it
halts returning x to its challenger. Our security analyses are concrete, which means that
we prove that the advantage of an attacker against a construction with fixed parameters
is bounded by a real value that is argued to be small. Here, small means a summation
of statistical terms and advantage terms, the former representing worst-case probabilities
below 2−128 and the latter representing attacks on lower-level primitives that are assumed
to require at least 2128 steps to break.

4.2 Key-Encapsulation Mechanisms
4.2.1 Syntax

Definition 1 (Key-Encapsulation Mechanism (KEM)). A key-encapsulation mechanism
is a triple of algorithms KEM = {KeyGen, Enc, Dec} with public keyspace PK, private
keyspace SK, ciphertext space C and shared keyspace K. The triple of algorithms is defined
as:

• KEM.KeyGen( ) ←$ (sk, pk) Randomized algorithm that outputs a secret (private)
key sk ∈ SK and a public key pk ∈ PK.

• KEM.Enc(pk) ←$ (k, c) Randomized algorithm that, given a public key pk ∈ PK,
outputs a shared key k ∈ K and a ciphertext c ∈ C.

• KEM.Dec(c, sk) → y ∈ {k,⊥} Deterministic algorithm that, given a secret key,
sk ∈ SK and a ciphertext c ∈ C, returns the shared key k ∈ K. In case of rejection,
this algorithm returns ⊥.

4.2.2 Correctness

The correctness of a KEM imposes that, except with small probability drawn over the
coin space of KEM.KeyGen and KEM.Enc, we have that KEM.Dec correctly recovers the
shared key produced by KEM.Enc. Formally, we say that a KEM is δ-correct if:

Pr [ k′ = ⊥ ∨ k ̸= k′ : (sk, pk)←$ KeyGen( ); (k, c)←$ Enc(pk); k′ ← Dec(c, sk) ] ≤ +δ.

Note that, for ML-KEM using implicit rejection, this condition simplifies to k ̸= k′.

4.2.3 Security

The IND-CCA security game for KEMs is denoted as IND-CCAb
KEM,A and shown in

Figure 2.



M. Barbosa et al. 7

Game PRFb
PRF,A

T[·]← ⊥
k ←$ K
b′ ←$ AEval(·)

return b′

Oracle Evalf (x)
if x ∈ T then

return T[x]
y0 ← f(k, x); y1 ←$ Y
T[x]← yb

return yb

Figure 3: PRF security games.

Definition 2 (IND-CCA advantage for KEMs). The advantage of A in breaking the
IND-CCA security of KEM is defined as

AdvKEM
IND-CCA,A =

∣∣Pr[IND-CCA0
KEM,A ⇒ 1]− Pr[IND-CCA1

KEM,A ⇒ 1]
∣∣.

4.3 Pseudorandom function

A pseudorandom function (PRF) is a keyed deterministic function that cannot be distin-
guished from a truly random function.

Definition 3 (Pseudorandom Function (PRF)). For a finite keyspace K, input space X ,
finite output space Y, and an efficiently computable function f : K × X → Y, we define
the PRF advantage of adversary A based on the experiments in Figure 3 as

Advf
PRF,A =

∣∣Pr[PRF0
PRF,A ⇒ 1]− Pr[PRF1

PRF,A ⇒ 1]
∣∣.

4.4 Nominal Group

The construction that we introduce in this paper uses an elliptic curve. In our security
proofs we abstract away the elliptic curve and use the notion of a nominal group. In this
section, we recall the definition of a nominal group, as of [ABH+21].

Definition 4 (Nominal Group [ABH+21]). A nominal group N = (G, g, p, εh, εu, exp)
consists of an efficiently recognisable finite set of elements G (also called “group elements”),
a base element g ∈ G, a prime p, a finite set of honest exponents εh ⊂ Z, a finite
set of exponents εu ⊂ Z\pZ, and an efficiently computable exponentiation function
exp : G×Z→ G, where we write Xy for exp(X, y). The exponentiation function is required
to have the following properties:

1. (Xy)z = Xyz for all X ∈ G, y, z ∈ Z.

2. The function ϕ defined by ϕ(x) = gx is a bijection from εu to {gx|x ∈ [1, p− 1]}.

As done in [ABH+21] for a nominal group N = (G, g, p, εh, εu, exp), we define DH to
be the uniform distribution of honestly generated exponents εh and DU to be the uniform
distribution on εu. We also recall the definition for the statistical distance between these
distributions: ∆N = ∆[DH , DU ] = 1

2
∑

x∈Z
|Pr
DU

(x)− Pr
DH

(x)| [ABH+21].



