
On Efficient and Secure Compression Modes for
Arithmetization-Oriented Hashing

Elena Andreeva1, Rishiraj Bhattacharyya3, Arnab Roy2, and
Stefano Trevisani1

1 TU Wien, Austria
2 University of Innsbruck, Austria
3 University of Birmingham, UK

Abstract. ZK-SNARKs are advanced cryptographic protocols used in
private verifiable computation: modern SNARKs allow to encode the
invariants of an arithmetic circuit over some large prime field in an ap-
propriate NP language, from which a zero-knowlege short non-interactive
argument of knowledge is built. Due to the high cost of proof generation,
ZK-SNARKs for large constraint systems are inpractical.
ZK-SNARKs are used in privacy-oriented blockchains such as Filecoin,
ZCash and Monero, to verify Merkle tree opening proofs, which in turn
requires computing a fixed-input-length (FIL) cryptographic compres-
sion function. As classical, bit-oriented hash functions like SHA-2 re-
quire huge constraint systems, Arithmetization-Oriented (AO) compres-
sion functions have emerged to fill the gap.
Usually, AO compression functions are obtained by applying the Sponge
hashing mode on a fixed-key permutation: while this avoids the cost
of dynamic key scheduling, AO schedulers are often cheap to compute,
making the exploration of AO compression functions based directly on
blockciphers a topic of practical interest.
In this work, we first adapt notions related to classical hash functions
and their security notions to the AO syntax, and inspired by the clas-
sical PGV modes, we propose AO PGV-LC and AO PGV-ELC, two
blockcipher-based FIL compression modes with parametrizable input
and output sizes. In the ideal cipher model, we prove the collision and
preimage resistance of both our modes, and give bounds for collision and
opening resistance over Merkle trees of arbitrary arity.
We then experimentally compare the AO PGV-LC mode over the Hades-
MiMC blockcipher with its popular Sponge instantiation, Poseidon. The
resulting construction, called Poseidon-DM, is 2–5× faster than Posei-
don in native computations, and 15–35% faster in generating Merkle
tree proofs over the Groth16 SNARK framework, depending on the tree
arity. In particular, proof generation for an 8-ary tree over Poseidon-
DM is 2.5× faster than for a binary tree with the same capacity over
Poseidon. Finally, in an effort to further exploit the benefits of wide
trees, we propose a new strategy to obtain a compact R1CS constraint
system for Merkle trees with arbitrary arity.

Keywords: Hash function · Block cipher · Arithmetization-Oriented ·
Merkle tree · Zero-Knowledge · SNARK · Poseidon

2 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

1 Introduction

Zero-Knowledge Verifiable Computation. Zero-Knowledge Proof (ZKP)
systems [30,29] are advanced cryptographic protocols which allow a prover to
convince a verifier about the solvability of some problem without actually re-
vealing a solution. Nowadays, general-purpose ZK Succinct Non-interactive AR-
gument of Knowledge (SNARK) systems [36,50,13,37,28,61] allow the prover to
build short proofs which can be quickly checked by any number of verifiers.
In particular, given some bounded computation that can be represented as an
arithmetic circuit (i.e. only addition and multiplication gates) over some large
prime field Fp, we can encode the invariants of the circuit via some ad-hoc con-
straint language, a process known as arithmetization. Rank-1 Constraint Systems
(R1CS) [22], i.e. systems of bilinear equations, are among the most popular con-
straint languages, being used in frameworks such as [50,37,12,61]. The main
computational bottleneck of modern ZK-SNARK systems is proof generation,
whose complexity depends on the size of the underlying constraint system.

One of the most widespread applications of ZK-SNARKs lies in the verifi-
cation of Merkle tree opening proofs [46] (or authentication paths), in privacy-
preserving blockchains such as ZCash [10], Monero [59,19], and Filecoin [53],
among others. In this context, the root of the tree is a cryptographic commit-
ment to the contents of the leaves, and it is computed by merging the leaves
in a tree-like fashion using a fixed-input-length (FIL) cryptographic compression
function. To show knowledge of some leaf, the prover must disclose the leaf itself
and its co-path, and in order to make this protocol zero-knowledge, it is neces-
sary to arithmetize the underlying compression function. Classical, bit-oriented
hash functions like SHA-2 [24] require tens of thousands of R1CS constraint in
order to be arithmetized (see e.g. [41]), making them impractical for ZK-SNARK
applications.

Arithmetization-Oriented Cryptography. Driven by the advancements
in ZKP systems, Fully Homomorphic Encryption (FHE) [4] and secure Multi-
Party Computation (MPC) [67], in the last decade we have witnessed significant
research efforts towards the development of Arithmetization-Oriented (AO) cryp-
tography, whose main differences compared to bit-oriented cryptography are the
following:

– AO algorithms atomically manipulate elements of large prime fields Fp,
rather than individual bits, resulting in natural and compact constraint sys-
tems over modern SNARK frameworks.

– AO designs are usually parametrizable over the input size, the security pa-
rameter, the underlying prime field, and so on, offering a wide choice of
concrete instantiations.

– Native execution of AO algorithms is significantly slower than bit-oriented
algorithms. A line of recent designs, including Reinforced Concrete [32],
Tip5 [63] and Monolith [33] almost close this gap, but they require specific
prime fields and ZK frameworks supporting lookup table arguments [27,20].

Title Suppressed Due to Excessive Length 3

– Algebraic cryptanalysis, through techniques like interpolation cryptanaly-
sis [42,56] and Gröbner bases computation [26,40], is the main threat to AO
cryptographic primitives.

AO Modes and Provable Security. Many AO primitives, like MiMC [1],
GMiMC [2], Poseidon [34], Rescue Prime [3], and Arion [57,58], rely on the
permutation-based, hashing mode Sponge [14] to achieve both variable-input-
length (VIL) and fixed-input-length (FIL) compression. Other designs, such as
Griffin [31] and Anemoi [17], offer ad-hoc compression modes, which are again
based on unkeyed permutations.

The standard way to obtain a secure unkeyed permutation is by fixing the key
parameter of a blockcipher to some arbitrary constant (usually 0); this choice
has two main consequences for compression: on the one hand, it removes the
possibility of fitting part of the message that we want to compress in the key
parameter, but on the other hand it allows one to precompute the round keys
(since the main key is fixed), avoiding the extra run-time cost induced by the
key scheduling algorithm. In classical symmetric cryptography this is generally a
winning trade-off, as key scheduling can be as much (if not more) expensive than
encryption itself, like in the case of AES [54,38], hence computing, say, two or
more calls to a fixed-key blockcipher with block size n, or one call to a fixed-key
blockcipher with block size m > n can be faster than computing one call to a
(non-fixed-key) blockcipher with block size n.

In AO cryptography, with some notable exceptions such as the MARVEL-
lous family of blockciphers [3,5], the key scheduling algorithm is extremely
lightweight, typically being a linear or an affine transformation of the master
key. Some constructions, like MiMC, even allowed the use of no scheduler at all,
although this choice was then shown to be vulnerable to slide attacks [16]. In
fact, when compared to the cost of the non-linear operations involved in AO
encryption, affine schedulers can be computed almost for free.

Many well-known modes for building secure compression and hash functions
from blockciphers are described by the Preneel-Govaerts-Vandewalle (PGV)
framework [52]. Although the PGV modes are inherently related to the Merkle-
Damg̊ard (MD) hashing paradigm [47,23], and are defined in the bit-oriented
setting, we extracted and generalized the underlying compression modes in or-
der to be used in the Merkle tree setting.

More specifically, our proposed mode, called AO PGV-LC, can be seen as an
adaptation of the compression function which underlies the Davies-Meyer [66]
and Matyas-Meyer-Oseas [44] iterated modes to the AO setting, as well as an
extension which allows more flexibility in the output size. We also propose a
further extension, called AO PGV-ELC, which also allows for more flexible input
sizes, making it a good choice when the blockcipher’s plaintext and key sizes do
not perfectly match the required input size.

Suppose that we want to compress some message consisting of two field el-
ements m1 and m2 over Fp. If p ≈ 2256, to get ≈ 128 bits of security we could
use a fixed-key blockcipher with a block size of three field elements in Sponge
mode, where the extra element is kept for the capacity [14], and output the first

4 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

element of the permuted message. On the other hand, we could achieve the same
result, without compromising in security, by using a (non-fixed-key) blockcipher
with a block size of just 1 field element in AO PGV-LC mode. As we said, AO
designs are in general very flexible with respect to their block size n and key size
κ = n: if we assume that the computational complexity of the blockcipher design
scales linearly with n, with some slope s, we could expect a theoretical efficiency
improvement of ≈ s 2n+1

n when using the AO PGV-LC mode compared to using
a Sponge mode.

The switch from bit-oriented to AO treatment, together with the proposed
extensions, mandates the investigation of the relevant security properties from
scratch. In particular, we focus on the properties of collision resistance (i.e. the
problem of finding two inputs which produce the same output) and preimage
resistance (i.e. the problem of finding some input which produces a given output).
These properties, which are fundamental requirements for any cryptographic
compression mode, are also required for modular proofs of higher level structures.

