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Abstract
Asymmetric Searchable Encryption (ASE) is a promising
cryptographic mechanism that enables a semi-trusted cloud
server to perform keyword searches over encrypted data for
users. To be useful, an ASE scheme must support expressive
search queries, which are expressed as conjunction, disjunc-
tion, or any Boolean formulas. In this paper, we propose a fast
and expressive ASE scheme that is adaptively secure, called
FEASE. It requires only 3 pairing operations for searching any
conjunctive set of keywords independent of the set size and
has linear complexity for encryption and trapdoor algorithms
in the number of keywords.

FEASE is based on a new fast Anonymous Key-Policy
Attribute-Based Encryption (A-KP-ABE) scheme as our first
proposal, which is of independent interest. To address optional
protection against keyword guessing attacks, we extend
FEASE into the first expressive Public-Key Authenticated
Encryption with Keyword Search (PAEKS) scheme.

We provide implementations and evaluate the performance
of all three schemes, while also comparing them with the state
of the art. We observe that FEASE outperforms all existing
expressive ASE constructions and that our A-KP-ABE scheme
offers anonymity with efficiency comparable to the currently
fastest yet non-anonymous KP-ABE schemes FAME (ACM
CCS 2017) and FABEO (ACM CCS 2022).

1 Introduction

Outsourcing data storage to third-party providers offers an effi-
cient way for clients with limited resources or expertise to man-
age and disseminate large volumes of encrypted data. However,
traditional public or private key encryption methods hinder the
ability to selectively retrieve specific data segments. To address
this limitation, Searchable Encryption (SE) emerges as a cryp-
tographic solution [18, 95]. SE empowers a user to securely
outsource data to a server in an encrypted form and perform
search operations on the data without revealing the plaintext to
the server. SE finds diverse applications including cloud stor-

age, secure messaging and email, healthcare, finance, academic
and research databases, Internet of Things security, and more.

SE can be classified into two categories: Symmetric
Searchable Encryption (SSE) [50, 99] and Asymmetric
Searchable Encryption (ASE) [16]. In SSE, a user employs
a secret key to encrypt a set of documents and keywords and
uploads the resulting ciphertext to a cloud server. Later, the
same secret key is used to generate a trapdoor for a specific
search query containing one or more keywords. This trapdoor
is sent to the server, which matches it with the ciphertext and
returns the searched documents. In ASE, the distinction lies
in that a data sender encrypts the document and keywords by
using a public key and a data receiver subsequently generates
the trapdoor by using the corresponding secret key.

A related field known as "Stream Encryption with Pattern
Matching" (SEPM) [21, 22, 44], has emerged in recent years.
SEPM achieves functionalities similar to traditional SE but
is tailored for searching patterns 1 within encrypted streams.
This means that data senders only need to encrypt data streams,
eliminating the need for encrypting a keyword set as indexes.
SEPM schemes share a similar syntax with ASE schemes
that are usually constructed in a public-key setting. They find
valuable applications in fields such as deep packet inspection,
genomic data, medical data analysis, and more.

It is widely recognized that SSE offers high efficiency and
has been extensively studied for its dynamic capabilities [64],
allowing for efficient addition and deletion of keywords
or documents in the encrypted dataset. ASE simplifies
key management, offering strong security arguments and
flexibility that can be extended to facilitate fine-grained
access control on data receivers [114]. SEPM shares similar
advantages with ASE but stands out for its capabilities for
searching patterns instead of exact keywords 2. In this paper,
our focus is on ASE schemes, which find practical applications
in various fields such as cloud storage [79], email filtering [16],
cloud-based healthcare [41], smart grids [111], etc.

1E.g., a pattern “ab**cd” means any 6-character string with the first two
letters “ab” and the last two letters “cd”.

2A comprehensive comparison for these three fields is given in Sec. 2.3.
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When designing an ASE scheme, the expressiveness of
keyword search queries is usually considered a critical aspect.
A search query is called expressive if contained keywords can
be represented as a conjunctive, disjunctive, or any monotonic
Boolean formula. For example, in the email filtering use
case [16], a typical search query may be: “(Sender: Tom AND
Subject: Rent) OR Priority: Urgent”, which asks the email
server to return emails sent from Tom with the subject “Rent”,
or emails with an “urgent” priority.

The efficiency of an ASE scheme is also crucial in
large-scale applications. For an ASE scheme to be efficient, the
communication overhead and computational overhead must
be small. For instance, in a cloud-based healthcare system [41],
a slow ASE scheme can delay access to critical patient infor-
mation, which can lead to serious consequences. In the email
filtering use case [16], an inefficient ASE scheme can result
in slower email retrieval time, the requirement of more storage
space, and thus higher resource utilization and higher costs.

In the literature, we observe that most of the ex-
isting ASE schemes that support expressive search
queries [41, 72, 78, 79, 96, 104] are derived from Anonymous
Key-Policy Attribute-Based Encryption (A-KP-ABE)
schemes. Informally, Attribute-Based Encryption (ABE) is
a form of public-key encryption enabling fine-grained access
control. In ABE, ciphertexts and secret keys are linked to sets
of attributes, and access policies specify which attributes are
required for decryption. Typically, ABE schemes use linear
secret-sharing techniques [8] to support expressive access poli-
cies. In a Key-Policy ABE (KP-ABE) scheme, a data sender
encrypts a message with an attribute set S to create a ciphertext
ct, and each data receiver owns a secret key sk tied to an access
structureA. The decryption is successful only ifS in ct satisfies
A in sk. However, KP-ABE prioritizes message privacy over
attribute privacy. This is inadequate for applications where
attributes, such as those in healthcare and E-commerce, contain
sensitive information. To address this, A-KP-ABE schemes are
developed to conceal attribute information within the cipher-
text. Due to the similarity in syntax, expressiveness, and secu-
rity properties, an A-KP-ABE scheme can be transformed into
an expressive ASE scheme by treating attributes as keywords 3.

Nevertheless, existing expressive ASE schemes [41, 66, 72,
78,79,96,104] suffer from significant drawbacks. The scheme
in [66], based on inner-product encryption, experiences a
superpolynomial blowup in both ciphertext and trapdoor
size. The schemes in [72] and [78], relying on bilinear
pairings over composite-order groups, are highly inefficient.
Expressive ASE schemes proposed in prime-order groups,
such as [41, 79, 96, 104], offer better efficiency than [72, 78].
Unfortunately, these schemes suffer from either insecure
constructions that are vulnerable to attacks or intricate designs
leading to inefficiency 4. These limitations severely restrict

3This is intuitive from the transformation from anonymous IBE to ASE
supporting equality queries [2]. See Sec. 4.2 for details.

4Details of the literature are given in Sec. 2.1

their practicality in real-world applications. Given these
challenges, a natural question arises: Can we construct a fast
and expressive ASE scheme by initially constructing a fast and
expressive A-KP-ABE scheme?

Continuing our research on ASE security. Typically,
an ASE scheme is designed to achieve semantic security,
protecting the privacy of the keyword sets encrypted within the
ciphertext. This property, referred to as Indistinguishability
against Chosen Keyword Attacks (IND-CKA), is foundational.
However, this property does not guarantee the confidentiality
of keywords in a trapdoor. Research has revealed a vulnera-
bility in ASE schemes known as Keyword Guessing Attacks
(KGA) [23]. In this scenario, a cloud server acting as an
adversary can generate ciphertext for every possible keyword
and test if it matches a trapdoor. If the number of potential
keywords is polynomially bounded, the adversary can deduce
the keyword hidden in the trapdoor. Several approaches have
been proposed to counter such attacks, such as fuzzy keyword
search [106], designated server [91], dual server [35], regis-
tered keyword search [103], public-key authenticated keyword
search [59], secure-channel free keyword search [7], etc.

Among these countermeasures, Public-key Authenticated
Encryption with Keyword Search (PAEKS) [59] stands out
as a promising technique. The fundamental concept behind
PAEKS is to enable a data sender to encrypt keywords with his
own secret key sks and a data receiver’s public key pkr, while a
data receiver generates a trapdoor by using his own secret key
skr and a data sender’s public key pks. In this case, a PAEKS
scheme is required to simultaneously achieve “Ciphertext In-
distinguishability” 5, and “Trapdoor Indistinguishability (TI)”,
where the latter ensures that a trapdoor does not reveal any key-
word value. Crucially, since the cloud server lacks access to the
secret keys skr and sks, it is unable to generate ciphertext for
keywords and test them, effectively preventing KGA. In the lit-
erature of PAEKS [37,46,59,76,77,82,88,89], we observe that
they only focus on supporting equality search queries and lack
expressiveness. Motivated by the situation,our second question
arises: Can we construct a fast and expressive PAEKS scheme?

Contributions. In summary, we have the following
contributions in this paper:

• We introduce a fast and expressive A-KP-ABE scheme,
serving as the foundation for our research and it is
independent of interest.

• Our primary achievement is to transform our A-KP-ABE
scheme into FEASE – a Fast and Expressive ASE scheme.

• Building upon FEASE, we further extend it to create the
first expressive PAEKS scheme, which is secure under
the state-of-the-art security model 6.

• Our three schemes share the following features:
5CI in PAEKS is similar to IND-CKA in traditional ASE schemes.
6The literature of this model is reviewed in Sec. 2.4. The detail of this

model is introduced in Sec. 5.3 in the PAEKS field.
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1. They support expressive search queries (or access
policies) that are conjunctive, disjunctive or any
monotonic Boolean formulas.

2. They have a linear complexity for both communica-
tion and computational overhead in the encryption
and trapdoor/key generation algorithm, and require
only 3 pairing operations for searching/decrypting
any conjunctive set of keywords/attributes
independent of the set size.