8 X-Wing

Algorithm KeyGen()
sk1, pk1,← KEM.KeyGen()
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
sk ← (sk1, sk2)
return (sk, pk)

Algorithm Enc(pk)
(pk1, pk2)← pk
k1, c1 ← KEM.Enc(pk1)
ske ←$ εh

c2 ← exp(g, ske)
k2 ← exp(pk2, ske)
k ← H(label∥k1∥k2∥c2∥pk2)
c← (c1, c2)
return (k, c)

Algorithm Dec(c, sk)
(sk1, sk2)← sk
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
k ← H(label∥k1∥k2∥c2∥pk2)
return k

Figure 4: QSF Framework.

4.5 Strong Diffie-Hellman Problem
Definition 5 (Strong Diffie-Hellman (SDH) Problem). We define the advantage function
of an adversary A against the Strong Diffie-Hellman problem over the nominal group N as

AdvSDH
N ,A = Pr

x,y←εu

[Z = gxy|Z ← ADH(·,·)(gx, gy)].

where DH is a decision oracle that on input (Y, Z) with Y, Z ∈ G, returns 1 iff Y x = Z
and 0 otherwise.

5 Introducing QSF
In this section, we introduce a general framework to build a robust KEM based on two
building blocks, a nominal group and another KEM. We show that the resulting KEM
is secure even if one of the building blocks loses its security properties. We call that
framework QSF.

Definition 6 (QSF). Let N = (G, g, p, εh, εu, exp) be a nominal group, let KEM be a
key encapsulation mechanism and let H be a hash function. We define the QSF KEM as
depicted in Fig. 4.

6 Security of QSF
In this section, we will analyse the security of the QSF framework. We will consider two
cases. In the first case, we will analyse the security of QSF relative to the security of the



M. Barbosa et al. 9

nominal group, while in the second case, we analyse the security relative to the security of
the underlying KEM.

6.1 Reduction to SDH and CCR in the ROM
As mentioned in the introduction, we introduce ciphertext collision resistance for KEMs
(CCR) and show that this notion is sufficient, together with the SDH security of the
nominal group, to make QSF an IND-CCA secure KEM.

Definition 7 (CCR). We define the advantage function of an adversary A against KEM
collision resistance as:

AdvCCR
KEM,A =

∣∣∣∣ Pr
(sk,pk)←$KeyGen( )

[ Dec(c1, sk) = Dec(c2, sk) ̸= ⊥ ∧ c1 ̸= c2 | (c1, c2)← A(sk, pk) ]
∣∣∣∣.

Note that the adversary also gets access to the secret key. This ensures that this
notion will hold even if other security notions are broken, such as IND-CCA security. This
allows us to prove the security of QSF relative to the strength of the nominal group for an
arbitrarily bad KEM. With this definition, we can prove the IND-CCA security of QSF.

Note that this notion is related to the key-binding properties introduced by Cremers
et al. in [CDM23]. Our CCR notion is strictly weaker than the M-BIND-K-CT notion
introduced in that paper. We chose to introduce this additional notion because using the
strictly stronger M-BIND-K-CT notion could prevent the instantiation of QSF with a
KEM that is not M-BIND-K-CT, but would result in an overall secure construct.

Theorem 1. Let N = (G, g, p, εh, εu, exp) be a nominal group and KEM be a CCR secure
key encapsulation mechanism, let H be a random oracle with an output size of n and let A
be an adversary against the IND-CCA security of QSF making at most qh queries to the
random oracles. Then there exist adversaries B and C such that,

AdvIND-CCA
QSF,A ≤ 2∆N + AdvSDH

N ,B + AdvCCR
KEM,C .

The run-times of B and C are roughly the same as of A. B performs at most 2qh queries
to its own DH oracle.

Proof. Let us consider the following games,

Game 0 Let G0 be defined as in Figure 5. Clearly, G0 is the IND-CCA0 game instantiated
with QSF. By definition,

Pr[IND-CCA0
QSF,A ⇒ 1] = Pr[GA0 ⇒ 1].

Game 1 For G1 we choose the secret keys sk2 and ske from the set of exponents εu instead
of the set of honest exponents εh. This allows us to use the SDH problem to bound
the probability of the next game hop.

Claim 1
|Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]| ≤ 2∆N .

Proof With this game hop, we change the distribution from which these values are chosen.
∆N defines the bound on the probability of an adversary to distinguish the original
distribution from the new one for one element. As we are replacing the distribution
of two elements, we get 2∆N as an upper bound for A to detect this change.