In the context of Merkle tree membership proofs, it is important that the
Merkle tree itself is collision resistant, so that it is hard to find inputs producing
the same commitment. In addition, the Merkle tree should also be opening proof
resistant, so that it is hard to forge a false proof of membership. While these
two latter results are well-known for binary trees in the bit-oriented setting, we
define and prove them in the AO setting and for trees of arbitrary arity.

Our Contributions

In this work we make the following contributions:

1. AO Syntax and Security Definitions. In Section 2 we adapt the clas-
sical syntax for blockcipher and hash function primitives to the AO setting.
We give the relevant AO definitions for well-established modular constructive
approaches. These include the PGV-MD iterated compression functions, the
VIL AO Sponge mode of hashing, which are provided to highlight the dif-
ferences with our new mode, and the VIL AO Merkle tree mode of hashing.
We further tailor the formal security definitions of collision and preimage
resistance of hash functions and compression functions to the general AO
context. To support the application of Merkle trees in ZK-SNARKs, we pro-
vide a dedicated proof opening resistance definition.

2. Two new modes of compression. In Section 3, we propose the new AO
PGV-LC mode of FIL compression over blockciphers: given two inputs of
size equal to the key size κ and the block size n, they are processed by the
underlying blockcipher, mixed with an appropriate feedback value, and then
compressed to an arbitrary output size l < n by an arbitrary matrix that
must satisfy some basic properties. From AO PGV-LC, we derive a further
generalization which we call AO PGV-ELC, that also allows for the two
inputs to have size κ′ < κ and n′ < n respectively. We opted for this two-
step generalization process as AO PGV-ELC requires a more careful analysis
to show security, and a secure parametrization is harder to obtain; on the
other hand, AO PGV-LC covers a wide range of use-cases.

Title Suppressed Due to Excessive Length 5

3. Security proofs for the new modes. In Section 4, we provide security
results for the two new modes. Namely, we show that both AO PGV-LC and
AO PGV-ELC are collision resistant up to

(
q2 + q

)
/
(
pl − q

)
queries to the

underlying blockcipher, where l is the number of output elements over Fp,
and preimage resistant up to q/

(
pl − q

)
queries.

For t-ary AO Merkle trees, we reduce collision and opening proof forgery
resistance to the collision and preimage resistance of the underlying com-
pression function. Our proofs are generic and enable secure instantiations
with sound AO blockciphers, namely, they allow the bulk of cryptanalysis to
be shifted to the underlying cipher rather than the hash function.

4. Experiments and t-ary Merkle Tree R1CS. In Section 5, we consider
the widely adopted Sponge hash function Poseidon [34,53,65,6], which was
built on top of the Hades-MiMC [35] blockcipher with a fixed key. We
weight it up against the same blockcipher (this time without fixing the key)
instantiated the AO PGV-LC mode, which we call Poseidon-DM, as the
resulting compression function is similar in structure to the Davies-Meyer
iteration function. Our results show that Poseidon-DM achieves up to 5×
higher throughput when used in native computations to build a Merkle tree,
both in serial and parallel code, and up to 35% faster proof generation time
for a Merkle tree opening in the Groth16 framework, a popular R1CS-based
ZK-SNARK system (see [11,18]). We demonstrate that for Poseidon there
are important performance benefits derived from using Merkle trees with
arity t > 2 (for example, we measured a 2.5× speed-up when every node has
4 children rather than 2). In this direction, since the best arity depends on
the concrete compression function that one is using, and due to the apparent
lack of publicly available implementations, we also propose a novel R1CS for
authentication paths over trees of arbitrary arity, which we optimize to be
as compact as possible. Indeed, by combining the optimal choice of arity for
the Merkle tree with our proposed compression modes, we get ≈ 6× faster
native Merkle tree build time and ≈ 3× faster SNARK proof generation time
compared to the standard Poseidon over binary Merkle trees.

2 Preliminaries

2.1 Notations and Definitions

Arithmetization-Oriented cryptography is concerned with the design of crypto-
graphic algorithms that manipulate elements of finite algebraic structures (e.g.
fields and vector spaces), rather than strings of bits.

Given a set S of cardinality |S|, let S∗ =
⋃
i∈N S

i denote the Kleene’s closure
of S, and let Sω denote the set of infinite-length tuples made from elements of
S. Given a prime number p, let Fp the finite prime field of order |Fp| = p
and characteristic char(Fp) = p, with canonical addition and multiplication
modulo p. We will consider p to be odd, and typically ‘large’ (say, p > 264). We
denote with Fnp the n-dimensional vector space over Fp, with standard addition
and scalar product. Similarly, Fn×mp is the standard (n×m)-dimensional matrix

6 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

space over Fp. We consider elements of Fnp to be column vectors, and the dual(
Fnp
)ᵀ

to be the space of row vectors. Scalars are denoted with lowercase letters
a, b, c, . . ., vectors with bold lowercase letters a, b, c, . . ., and matrices with bold
uppercase letters A,B,C, We denote with In×m the matrix where all the
entries in the main diagonal have value 1 and all other entries have value 0. The
transpose of a vector a (resp. a matrix A) is denoted with aᵀ (resp. Aᵀ).

Remark 2.1. Most of the definitions given in this section are already known in
classical (symmetric) cryptography over F2n . We lift them over Fp to facilitate
the discussion on AO modes.

Definition 2.1 (AO blockcipher). Given some κ, n ∈ N, and a prime field
Fp, a κ-n-elements AO blockcipher over Fp is a function:

E(k,x) : Fκp × Fnp → Fnp

which is a permutation on x for every possible choice of k. An AO blockcipher
family {Ek} is the collection of all permutations Ek(x) obtained by partial ap-
plication of k, and

{
E−1k

}
is the collection of all their inverses.

When κ is left unspecified, we implicitly assume κ = n. Following a standard
abuse of notation, we will often write E to mean {Ek} and E−1 to mean

{
E−1k

}
.

Definition 2.2 (AO compression function). Given some m,n ∈ N, with
m > n, and a prime field Fp, an m-n-elements AO compression function over
Fp is any function with signature:

C(x) : Fmp → Fnp

For ease of discussion, we may describe an ml-n-elements compression function
in terms of multiple arguments x1, . . . ,xm ∈ Flp rather than one single argument

x ∈ Fmlp . A compression function is a Fixed-Input-Length function (FIL), usually
with a ‘small’ input size.

Definition 2.3 (AO hash function). Given some n ∈ N, and a prime field
Fp, an n-elements AO hash function over Fp is any function with signature:

H(M) : (Fp)∗ → Fnp

Variable-Input-Length (VIL) n-elements hash functions are generally built on
top of some m-n FIL compression function together with an l-elements padding
function of the kind:

Pad(M) : (Fp)∗ →
(
Flp
)∗

where l is an appropriate multiple of m which depends on the structure of the
hash function itself. It is extremely important to have well-behaved padding
functions, even more so in AO cryptography where there is not a bijective map-
ping between elements of Fp and bit-strings of a certain length (except when
p = 2). However, as this work is mostly concerned with FIL compression, we
assume that an appropriate padding function is available to us when needed.

Title Suppressed Due to Excessive Length 7

2.2 AO Modes of Operation

Directly devising secure cryptographic algorithms is not an easy task; the stan-
dard approach is to directly design relatively simple primitives, such as (unkeyed)
permutations or blockciphers, and then compose them in a black-box manner
through a mode of operation to obtain more advanced functionalities.

A famous family of modes to build secure compression and hash functions
from blockciphers are the PGV modes [52]. The PGV modes are tightly related
to the Merkle-Damg̊ard (MD) mode of hashing [47], in that they generalize well-
known modes like Davies-Meyer [66], Matyas-Meyer-Oseas [44], or Miyaguchi-
Preneel [48,51], and are hence defined with respect to MD inputs: a message
block, a chaining variable and an initialization value (IV). While classical PGV
modes are defined over bit-strings, it is easy to adapt their definition to the AO
context: we will refer to these modes explicitly as AO PGV-MD modes.

Definition 2.4 (AO PGV-MD modes). Given an n-elements blockcipher E
over some prime field Fp, an initialization value v ∈ Fnp , a chaining value hi−1
such that h0 = v, the AO PGV-MD modes of E are all the compression functions
of the kind:

hi = CE,v(hi−1,xi) = Ea(b) + c

where a, b, c ∈ {xi,hi−1,v,xi + hi−1}.
A more recent approach to build secure FIL/VIL hash functions is the Sponge

mode [14]. Rather than using a blockcipher as the underlying primitive, the
Sponge mode operates over an unkeyed permutation.

Definition 2.5 (AO Sponge mode). Given an n-elements permutation π
over some prime field Fp, a rate r < n, and a padding function Pad: (Fp)∗ →(
Frp
)∗

, let the Sponge iteration function with rate r of π be:

si(M) :
(
Frp
)∗ → Fnp =

0 i = 0

π(si−1(M) +mi) 1 ≤ i ≤ |M |
π(si−1(M)) i > |M |

where the vectors mi ∈ Frp are implicitly naturally embedded in Fnp . Then, the
Sponge mode of π with rate r is the function:

S̃π(M) :
(
Frp
)∗ → (

Frp
)ω

= s|M |(M) ‖ s|M |+1(M) ‖ . . .

and the Sponge mode of π with rate r and padding function Pad is the function:

SPad,π(M) : (Fp)∗ →
(
Frp
)ω

= S̃π(Pad(M))

The quantity c = n−r is called the capacity of the Sponge. A Sponge construction
is an extendable output function (XOF) [25]: we can truncate its output to obtain
a hash function, and fix the input length to obtain a compression function.