3. They are constructed in the prime-order group with
the efficient Type-III pairing.

4. They have no restrictions on the size of keywords
(attributes) or policies and allow any arbitrary string
to be used as a keyword (attribute).

5. They satisfy the adaptive security in the generic
group model and random oracle model 7.

• The implementation results show that our three schemes
have almost the same efficiency and achieve the best
performance in their corresponding fields. We stress
that our A-KP-ABE scheme is even comparable to
state-of-the-art non-anonymous KP-ABE schemes
FAME [3] and FABEO [92] in terms of their efficiency.
For 100 keywords/attributes, our schemes run around
0.07s for encryption, 0.24s for trapdoor/key generation,
and 0.012s for searching a conjunctive set of 100
keywords. Compared to FAME, our A-KP-ABE is 2
times faster for key generation and 4 times faster for
encryption. Compared to FABEO, our A-KP-ABE is 0.7
times slower for key generation and 0.1 times slower for
encryption. This shows that anonymity in KP-ABE can
be achieved without noticeable degradation in efficiency.

2 Related work

In this section, we first review the literature on ASE, SSE, and
SEPM and provide a comprehensive comparison between
these three fields. Then we review PAEKS and A-KP-ABE
schemes.

2.1 ASE schemes
The concept of ASE traces back to Boneh et al [16]. They
started up the ASE research with the first construction. Subse-
quently, Abdalla et al. [2] formalized ASE consistency and ex-
plored the relationship between ASE and Anonymous Identity-
Based Encryption (AIBE). Several ASE constructions based
on different techniques were proposed later in [9,45,67]. These
ASE schemes primarily supported equality search and lacked
expressiveness. Advancements came with Park et al. [85] and

7The use of random oracle is fairly common in many cryptographic pro-
tocols such as Full Domain Hash signatures [10] and OAEP encryption [11].

Golle et al. [51], who introduced ASE schemes capable of han-
dling conjunctive search queries. Hwan and Lee [60] enhanced
these schemes, optimizing ciphertext and secret key sizes
and extending the techniques to multi-user scenarios. Zhang
et al. [110] studied the cases where the keyword numbers in
search queries formed subsets of those in ciphertexts. Boneh
and Waters [17] introduced a comprehensive framework for
analyzing and constructing Searchable Public Key Encryption
(S-PKE) schemes, a generalization of ASE, supporting diverse
families of predicates and arbitrary conjunctions.

In 2008, Katz et al. [66] introduced the concept of
Inner-Product Encryption (IPE) that paved the way for the
construction of the first expressive ASE scheme capable of
handling both conjunctive and disjunctive keyword queries.
However, this solution faced a superpolynomial increase in
both ciphertext and trapdoor sizes. Addressing this, Lai et
al. [72] and Lv et al. [78] presented expressive ASE schemes,
ensuring linear complexity in ciphertext size concerning the
number of keywords, which is a significant improvement over
the superpolynomial complexity. Nevertheless, their schemes
relied on inefficient bilinear pairings over composite-order
groups. Though there exist techniques [47] to convert
pairing-based schemes from composite-order groups to
prime-order groups, there is still a significant performance
degradation due to the required size of the special vectors [93].

In 2016, Cui et al. [41] proposed the first expressive ASE
scheme in the prime-order groups that significantly improves
the performance over existing schemes and proves the selec-
tive security of their scheme in the standard model. After that,
Meng et al. [79] improved the construction of [41] to achieve
constant-size ciphertext and seven pairings in the search algo-
rithm without depending on the number of keywords. However,
their scheme has a quadratic trapdoor size O(ℓ2+ℓ) where ℓ
represents the number of keywords in the keyword policy. Ad-
ditionally, this scheme requires all keywords that appeared in
the ciphertext must be a part of the search query, otherwise, the
search will fail. These trade-offs hugely decrease the practical-
ity of their scheme. In 2019, Shen et al. [96] proposed a generic
transformation from an A-KP-ABE scheme to an expressive
ASE scheme, then they proposed an A-KP-ABE scheme and
transformed it into an expressive ASE scheme. Recently, Tseng
et al. [104] proposed a fast A-KP-ABE scheme and trans-
formed it into an expressive ASE scheme that achieves only
two pairings in the search algorithm without depending on the
number of keywords. Unfortunately, the A-KP-ABE schemes
in [96] and [104] bring the construction of KP-ABE schemes
from [93] and [57] respectively with only removing the ex-
posed attributes in the ciphertext. Their constructions do not sat-
isfy the anonymity of an A-KP-ABE scheme 8. Therefore, [41]
and [79] remain at the forefront of the expressive ASE field.

As shown in Table 1, we compare different features between
our FEASE and PAEKS and other ASE schemes. For expres-

8The reasons are the same as in FABEO, as introduced in Sec. 4.1.
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Scheme Expressiveness Group Pairing KGA Security Universe Efficiency
BCOP04 [16] AND Prime Type I No Full, RO Large -
KSW08 [66] AND, OR Composite - No Sel., STD Small *

LZDLC13 [72] AND, OR Composite - No Full, STD Small **
LHZF14 [78] AND, OR, NOT Composite - No Full, STD Small **

CWDWL16 [41] AND, OR Prime Type I Partial Sel., STD Large ***
MZNLHS17 [79] AND, OR Prime Type III Partial Sel., STD Large ***

FEASE AND, OR Prime Type III No Full, GGM & RO Large ****
Our PAEKS AND, OR Prime Type III Yes Full, GGM & RO Large ****

Table 1: A property-wise comparison of the various ASE schemes for different features. “KGA” represents the security against
the keyword guessing attack, “RO” stands for “Random Oracle”, “STD” stands for “Standard Model”, “GGM” stands for “Generic
Group Model”. The more number of “*”, the better the efficiency (lower running time and communication overhead).

siveness, [16] is the first ASE scheme and it supports only
equality queries, other schemes support at least any monotonic
Boolean formulas 9. For the bilinear pairing group, [66,72,78]
are using composite-order groups, and other schemes are built
on the prime-order group. For pairing type, [16, 41] are using
the Type I pairing, and other schemes are using the faster Type
III pairing. For stronger security requirements, [41, 79] can
partially protect against KGA since they allow a designated
server to perform KGA, and our PAEKS can fully prevent the
KGA from any cloud server. For the security model, [16] is
fully secure under the random oracle model. [72, 78] satisfies
full security under the standard model, while [41, 66, 79] are
selectively secure in the standard model. Our FEASE and
PAEKS are fully secure under the generic group model and ran-
dom oracle model. For the restriction of keyword space, except
from [66, 71, 78], all other schemes support a large universe
of keywords and hence do not need to restrict the number of
keywords in the system. Finally, we rate the level of efficiency
of all the expressive ASE schemes in a qualitative way.

2.2 SSE and SEPM schemes

Searchable Symmetric Encryption (SSE). The journey
of SSE began with Song et al.’s work [99], introducing non-
interactive sequential scan and index-based keyword search
techniques. Goh [50] formalized SSE security definitions
including "security against chosen keyword attacks (CKA1)"
and "adaptive security against chosen keyword attacks
(CKA2)". Subsequent works [30, 31, 42, 69, 105] focused on
enhancing SSE’s efficiency and security asymptotically. After
that, the advent of Dynamic SSE (DSSE) by Kamara et al. [64]
enables the addition or removal of files without re-indexing the
entire dataset. [29, 55, 63] continued the research on CKA2
security for DSSE. In 2014, Stefanov et al. defined “forward
privacy” and “backward privacy” for a DSSE scheme and
achieved the first forward private DSSE scheme. This led to the
development of forward private DSSE schemes with enhanced
efficiency [19, 68, 100]. To take a further step, Bost et al. [20]

9 [78] supports non-monotonic queries (e.g., ‘’NOT gate’‘) as well.

focused studies on backward privacy and proposed several
schemes that achieve both forward and backward privacy.
It started up the further works [5, 24, 34, 43, 49, 56, 86, 101,
102, 107, 115–117] focusing on improving the efficiency or
security level of forward and backward private DSSE schemes.
Recently, Chen et al. [33] addressed DSSE security in the com-
promised key scenarios and presented the innovative "Bam-
boo" scheme. Bamboo not only supports key updating but also
integrates forward and backward privacy features into DSSE.

Another research line of SSE aims to develop more
expressive search queries. Cash et al. [28] introduced the
first SSE scheme supporting conjunctive and Boolean search
queries through the "Oblivious Cross-Tags (OXT)" protocol,
later adapted it for large databases [29]. Jarecki et al. [61]
extended the OXT protocol to multi-client scenarios while
preserving its full boolean-query capabilities and performance.
Kamara and Moataz [62] further improved these efforts,
presenting efficient SSE schemes capable of handling arbitrary
disjunctive and boolean queries with sub-linear search
complexity and optimal communication complexity. Lai et
al. [70] identified a security weakness in [28], where partial
database information was leaked to the server. In response,
they proposed a novel SSE protocol named Hidden Cross-Tags
(HXT), eliminating the keyword pattern leakage in conjunctive
keyword searches. In 2020, Zuo et al. [117] proposed the first
DSSE scheme supporting conjunctive queries while ensuring
both forward and backward privacy. Additionally, Patranabis
et al. [86] introduced a forward and backward private SSE
scheme for conjunctive keyword searches, called "Oblivious
Dynamic Cross Tags (ODXT)". ODXT scales efficiently
to large databases that are arbitrarily structured, in which
attribute values and free texts could be included.
Stream Encryption with Pattern Matching (SEPM). The
first prototype of SEPM is the “Blindbox” proposed by Sherry
et al. [97]. Specifically, Blindbox provides the functionalities
of both a network middlebox 10 and the privacy of the encrypted
data stream. Blindbox enables a searcher to create a pattern

10A network middlebox performs deep packet inspection (DPI), a set of
useful tasks that examine packet payloads. These tasks include intrusion
detection (IDS), exfiltration detection, and parental filtering.
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such as abc** or ab*cd, where * denotes wildcard, perform
the pattern matching against the encrypted data stream, and
learn the position(s) when the match occurs. Canard et al. [26]
found that BlindBox requires the middlebox to encrypt the
entire set of patterns in the stream using the secret session key
of each new HTTPS connection, which drastically increases
the time for connection setup and encryption. As a solution,
they proposed “BlindIDS”, which leveraged a decryptable
ASE scheme [48] to address the limitations of the BlindBox.