Game 2 With the changes in G2 we prevent the adversary from querying the random oracle
containing the value k∗2 that was used to generate the challenge key k∗. This prevents
A entirely from obtaining the shared challenge key k∗ from the random oracle.



10 X-Wing

Game G0/G1/G2/G3/G4∑[·]← ⊥
K[·]← ⊥ ▷ G3 −G4

(sk1, pk1)← KEM.KeyGen()
sk2 ←$ εh

sk2 ←$ εu ▷ G1 −G4
pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
(k∗

1, c∗
1)← KEM.Enc(pk1)

K[k1]← c1 ▷ G3 −G4
ske ←$ εh

ske ←$ εu ▷ G1 −G4
c∗

2 ← exp(g, ske)
k∗

2 ← exp(c2, ske)
c∗ ← (c∗

1, c∗
2)

s← label∥k∗
1∥k∗

2∥c∗
1∥pk2

if ∑[s] = ⊥ then∑[s]←$ {0, 1}n

k∗ ← ∑[s]
k∗ ←$ {0, 1}n ▷ G4

b′ ← ADec(·),H(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
▷ G3 −G4 ◁
if K[k1] ̸= ⊥ ∧K[k1] ̸= c1 then

abort2
s← label∥k1∥k2∥c2∥pk2
if ∑[s] = ⊥ then∑[s]←$ {0, 1}n

k ← ∑[s]
return k

H(m)
▷ G2 −G4 ◁
if label∥k1∥k2∥c2∥pk2 ← m then

if k2 = k∗
2 then

abort1
if ∑[m] = ⊥ then∑[m]←$ {0, 1}n

return ∑[m]

Figure 5: Game G0 −G5.



M. Barbosa et al. 11

Adversary BDH(·,·)(X, Y )∑[·]← ⊥
E[·]← ⊥
(sk1, pk1)← KEM.KeyGen()
pk2 ← X
pk ← (pk1, pk2)
(k∗

1, c∗
1)← KEM.Enc(pk2)

c∗
2 ← Y

c∗ ← (c∗
1, c∗

2)
k∗ ←$ {0, 1}n

b′ ← ADec(·),H(·)(pk, c∗, k∗)

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
if k1 = ⊥ then

return ⊥
if E[(c2, k2)] = ⊥ then

E[(c2, k2)]←$ {0, 1}n

return E[(c2, k2)]

H(m)
if label∥k1∥k2∥c2∥pk2 ← m then

if DH(Y, k2) = 1 then
stop with k2

if DH(c2, k2) = 1 then
if E[(c2, k2)] = ⊥ then

E[(c2, k2)]←$ {0, 1}n

return E[(c2, k2)]
if ∑[m] = ⊥ then∑[m]←$ {0, 1}n

return ∑[m]

Figure 6: Adversary B.

Claim 2
|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[abort1] = AdvSDH

N ,B .

Proof To prove this claim, we show the existence of adversary B that wins the SDH game
exactly when A would query H2 containing the k∗2 used to generate k∗. Consider
adversary B from Figure 6 playing the SDH game and simulation A’s view on the
IND-CCA game.
Adversary B uses the challenge group elements X = exp(g, x) as the static public key
and Y = exp(g, y) as the ephemeral public key for the challenge ciphertext. Therefore,
the shared challenge key k∗ is supposed to be H2(label∥k∗1∥exp(Y, x)∥c∗2∥pk2). B is
unable compute exp(Y, x) and therefore sets k∗ to a uniform random value. For A to
win the IND-CCA game, it would have to query H2 with exp(Y, x). B can use the DH
oracle to detect when A queries H2 with the result of exp(Y, x), since DH(Y, k∗2) = 1
iff k∗2 = exp(Y, x). Therefore, if this check, in the H oracle, evaluates to 1 we know
that the k2 provided has to equal k∗2 . When this happens, A has provided B with
the solution to the SDH game. A similar approach can be used to simulate the
Dec oracle. When calculating the shared key in the Dec oracle, the input for the
random oracle has to have the form label∥k1∥exp(c2, x)∥c2∥pk2 which B is not able
to compute. B can use the same method as before to check whether A performs such
a query using the DH oracle. We then use the table E to ensure consistency between
the random oracle H and the Dec oracle. Therefore, B simulates A’s view on the
IND-CCA game perfectly and wins the SDH game iff the adversary queries H with



12 X-Wing

Adversary C(sk1, pk1)∑[·]← ⊥
K[·]← ⊥
sk2 ←$ εu

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
(k∗

1, c∗
1)← KEM.Enc(pk1)