An alternative to sequential modes like MD and Sponge is Merkle tree (MT)
hashing [45,46], a way of compressing message blocks in a parallel fashion. Dif-
ferently from both Sponge and MD, the MT hashing uses a FIL compression
function as the underlying primitive.

8 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

Definition 2.6 (AO Merkle tree mode). Given some l, t ∈ N, a tl-l-elements
compression function C over some prime field Fp, and a message M ∈

(
Flp
)∗

such that ∃h ∈ N : |M | = th, let the Merkle tree over C and M be the t-ary

tree TC,M of height h, containing n = |TC,M | = th+1−1
t−1 nodes ν0, . . . ,νn−1 ∈ Flp

ordered in a top-down left-to-right manner, and rooted in ν0, such that ∀i < n:

νi =

{
C(νti+1, . . . ,νti+t) 0 ≤ i < n− th

mi+1−(n−th) n− th ≤ i < n

Given a padding function Pad: (Fp)∗ →
{
M ∈

(
Flp
)∗ | ∃h ∈ N : |M | = th

}
, the

Merkle tree mode of C with padding function Pad is the hash function:

HC,Pad(M) : (Fp)∗ → Flp = ν0

Merkle trees are widely used in many applications, such as version control sys-
tems [39], P2P networks [21,7], database systems [43,62], and blockchains [49,64].

2.3 Security Notions

Algorithm 1 The q-queries ideal blockcipher oracle: for every choice of k ∈ Fκp ,

Ek is a random permutation over Fnp with inverse E−1k . After being queried q
times, the oracle ‘shuts-down’.

function EE,q(k, m, b)
static i← 0
if i ≥ q then

return ⊥
i← i+ 1
if b = 0 then

return Ek(m)
return E−1

k (m)

In order to study the cryptographic constructions of interest, we must first

formalize the relevant security notions that we target. We denote with x
$←S the

experiment of sampling x independently and uniformly at random from some
finite set S; additionally, we let Block(p, κ, n) be the set of all κ-n-elements
blockciphers over Fp.

Remark 2.2. Our results will be given for the ideal AO blockcipher model, where
we assume that the blockcipher used by blockcipher-based modes is instantiated

by E
$←Block(p, κ, n). The adversary is an information theoretical (computation-

ally unbounded) randomized algorithm A with query access to the oracle EE,q,
denoted AEE,q , which answers to at most q queries to before ‘shutting down‘. A
description of the oracle’s behaviour is given in Algorithm 1. When E and q are
clear from the context, we may omit them from the subscript.

Title Suppressed Due to Excessive Length 9

Definition 2.7 (comp-col advantage). Given an m-n-elements blockcipher-
based compression function CE over some prime field Fp, the collision advantage
of an adversary A with q queries against CE is:

Advcomp-col
CE

(A, q) = Pr
[
(y,y′)

$←AEE,q () : y 6= y′ ∧ CE(y) = CE(y′)
]

Definition 2.8 (comp-pre advantage). Given an m-n-elements blockcipher-
based compression function CE over some prime field Fp, the preimage advantage
of an adversary A with q queries against CE is:

Advcomp-pre
CE

(A, q) = Pr
[
y

$← Fnp ,x
$←AEE,q (y) : CE(x) = y

]
Similar collision and preimage advantage functions Advhash-col and Advhash-pre

can be defined for hash functions. A more comprehensive treatment of advantage
functions and the security properties of hash functions can be found in [55].

Now suppose that we are given a hash function H together with some digest
h = H(M), for some unknown message M , and we wish to check whether a
given message M ′ = M . We can do so by comparing H(M ′) with h: if the range
of H is large enough, and H is both collision and preimage resistant, the check
should succeed for some message M ′ 6= M only with negligible probability, even
if a potential forger has knowledge of both H and M . More generally, we can
have so-called opening proof systems, where one party, called the proof generator
G, is given a message M together with an index i, and has to synthesize what
essentially is a proof of membership π for mi. Then, a second party, the proof
verifier V, given only π and the hash of the original message, has to establish
whether mi did actually belong to M . More formally:

Definition 2.9 (Opening proof system). Given an n-element hash function
H over some prime field Fp, an opening proof system over H is a pair of algo-
rithms (G,V)H such that, for any message M ∈ (Fp)∗, it holds that:

∀i ≤ |M | : V(G(M, i), H(M)) = >

In order to guarantee statistical soundness of an opening proof system, it
must be hard for an attacker to forge an invalid proof, i.e. a proof of membership
for some message block m̃ /∈M that can fool the verifier:

Definition 2.10 (opening advantage). Given an opening proof system (G,V)
over some n-element blockcipher-based AO hash function HE with underlying

field Fp, and given M
$← (Fp)∗, the opening proof advantage of an adversary A

with q queries against (G,V) is:

Advopening
(G,V) (A, q) = Pr

[
π̃

$←AEE,q (M) : ∀i : π̃ 6= G(M, i) ∧ V(π̃, HE(M)) = >
]

Given some advantage function Adv(A, q), we let Adv(q) be the maximum
advantage achievable by any adversaryA, that is: Adv(q) = maxA{Adv(A, q)}.

10 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

3 Two new modes of compression

Using the PGV modes design as a starting point, we extract the underlying FIL
compression function, detaching it from the MD paradigm. In order to have more
flexibility on the output size, we introduce an additional linear combination at
the end of the construction, obtaining the AO PGV-LC compression mode:

Definition 3.1 (AO PGV-LC mode). Given a κ-n-elements blockcipher E
over some prime field Fp, an output size l ≤ n, and a right invertible reduction
matrix R ∈ Fl×np , the AO PGV-LC mode of E is the compression function:

CE,R(x,y) : Fκp × Fnp → Flp = R(Ex(y) + y)

The right-invertibility property of the matrix R, as we will see in Section 4,
is required in order to have a secure compression. Note that when l = n and
R = In×n, then our construction collapses precisely in the compression mode
underlying the Davies-Meyer and the Matyas-Meyer-Oseas iterated compression
functions. A visual representation of the new mode is given in Figure 1.

Ey

x

...

. . .

...

...

R

..
.

h ∈ Flp

Fig. 1. AO PGV-LC mode over a κ-n-elements blockcipher E, inputs x ∈ Fκp and
y ∈ Fnp , right-invertible matrix R ∈ Fl×np , and output h ∈ Flp, where n > l ≥ 1.

Based on the proposed mode, we devise an additional extended mode which
allows for even more flexibility, by also including linear combinations of the input
parameters; we call this mode AO PGV-ELC, and formally define it as follows:

Definition 3.2 (AO PGV-ELC mode). Given a κ-n-elements blockcipher
E over some prime field Fp, the input sizes κ′ ≤ κ and n′ ≤ n, the output size

l ≤ n′, a left invertible key matrix K ∈ Fκ×κ′p , a left invertible plaintext matrix

P ∈ Fn×n′p , a right invertible feedback matrix F ∈ Fl×n′p , and a right invertible

reduction matrix R ∈ Fl×np , the AO PGV-ELC mode of E is the compression
function:

CE,V (x,y) : Fκ
′

p × Fn
′

p → Flp = RE(Kx)(Py) + Fy

where V = (K,P ,F ,R).

Title Suppressed Due to Excessive Length 11

Again, the invertibility properties of the various matrices are required to
guarantee the security of this construction, as we will show in Section 4. A
pictorial representation of the AO PGV-ELC mode is given in Figure 2.

EP
K

y

F

...

...

R

..
.

h ∈ Flp

...

...

...

. . .

. . .

x

Fig. 2. AO PGV-ELC mode over a κ-n-elements blockcipher E, inputs in x ∈ Fκ
′
p and

y ∈ Fn
′
p , left invertible matrices K ∈ Fκ×κ

′
p and P ∈ Fn×n

′
p , right-invertible matrices

F ∈ Fl×n
′

p and R ∈ Fl×np , and output h ∈ Flp, where 1 ≤ l ≤ n′ ≤ n and κ′ ≤ κ.

4 Security Proofs

In [15], it was shown that among the 64 bit-oriented PGV-MD iterated com-
pression modes, each denoted with C(ι)(x, y), the first twelve of them, called
Group-1 modes and shown in Table 1, are collision and preimage resistant both
when used for MD hashing and when used for 2-1 compression by replacing the
role of the chaining value with a second message block.

Table 1. The AO equivalent of the 12 Group-1 PGV compression modes of [15]. Note
that modes 5–8 are completely symmetric to modes 1–4. Similarly, mode 9 is symmetric
to mode 10, and mode 11 is symmetric to mode 12.