Blindbox and BlindIDS have certain limitations. Specif-
ically, they neither support arbitrary lengths of searchable
patterns nor detect a pattern that straddles two substrings, as
they rely on tokenization to split a data stream into overlapping
substrings with a fixed length. To address these limitations,
Desmoulins et al. [44] introduced Searchable Encryption
with Shiftable Trapdoors (SEST). SEST is constructed
from a Public-Key Encryption (PKE) scheme and Type-III
pairings. But it also has limitations. First, the public key size
is linear to the size of the encrypted data stream, and the
number of pairings for pattern matching is linear to the sizes
of the searchable patterns. Second, the underlying PKE’s
selective security relies on an interactive assumption called
the interactive General Diffie-Hellman (i-GDH) assumption.

After that, Bkakria et al. [13] introduced the fragmentation
technique and used it to construct symmetric and asymmetric
pattern-matching schemes. First, the fragmentation avoids the
staddle problem, ensuring that any searchable pattern is con-
tained in at least one substring. Second, the proposed construc-
tions achieve better efficiency than SEST. Later, Bouscatie et al.
[21] proposed two SEPM schemes based on PS signature [87].
Specifically, the first scheme is more efficient than [13], which
is selectively secure and under the i-GDH assumption. The sec-
ond scheme is slightly less efficient, but its selective security
relies on a static assumption called EXDH (i.e., a variant of
DDH). Recently, Bouscatie et al. [22] proposed two generic
conversions: from the IPE to the Hidden Vector Encryption
(HVE), and from the HVE to SEPM. They chose HVE because
it supports the attribute hiding property and wildcards. Espe-
cially they leveraged some recent IPE schemes [32,83] that are
based on prime-order pairings, and adaptively secure under the
standard assumption (e.g., DLIN). The new conversion ensures
a halved ciphertext size than the existing KSW [66] conversion.

2.3 SSE, ASE, and SEPM comparison

In Table 2, we conduct a comprehensive comparison of the
SSE, ASE, and SEPM fields, evaluating them based on the
following features: (1) Data sharing type, (2) Capability
to support fine-grained access control, (3) Building blocks,
(4) Capability to support dynamic update for the encrypted
database, (5) Keyword matching type, (6) Expressiveness of
search queries, (7) Common leakage in the scheme, and (8)
Type of security model. We then offer insights into how these
three fields perform across each of these features.

In terms of data sharing, SSE employs the same secret key
for encryption and search/decryption (we call it 1-to-1 data
sharing). In the ASE and SEPM schemes, public and secret
keys are separate for encryption and search/decryption (we
call it N-to-1 data sharing), allowing searchability for multiple
users without the need to transmit the secret key to each user
individually. This distinction makes ASE and SEPM more
efficient in enabling search functionality for a group of users
without the complexities of key management faced by SSE.

In terms of access control, ASE stands out for its potential
in enabling fine-grained access control. Research has
explored extending ASE into attribute-based keyword search
(ABKS) [114] by integrating it with ABE constructions. This
integration empowers precise access control for both data
receivers and owners. In contrast, SSE lacks this capability.
As for SEPM, while still in its early stages of research, there is
promising potential for it to be combined with ABE function-
ality, given its shared asymmetric framework. This presents
an intriguing avenue for future research and development.

In terms of building blocks, SSE schemes predominantly
rely on symmetric key encryption components like pseudoran-
dom functions, hash functions, pseudorandom permutations,
and message authentication codes. On the other hand, ASE
schemes are primarily constructed from public-key encryption
schemes, including variants like Identity-Based Encryption
(IBE) and Attribute-Based Encryption (ABE), typically in
bilinear groups and pairings. Meanwhile, SEPM schemes
are mostly rooted in public-key encryption similar to ASE.
Recent advancements, such as the work presented in [22],
have innovatively crafted SEPM schemes utilizing IPE and
HVE, which represent distinct variants within the realm of
public-key encryption primitives.

In terms of dynamic updates to encrypted databases, SSE
schemes have undergone extensive research, particularly after
the work in [64]. The research field has focused on studying
the dynamism of SSE schemes and their associated security
properties, including forward and backward privacy. However,
in the case of ASE, there is limited research on dynamism,
with existing works providing functionality for dynamic
updates but lacking corresponding studies on its security
properties [27, 80]. As for SEPM, there has been no research
conducted on dynamic updates so far.

Regarding keyword matching types, SSE and ASE utilize
an index-based keyword search approach, allowing for precise
keyword matching such as searching for exact keywords
like "Urgent" or "Department." In contrast, SEPM focuses
on pattern-based searches rather than exact keywords. For
instance, SEPM enables searches for specific patterns like "ab
** cd," where ** can represent any character, broadening the
search capability beyond exact matches.

In terms of the expressiveness of search queries, both SSE
and ASE have dedicated research focusing on Boolean queries.
This includes conjunctive and disjunctive queries. These
capabilities enable the support for logical operations like

5



Primitive Data FG Access Building Dynamism Match Expressiveness Leakage Security
sharing control blocks type properties

SSE 1-to-1 No SKE Dynamic Exact AND, OR, NOT Trace, CKA1, CKA2,
(others) FP, BP, PCS

ASE N-to-1 Yes PKE Static Exact AND, OR, NOT Trace, IND-CKA,
(IBE, ABE) (KN) IND-Trap

SEPM N-to-1 N/A PKE Static Pattern AND Trace IND-CPA,
(IPE, HVE) IND-Pattern

Table 2: An overall comparison between SSE, ASE, and SEPM fields. “FG” means “Fine-grained”, “SKE” represents
“Symmetric-Key Encryption”, “PKE” stands for “Public-Key Encryption”, “KN” represents “Keyword names”, “FP” stands for
“Forward privacy”, “BP” stands for “Backward privacy”, “PCS” represents “Post-compromise security”

AND, OR, (even NOT) gates between keywords. However,
SEPM does not yet support searches for disjunctive patterns,
such as searching for pattern "ab**cd" OR pattern "ab**ef".
This limitation marks an area for potential future development
in SEPM’s query capabilities.

In terms of information leakage, all three fields allow
for some degree of keyword information disclosure, often
referred to as "trace" information. This typically includes
the 1) access pattern, which identifies documents containing
specific query words, 2) the search pattern indicating trapdoors
corresponding to the same underlying words, and 3) document
sizes and identifiers. Additionally, DSSE incurs other types of
leakages due to its dynamic update functionality. Expressive
ASE schemes, particularly those supporting Boolean queries,
intentionally leak keyword names to enhance efficiency, as
demonstrated by schemes like FEASE. In contrast, SEPM
stands out for its minimal information disclosure, revealing no
additional data beyond what is necessary for search operations.

In terms of the security model, both SSE and ASE focus
on achieving semantic security by concealing encrypted
keywords. SSE defines two security levels, CKA1 and CKA2,
depending on whether the search result is adaptively queried
by adversaries. CKA2 aligns with IND-CKA security in ASE.
SEPM, on the other hand, ensures semantic security by employ-
ing IND-CPA, encrypting only plaintext data streams without
additional keywords. Additionally, SSE has undergone ex-
tensive research concerning forward and backward privacy in
dynamic schemes, including recent work on post-compromise
security [33]. ASE and SEPM delve into Trapdoor/pattern
privacy, addressing challenges related to KGA/pattern
guessing attacks inherent in their respective security models.

Summary. SSE, ASE, and SEPM all enable privacy-
preserving searchability over encrypted data, each with
its unique strengths and limitations tailored to different
applications. SSE stands out for its dynamism, expressiveness,
and especially high efficiency, due to the utilization of efficient
building blocks. However, it lacks access control and involves
expensive key management, making it ideal for single-owner
applications such as outsourced databases, archival systems,
and private financial services.

ASE excels (including our FEASE and PAEKS) in key
management, access control, expressiveness, and security

arguments but suffers from limited dynamism and efficiency
due to constructions based on bilinear groups and pairings.
It finds its place in multi-owner settings like email filtering,
public cloud storage, and secure messaging.

SEPM specializes in pattern matching, offering low-cost
key management, minimal keyword information leakage, and
strong security arguments. Although weaker in dynamism,
expressiveness, and efficiency due to its pairing-based con-
structions, it is well-suited for applications like deep packet
inspection, genomic data analysis, and medical data analytics,
where searching patterns over encrypted data streams is crucial.