K[k∗
1]← c∗

1
ske ←$ εu

c∗
2 ← exp(g, ske)

k∗
2 ← exp(c2, ske)

c∗ ← (c∗
1, c∗

2)
s← label∥k∗

1∥k∗
2∥c∗

1∥pk2
if ∑[s] = ⊥ then∑[s]←$ {0, 1}n

k∗ ← ∑[s]
b′ ← ADec(·),H(·)(pk, c∗, k∗)

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
if K[k1] ̸= ⊥ ∧K[k1] ̸= c1 then

stop with (K[k1], c1)
k ← H2(label∥k1∥k2∥c2∥pk2)
return k

H(m)
if label∥k1∥k2∥c2∥pk2 ← m then

if k2 = k∗
2 then

abort1
if ∑[m] = ⊥ then∑[m]←$ {0, 1}n

return ∑[m]

Figure 7: Adversary C.

the result of exp(Y, x), which is the k∗2 used to generate k∗. Note that the adversary
B makes at most 2qh queries to the DH oracle.

Game 3 G3 introduces changes that prevent the adversary from querying the Dec oracle with
a ciphertext c1 that is different from the ciphertext c∗1 that was used to generate
the challenge ciphertext c∗, but results in the same k1 as the k∗1 that was used to
generate k∗.

Claim 3
|Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]| ≤ Pr[abort2] = AdvCCR

KEM,C .

Proof To prove this claim, we show the existence of an adversary C, depicted in Figure 7,
that simulates A’s view on the IND-CCA game and wins iff A would trigger abort2.
All oracles are simulated perfectly. This is easily possible, since C also obtains the
secret key from its challenger. C stops exactly when the abort2 would be hit in
G3. When the stop instruction is reached, C obtained a k1 that is equal to k∗1 but
where c1 and c∗1 are different. This means that C found two different ciphertext that
decapsulate to the same shared key under the same secret key. These ciphertexts are
a valid solution for the CCR game.

Game 4 In G4 we replace the shared challenge key k∗ with a uniform random key. With this
change we reached the IND-CCA1 game instantiated with QSF. Therefore,

Claim 4
Pr[GA4 ⇒ 1] = Pr[IND-CCA1

QSF,A ⇒ 1].



M. Barbosa et al. 13

Game G0/G1/G2/G3/G4

sk1, pk1 ← KEM.KeyGen()
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
sk ← (sk1, sk2)
k∗

1, c∗
1 ← KEM.Enc(pk1)

ske ←$ εu

c∗
2 ← exp(g, ske)

k∗
2 ← exp(c∗

2, ske)
k∗

1 ←$ K ▷ G1 −G3

k∗ ← H(label∥k∗
1∥k∗

2∥c∗
1∥pk2)

k∗ ←$ {0, 1}n ▷ G2 −G4

c∗ ← (c∗
1, c∗

2)
b′ ←$ ADec(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k1 ← KEM.Dec(c1, sk1)
k2 ← exp(c2, sk2)
if k1 = ⊥ then

return ⊥
if c1 = c∗

1 then ▷ G1 −G3
k1 ← k∗

1
k ← H(label∥k1∥k2∥c1∥pk2)
if c1 = c∗

1 then ▷ G2
k ←$ {0, 1}n

return k

Figure 8: Games G0 to G4.

Proof To prove that this change is not detectable by A we need to argue that A cannot
obtain k∗ by calling any of the oracles. The abort condition in H prevents the
adversary from querying the random oracle with the value of k∗2 used to generate
the shared key from the challenge. This prevents A from calling H directly with the
input used to generate k∗. The abort condition in Dec also prevents the adversary
from obtaining the hash value used to generate k∗ since either c1 or c2 must differ
from the challenge ciphertext c∗. If c1 differs, then the resulting key k1 has to differ
from k∗1 , as otherwise the abort condition would have been triggered. If c2 differs,
then the input to the random oracle has to also differ, since it is included in the
input. Therefore, A is not able to obtain k∗ from any of the oracles.

This concludes the proof of Theorem 1.

6.2 Reduction to security of KEM in the standard model
Theorem 2. QSF is IND-CCA secure as long as KEM is IND-CCA secure and H is a
secure PRF with an output length of nwhen keyed on k1. More precisely, for any PPT
adversary A against the IND-CCA security of QSF placing at most qd decapsulation queries,
we can construct adversaries B1, B2, C1, and C2, such that,

AdvQSF
IND-CCA,A ≤ AdvKEM

IND-CCA,B1
+ AdvKEM

IND-CCA,B2
+ AdvH

PRF,C1
+ AdvH

PRF,C2
+ 2δ ,

where δ is the correctness bound for KEM. The run-times of Bi and Ci are roughly the
same as that of A. Adversaries Bi place at most qd queries to their own decapsulation
oracles.