ι C(ι)(x,y)

1 Ex(y) + y
2 Ex(x + y) + x + y
3 Ex(y) + x + y
4 Ex(x + y) + y

ι C(ι)(x,y)

5 Ey(x) + x
6 Ey(x + y) + x + y
7 Ey(x) + x + y
8 Ey(x + y) + x

ι C(ι)(x,y)

9 Ex+y(y) + y
10 Ex+y(x) + x
11 Ex+y(y) + x
12 Ex+y(x) + y

12 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

In the design phase of the AO PGV-LC and the AO PGV-ELC mode, we
followed the patterns that emerge from the structure of the classical Group-1
construction: first, notice how the 12 modes are pairwise symmetric, and only
modes 1 and 5 are minimal w.r.t. the number of extra additions required. As we
will see, an argument similar to the one given in [15] is enough to guarantee the
security of the AO PGV-LC mode.

4.1 Security of AO PGV-LC mode

Theorem 4.1 (comp-col resistance of AO PGV-LC mode). Given the
κ-n-elements ideal AO blockcipher E over some prime field Fp, some l < n, a
number of queries q < pl, a right invertible matrix R ∈ Fl×np , and the (κ+ n)-
l-elements AO PGV-LC compression function CE,R, it holds that:

Advcomp-col
CE,R

(q) ≤ q2 + q

pl − q

Proof. Let Eq be the oracle implementing E and responding to at most q queries,
as depicted in Algorithm 1. Let AEq be any adversary with oracle access to
Eq. Let Col be the event that AEq finds x,x′ ∈ Fκp and y,y′ ∈ Fnp such that
(x,y) 6= (x′,y′) and h = h′, with h = CE,R(x,y) and h′ = CE,R(x′,y′).
Clearly, Pr[Col] = Advcomp-col

CE,R
(A). Without loss of generality, we can make the

following assumptions:

1. A makes exactly q queries to Eq.
2. A keeps track of the query list Q = (Qi)i∈{1,...,q}, where in each Qi =

(xi,yi, ci, bi), xi ∈ Fκp is the queried key, bi ∈ {0, 1} is the queried selection
bit, and if bi = 0, then yi ∈ Fnp is the queried plaintext, while ci ∈ Fnp is
the returned ciphertext; otherwise, ci is the queried ciphertext and yi the
returned plaintext.

3. If A finds a collision, there are Qi, Qj ∈ Q such that hi = R(ci + yi) =
hj = R(cj + yj).

Since R is right invertible, it induces a partition of Fnp into pl equivalence classes

[v]R, one for each v ∈ Flp. We will now drop R from the subscript for ease of

presentation. Clearly, |[v]| = pn−l. Given any u,w ∈ Fnp , and any v ∈ Flp, if
u+w ∈ [v] we say that u is w-v-linking (via R). Note that then it is also true
that w is u-v-linking. Let Lw,v be the set of all w-v-linking values of u: since
u and w come from the same vector space, and that addition is a permutation
over one its arguments, we have that |Lw,v| = pn−l.

Given any queries Qi, Qj ∈ Q, let Linki,j be the event that yi is ci-hj-linking
Observe that Linki,j = Linkj,i. Then:

Pr[Col] = Pr[∃i < j ≤ q : Linki,j] = Pr[Link0,1 ∨ · · · ∨ Linkq−1,q]

We have four cases to consider, one for each combination of b and b′:

Title Suppressed Due to Excessive Length 13

– bi = bj = 0: xi and xj are freely chosen among at least pκ−q possible values,
while yi and yj are freely chosen among at least pn − q possible values. ci
and cj are then random values from sets of cardinality at least pn− q. Then,
independently of how yi and yj were chosen, hi and hj are also random.
There are at most pn−l values of yi which are ci-hj-linking, hence:

Pr[Col] ≤
q∑
j=1

j∑
i=1

pn−l

pn − q
≤

q∑
j=1

j∑
i=1

1

pl − q
≤ q2 + q

pl − q

– bi = bj = 1: xi, xj , ci and cj are all freely chosen byA, with ci and cj coming
from sets of size at least pn − q. This time, yi and yj are random, and the
same reasoning as before applies: once again, Pr[Col] ≤

(
q2 + q

)
/
(
pl − q

)
.

– bi = 0 = 1− bj : in this case, xi, xj , yi and cj are freely chosen by A. ci and
yj are random, independently of which among hi and hj was found earlier,
the probability that yi is ci-hj linking is at most Pr[Col] ≤

(
q2 + q

)
/
(
pl − q

)
.

– bj = 0 = 1− bi: similar as before.

Since all the probabilities given above depend only on the number of queries
made by A, and not on its behaviour, the claim follows. ut

Theorem 4.2 (comp-pre resistance of AO PGV-LC mode). Given the
κ-n-elements ideal AO blockcipher E over some prime field Fp, some l < n, a
number of queries q < pl, a right-invertible matrix R, and the (κ+ n)-l-elements
AO PGV-LC compression function CE,R, it holds that:

Advcomp-pre
CE,R

(q) ≤ q

pl − q

Proof. We start from the setup that we developed in the proof of Theorem 4.1.
Given some random h ∈ Flp, let Pre be the event that AEq finds some (x,y) ∈
Fκp × Fnp such that CE,R(x,y) = h. Clearly, Pr[Pre] = Advcomp-pre

CE,R
(A). Now let

Linki be the event that yi is ci-h-linking, then Pr[Pre] = Pr[∃i ≤ q : Linki]. We
have two cases to consider:

– bi = 0: xi and yi are chosen arbitrarily, and ci is a random element from a
set of size at least pn − q, and there are at most pn−l values of yi that are
ci-h-linking. Hence, Pr[Pre] ≤

∑q
i=1

1
pl−q ≤

q
pl−q .

– bi = 1: xi and ci are chosen arbitrarily, and yi is random, as before we can
then conclude that Pr[Pre] ≤ q/

(
pl − q

)
.

Since the probability of finding a preimage does not depend on the behaviour of
A, the claim follows. ut

4.2 Security of AO PGV-ELC mode

The main difference between the AO PGV-LC and the AO PGV-ELC is that the
latter allows for input sizes to the compression function which do not necessarily
match the plaintext or key sizes of the underlying blockcipher. Intuitively, this

14 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

additional flexibility should not impact the security, but one must be careful
when considering that the input entropy pool is reduced, as now part of the
plaintext/ciphertext and key space might be left unused.

Theorem 4.3 (comp-col resistance of AO PGV-ELC mode). Given the
κ-n-elements ideal AO blockcipher E over some prime field Fp, the (κ′ + n′)-
l-elements AO PGV-ELC compression function CE,V , where κ′, n′ and V =
(K,P ,F ,R) are as in Definition 3.2, and a number of queries q < pl, it holds
that:

Advcomp-col
CE,V

(q) ≤ q2 + q

pl − q

Proof. We build on the arguments made in the proof of Theorem 4.1, with the
following adjustments:

1. The two colliding inputs (x,y) and (x′,y′) are now over Fκ′p × Fn′p rather
than Fκp × Fnp .

2. The queries in Q are now of the kind Qi = (ki,mi, ci, bi), where ki ∈ Fκp
and mi ∈ Fnp .

3. If A finds a collision, there are Qi, Qj ∈ Q such that hi = hj and:

ki = Kxi

mi = Pyi

zi = Fyi

ti = Rci

hi = ti + zi

kj = Kxj

mj = Pyj

zj = Fyj

tj = Rcj

hj = tj + zj

4. We extend the notion of linking : given v ∈ Flp, w ∈ Fnp and u ∈ Fn′p , we now

have two kinds of equivalence classes over Flp, the ones of the kind [v]R with

cardinality pn−l, and the ones of the kind [v]F with cardinality pn
′−l. We

now say that u is w-v-linking (via F and R) if Rw + Fu = v.

When either of the first two equations in Item 3 are satisfied, we say respectively
that ki and mi are meaningful. Additionally, ci is meaningful if both ki and mi

are meaningful, and if all three of them are meaningful then the query Qi is
meaningful, and we call this event Meani. Since K is a left invertible matrix,
it is a bijection between Fκ′p and Fκp , hence there are exactly pκ

′
meaningful

keys. Analogously, there are pn
′

meaningful plaintexts mi for every choice of ki.
Note that A is free to make ‘meaningless’ queries and exploit them however it
likes; nevertheless, at least the two colliding queries must be meaningful. We can
conclude that:

Pr[Col] = Pr[∃i, j ≤ q : (i < j) ∧Meani ∧Meanj ∧ Linki,j]

where Linki,j is again the event that yi is ci-hj-linking via R and F . We have
four cases to consider:

Title Suppressed Due to Excessive Length 15

– bi = bj = 0: the adversary chooses xi, xj and yi, yj among at least pκ
′−q and

pn
′ − q possible values respectively, ensuring that Qi and Qj are meaningful.