2.4 PAEKS schemes
To protect security against KGA, Huang et al. [59] introduced
the notion of public key authenticated encryption with
keyword search (PAEKS), and they define the formal security
model of PAEKS includes two security properties: Ciphertext
Indistinguishability (CI) and Trapdoor Indistinguishability
(TI), and they provide a concrete construction. In 2018,
Noroozi et al. [82] proved that the scheme in [59] only satisfies
CI and TI in a single-user setting and is not secure if the
security model is defined in a multi-user setting. Thus, they
propose a modified scheme that is secure for multi-user CI and
TI. After that, Chi et al. [38] also proposed an efficient PAEKS
scheme that is secure for multi-user CI and TI. In 2020, Qin et
al. [88] claimed that the former PAEKS schemes are in a single-
challenge model that only allows two single keywords as the
challenge keywords. Instead, they improved the model to a
multi-challenge setting that allows an adversary to distinguish
between two keyword sets and proposed a scheme secure
with multi-challenge CI. In 2021, Pan et al. [84] proposed a
PAEKS scheme and claimed it satisfies both multi-user and
multi-challenge CI and TI. However, Cheng et al. [36] pointed
out that the multi-challenge CI in scheme [84] is totally broken
and the proof of the multi-challenge TI has a serious mistake.
After that, Qin et al. [89] developed the PAEKS security model
into a “fully chosen keyword” model that enables an adversary
to query the challenge keywords in the CI game, and they
proposed the first PAEKS scheme that owns the full CI security.

In 2022, Liu et al. [77] proposed a generic PAEKS construc-
tion by adopting a smooth projective hash function (SPHF) [39]
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Scheme Expressiveness S/M User CI S/M User TI S/M Chal. CI S/M Chal. TI N/F CI N/F TI
HL17 [59] AND S S S S N N
NE18 [82] AND M M S S N N

QCHLZ20 [88] AND S S M S N N
QCZZ21 [89] AND M M M S F N
LTT22 [77] AND S S M M N N

E22 [46] AND M* M* M S F* F*
CM22 [37] AND M M M M F F
Our PAEKS AND, OR M M M M F F

Table 3: A property-wise comparison of various PAEKS schemes for expressiveness and security model. “S/M” stands for
Single/Multiple, “CI” stands for Ciphertext Indistinguishability, “TI” stands for Trapdoor Indistinguishability, “N/F” stands for
Non-fully/Fully, “Chal.” stands for Challenge, “*” means the security model is in a different setting from others

and PEKS, and they proposed the first quantum-resistant
PAEKS scheme based on lattices. Their scheme satisfies
the Multi-challenge CI and Mutli-challenge TI. Emura [46]
followed this research line and proposed a more efficient
generic PAEKS construction by using public key encryption,
pseudorandom function, SPHF, and PEKS, and they proved
that their construction satisfies the multi-challenge CI, fully CI,
and fully TI model in a modified “designated-receiver” setting.
Then Cheng et al. [37] proposed two new lattice-based PAEKS
schemes with different construction methodologies from Liu
et al. and Emura. Instead of using the shared key calculated by
SPHF, the sender and receiver achieve keyword authentication
by using their own secret key to sample a set of short vectors
related to the keyword, in which the sampling technique is
based on Learning With Error (LWE) assumption [6,90]. After
that, Calderini et al. [25] proposed a PAEKS scheme that
satisfies the multi-user TI, multi-challenge TI, and fully TI
model. Recently, Li et al. [76] proposed an efficient PAEKS
scheme supporting constant trapdoor generation and fast
search. Their scheme satisfies the multi-challenge CI security.

In summary, the aforementioned PAEKS schemes support
only equality search query, and only the scheme [37] satisfied
both the CI and TI models in the multi-user, multi-challenge,
and fully chosen setting. Thus, their expressiveness and
security still have a distance from real-world applications.
Our PAEKS is the first expressive PAEKS that supports any
monotonic search queries while satisfying the state-of-the-art
security model. As shown in Table 3, we compare the expres-
siveness and security model between our PAEKS and some
representative PAEKS schemes in terms of the above review.

2.5 Anonymous KP-ABE schemes
Attribute-Based Encryption (ABE) is a cryptographic primitive
for realizing scalable and fine-grained access control systems.
It was first introduced by Sahai and Waters as an application of
their fuzzy identity-based encryption (IBE) scheme [94]. ABE
schemes can be divided into key-policy ABE (KP-ABE) [52]
and ciphertext-policy ABE (CP-ABE) [12] schemes. In
traditional ABE schemes, an attribute set (access policy) is sent
along with a ciphertext explicitly, therefore anyone who ob-

tains the ciphertext is able to know the attribute (access policy)
information. However, this property is not appropriate for ap-
plications where attributes contain sensitive information such
as cloud-based healthcare, E-commerce, governments, etc.

To address this problem, anonymous ABE was introduced
in [65, 66] and further improved by [75, 81]. After that, several
anonymous CP-ABE schemes have been proposed [40, 58,
71, 108, 109, 112, 113]. However, anonymous KP-ABE has
been paid less attention than anonymous CP-ABE schemes.
Based on our knowledge, all of the A-KP-ABE schemes are
extended from the expressive ASE schemes [41, 72, 96, 104].
In specific, [72] transforms from the KP-ABE in [73] into
anonymous. [41] transforms from the KP-ABE in [93] into
anonymous. Note again, [96] and [104] were found insecure
(as discussed in Sec. 2.1). Hence, the A-KP-ABE research line
can be seen as the same as the expressive ASE field.

The comparison between our proposed A-KP-ABE and
other schemes can be directly referred to in Table 1. For a
reference comparison, we choose to compare our A-KP-ABE
with the state-of-the-art non-anonymous KP-ABE schemes
in FAME [3] and FABEO [92]. As shown in Table 4, our
A-KP-ABE scheme almost has the same features as FAME
and FABEO KP-ABE schemes except that our A-KP-ABE
satisfies anonymity (FAME and FABEO do not). Nevertheless,
our A-KP-ABE maintains the same level of efficiency as
FAME and FABEO.

3 Preliminaries

In this section, we define the notation, access structures,
monotone span programs for providing expressiveness, the
partially hidden structure, and hardness assumptions.

3.1 Notation

For integers m, n where m < n, [m, n] denotes the set
m, m+1, ..., n. For m = 1, we simply write [n]. For a prime
p, let Zp denote the set [0, ..., p − 1] where addition and
multiplication are computed modulo p. The set Z∗p is same
as Zp but with 0 removed. Let λ denote the security parameter.

7



Scheme Expressiveness Group Pairing Security Attribute universe Anonymity
FAME [3] AND, OR Prime Type III Full, RO Large No

FABEO [92] AND, OR Prime Type III Full, GGM Large No
Our A-KP-ABE AND, OR Prime Type III Full, RO Large Yes

Table 4: A property-wise comparison of FAME, FABEO, and our A-KP-ABE scheme for different features. “RO” represents
“Random Oracle”, “GGM” represents “Generic Group Model”. Our A-KP-ABE scheme has additional “Anonymity” property
while maintaining the same level of efficiency (details are shown in Sec. 7) as FAME and FABEO.

For a set S, s $← S denotes that s is sampled uniformly and
independently at random from S. y←A(x) denotes that y is
the output of running algorithm A on input x with uniformly
random bits. An adversary is a probabilistic algorithm. A
probabilistic algorithm is called probabilistic polynomial time
(PPT) if its running time is bounded by some polynomial in
the length of its input.

We use bold letters to denote vectors and matrices, with the
former in lowercase and the latter in uppercase. By default,
a vector v is treated as a column vector. vk denotes the k-th
element of v and ∥ denotes concatenation of vectors. Mi and
Mi, j denote the i-th row and the (i, j)-th element of a matrix
M, respectively. We use MT for the transpose of M.

3.2 Access structures
In this paper, access structures and attribute sets, keyword
policy and keyword set are defined in the same way. Below
we only provide the definition of the former set of terms.

Definition 1. Definition 2.1 (Access structure). If U denotes
the universe of attributes, then an access structureA is a collec-
tion of non-empty subsets of U, i.e., A⊆2U\{0}. It is called
monotone if for every B,C⊆U such that B⊆C,B∈A⇒C∈A.

Monotone means that an authorized user who acquires
more attributes will not lose any privileges. A (monotone)
Boolean formula consists of AND and OR gates, where each
input is associated with an attribute in U. A set of attributes
S⊆U satisfies a Boolean formula if we set all inputs of the
formula that map to an attribute in S to true and the others to
false and the formula evaluates to true.

Monotone span programs (MSP) (or linear secret sharing
schemes [8]) are a more general class of functions and
include Boolean formulas. We encode an access structure by
a policy (M, π) where M of size ℓ×n over Zp and a general
mapping function π : {1, ..., ℓ} → U. In [74], Lewko and
Waters describe a simple and efficient method to convert
any (monotone) Boolean formula F into an MSP(M, π)
such that every row of M corresponds to input in F and the
number of columns is same as the number of AND gates in
F . Furthermore, each entry in M is either a 0, 1, or -1.

Let S = {ui}i∈[m] ⊆ U be a set of m attributes and
I = {i | i∈{1, ..., ℓ}, π(i) ∈ S} be the set of rows in M that
belong to S. We say that (M, π) accepts S if there exists

a linear combination of rows in I that gives (1, 0, ..., 0).
This means, there exist constants γi ∈ Zp for i ∈ I such that
∑i∈I γiMi = (1, 0, ..., 0). These constants can be computed
in time polynomial in the size of M. It is worth noting that if
Lewko and Water’s method is applied to Boolean formulas,
then it is always possible to pick coefficients that are either
0 or 1 for the resulting MSPs, irrespective of the set S.

3.3 Partially hidden structures
We apply the partially hidden structure for an attribute set
(keyword set) and an access policy (keyword policy) for our
proposed schemes. This structure is firstly proposed in [71]
for an anonymous CP-ABE and then applied in the expressive
ASE schemes [41, 79]. Taking A-KP-ABE as an example, the
structure works as follows: Each attribute is divided into a
generic attribute name and an attribute value. The attribute
values used in both the secret key and ciphertext are not
disclosed to the cloud server, whereas a partially hidden
access structure and attribute set with only attribute names
are included in a secret key and ciphertext respectively. The
decryption algorithm matches the attribute names first and then
decrypts the ciphertext by testing if the attribute values match.