Proof. This proof follows closely the proof for [GHP18, Theorem 1].



14 X-Wing

Game 0 This is the standard IND-CCA security game for QSF and so,

Pr[IND-CCA0
QSF,A ⇒ 1] = Pr[G0 ⇒ 1].

Game 1 The challenge shared key produced by KEM is replaced with a random key.

Claim 1 This change should not be noticeable by the adversary A. If it is, then we can
construct an efficient adversary B1 against the IND-CCA security of KEM with
roughly the same running time as A, such that,

∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ AdvIND-CCA,B1

KEM + δ.

Proof We construct B1 as in Figure 9. The adversary B1 simulates the environment of
A by calculating the nominal group components of QSF itself and embedding the
KEM challenge into the QSF challenge. The decapsulation oracle is simulated by B1
as follows: it can calculate the nominal group part itself and query its own KEM
decapsulation oracle on all ciphertexts except c∗1. Because of this, it will simply use
its own challenge shared key k∗1 if c∗1 is in the decapsulation query by A.
The strategy adopted by B1 correctly interpolates between games G0 and G1, except
when c∗1 would decapsulate to something other than k∗1 in G0. We can bound the
probability of this inconsistency using the correctness of KEM, which justifies the δ
term in the claim. More precisely, we have∣∣Pr[GA0 ⇒ 1]− Pr[G0

KEM,B1
⇒ 1]

∣∣ ≤ δ,

and
Pr[GA1 ⇒ 1] = Pr[G1

KEM,B1
⇒ 1],

which means that∣∣Pr[GA0 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ ≤ AdvKEM

IND-CCA,B1
+ δ,

and B1 will clearly perform at most as many decapsulation queries to its KEM
decapsulation oracle as A makes decapsulation queries.

Game 2 In this game, all QSF shared keys that are provided to the adversary computed using
k∗1 are replaced with random values.

Claim 2 This change should not be noticeable by the adversary A. If it is, then we can
construct an efficient PPT adversary C1 against the PRF security of H with roughly
the same running time as A, such that

∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ ≤ AdvH

PRF,C1
.

Proof This is a simple reduction shown in Figure 10. This adversary can generate all
cryptographic parameters except k∗1 , for which it uses its PRF oracle. As we can
see, when the challenge PRF key is real, then C1 will be using a real output of
the pseudorandom function and hence running G1; whereas if the challenge key is
random, C1 will be using a uniformly sampled output and running G2. Hence,

Pr[GA1 ⇒ 1] = Pr[G0
H,C1

⇒ 1],

and



M. Barbosa et al. 15

Pr[GA2 ⇒ 1] = Pr[G1
H,C1

⇒ 1],

which means that

∣∣Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]
∣∣ ≤ AdvH

PRF,C1
,

and C1 will perform one evaluation query for generating the challenge key and perform
at most one evaluation query per decapsulation query by A.

Game 3 We undo the modification introduced in the previous game, but only for keys output
by the decapsulation oracle.

Claim 3 We justify this hop with a reduction to the PRF property of H very similar to the
previous one.

∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]
∣∣ ≤ AdvH

PRF,C2
.

Proof We construct C1 as in Figure 10, and the analysis is similar to the previous hop.

Pr[GA2 ⇒ 1] = Pr[PRF0
H,C2

⇒ 1],

and
Pr[GA3 ⇒ 1] = Pr[PRF1

H,C2
⇒ 1],

which means that ∣∣Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]
∣∣ ≤ AdvH

PRF,C2
,

and C2 will perform at most one evaluation query per decapsulation query by A as it
will never call the evaluation oracle in its main algorithm.

Game 4 Finally, we revert the changes introduced in Game 1 and use a real key for k∗1
once more. This makes the decapsulation oracle identical to Game 0, and the only
remaining change in the main experiment is that k∗ is random.

Claim 4 This hop is justified in a way that is very similar to the jump to Game 1. We
introduce adversary B2 against the IND-CCA security of KEM, with roughly the
same running time as A, in Figure 9. We claim that,

∣∣Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]
∣∣ ≤ AdvKEM

IND-CCA,B2
+ δ .

Proof Again, the reduction to the IND-CCA security of KEM is perfect, except if c∗2 would
not decapsulate to k∗1 in Game 4. This event can be bound by the correctness of
KEM, and the claim follows.

Claim 5 Pr[GA4 ⇒ 1] = Pr[IND-CCA1
QSF,A ⇒ 1]

Proof This follows from the definition of IND-CCA1
QSF,A.