This choice univocally entails the values of ki, kj , mi, mj , zi and zj . From
the right-invertibility of F , there are exactly pn−l values of either yi and yj
which map to any specific value of zi and zj . Since i < j, the value of hi
is known to A when collecting the query Qj . However, cj is a random value
from a set of cardinality at least pn−q: note that although there are at least
‘only’ pn

′−q meaningful values left, there is no way to know which these are
without having already queried them, so the sample space is effectively the
whole Fnp . Since R is right-invertible, the probability that cj ∈ [tj] is at most
pn−l

pn−q ≤
1

pl−q , since l ≤ n. This probability is then precisely the probability
of yj being cj-hi-linking, hence:

Pr[Col] ≤ 1 · 1 ·
q∑
j=1

j∑
i=1

pn−l

pn − q
≤ q2 + q

pl − q

– bi = bj = 1: the adversary chooses xi and xj , which entails the values
of ki and kj , and also chooses ci and cj , which are meaningful each with

probability at most pn
′
/(pn − q). If this is the case, then both yi and yj are

random values from sets of size at least pn
′ − q. Since i < j, we can assume

hi to be known by A: the probability that yj ∈ [zj] is at most pn
′−l

pn′−q ≤
1

pl−q
since l ≤ n′, and this is again the probability of it being cj-hi-linking.
Therefore:

Pr[Col] ≤ pn
′

pn − q
· pn

′

pn − q
·
q∑
j=1

j∑
i=1

pn
′−l

pn′ − q
≤ q2 + q

pl − q

– (bi = 0) ∧ (bj = 1): Same as the previous case, but this time Qi is always
meaningful.

– (bi = 1) ∧ (bj = 0): Same as the first case, but this time Qi is meaningful at

most with probability pn
′
/(pn − q).

Since the probability of A finding a collision is independent of its behaviour, the
claim is hence proven. ut

Now that we have proven collision resistance of our construction, we turn to
preimage resistance:

Theorem 4.4 (comp-pre resistance of AO PGV-ELC mode). Given the
κ-n-elements ideal AO blockcipher E over some prime field Fp, some l < n, a
number of queries q < pl, and the (κ′ + n′)-l-elements AO PGV-ELC compres-
sion function CE,V , where κ′, n′ and V = (K,P ,F ,R) are as in Definition 3.2,
it holds that:

Advcomp-pre
CE,V

(q) ≤ q

pl − q

16 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

Proof. The probability of finding a preimage is given by:

Pr[Pre] = Pr[∃i ≤ q : Meani ∧ Linki]

where Linki is the event that yi is ci-hj-linking.

– bi = 0: the adversary chooses xi and yi so that Qi is meaningful. ci is then a
random element from a set of size at least pn−q, and the probability that yi is

ci-h-linking is at most pn−l

pn−q ≤
1

pl−q , hence: Pr[Pre] ≤ 1 ·
∑q
i=1

pn−l

pn−q ≤
q

pl−q .

– bi = 1: xi and ci are chosen arbitrarily, and there is a pn
′
/(pn − q) probability

that Qi is meaningful. Even if this is the case, yi is a random value from
a set of size pn

′ − q, and the probability of it being ci-h-linking is at most
pn
′−l

pn′−q ≤
1

pl−q , therefore:

Pr[Pre] ≤ pn
′

pn − q
·
q∑
i=1

pn
′−l

pn′ − q
≤ q

pl − q
ut

4.3 Security of AO t-ary Merkle Tree

We can now turn to consider collision resistance for the Merkle tree hashing: the
classical result over bit-strings generalizes trivially to AO constructions.

Theorem 4.5 (hash-col resistance of AO Merkle tree). Given a tn-n
elements compression function family C over a prime field Fp, and a number of
queries q < pn, it holds that:

Advhash-col
HC

(q) ≤ Advcomp-col
C (q) + Advcomp-pre

C (q)

where HC is the Merkle tree mode of hashing family over C.

Proof. Suppose that we have an adversary A with access to C, the oracle imple-
menting a random instance of C. After making q queries to C, interleaved with
arbitrary computations, A outputs two messages M,M ′ ∈

(
Fnp
)∗

, with M 6= M ′,
such that HC(M) = HC(M ′). Let the collision advantage of A against HC be
Advhash-col

HC
(A). For any such A, we can build a new adversary B, which achieves

the same advantage against C directly, using the same number of queries as A.
B works as follows: first, it runs A as a sub-routine, obtaining the two mes-
sages M and M ′. Then, it builds the Merkle trees T over M and T ′ over M ′.
We can assume w.l.o.g. that the communication tape of A already contains a
record of all the queries to C that were necessary to build the two trees. If
ν0 6= ν′0, then A did not actually find a collision, so B halts rejecting. Otherwise,
B starts matching tuples of the kind (νi,νti+1, . . . ,νti+t) from T with tuples
of the kind

(
ν′i,ν

′
ti+1, . . . ,ν

′
ti+t

)
from T ′. If, at any point in the matching pro-

cess, it happens that νi = ν′i but, for any j ≤ t, νti+j 6= ν′ti+j , then B outputs(
νti+1, . . . ,νti+t,ν

′
ti+1, . . . ,ν

′
ti+t

)
, which is a collision for C, and it halts accept-

ing. If the search ends without finding any match, and |M | = |M |′, it must be

Title Suppressed Due to Excessive Length 17

the case that M = M ′, which is not a valid collision, so B halts rejecting. Finally,
if all children of νi match the children of ν′i, assuming w.l.o.g. that |M | < |M |′,
then, for each leaf node νi ∈ T , it must be the case that ν′i = νi = mi. But
since ν′i = C

(
ν′ti+1, . . . ,ν

′
ti+t

)
, this means that

(
ν′ti+1, . . . ,ν

′
ti+t

)
is actually a

preimage for mi. Let Col be the event of B finding a collision for C and Pre be
the event of it finding a preimage instead. From our previous analysis, we have
that:

Advhash-col
HC

(A, q) = Pr[Col ∨ Pre] ≤ Advcomp-col
C (B, q) + Advcomp-pre

C (B, q)

Since this result does not depend on the behaviour of A, the claim follows. ut

The last thing we need to prove, which again is a relatively straightforward
adaptation of a classical result, is opening resistance of the AO Merkle tree.
In this setting, we are given a t-ary Merkle tree TC,M over some tn-n elements

compression function C and some message M ∈
(
Fnp
)th

(i.e. we assume M to fit
exactly in the tree). Only C and the root of the node, ν0 = H(M), are known
to the verifier V. Let t′ = t − 1; in order to check membership of some leaf νi
in TC,M , the generator G sends to V the opening proof π = (i,x0,x1, . . . ,xht′),
where we expect x0 to be νi and x1, . . . ,xht′ to be the nodes in the co-path from
νi to ν0. Then, V takes the base-t digit expansion (dh−1, . . . , d0) of the index i
and collects consecutive elements of the co-path in groups of t′ units: each digit
will fix the position of the chaining value cj , so that c0 = 0 and ∀j < h:

cj+1 = C
(
xt′j+1, . . . ,xt′j+dj−1, cj ,xt′j+dj , . . . ,xt′j+t′

)
Finally, V compares ch with ν0: if they are equal, it accepts, otherwise it rejects.

Theorem 4.6 (opening resistance of AO Merkle tree). Given a tn-n el-
ements compression function family C over some prime field Fp, and a number
of queries q < pn, it holds that:

Advopening
HC

(q) ≤ Advcomp-col
C (2q)

where HC is the Merkle tree mode of hashing family over C.

Proof. Consider the t-ary Merkle tree TC,M over a message M ∈
(
Fnp
)th

, and
let t′ = t − 1. Now, let C be the oracle implementing C, and let A be an
adversary making q queries to C that can forge a proof π̃ = (i, x̃0, x̃1, . . . , x̃ht′)
with advantage Advopening

HC
(A). We will now build an adversary B which finds

a collision in C(ι) as follows: first, B runs π = G(M, i) and π̃ = A(M, i). Then,
it computes the correct chaining values c0 through ch, and the forged chaining
values c̃0 through c̃h: by completeness of (G,V), we have that ch = ν0. Now B
compares ch with c̃h: if the two of them are different, it halts rejecting as A did
not actually find a collision. Otherwise, it computes the base-t digit expansion
(dh−1, . . . , d0) of i and starts matching, for j ∈ {h− 1, . . . , 0}, cj with c̃j and

18 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

xjt′+1, . . . ,xjt′+t′ with x̃jt′+1, . . . , x̃jt′+t′ : if the match is only partial, then the
two vectors:

mj =
(
xt′j+1 . . . xt′j+dj−1 cj xt′j+dj . . . xt′j+t′

)ᵀ
m̃j =

(
x̃t′j+1 . . . x̃t′j+dj−1 c̃j x̃t′j+dj . . . x̃t′j+t′

)ᵀ
form a collision, since cj+1 = C(mj) = c̃j+1 = C(m̃j), hence B will return the
pair (m, m̃), and it will halt accepting. Finally, if all the matches up to j = 0 are
exact, then it must be the case that π = π̃, therefore the forged proof is actually
a valid proof, so B will halt rejecting. We can then conclude that B finds a valid
collision for C whenever A finds a valid opening proof forgery for HC : assuming
w.l.o.g. that A had to perform at least the h oracle queries required to compute
the root of the tree (i.e. h < q), and that B needs to call G in order to compute
π, the claim follows. ut

5 Implementation and Experiments

In order to compare AO PGV-LC with Sponge, among the many available
arithmetization-oriented constructions, we decided to select the Hades-MiMC
blockcipher design [35]: firstly, the design itself, being based on a variation of
substitution-permutation networks (SPN), has undergone an acceptable amount
of cryptanalysis; secondly, the Sponge hash function derived from Hades-MiMC,
i.e. Poseidon [34], is already deployed in industry applications (e.g. Filecoin);
finally, it is well-defined for any arbitrary block size (although a block size of 1
field element is a special case, see Remark 5.1).