More specifically, we define an attribute set S= {ui}i∈[m]

has m attributes with each attribute belonging to a different
category. Let ni and vi denote the attribute name and attribute
value of an attribute ui respectively, i.e., ui = {ni, vi}. We
express an access policy as A= (M, π, π(i)), where M is a
ℓ×n share-generating matrix, Mi denotes the ith row of M, π is
a mapping function from Mi to an attribute π(i). Let nπ(i) and
vπ(i) denote the attribute name and attribute value of attribute
π(i) respectively, i.e., π(i)={nπ(i), vπ(i)}. In our schemes, the
attribute values vπ(i) of an access policy (M, π, {π(i)}) and
the attribute values vi of an attribute set S are not exposed in
the ciphertext or secret key, while (M, π, nπ(i)) and attribute
names ni are disclosed.

Using our notation, a user’s attribute set S={ui}={ni, vi}
satisfies an access policy (M, π, π(i) = {nπ(i), vπ(i)}) if and
only if there exists I ⊆{1, ..., ℓ} and constants{γi}i∈I such that

∑
i∈I

γiMi=(1, 0, ..., 0) and π(i)=xi for ∀i∈I .

Similar to the scheme in [71], our schemes have the
restriction that each attribute name can only be used once
in an access policy. We can obtain a partially hidden access
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structure where attribute names are used multiple times (up
to a constant number of uses fixed at setup) from a one-use
scheme by applying the generic transformation given in [73].
While the transformation does incur some cost in key size, it
does not increase the size of the ciphertext.

3.4 Bilinear maps and complexity assumptions
Bilinear maps. Let GroupGen be a PPT algorithm that takes
as input a security parameter 1λ and outputs a set of group
parameters par=(p,G1,G2,GT , e, g1, g2), where p is a prime
of Θ(λ) bits,G1,G2 andGT are cyclic groups of order p, g1 and
g2 are the generators of G1 and G2 respectively. e :G1×G2→
GT is a bilinear mapping that satisfies the following properties:

• Computable: Given g1 ∈ G1, g2 ∈ G2, there is a
polynomial time algorithm to compute e(g1, g2)∈GT .

• Bilinear: For all g1 ∈ G1, g2 ∈ G2 and any integers
a, b∈Zp, we have e(ga

1, gb
2)=e(g1, g2)

ab.

• Non-Degenerate: There exists g1∈G1 and g2∈G2 such
that e(g1, g2) ̸= 1.

In this work, we only consider asymmetric (or Type-III)
pairing groups where there exists no efficiently computable
homomorphism between G1 and G2.

Decisional Linear (DLIN) assumption. We refer to the
asymmetric version of the DLIN problem introduced in [3].
We define the advantage of an algorithm A in deciding the
DLIN problem as

AdvA
DLIN :=

∣∣∣Pr[A(par, D, T0)=1]−Pr[A(par, D, T1)=1]
∣∣∣

where par := (p, G1, G2, GT , e, g1, g2)← GroupGen(1λ),

x1, x2, y1, y2,R
$←Zp, D=(gx1

1 ,gx2
1 ,gx1

2 ,gx2
2 ,gx1y1

1 ,gx2y2
1 ,gx1y1

2 ,

gx2y2
2 ). T0=(gy1+y2

1 , gy1+y2
2 ), T1=(gR

1 , gR
2 ). The probability is

over the uniform random choice of the parameters and over
the coin tosses of A . We say that an algorithm A(t, ε) decides
DLIN problem in G1 and G2 if A runs in time at most t, and
AdvA

DLIN is at least ε.

Definition 2. (DLIN assumption.) We say that the (t, ε) DLIN
assumption holds in both G1 and G2 if no t-time algorithm
has advantage at least ε in solving the DLIN problem.

Symmetric External Diffie Hellman (SXDH) assumption.
We define the advantage of an algorithm A in deciding the
SXDH problem as

AdvA
SXDH :=

∣∣∣Pr[A(par, D, T0)=1]−Pr[A(par, D, T1)=1]
∣∣∣

where par := (p, G1, G2, GT , e, g1, g2)← GroupGen(1λ),

x1, x2, y1, y2, R $← Zp, D = (gx1
1 , gy1

1 , gx2
2 , gy2

2 ).
T0 = (gx1y1

1 , gx2y2
2 ), T1 = (gR

1 , gR
2 ). The probability is over

the uniform random choice of the parameters and over the
coin tosses of A . We say that an algorithm A(t, ε) decides
SXDH problem in G1 and G2 if A runs in time at most t, and
AdvA

SXDH is at least ε.

Definition 3. (SXDH assumption.) We say that the (t, ε)
SXDH assumption holds in G1 and G2 if no t-time algorithm
has advantage at least ε in solving the SXDH problem.

4 Our proposed schemes

Our research begins with FABEO [92], the fastest KP-ABE
scheme known for its linear complexity in key size and
ciphertext size, and a constant 2 pairing operations in the
decryption process. As shown in Fig. 1, our design strategy
unfolds in stages. Initially, we transform from the FABEO
KP-ABE scheme into an A-KP-ABE scheme as a solid
foundation. Subsequently, this A-KP-ABE scheme serves
as the basis for creating FEASE as our primary achievement.
Building upon FEASE, we extend its capabilities to craft the
first expressive PAEKS scheme. Notably, all our schemes
maintain the same level of expressiveness and efficiency as
FABEO, inheriting the strengths of its construction. In this
section, we guide you through the step-by-step evolution of
our designs, starting from FABEO and progressing through
each scheme outlined in our roadmap.

4.1 Transform from FABEO KP-ABE into
anonymous KP-ABE

First, we show the syntax of an (anonymous) KP-ABE scheme.
A KP-ABE (or A-KP-ABE) scheme consists of the following
algorithms:

• (pk, msk)← Setup(1λ). The setup algorithm Setup is
run by a key generation center (KGC). The algorithm
takes as input a security parameter 1λ. It outputs a system
public key pk and a master secret key msk.

• sk←KeyGen(pk,msk,A). The key generation algorithm
KeyGen is run by the KGC. The algorithm takes as input
a public key pk, a master secret key msk, and an access
structure A. It outputs a secret key sk.

• ct← Enc(pk, S, msg). The encryption algorithm Enc
is run by the data sender. The algorithm takes as input
a public key pk, a set of attributes S, and a message msg.
It outputs a ciphertext ct.

• msg/ ⊥← Dec(ct, sk). The decryption algorithm Dec
is run by the data receiver. The algorithm takes as input
a ciphertext ct associated with an attribute set S and a
message msg, and a secret key sk associated with an
access policy A. It outputs the message msg if S satisfies
A, or outputs a⊥ otherwise.
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Technical Roadmap of our schemes

• FABEO KP-ABE: why we choose, why it is not anonymous

• A-KP-ABE: partially hidden structure (explain reason), DLIN protection for ciphertext

• FEASE: generic transformation, treat attributes as keywords

• PAEKS: KGA security requirements, data sender authentication, SXDH protection for trapdoor

FABEO

KP-ABE
A-KP-ABE

Partially hidden

FEASE

Generic 

transformation

PAEKS

Data sender

Authentication

Syntax

Scheme

Syntax

Scheme

Syntax

Scheme

Syntax

Scheme

Randomness splitting

Figure 1: The technical roadmap of our proposed schemes. The texts on the arrows indicate the main techniques we used for
the transformation from the left scheme to the right one.

The concrete construction of FABEO KP-ABE scheme [92] is
presented in Fig. 2. Note that the π(i) is the attribute inA and ui
is the attribute in S, following the notation defined in Sec. 3.2.
Besides, the r value in sk1 would have been a vector r′, and the
original version should be sk1, j =gr′[ j]

2 where j∈ [τ] indicates
the number of attribute re-use. In this paper, we simplify it and
let j=1 since it is easier for further illustrations.

(pk,msk)←Setup(1λ).
Run GroupGen(1λ) to obtain the group parameters

par := (p, e, G1, G2, GT , g1, g2). Pick α
$←Zp and a hash

function H : {0, 1}∗→G1. Compute the public key pk and
master secret key msk as

pk=(par,H, e(g1, g2)
α),msk=α.

sk←KeyGen(pk,msk,A=(M, π, {π(i)}i∈[ℓ])).

Pick r $←Zτ
p, v $←Zn−1

p . Compute

sk1=gr
2, sk2,i=gMi(α∥v)⊤

1 ·H(π(i))r.

Output sk=(A, sk1, {sk2,i}i∈[ℓ]).

ct←Enc(pk, S={ui}i∈[m],msg). Pick s $←Zp. Compute

ct1,i=H(ui)
s, ct2=gs

2, ct3=e(g1, g2)
αs ·msg.

Output ct=(S, {ct1,i}i∈[m], ct2, ct3).

msg/⊥←Dec(ct, sk).
If S satisfies A, there exists constants {γi}i∈I s.t. ∑i∈I γiMi=
(1, 0, ..., 0) and reconstruct the message msg by computing:

msg=
e(∏i∈I (ct1,π(i))

γi , sk1)·ct3

e(∏i∈I (sk2,i)γi , ct2)
.

Figure 2: The FABEO KP-ABE scheme

Why the FABEO KP-ABE does not ensure anonymity? In
terms of the anonymity of an A-KP-ABE scheme defined in
the Sec. 5.1, a close inspection of the FABEO construction
reveals two fundamental issues:

1. Exposed attribute set: The ciphertext in FABEO includes
the exposed attribute set S as an element, making it

directly accessible to potential attackers.