The theorem follows from collecting all the terms in the claims.



16 X-Wing

Adversary BDecO(·)
1,2 (pk1, k∗

1, c∗
1)

sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
ske ←$ εu

k1, c∗
1 ← KEM.Enc(pk1)

c∗
2 ← exp(g, ske)

k∗
2 ← exp(c∗

2, ske)
k∗ ← H(label∥k∗

1∥k∗
2∥c∗

1∥pk2)
k∗ ←$ {0, 1}n ▷ B2

c∗ ← (c∗
1, c∗

2)
b′ ←$ ADec(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k2 ← exp(c2, sk2)
if c1 = c∗

1 then
k1 ← k∗

1
else k1 ← DecO(c1)
if k1 = ⊥ then

return ⊥
k ← H(label∥k1∥k2∥c1∥pk2)
return k

Figure 9: Adversary B1 and B2 against the IND-CCA security of KEM. Note that both
place at most qd queries to DecO, one for each decapsulation query placed by A.

Adversary CEvalH(·)
1,2 ()

sk1, pk1 ← KEM.KeyGen()
sk2 ←$ εh

pk2 ← exp(g, sk2)
pk ← (pk1, pk2)
sk ← (sk1, sk2)
k1, c∗

1 ← KEM.Enc(pk1)
ske ←$ εu

c∗
2 ← exp(g, ske)

k∗
2 ← exp(c∗

2, ske)
k∗ ← EvalH(label∥k∗

2∥c∗
2∥pk2)

k∗ ←$ {0, 1}n ▷ C2

c∗ ← (c∗
1, c∗

2)
b′ ←$ ADec(·)(pk, c∗, k∗)
return b′

Oracle Dec(c)
if c = c∗ then

return ⊥
(c1, c2)← c
k2 ← exp(c2, sk2)
if c1 = c∗

1 then
k ← EvalH(label∥k2∥c1∥pk2)
return k

k1 ← KEM.Dec(sk1, c1)
if k1 = ⊥ then

return ⊥
k ← H(label∥k1∥k2∥c1∥pk2)
return k

Figure 10: Adversary C1 and C2 against the PRF security of H.



M. Barbosa et al. 17

7 X-Wing
Now that we have proven the security of the QSF framework, we want to introduce one
concrete instantiation of QSF using X25519, ML-KEM-768 and SHA3-256. We believe
that this instantiation provides a secure and efficient KEM suitable for most applications.
As a name for this instantiation, we choose X-Wing. For our QSF proof to apply to
X-Wing we need to show that X25519 can be modelled as a nominal group and that
ML-KEM-768 is CCR secure. This is done in this section, followed by the definition of
X-Wing.

7.1 X25519 is a nominal group
X-Wing uses X25519 as specified in [LHT16]. As shown in [ABH+21] X25519 can be
modelled as a nominal group N = (G, g, p, εh, εu, exp). We summarise the results in this
section.

We first define G to be all 256 bit long bitstrings. We then define an encoding function
encode_pk as well as a decoding function decode_pk, mapping point on Curve25519 to a
bitstring and vice versa. For this, we can use the encoding and decoding functions as defined
in [LHT16]. p is the order of the largest prime order subgroup and g is a Curve25519 point of
order p, such that the number of points on Curve25519 is 8p. εh = {8n|n ∈ [2251, 2252−1]}
stands for all valid secret keys, respectively for the key generation function of X25519.
exp(X, y) = encode_pk(y · decode_pk(X)), which corresponds to the X25519.DH function.
εu = {8n|n ∈ [(p + 1)/2, p− 1]}. This provides us with a statistical difference between the
uniform distribution over εu and εh of ∆N < 2−126 [ABH+21].

Therefore, the definition of this nominal group matches the definition of X25519
perfectly.

7.2 Collision Resistance of ML-KEM-768
For the security of X-Wing it is important that ML-KEM-768 used is CCR secure. We
will show the ciphertext collision resistance of ML-KEM-768 in this section.

Theorem 3 (ML-KEM-768 is CCR secure). Let k, du, dv be integers greater than or equal
to 1, let PKE.Enc and PKE.Dec be deterministic algorithms and let G and J be independent
random oracles. For any PPT A we get,

AdvCCR
ML-KEM-768,A ≤

3
2128 .

Proof. Let us recall the definition of the decapsulation algorithm of ML-KEM-768, depicted
in Figure 11.