Definition 5.1 (Poseidon-DM compression function). Let E : Fnp ×Fnp →
Fnp be the Hades-MiMC blockcipher as defined in [35]. Then, given some m < n,
we call Poseidon-DM the compression function:

C(x,y) : Fnp × Fnp → Fmp = bC(5)
E (x,y)cm

Remark 5.1. The Hades-MiMC blockcipher design ‘collapses’ in the MiMC con-
struction [1] when the block size is of just one field element, nullifying the benefits
of the partial SPN structure that gives its efficiency. For this reason, we will mark
with an asterisk the results concerning 2-to-1 compression.

Experimental Setup. All of our benchmarks were run on a system with an
Intel® Core™ i9–13900KF @6.0GHz CPU equipped with 32 GB of DDR5–5200
RAM, running a Clear Linux OS 39980 instance. For the native performance
comparison part, we used the C++ library libff4 for the finite field arithmetic
operations. For the ZK-SNARK comparisons, we implemented the R1CS con-
straint systems in the C++ library libsnark5, which offers an implementation

4 https://github.com/scipr-lab/libff
5 https://github.com/scipr-lab/libsnark

https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libsnark

Title Suppressed Due to Excessive Length 19

of the Groth16 [37] ZK-SNARK framework. All code was compiled with the
Intel® oneAPI DPC++ Compiler 2023.2 with compiler flags -std=c++17 -Ofast

-march=native for serial code, and all previous flags plus the -fopenmp flag for
parallel code. As target prime field, we used the scalar field of the BLS12–381
elliptic curve [8].

5.1 Native Performance

We start by comparing the native performance of Poseidon with Poseidon-
DM. Given a prime p, an arity t, a height h, and a message M ∈ (Fp)∗ such that
|M | = th, we measure the time it takes to build t-ary Merkle tree TC,M , when
C is instantiated with t-to-1 Poseidon or with t-to-1 Poseidon-DM.

Table 2. Single-thread build time for a Merkle tree of varying arity and input message
length using the target compression functions in the BLS12 curve.

MT Arity

|M | 2:1* 2:1 4:1 8:1

Poseidon
26 \ 1.48 ms 1.41 ms 1.72 ms
212 \ 0.087 s 0.079 s 0.105 s
218 \ 5.44 s 4.98 s 6.62 s

Poseidon-DM
26 0.43 ms 0.78 ms 0.28 ms 0.35 ms
212 0.024 s 0.046 s 0.016 s 0.020 s
218 1.52 s 2.92 s 0.97 s 1.28 s

Speed-up
26 \ 1.90× 4.98× 4.86×
212 \ 1.89× 5.05× 5.13×
218 \ 1.86× 5.14× 5.16×

In Table 2 we report our results: even for 2:1 compression, albeit unable
to take advantage of the partial-SPN structure, Poseidon-DM is already 3.5×
faster than Poseidon, confirming that the cost of the key schedule is indeed
negligible, and vastly compensated by the reduced state size. Extending our
analysis to different arities, we have two interesting results: first, the gap between
the two constructions increases even more, with Poseidon-DM being roughly
5× faster than Poseidon; secondly, it turns out that it is extremely important to
find the correct arity to maximize efficiency: to Merkle hash a message of length
212 field elements, we need either 4095 calls to a 2:1 compression function, 1365
calls to a 4:1 compression function, or 585 calls to an 8:1 compression function.
In the specific case of Poseidon and Poseidon-DM, we have a sweet spot at
a compression rate of 4:1 elements. By combining these two results, we obtain
a 6× speed-up w.r.t. 2:1 Poseidon, the most popular instance in real-world
applications. We also measured how well the performance scales when the tree
is being built by multiple threads concurrently, and the results are reported in

20 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

Fig. 3. Multithread performance scaling of Poseidon and Poseidon-DM when build-
ing a tree of arity 4 over a message of length 220.

Figure 3. Both functions scale similarly, with a dip at 16 cores likely caused
by the P-cores/E-cores architecture of the specific CPU; interestingly, memory
bandwidth does not seem to be much of a problem, and even from 16 to 32
threads (8 of which are due to hyper-threading) we still get a 60% speed-up.

5.2 ZK-SNARK Performance

The main bottleneck of ZK-SNARK frameworks usually lies in the generation of
the proof, therefore we target proof generation time as our efficiency metric. In
turn, the complexity of building a proof varies on the proving framework itself:
in ZK-STARK systems [9], it fundamentally depends on the depth of the arith-
metic circuit. In PlonK-like systems, it depends on the kind of constraints which
are used, as well as on their number. For ZK-SNARK systems based on QAPs
(and in turn on R1CS), it fundamentally depends on the size of the constraint
system itself (although it might also depend on its sparsity): a lower number
of constraints is normally directly related to an improvement in the measured
performance. In Table 3, we can see that Poseidon-DM always requires fewer

Table 3. Number of R1CS constraints for Poseidon and Poseidon-DM.

MT Arity

2:1* 2:1 4:1 8:1

Poseidon \ 258 306 402
Poseidon-DM 330 231 231 282

constraints than Poseidon, and the gap gets wider for larger state sizes, up to
40% in the case of 8:1 compression. Once again, we can see how increasing the
arity improves proof generation time all over the board: for example, generating

Title Suppressed Due to Excessive Length 21

Table 4. Proof generation time in the Groth16 framework (libsnark) for a Merkle
tree opening over messages of varying length and different arities.

MT Arity

|M | 2:1* 2:1 4:1 8:1

Poseidon
26 \ 0.33 s 0.17 s 0.13 s
212 \ 0.61 s 0.38 s 0.31 s
218 \ 0.89 s 0.54 s 0.47 s
224 \ 1.19 s 0.73 s 0.62 s
230 \ 1.48 s 0.89 s 0.79 s

Poseidon-DM
26 0.39 s 0.29 s 0.14 s 0.093 s
212 0.75 s 0.55 s 0.29 s 0.23 s
218 1.10 s 0.80 s 0.42 s 0.35 s
224 1.44 s 1.05 s 0.56 s 0.46 s
230 1.73 s 1.31 s 0.70 s 0.58 s

Average Speed-up \ +13% +28% +35%

a proof for 8:1 Poseidon-DM is approximately 2.5× faster than for 2:1 Posei-
don. About concrete timings, we expect them to closely follow the number of
constraints, and this is indeed confirmed by Table 4.

5.3 Optimized R1CS for t-ary Merkle Tree

As we mentioned in the introduction, R1CS systems constrain the computation
by means of a system of bilinear equations of the kind (Ax)�(Bx) = Cx (where
� denotes the Hadamard product). It is well known how to build a R1CS system
for binary Merkle trees6; however, the only public implementation that we found
that also offers wider arities is [60], and even there, the constraint systems are
hardcoded for t ∈ {2, 4, 8}. While writing our own R1CS for an arbitrary t, we
found that a small change in the classical opening proof protocol (described in
Section 4.3) allows for a more compact R1CS.

In the binary tree case, given the opening proof π = (i,x0,x1, . . . ,xh),
where all vectors are over Fnp , the prover itself will compute the chaining values
(c0, . . . , ch): in order to guarantee that the order of the inputs is preserved and
that the output values are correct, we introduce fresh variables y0, . . . ,yh−1,
and use the binary expansion (dh−1, . . . , d0) of i as selector bits:

∀0 ≤ j < h :

dj · (1− dj) = 0

dj · (cj − xj+1) = cj − yj
cj+1 = C(yj , cj + xj+1 − yj)

This constraint system requires h(1 + n+RC) constraints, where RC is the num-
ber of constraints required to instantiate C.

6 See for example: https://github.com/arkworks-rs/r1cs-tutorial.

https://github.com/arkworks-rs/r1cs-tutorial

22 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

One possible way to generalize to any arity t ≥ 2, similar to the one used
in [60], is to consider the authentication path π = (i,x0,x0,1, . . . ,xh−1,t′), where
t′ = t−1, together with the base-t expansion (dh−1, . . . , d0) of the index i. Now,
cj+1 = C(yj,1, . . . ,yj,t) where, depending on dj , yj,1 could be either cj or xj,1,
yj,t could be either cj or xj,t−1, and any other yj,k could be either cj , xj,k−1 or
xj,k. Let b = dlog2(t)e, and consider the binary expansion (dj,b, . . . , dj,1) of dj :
we can compute all possible combinations of these binary values and store them
in the selector variables sj,1, . . . , sj,t: if we do it in a tree-like fashion, we need
2b+1 − 4 = 2t − 4 multiplications to do so. Hence, we can set up a constraint
system semantically equivalent to the following:

∀0 ≤ j < h :

∀1 ≤ k ≤ b : dj,k · (1− dj,k) = 0∏b
k=1 (1− dj,k) = sj,1

. . .∏b
k=1 dj,k = sj,t

sj,1 · cj + s̃j,1 · xjt′+1 = yj,1

sj,t · cj + s̃j,t · xjt′+t′ = yj,t

∀2 ≤ k < t : (sj,k · cj) + (sj,k−1 · xjt′+k−1) + (s̃j,k · xjt′+k) = yj,k

cj+1 = C(yj,1, . . . ,yj,t)

Where s̃i,j is a shorthand for (1− si,j). This constraint system requires a total
of h(b+ 2t− 4 + n(4 + 3(t− 2)) +RC) constraints.