2. Attribute guessing attack: Even if the exposed attributes
are removed from the ciphertext, anonymity is not
guaranteed. Specifically, when provided with two
attributes, u0 and u1, and a ciphertext (ct1,ub , ct2) where
b∈{0, 1}, attackers can determine b from the equation
e(ct1,ub , g2)=e(H(ub), ct2).

To address the above vulnerabilities, we apply the following
techniques to transform FABEO KP-ABE into an A-KP-ABE
scheme. The A-KP-ABE construction is shown in Fig. 3. We
highlight the differences between the two schemes in red fonts.

Partially hidden structure. To consider how to conceal the ex-
posed attribute set, the choice of the privacy level becomes piv-
otal. If the objective is to safeguard the complete privacy of the
attribute set without any information leakage, the existing tech-
nique, Inner Product Encryption (IPE) by Katz et al. [66], is an
option. However, it suffers from a significant drawback: a super-
polynomial increase in both ciphertext and trapdoor size, mak-
ing it highly inefficient. Considering our goal of developing a
fast ASE scheme, a more viable alternative is the widely used
method known as the "partially hidden structure", illustrated in
Sec. 3.3. The essence of this structure lies in the division of each
attribute into a generic attribute name and an attribute value.
While the attribute values remain undisclosed in both the pri-
vate key and ciphertext, a partially hidden access structure and
attribute set expose only the attribute names. For instance, con-
sidering an access structure like “(Sender: Tom AND Subject:
Rent) OR Priority: Urgent” and an attribute set “[Sender: Bob,
Subject: Meeting, Priority: Medium]”, the partially hidden
access structure becomes “Sender AND (Subject OR Prior-
ity)” and the partially hidden attribute set is “[Sender, Subject,
Priority]”. During decryption, the algorithm first matches the
attribute names and then tests if the attribute values match.

As highlighted in Fig. 3, each attribute π(i) in an access
structure A is separated into a name nπ(i) and a value vπ(i),
in which nπ(i) is exposed with (M, π) in sk. Similarly, each
attribute ui in an attribute set S is separated into a name ni and
a value vi, in which ni is disclosed in ct.

This technique, although leaking a certain level of informa-
tion (i.e., attribute names), provides high efficiency. Attribute
names, being less sensitive than attribute values, allow for
efficient matching without involving pairing or exponentiation
operations. This efficiency improvement is critical, enabling
a fast location of specific attribute values under corresponding
names, thereby significantly enhancing decryption efficiency.
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(pk,msk)←Setup(1λ).
Run GroupGen(1λ) to obtain the group parameters

par :=(p, e, G1, G2, GT , g1, g2). Pick α, b1, b2
$←Zp and

a hash function H : {0, 1}∗→G1. Compute the public key
pk and master secret key msk as

pk=(par,H, gb1
2 , gb2

2 , e(g1, g2)
α),msk=(α, b1, b2).

sk←KeyGen(pk,msk,A=(M, π, {π(i)}i∈[ℓ]).

Remind that {π(i)}i∈[ℓ] = {nπ(i), vπ(i)}i∈[ℓ]. Pick r $← Zp,

v $←Zn−1
p . Compute sk1=gr

2,

sk2,i=(gMi(α∥v)⊤
1 ·H(π(i))r)

1
b1 , sk3,i=(gMi(α∥v)⊤

1 ·H(π(i))r)
1

b2 .

Output sk=((M, π, {nπ(i)}i∈[ℓ]), sk1, {sk2,i, sk3,i}i∈[ℓ]).

ct←Enc(pk, S={ui}i∈[m]={ni, vi}i∈[m],msg).

Pick s1, s2
$←Zp, let s=s1+s2. Compute

ct1,i=H(ui)
s, ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1,g2)

αs ·msg.

Output ct=({ni}i∈[m], {ct1,i}i∈[m], ct2, ct3, ct4).

msg/⊥←Dec(ct, sk).
Tests if there is any subset I that matches the attribute names
{ni}i∈[m] in ct with (M, π, {nπ(i)}i∈[ℓ]) in sk. If not, return
⊥. Otherwise, it finds constants {γi}i∈I s.t. ∑i∈I γiMi =
(1, 0, ..., 0) and reconstruct the message msg by computing:

msg=

e
(

∏i∈I (sk2,i)
γi , ct2

)
·e
(

∏i∈I (sk3,i)
γi , ct3

)
e
(

∏i∈I (ct1,π(i))γi , sk1

)
·ct4

.

If the equation holds, return 1. Otherwise, continue to find
another subset of I and repeat the checking. If the above
equation does not hold for all subsets, return 0.

Figure 3: Our A-KP-ABE scheme

Randomness splitting technique. We observe that the
attribute guessing attack is available as ct1,u and ct2 sharing
the same randomness s. To counter this problem, we introduce
a technique to split the randomness in the ciphertext, forming a
construction based on the Decisional Linear (DLIN) problem,
as detailed in Sec. 3.4. Specifically, we divide the randomness
s into two distinct components s1, s2 ∈Zp and let s= s1+s2.
As highlighted in Fig. 3, the ciphertext components are now
structured as ct1,i=H(ui)

s, ct2=gb1s1
2 , and ct3=gb2s2

2 , where
gb1

2 and gb2
2 are parts of the public key. At the secret key side, to

recover s and eliminate the b1, b2 terms, the secret key element

gMi(α∥v)⊤
1 ·H(π(i))r is doubling and exponentiation by 1

b1
and

1
b2

separately. By correctness, ct4 remains the same as the ct3
in FABEO. In this case, given two attributes, u0 and u1, and
a ciphertext (ct1,ub , ct2, ct3, ct4) where b∈{0, 1}, an attacker
who owns gb1

2 and gb2
2 can no longer discern the attribute ub due

to the inherent complexity of the DLIN problem. Consequently,
the ciphertext successfully conceals the attribute value.

4.2 FEASE: A Fast and Expressive ASE scheme
In this section, we demonstrate how to convert the A-KP-ABE
scheme proposed in Sec. 4.1 into the FEASE, which is our main
research target. We first introduce the syntax of an expressive
ASE scheme, which includes the following four algorithms:

• (pk, sk)←KeyGen(1λ). The key generation algorithm
KeyGen is run by the data receiver. The algorithm takes
as input a security parameter 1λ. It outputs a public key
pk and a secret key sk.

• td←Trap(pk, sk, P). The trapdoor generation algorithm
Trap is run by the data receiver. The algorithm takes as
input a public key pk, a secret key sk, and a keyword
policy structure P. It outputs a trapdoor td.

• ct←Enc(pk,W). The encryption algorithm Enc is run
by the data sender. The algorithm takes as input a public
key pk, and a set of keywordsW. It outputs a ciphertext ct.

• 1/0← Search(ct, td). The search algorithm Search is
run by the cloud server. The algorithm takes as input a
keyword ciphertext ct and a trapdoor td. It outputs a bit 1
if the search is successful, or a bit 0 if the search is failed.

In addition to the keyword ciphertext described in our syntax,
the data owner also encrypts documents using a public-key
encryption scheme. However, it is essential to highlight that
our focus in this paper is solely on the encryption of keywords.

It is easy to see that an A-KP-ABE scheme shares a similar
syntax as an expressive ASE scheme. In A-KP-ABE, a cipher-
text can only be decrypted with a secret key if the attributes in
the ciphertext satisfy the policy in the key. In expressive ASE,
keywords can only be searched if the keywords in the ciphertext
satisfy the policy associated with the trapdoor. Besides, the se-
mantic security of ASE (IND-CKA) (defined in Sec. 5.2) aligns
with the same level of security as the anonymity in A-KP-ABE
(defined in Sec. 5.1). Therefore, we can convert our A-KP-ABE
to FEASE by using the following generic transformation:

Generic transformation from A-KP-ABE to expressive
ASE. An ASE scheme ASE= (KeyGen, Enc, Trap, Search)
can be constructed from an A-KP-ABE scheme A-KP-ABE
=(Setup,KeyGen, Enc,Dec) by the following steps:

• (pk, sk) ← ASE.KeyGen(1λ). On input of a security
parameter 1λ, this algorithm executes as follows: (1) Run
(pk, msk)← A-KP-ABE.Setup(1λ). (2) Set sk← msk
and output (pk, sk).
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• td ← ASE.Trap(pk, sk, P). On input of pk, sk and a
keyword policy P, this algorithm executes as follows: (1)
Run sk← A-KP-ABE.KeyGen(pk, sk, P). (2) Set td←sk
and output td.

• ct ← ASE.Enc(pk, W). On input of pk and a set
of keywords W, this algorithm executes as follows:
(1) Set a message msg = 1. (2) Run ct ← A-KP-
ABE.Enc(pk,W,msg) and output ct.

• 1/0← ASE.Search(ct, td). On input of td and ct, this
algorithm executes as follows: (1) Set sk ← td. Run
msg′ ← A-KP-ABE.Dec(ct, sk). (2) If msg′ = 1, the
algorithm outputs 1, else 0.

Based on this transformation, the resulting construction of
FEASE is shown in Fig. 4. We highlight the differences be-
tween FEASE and our A-KP-ABE scheme. Note that nπ(i) and
vπ(i) represent the keyword name and value in the keyword pol-
icy P respectively. ni and vi are the keyword name and value in
the keyword set W respectively. We can see that FEASE’s con-
struction mirrors our A-KP-ABE scheme by treating attributes
as keywords and setting the message as a known value.