We notice that the shared key K can be the original shared key K resulting from the
hash function call to G, in the case of an accepted ciphertext c, or the result of the hash
function J , in the case of an implicit reject. This leaves us with three cases to consider.
The first is that two distinct accepting ciphertexts result in the same shared key. The
second case is that two distinct rejecting ciphertexts result in the same shared key. The
last case is that one accepting and one rejecting ciphertext result in the same shared key.
For each of the cases we have to consider the probability of the inputs to the hash functions
colliding and the probability that their outputs collide.

Case 1: Two distinct accepting ciphertext result in the same shared key

Case 1.1: The input to G collides Let us assume that PKE.Dec outputs the same
m′ for two distinct ciphertexts c1 and c2. Then the intermediate values K and r′ are the
same during both decapsulations. Since PKE.Enc is deterministic, c′ is the same for both



18 X-Wing

ML-KEM-768.Dec(sk ∈ {0, 1}768k+96, c ∈ {0, 1}256(duk+dv))
skP KE ← sk[0 : 384k]
pkP KE ← sk[384k : 768k + 32]
h← sk[768k + 32 : 768k + 64]
z ← sk[768k + 64 : 768k + 96]
m′ ← PKE.Dec(skP KE , c)
(K, r′)← G(m′∥h)
K ← J(z∥c, 32)
c′ ← PKE.Enc(pkP KE , m′, r′)
if c ̸= c′ then

K ← K
return K

Figure 11: ML-KEM-768 decapsulation [NIS23]

decapsulations. This also means that the check ci = c′ cannot succeed for both ciphertexts.
This leads to a contradiction, as at least one of the ciphertext has to be rejected.

Case 1.2: The output of G collides The output of G is interpreted as the two values
K and r′. An adversary can already find a collision in the decapsulation function if it can
find two inputs to G that result in the same output K. When modelling G as a random
oracle, we can bound the probability of K colliding independent of r′ by using the generic
birthday bound. K is a bitstring of length 256, which gives us as collision probability of

1
2128 .

Case 2: Two distinct rejecting ciphertexts result in the same shared key

Case 2.1: The input to J collides Since the ciphertext is part of the input to J , and
both ciphertexts must be different, the inputs cannot collide.

Case 2.2: The output of J collides Since J is also modelled as a random oracle, we
can use the generic birthday bound to bound the probability of two outputs colliding. We
again get a probability of K colliding of 1

2128 , as K is a 256-bit bitstring.

Case 3: An accepting and a rejecting ciphertext result in the same shared key

Case 3.1: The input to G and J collide This cannot happen as the input to G and
J are of different size. G gets as input a 256-bit-long bitstring, while the ciphertext, which
gets passed into J , already has a size greater than 256 bits.

Case 3.2: The outputs of G and J collide Since both functions are modelled as a
random oracle, we again get the generic birthday bound of K and K ′ colliding with 1

2128 .

This concludes the proof for Theorem 3.

Note that all KEMs that are the result of the Fujisaki-Okamoto transformation and
use explicit rejection are also CCR secure, since the argument of Case 1 holds for them as
well.



M. Barbosa et al. 19

Algorithm KeyGen()
sk1, pk1 ←
ML-KEM-768.KeyGen()
sk2 ← random(32)
pk2 ← X25519.DH(sk2, gX25519)
sk ← (sk1, sk2)
pk ← (pk1, pk2)
return (sk, pk)

Algorithm Enc(pk)
(pk1, pk2)← pk
ske ← random(32)
c2 ← X25519.DH(ske, gX25519)
k1, c1 ← ML-KEM-768.Enc(pk)
k2 ← X25519.DH(ske, pk2)
s← “\.//^\”∥k1∥k2∥c2∥pk2
k ← SHA3-256(s)
c← (c1, c2)
return (k, c)

Algorithm Dec(c, sk)
(sk1, sk2)← sk
(c1, c2)← c
k1 ← ML-KEM-768.Dec(c1, sk1)
k2 ← X25519.DH(sk2, c2)
s← “\.//^\”∥k1∥k2∥c2∥pk2
k ← SHA3-256(s)
return k

Figure 12: X-Wing KEM. random(N) generates N random bytes. X25519.DH is the byte-
oriented function X25519 defined in section 5 of RFC 7748. gX25519 is the X25519 base point
where u = 9 on curve25519 defined in section 6.1 of RFC 7748. ML-KEM-768.KeyGen,
ML-KEM-768.Enc, and ML-KEM-768.Dec are defined in FIPS 203. SHA3-256 is defined
in FIPS 202. The X-Wing label is inlined as the first 6 ASCII-encoded bytes of the
SHA3-256 input.