Table 5. Comparison of the number of R1CS constraints in the unoptimized and
optimized Merkle Tree circuits over the Poseidon-DM compression function, for trees
containing 224 nodes, at various arities and node size n.

MT Arity

n 4:1 8:1 16:1

Unoptimized

1 3000 2552 2754
2 3696 3520 4182
4 5124 5408 7056
8 7908 9208 12768

Optimized

1 2916 2392 2484
2 3540 3248 3732
4 4824 4912 6246
8 7320 8264 11238

Speed-up

1 2.88% 6.69% 10.9%
2 4.41% 8.37% 12.1%
4 6.22% 10.1% 13.0%
8 8.03% 11.4% 13.6%

Title Suppressed Due to Excessive Length 23

Now, consider the modified opening proof where the prover sends, together
with all the others, also the node that the verifier is able to compute by it-
self. With this slight modification, we can then introduce as before the selector
variables s0,1, . . . , sh−1,t, and enforce:

∀0 ≤ j < h :

∀1 ≤ k ≤ t : sj,k · (1− sj,k) = 0

1 ·
∑t
k=1 sj,k = 1

∀1 ≤ k ≤ t : sj,k · (cj − xj,k) = cj − yj,k
cj+1 = C(yj,1, . . . ,yj,t)

The optimized constraint system then requires h(t+ 1 + tn+RC) constraints.
The relative improvement we can get by using the optimized circuit is therefore:

dlog2(t)e+ 2t− 4 + n(4 + 3(t− 2)) +RC
t+ 1 + tn+RC

which is independent of the tree height. In Table 5, we show the concrete im-
provement over Merkle Trees of different arities and node sizes where C is in-
stantiated by Poseidon-DM: with compression functions requiring fewer con-
straints [31,17,58], we expect the gap to be even more noticeable.

Acknowledgements

Stefano Trevisani was supported in full and Elena Andreeva was supported
in part by the Austrian Science Fund (FWF) SpyCoDe grant with number
10.55776/F8507-N.

References

1. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016. pp.
191–219. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

2. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel structures for mpc, and more. Cryptology ePrint
Archive, Paper 2019/397 (2019), https://eprint.iacr.org/2019/397, https://
eprint.iacr.org/2019/397

3. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology
ePrint Archive, Paper 2019/426 (2019). https://doi.org/10.13154/tosc.v2020.i3.1-
45, https://eprint.iacr.org/2019/426, https://eprint.iacr.org/2019/426

4. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,
M.: A guide to fully homomorphic encryption. Cryptology ePrint Archive, Paper
2015/1192 (2015), https://eprint.iacr.org/2015/1192, https://eprint.iacr.
org/2015/1192

https://eprint.iacr.org/2019/397
https://eprint.iacr.org/2019/397
https://eprint.iacr.org/2019/397
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2015/1192
https://eprint.iacr.org/2015/1192
https://eprint.iacr.org/2015/1192

24 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

5. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic primi-
tives. Cryptology ePrint Archive, Paper 2018/1098 (2018), https://eprint.iacr.
org/2018/1098, https://eprint.iacr.org/2018/1098

6. Bakhta, A., Sasson, E.B., Levy, A., Gurevich, D.L.: Eip-5988: Add poseidon hash
function precompile. https://eips.ethereum.org/EIPS/eip-5988 (2022), https:
//eips.ethereum.org/EIPS/eip-5988

7. Bakker, A.: Merkle hash torrent extension (2009), http://bittorrent.org/beps/
bep_0030.html, http://bittorrent.org/beps/bep_0030.html

8. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. Cryptology ePrint Archive, Paper 2002/088 (2002), https:

//eprint.iacr.org/2002/088, https://eprint.iacr.org/2002/088
9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, Paper
2018/046 (2018), https://eprint.iacr.org/2018/046, https://eprint.iacr.

org/2018/046
10. Ben Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,

E., Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy. pp. 459–474 (2014).
https://doi.org/10.1109/SP.2014.36

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Kfir, S., Tromer, E., Virza, M., Wu, H.,
Backes, M., Barbosa, M., Chernyakhovsky, A., Fiore, D., Groth, J., Kroll, J.A.,
MITSUNARI, S., Popovs, A., Reischuk, R., TERUYA, T.: libsnark: a c++ library
for zksnark proofs. https://github.com/scipr-lab/libsnark (2012), SCIPR Lab

12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent succinct arguments for r1cs. Cryptology ePrint Archive,
Paper 2018/828 (2018), https://eprint.iacr.org/2018/828, https://eprint.

iacr.org/2018/828
13. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero

knowledge for a von neumann architecture. Cryptology ePrint Archive, Paper
2013/879 (2013), https://eprint.iacr.org/2013/879, https://eprint.iacr.

org/2013/879
14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:

ECRYPT hash workshop. vol. 2007 (2007)
15. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-

based hash-function constructions from pgv. Cryptology ePrint Archive, Paper
2002/066 (2002), https://eprint.iacr.org/2002/066, https://eprint.iacr.

org/2002/066
16. Bonnetain, X.: Collisions on feistel-mimc and univariate gmimc. Cryptology ePrint

Archive, Paper 2019/951 (2019), https://eprint.iacr.org/2019/951, https://
eprint.iacr.org/2019/951

17. Bouvier, C., Briaud, P., Chaidos, P., Perrin, L., Salen, R., Velichkov, V., Willems,
D.: New design techniques for efficient arithmetization-oriented hash functions:
Anemoi permutations and jive compression mode. Cryptology ePrint Archive,
Paper 2022/840 (2022), https://eprint.iacr.org/2022/840, https://eprint.

iacr.org/2022/840
18. Bowe, S., Grigg, J.: bellman: zk-snark library. https://github.com/zkcrypto/

bellman (2015), zero-knowledge Cryptography in Rust
19. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bullet-

proofs: Short proofs for confidential transactions and more. Cryptology ePrint
Archive, Paper 2017/1066 (2017), https://eprint.iacr.org/2017/1066, https:
//eprint.iacr.org/2017/1066

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://eips.ethereum.org/EIPS/eip-5988
https://eips.ethereum.org/EIPS/eip-5988
https://eips.ethereum.org/EIPS/eip-5988
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html
http://bittorrent.org/beps/bep_0030.html
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2002/088
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://github.com/scipr-lab/libsnark
https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2013/879
https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2002/066
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2019/951
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2022/840
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066

Title Suppressed Due to Excessive Length 25

20. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recur-
sive proofs from holography. Cryptology ePrint Archive, Paper 2019/1076 (2019),
https://eprint.iacr.org/2019/1076, https://eprint.iacr.org/2019/1076

21. Cohen, B.: Incentives build robustness in bittorrent. In: Workshop on Economics
of Peer-to-Peer systems. vol. 6, pp. 68–72. Berkeley, CA, USA (2003)

22. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or: Can
zero-knowledge be for free? In: Krawczyk, H. (ed.) Advances in Cryptology —
CRYPTO ’98. pp. 424–441. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

23. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) Ad-
vances in Cryptology — CRYPTO’ 89 Proceedings. pp. 416–427. Springer New
York, New York, NY (1990)

24. Dang, Q.H.: Secure Hash Standard. National Institute of Standards and Technol-
ogy (Jul 2015). https://doi.org/10.6028/nist.fips.180-4, http://dx.doi.org/10.

6028/NIST.FIPS.180-4

25. Dworkin, M.: Sha-3 standard: Permutation-based hash
and extendable-output functions (2015-08-04 2015).
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202

26. Faugère, J.C., Gaudry, P., Huot, L., Renault, G.: Sub-cubic change of or-
dering for gröbner basis: A probabilistic approach. In: Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation. pp.
170–177. ISSAC ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2608628.2608669, https://doi.org/10.