4.3 Fast and Expressive PAEKS scheme
After obtaining FEASE, we extend it into the first expressive
PAEKS scheme that has security against Keyword Guessing
Attack (KGA). Traditional ASE schemes cannot resist KGA
because 1) the data sender encrypts the keyword with only a
data receiver’s public key. The cloud server can generate ci-
phertext and exhaustively test the keywords within an existing
trapdoor, and 2) the trapdoor does guarantee keyword privacy:
Given two keyword policies, a cloud server can discern a trap-
door is generated from which policy. Thus, to defend against
KGA, the following security requirements should be satisfied:

1. The cloud server is not capable of matching an existing
trapdoor by generating a ciphertext.

2. Ciphertext Indistinguishability (CI): A ciphertext should
not reveal the keyword values in the keyword set.

3. Trapdoor Indistinguishability (TI): A trapdoor should
not reveal the keyword values in the keyword policies.

The formal definitions of CI and TI are defined in the Sec. 5.3.
In a PAEKS scheme, the data sender is allowed to have a public
key and a secret key. The keywords are encrypted by using
the data sender’s secret key and the data receiver’s public key.
The trapdoor is generated by using data receiver’s secret key
and the data sender’s public key. Since the cloud server does
not hold any of the secret keys, it cannot generate a ciphertext
to match with an existing trapdoor. Borrowing the semantic
security of FEASE, it is feasible to preserve CI in the PAEKS.
Thus, our main target is to develop TI in our PAEKS design.

The syntax of an expressive PAEKS scheme is defined with
the following algorithms:

(pk, sk)←KeyGen(1λ).
Run GroupGen(1λ) to obtain the group parameters

par :=(p, e, G1, G2, GT , g1, g2). Pick α, b1, b2
$←Zp and

a hash function H : {0, 1}∗→G1. Compute the public key
and secret key as

pk=(par,H, gb1
2 , gb2

2 , e(g1, g2)
α), sk=(α, b1, b2)

td←Trap(pk, sk, P=(M, π, {π(i)}i∈[ℓ])).

Remind that {π(i)}i∈[ℓ] = {nπ(i), vπ(i)}i∈[ℓ]. Pick r $← Zp,

v $←Zn−1
p . Compute td1=gr

2

td2,i=(gMi(α∥v)⊤
1 ·H(π(i))r)

1
b1 , td3,i=(gMi(α∥v)⊤

1 ·H(π(i))r)
1

b2

Output td=((M, π, {nπ(i)}i∈[ℓ]), td1, {td2,i, td3,i}i∈[ℓ]).

ct←Enc(pk,W={wi}i∈[m]={ni, vi}i∈[m]).

Pick s1, s2
$←Zp, let s=s1+s2. Compute

ct1,i=H(wi)
s, ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs

Output ct=({ni}i∈[m], {ct1,i}i∈[m], ct2, ct3, ct4).

1/0←Search(ct, td).
Tests if there is any subset I that matches the keyword
names {ni}i∈[m] in ct with (M, π, {nπ(i)}i∈[ℓ]) in td. If
not, return 0. Otherwise, it finds constants {γi}i∈I s.t.
∑i∈I γiMi=(1, 0, ..., 0) and computes:

ct4=

e
(

∏i∈I (td2,i)
γi , ct2

)
·e
(

∏i∈I (td3,i)
γi , ct3

)
e
(

∏i∈I (ct1,π(i))γi , td1

) .

If the equation holds, return 1. Otherwise, the cloud server
continues to find another subset of I and repeats the checking.
If the above equation does not hold for all subsets, return 0.

Figure 4: Our FEASE scheme

• pp←Setup(1λ). The Setup algorithm is run by a trusted
party. The algorithm takes as input a security parameter
1λ. It outputs the global public parameter pp.

• (pks, sks)← KeyGens(1λ). The KeyGens algorithm is
run by a data sender. This algorithm takes as input a
security parameter 1λ. It outputs the sender’s public key
pks and secret key sks.

• (pkr, skr)← KeyGenr(1λ). The KeyGenr algorithm is
run by a data receiver. This algorithm takes as input a
security parameter 1λ. It outputs the receiver’s public key
pkr and secret key skr.
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• td ← Trap(pp, pks, skr, P). The trapdoor generation
algorithm Trap is run by the data receiver. The algorithm
takes as input the public parameter pp, the sender public
key pks, the receiver secret key skr, and a keyword policy
structure P. It outputs a trapdoor td.

• ct← Enc(pkr, sks, W). The encryption algorithm Enc
is run by the data sender. The algorithm takes as input
the public parameter pp, the receiver public key pkr, the
sender secret key sks, and a set of keywords W. It outputs
a keyword ciphertext ct.

• 1/0← Search(ct, td). The search algorithm Search is
run by the cloud server. The algorithm takes as input a
keyword ciphertext and a trapdoor td. It outputs a bit 1
if the search is successful, or a bit 0 if the search is failed.

Data sender authentication. We first analyze why the trap-
door construction of FEASE does not guarantee keyword pri-
vacy. Considering the TI security model defined in the Sec. 5.3:
Given two keyword policies that contain keywords π(i)0
and π(i)1 separately, and a trapdoor (td1, td2,π(i)b

, td3,π(i)b
)

where b∈ {0, 1}, a cloud server can test the keywords π(i)0

and π(i)1 separately into the equation e(∏i∈I(td2,i)
γi , gb1

2 )=
e(g1, g2)

α ·e(∏i∈IH(π(i)b)
γi , td1) where the γi can be easily

calculated since there is no policy for a single keyword. Even
to distinguish two sets of keywords, the server can try different
policies together with γi and hash values. Since the number
of keywords and policies is polynomially bounded, the server
can discern the keywords hidden in the trapdoor.

The concrete construction of our PAEKS scheme is shown
in Fig. 5. We highlight the difference between the PAEKS and
FEASE. Our idea to extend from FEASE to PAEKS is to embed
a data sender’s secret key 1

c ∈Zp in the keywords term to be
distinguished in the ciphertext: H(wi)

s
c , and eliminate 1

c by the
corresponding pairing element gcr

2 in trapdoor, where gc
2 is the

data sender’s public key. The reasons are listed as follows:

• Multiplying a random number 1
c to s does not affect the

DLIN-type construction for the ciphertext, thus the CI se-
curity is inherited from the IND-CKA security of FEASE.

• gcr
2 is a single element that is not related to the number

of keywords, thus the efficiency of trapdoor generation
remains almost the same as FEASE.

• After changing the term from gr
2 to gcr

2 , the cloud server
is not capable of attacking the trapdoor since it only has
the knowledge of gc

2 and gcr
2 instead of gr

2. The difficulty
of the attack relies on solving the SXDH hard problem,
as introduced in Sec. 3.4.

5 Security definitions

In this section, we introduce the formal security definitions and
models of expressive A-KP-ABE, ASE, and PAEKS schemes.

pp←Setup(1λ). Run GroupGen(1λ) to obtain group
parameters par := (p, e, G1, G2, GT , g1, g2). Pick a hash
function H :{0, 1}∗→G1. The global public parameter is

pp=(par,H).

(pkr, skr)←KeyGenr(1λ). Pick α, b1, b2←Zp. Compute

pkr =(gb1
2 , gb2

2 , e(g1, g2)
α), skr =(α, b1, b2).

(pks, sks)←KeyGens(1λ). Pick c←Zp. Compute

pks=gc
2, sks=c.

td←Trap(pp, pks, skr, P=(M, π, {π(i)}i∈[ℓ])).

Remind that {π(i)}i∈[ℓ] = {nπ(i), vπ(i)}i∈[ℓ]. Pick r $← Zp,

v $←Zn−1
p . Compute td1=gcr

2

td2,i=(gMi(α∥v)⊤
1 ·H(π(i))r)

1
b1 , td3,i=(gMi(α∥v)⊤

1 ·H(π(i))r)
1

b2 .

Output td=((M, π, {nπ(i)}i∈[ℓ]), td1, {td2,i, td3,i}i∈[ℓ])

ct←Enc(pkr, sks,W={wi}i∈[m]={ni, vi}i∈[m]).

Pick s1, s2
$←Zp, let s=s1+s2. Compute

ct1,i=H(wi)
s
c , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs

Output ct=({ni}i∈[m], {ct1,i}i∈[m], ct2, ct3, ct4).

1/0←Search(ct, td).
Tests if there is any subset I that matches the keyword
names {ni}i∈[m] in ct with (M, π, {nπ(i)}i∈[ℓ]) in td. If
not, return 0. Otherwise, it finds constants {γi}i∈I s.t.
∑i∈I γiMi=(1, 0, ..., 0) and computes:

ct4=

e
(

∏i∈I (td2,i)
γi , ct2

)
·e
(

∏i∈I (td3,i)
γi , ct3

)
e
(

∏i∈I (ct1,π(i))γi , td1

) .

If the equation holds, return 1. Otherwise, the cloud server
continues to find another subset of I and repeats the checking.
If the above equation does not hold for all subsets, return 0.

Figure 5: Our PAEKS scheme

5.1 Security definitions of A-KP-ABE

The security model for an A-KP-ABE scheme with a partially
hidden structure addresses the property that a ciphertext does
not reveal any information about the encrypted message,
which we call “Indistinguishability against Chosen Plaintext
Attack (IND-CPA)” security and that a ciphertext does not
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reveal any information about the encrypted attribute set, which
we call “Anonymity (Anon)”.

IND-CPA Security. We model the adaptive IND-CPA
security in a game ∏ that is running between an adversary A
and a challenger C as follows:

• Setup. C runs Setup(1λ) to obtain a public key pk and
a master secret key msk. It sends pk to the adversary and
keeps msk secret.