7.3 Definition of X-Wing
Definition 8 (X-Wing KEM). Given the ML-KEM-768 KEM, the X25519 ECDH KEA,
and the SHA3-256 hash, the X-Wing KEM is defined as a tuple of algorithms {KeyGen, Enc, Dec},
which are in turn defined in Figure 12.

Acknowledgements
This research was supported by Deutsche Forschungsgemeinschaft (DFG, German research
Foundation) as part of the Excellence Strategy of the German Federal and State Govern-
ments – EXC 2092 CASA - 390781972; and by the European Commission through the ERC
Starting Grant 805031 (EPOQUE); and by National Funds through the Portuguese funding
agency, FCT – Fundação para a Ciência e a Tecnologia, within project UIDP/50014/2020.

References
[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and

Doreen Riepel. Analysing the HPKE standard. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 87–116,



20 X-Wing

Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-77870-5_4.

[AP05] Michel Abdalla and David Pointcheval. Interactive Diffie-Hellman assumptions
with applications to password-based authentication. In Andrew Patrick and
Moti Yung, editors, FC 2005: 9th International Conference on Financial
Cryptography and Data Security, volume 3570 of Lecture Notes in Computer
Science, pages 341–356, Roseau, The Commonwealth Of Dominica, February 28 –
March 3, 2005. Springer, Heidelberg, Germany.

[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A.
Wood. Hybrid Public Key Encryption. RFC 9180, February 2022. URL:
https://www.rfc-editor.org/info/RFC9180, doi:10.17487/RFC9180.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th
International Conference on Theory and Practice of Public Key Cryptography,
volume 3958 of Lecture Notes in Computer Science, pages 207–228, New
York, NY, USA, April 24–26, 2006. Springer, Heidelberg, Germany. doi:
10.1007/11745853_14.

[CDM23] Cas Cremers, Alexander Dax, and Niklas Medinger. Keeping up with the
kems: Stronger security notions for kems. Cryptology ePrint Archive, Paper
2023/1933, 2023. https://eprint.iacr.org/2023/1933. URL: https:
//eprint.iacr.org/2023/1933.

[GHP18] Federico Giacon, Felix Heuer, and Bertram Poettering. KEM combiners. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018: 21st International
Conference on Theory and Practice of Public Key Cryptography, Part I, volume
10769 of Lecture Notes in Computer Science, pages 190–218, Rio de Janeiro,
Brazil, March 25–29, 2018. Springer, Heidelberg, Germany. doi:10.1007/97
8-3-319-76578-5_7.

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for Security.
RFC 7748, January 2016. URL: https://www.rfc-editor.org/info/rfc77
48, doi:10.17487/RFC7748.

[NIS23] NIST. Module-Lattice-Based Key-Encapsulation Mechanism Standard. FIPS
203 (Initial Public Draft), August 2023. doi:10.6028/NIST.FIPS.203.ipd.

[O’B23] Devon O’Brien. Protecting chrome traffic with hybrid kyber kem. Chromium
Blog, 2023. https://blog.chromium.org/2023/08/protecting-chrome-t
raffic-with-hybrid.html.

[OWK23] Mike Ounsworth, Aron Wussler, and Stavros Kousidis. Combiner function
for hybrid key encapsulation mechanisms (Hybrid KEMs). Internet-Draft
draft-ounsworth-cfrg-kem-combiners-04, Internet Engineering Task Force, July
2023. Work in Progress. URL: https://datatracker.ietf.org/doc/draft
-ounsworth-cfrg-kem-combiners/04/.

[WR22] Bas Westerbaan and Cefan Rubin. Defending against future threats: Cloudflare
goes post-quantum. The Cloudflare Blog, 2022. https://blog.cloudflare.
com/post-quantum-for-all/.

https://doi.org/10.1007/978-3-030-77870-5_4
https://doi.org/10.1007/978-3-030-77870-5_4
https://www.rfc-editor.org/info/RFC9180
https://doi.org/10.17487/RFC9180
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2023/1933
https://eprint.iacr.org/2023/1933
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://doi.org/10.17487/RFC7748
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/04/
https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/04/
https://blog.cloudflare.com/post-quantum-for-all/
https://blog.cloudflare.com/post-quantum-for-all/

	Introduction
	Design
	Security Intuition
	Preliminaries
	Notation and conventions
	Key-Encapsulation Mechanisms
	Pseudorandom function
	Nominal Group
	Strong Diffie-Hellman Problem

	Introducing QSF
	Security of QSF
	Reduction to SDH and CCR in the ROM
	Reduction to security of KEM in the standard model

	X-Wing
	X25519 is a nominal group
	Collision Resistance of ML-KEM-768
	Definition of X-Wing

	References