1145/2608628.2608669

27. Gabizon, A., Williamson, Z.J.: plookup: A simplified polynomial protocol for
lookup tables. Cryptology ePrint Archive, Paper 2020/315 (2020), https://

eprint.iacr.org/2020/315, https://eprint.iacr.org/2020/315
28. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-

bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive, Paper 2019/953 (2019), https://eprint.iacr.org/2019/953, https://
eprint.iacr.org/2019/953

29. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity or all languages in np have zero-knowledge proof systems. J. ACM 38(3),
690–728 (jul 1991). https://doi.org/10.1145/116825.116852, https://doi.org/10.
1145/116825.116852

30. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing 18(1), 186–208 (1989).
https://doi.org/10.1137/0218012, https://doi.org/10.1137/0218012

31. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.:
Horst meets fluid-spn: Griffin for zero-knowledge applications. Cryptology ePrint
Archive, Paper 2022/403 (2022), https://eprint.iacr.org/2022/403, https:

//eprint.iacr.org/2022/403

32. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofneg-
ger, M., Walch, R.: Reinforced concrete: A fast hash function for veri-
fiable computation. Cryptology ePrint Archive, Paper 2021/1038 (2021).
https://doi.org/10.1145/3548606.3560686, https://eprint.iacr.org/2021/

1038, https://eprint.iacr.org/2021/1038
33. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,

Walch, R.: Hash functions monolith for zk applications: May the speed of sha-3 be
with you. Cryptology ePrint Archive, Paper 2023/1025 (2023), https://eprint.
iacr.org/2023/1025, https://eprint.iacr.org/2023/1025

https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1076
https://doi.org/10.6028/nist.fips.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1145/2608628.2608669
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2022/403
https://doi.org/10.1145/3548606.3560686
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2023/1025
https://eprint.iacr.org/2023/1025

26 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

34. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A
new hash function for zero-knowledge proof systems. Cryptology ePrint Archive,
Paper 2019/458 (2019), https://eprint.iacr.org/2019/458, https://eprint.

iacr.org/2019/458

35. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: The hades design strategy.
Cryptology ePrint Archive, Paper 2019/1107 (2019), https://eprint.iacr.org/
2019/1107, https://eprint.iacr.org/2019/1107

36. Groth, J.: Short non-interactive zero-knowledge proofs. In: Advances in Cryptology
- ASIACRYPT 2010 - 16th International Conference on the Theory and Applica-
tion of Cryptology and Information Security. Lecture Notes in Computer Science,
vol. 6477, pp. 341–358. Springer (2010). https://doi.org/10.1007/978-3-642-17373-
8 20, https://www.iacr.org/archive/asiacrypt2010/6477343/6477343.pdf

37. Groth, J.: On the size of pairing-based non-interactive arguments. Cryptology
ePrint Archive, Paper 2016/260 (2016), https://eprint.iacr.org/2016/260,
https://eprint.iacr.org/2016/260

38. Gueron, S.: Intel advanced encryption standard (aes) new instructions set (2012)
39. Hamano, J.C.: Git–a stupid content tracker. Proceedings of the Ottawa Linux

Symposium 2006 1, 385–394 (2006)
40. Hoeven, J., Larrieu, R.: Fast gröbner basis computation and polynomial reduction

for generic bivariate ideals. Applicable Algebra in Engineering, Communication
and Computing 30(6), 509–539 (Dec 2019). https://doi.org/10.1007/s00200-019-
00389-9, https://doi.org/10.1007/s00200-019-00389-9

41. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification.
ZCash Improvement Proposals Website (Sep 2022), https://zips.z.cash, https:
//zips.z.cash

42. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Biham,
E. (ed.) Fast Software Encryption. pp. 28–40. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997)

43. Lakshman, A., Malik, P.: Cassandra: A decentralized structured stor-
age system. SIGOPS Oper. Syst. Rev. 44(2), 35–40 (apr 2010).
https://doi.org/10.1145/1773912.1773922, https://doi.org/10.1145/1773912.

1773922

44. Matyas, S.M.: Generating strong one-way functions with cryptographic algorithm.
IBM Technical Disclosure Bulletin 27, 5658–5659 (1985)

45. Merkle, R.C.: Method of providing digital signatures (jan 1982), https://patents.
google.com/patent/US4309569A/en

46. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) Advances in Cryptology — CRYPTO ’87. pp. 369–378.
Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

47. Merkle, R.C.: One way hash functions and des. In: Brassard, G. (ed.) Advances in
Cryptology — CRYPTO’ 89 Proceedings. pp. 428–446. Springer New York, New
York, NY (1990)

48. Miyaguchi, S., Ohta, K., Iwata, M.: 128-bit hash function (n-hash). NTT review
(1990)

49. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mail-
ing list at https://metzdowd.com (03 2009)

50. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical ver-
ifiable computation. Cryptology ePrint Archive, Paper 2013/279 (2013), https:
//eprint.iacr.org/2013/279, https://eprint.iacr.org/2013/279

https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2019/1107
https://doi.org/10.1007/978-3-642-17373-8{_}20
https://doi.org/10.1007/978-3-642-17373-8{_}20
https://www.iacr.org/archive/asiacrypt2010/6477343/6477343.pdf
https://eprint.iacr.org/2016/260
https://eprint.iacr.org/2016/260
https://doi.org/10.1007/s00200-019-00389-9
https://doi.org/10.1007/s00200-019-00389-9
https://doi.org/10.1007/s00200-019-00389-9
https://zips.z.cash
https://zips.z.cash
https://zips.z.cash
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://patents.google.com/patent/US4309569A/en
https://patents.google.com/patent/US4309569A/en
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279

Title Suppressed Due to Excessive Length 27

51. Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis,
Katholieke Universiteit te Leuven Leuven (1993)

52. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 22-
26, 1993, Proceedings. Lecture Notes in Computer Science, vol. 773, pp. 368–378.
Springer (1993). https://doi.org/10.1007/3-540-48329-2 31

53. Psaras, Y., Dias, D.: The interplanetary file system and the filecoin net-
work. In: 2020 50th Annual IEEE-IFIP International Conference on Depend-
able Systems and Networks-Supplemental Volume (DSN-S). pp. 80–80 (2020).
https://doi.org/10.1109/DSN-S50200.2020.00043

54. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher shark.
In: Gollmann, D. (ed.) Fast Software Encryption. pp. 99–111. Springer Berlin Hei-
delberg, Berlin, Heidelberg (1996)

55. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, im-
plications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In: Roy, B., Meier, W. (eds.) Fast Software Encryption.
pp. 371–388. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

56. Roy, A., Andreeva, E., Sauer, J.F.: Interpolation cryptanalysis of unbalanced
feistel networks with low degree round functions. Cryptology ePrint Archive,
Paper 2021/367 (2021), https://eprint.iacr.org/2021/367, https://eprint.

iacr.org/2021/367

57. Roy, A., Steiner, M.: Generalized triangular dynamical system: An alge-
braic system for constructing cryptographic permutations over finite fields
(2022). https://doi.org/10.48550/ARXIV.2204.01802, https://arxiv.org/abs/

2204.01802, https://arxiv.org/abs/2204.01802

58. Roy, A., Steiner, M.J., Trevisani, S.: Arion: Arithmetization-oriented permutation
and hashing from generalized triangular dynamical systems (2023)

59. van Saberhagen, N.: Cryptonote v 2.0 (2013), https://api.semanticscholar.

org/CorpusID:2711472

60. Schofnegger, M., Walch, R.: Hash functions for zero-knowledge applica-
tions zoo. https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo (August
2021), IAIK, Graz University of Technology

61. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
Cryptology ePrint Archive, Paper 2019/550 (2019), https://eprint.iacr.org/

2019/550, https://eprint.iacr.org/2019/550

62. Sivasubramanian, S.: Amazon dynamodb: A seamlessly scalable non-relational
database service. In: Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data. pp. 729–730. SIGMOD
’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2213836.2213945, https://doi.org/10.1145/2213836.

2213945

63. Szepieniec, A., Lemmens, A., Sauer, J.F., Threadbare, B., Al-Kindi: The tip5 hash
function for recursive starks. Cryptology ePrint Archive, Paper 2023/107 (2023),
https://eprint.iacr.org/2023/107, https://eprint.iacr.org/2023/107

64. Vujičić, D., Jagodić, D., Randić, S.: Blockchain technology, bitcoin, and ethereum:
A brief overview. In: 2018 17th International Symposium INFOTEH-JAHORINA
(INFOTEH). pp. 1–6 (2018). https://doi.org/10.1109/INFOTEH.2018.8345547

65. Wang, D.: Loopring. https://loopring.org/ (2020), loopring Project Ltd.

https://doi.org/10.1007/3-540-48329-2{_}31
https://doi.org/10.1109/DSN-S50200.2020.00043
https://eprint.iacr.org/2021/367
https://eprint.iacr.org/2021/367
https://eprint.iacr.org/2021/367
https://doi.org/10.48550/ARXIV.2204.01802
https://arxiv.org/abs/2204.01802
https://arxiv.org/abs/2204.01802
https://arxiv.org/abs/2204.01802
https://api.semanticscholar.org/CorpusID:2711472
https://api.semanticscholar.org/CorpusID:2711472
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2019/550
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1145/2213836.2213945
https://eprint.iacr.org/2023/107
https://eprint.iacr.org/2023/107
https://doi.org/10.1109/INFOTEH.2018.8345547
https://loopring.org/

28 E. Andreeva, R. Bhattacharyya, A. Roy, S. Trevisani

66. Winternitz, R.S.: Producing a one-way hash function from des. In: Chaum, D.
(ed.) Advances in Cryptology: Proceedings of Crypto 83. pp. 203–207. Springer
US, Boston, MA (1984). https://doi.org/10.1007/978-1-4684-4730-9 17, https://
doi.org/10.1007/978-1-4684-4730-9{_}17

67. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Sympo-
sium on Foundations of Computer Science (sfcs 1982). pp. 160–164 (1982).
https://doi.org/10.1109/SFCS.1982.38

https://doi.org/10.1007/978-1-4684-4730-9{_}17
https://doi.org/10.1007/978-1-4684-4730-9{_}17
https://doi.org/10.1007/978-1-4684-4730-9{_}17
https://doi.org/10.1109/SFCS.1982.38

	On Efficient and Secure Compression Modes for Arithmetization-Oriented Hashing