• Phase 1. A issues queries to a key generation oracle for
polynomial many times:

– Key generation oracle: Given an access
structure A, the oracle generates a secret key
sk←KeyGen(pk,msk,A) and returns sk to A .

• Challenge. A outputs a challenge attribute set S∗ and two
equal-length messages msg∗0, msg∗1 with the restriction
that S∗ cannot satisfy any access structure A that has
been queried in Phase 1. Then C selects a random bit
b∈{0, 1}, runs the algorithm ct∗b←Enc(pk, S∗, msg∗b)
and returns the challenge ciphertext ct∗b to A .

• Phase 2. Same as Phase 1 with the restriction that any
input access structure A cannot be satisfied by S∗.

• Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

An A-KP-ABE scheme is adaptively IND-CPA secure if the
advantage function refers to the security game ∏

AdvCPA
∏,A(λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣
is negligible in security parameter λ for any PPT adversary A .

Anonymity. Then we model the anonymity property in
a game ∏ that is running between an adversary A and a
challenger C as follows:

• Setup. C runs Setup(1λ) to obtain a public key pk and
a master secret key msk. It gives pk to adversary A and
keeps msk secret.

• Phase 1. The adversary A issues queries to a key
generation oracle for polynomial many times:

– Key generation oracle: Given an access
structure A, the oracle generates a secret key
sk←KeyGen(pk,msk,A) and returns sk to A .

• Challenge. A outputs a messagemsg∗ and two equal-size
attribute sets S∗0 = {ni, vi0}i∈[m], S∗1 = {ni, vi1}i∈[m] with
the restriction that S∗0, S∗1 have the same attribute names
{ni}i∈[m] and neither of them satisfies any access structure
A that has been queried in Phase 1. C selects a random bit
b∈{0, 1}, runs the algorithm ct∗b←Enc(pk, S∗b, msg∗)
and returns the challenge ciphertext ct∗b to A .

• Phase 2. Same as Phase 1 with the restriction that any
input access structure A cannot be satisfied by S∗0 and S∗1.

• Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

An A-KP-ABE scheme is anonymous if the advantage
function refers to the security game ∏

AdvAnon
∏,A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣
is negligible in security parameter λ for any PPT adversary A .

5.2 Security definitions of expressive ASE
The security model for an expressive ASE scheme with
a partially hidden structure addresses the property that a
ciphertext does not reveal any information about the keyword
values, which we call Indistinguishability against Chosen
Keyword Attacks (IND-CKA) defined here for keyword sets.

IND-CKA security. We model the adaptive IND-CKA
security in a game ∏ that is running between an adversary A
and a challenger C as follows:

• Setup. The challenger C runs KeyGen(1λ) to obtain a
public key pk and the a secret key sk. It gives the public
key pk to adversary A and keeps sk to itself.

• Phase 1. The adversary A adaptively issues queries to
a trapdoor oracle for polynomial many times:

– Trapdoor oracle: Given a keyword policy
structure P, the oracle generates a trapdoor
td←Trap(pk, sk, P) and returns td to A .

• Challenge. A outputs two equal-size keyword sets
W∗0 = {ni, vi0}i∈[m], W∗1 = {ni, vi1}i∈[m] with the
restriction that W∗0, W∗1 have the same keyword names
{ni}i∈[m], and neither of them satisfies any trapdoor that
has been queried in Phase 1. C selects a random bit
b ∈ {0, 1}, runs the algorithm ct∗b← Enc(pk, W∗b) and
returns the challenge ciphertext ct∗b to the A .

• Phase 2. A continues to issue queries to the trapdoor
oracle for polynomial times with the restriction that any
P input by A cannot be satisfied by W∗0 and W∗1.

• Guess. A outputs its guess b′∈{0, 1} and wins the game
if b′=b.

An expressive ASE scheme is adaptively IND-CKA secure
if the advantage function refers to the security game ∏

AdvCKA
∏,A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣
is negligible in security parameter λ for any PPT adversary A .
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5.3 Security definitions of expressive PAEKS
The security model for an expressive PAEKS scheme with a
partially hidden structure addresses the property that a cipher-
text does not reveal any information about the keyword values,
which we call “Ciphertext Indistinguishability (CI)” and the
property that a trapdoor does not reveal any information about
the keyword policy values, which we call “Trapdoor Indistin-
guishability (TI)”. CI and TI are defined in two separate games
that are running between an adversary A and a challenger C .
We refer to the state-of-the-art PAEKS security model proposed
in [37], in which it addresses both the CI and TI in a multi-user,
multi-challenge, and fully chosen setting. Intuitively, these
terms indicate the following conditions in the CI/TI game:

1. Multi-user CI/TI: In the CI/ TI game, A can not only
input a keyword set/keyword policy but also input
a data receiver/data sender’s public key 11 to the
ciphertext/trapdoor oracle respectively.

2. Multi-challenge CI/TI: In the CI/TI game, A can choose
two sets of keywords for challenge keyword sets/policies
rather than only two single keywords respectively 12.

3. Fully-chosen CI/TI: In the CI/TI game, A can query ci-
phertext/trapdoor for the challenge keyword sets/keyword
policies from the ciphertext/trapdoor oracle respectively.

Game 1: Ciphertext Indistinguishability

1. Setup. Given a security parameter λ, the challenger C gen-
erates the global system parameter pp. Then C generates
a pair of sender’s key (pks, sks) and a pair of receiver’s
key (pkr, skr). It gives (pp, pks, pkr) to the adversary A .

2. Phase 1. A is allowed to adaptively issue queries to the
following oracles for polynomial many times:

• Trapdoor Oracle OT (P, pk): Given a keyword
policy structure P and a public key pk (not
necessarily the sender’s pks), the oracle computes a
trapdoor td←Trap(skr, pk, P) and returns td to A .

• Ciphertext Oracle OC(W, pk): Given a set of
keywords W and a public key pk (not necessarily
the receiver’s pkr), the oracle computes a ciphertext
ct←Enc(sks, pk,W) and returns ct to A .

3. Challenge. After Phase 1, A outputs two equal-size
keyword sets W∗0 = {ni, vi0}i∈[m], W∗1 = {ni, vi1}i∈[m]

with the restriction that W∗0,W∗1 have the same keyword
names {ni}i∈[m] and neither of them satisfies any trapdoor
that has been queried for OT (·, pks) in Phase 1, and
submits them to C . C randomly chooses a bit b∈{0, 1},
computes ct∗b←Enc(pkr, sks,W∗b) and returns ct∗b to A .

11The public key is not necessary to be the challenged data sender or
receiver, it could be anyone’s public key including A .

12This setting is not naturally preserved in a PAEKS scheme that only
supports equality queries. But for an expressive PAEKS, this is a default setting.

4. Phase 2. A continues to issue queries to OT and OC as
above, with the restriction that any trapdoor that is queried
for OT (·, pks) should not be satisfied by W∗0 and W∗1.

5. Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

We define A’s advantage of successfully distinguishing the
ciphertext of PAEKS as

AdvCI
A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣.
Definition 4. A PAEKS scheme is fully CI secure if for any PPT
adversary A , AdvCI

A (λ) is negligible for security parameter λ.

Game 2: Trapdoor Indistinguishability

1. Setup. The challenger C generates pp, (pks, sks) and
(pkr, skr) as in Game 1. It then gives (pp, pks, pkr) to
the adversary A .

2. Phase 1. A issues queries to oracles OT (P, pk) and
OC(W, pk) as in Game 1.

3. Challenge. After Phase 1, A chooses two equal size
keyword policiesP∗0=(M∗,π∗, {nπ∗(i), vπ(i)0}i∈[ℓ]),P∗1=
(M∗, π∗, {nπ∗(i), vπ(i)1}i∈[ℓ]) with the restriction that
P∗0,P∗1 have the same (M∗,π∗, {nπ∗(i)}i∈[ℓ]) and neither of
them are satisfied by any ciphertext that has been queried
to OC(·, pkr) in Phase 1, and submits them to C as the
challenge keywords. C randomly chooses a bit b∈{0, 1},
computes td∗b←Trap(pks, skr, P∗b) and returns td∗b to A .

4. Phase 2. A continues to issue queries to OT and OC as
above, with the restriction that any ciphertext that is
queried for OC(·, pkr) should not be satisfied by P∗0 and
P∗1.

5. Guess. A outputs b′∈{0, 1} and wins the game if b′=b.

We define A’s advantage of successfully distinguishing the
trapdoors of PAEKS as

AdvTI
A (λ)=

∣∣∣∣Pr[b′=b]− 1
2

∣∣∣∣.
Definition 5. A PAEKS scheme is fully TI secure if for any PPT
adversary A , AdvTI

A (λ) is negligible for security parameter λ.

6 Security Analysis of our schemes

In this section, we prove the security of our A-KP-ABE,
FEASE, and PAEKS schemes under the Generic Group Model
(GGM) and random oracle model. The reasons we use the
generic group model can be summarized into the following
aspects:
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• The GGM is widely utilized in practical applications
due to its sufficient security, supported by a deep
understanding of pairing curves and widespread adoption.
In practice, there is no significant difference observed
between standard assumptions like SXDH and GGM
security [92]. Real-world systems are more vulnerable
to issues such as side-channel attacks or poor security
practices, which are beyond the scope of GGM.

• The most efficient ABE schemes, such as FABEO [92]
and BSW [12], are proven under GGM. Our proposed
schemes, aimed at efficiency, utilize the same proof
technique as [92], making GGM the natural choice.

• GGM serves as the base technique for proving the security
of many well-known static assumptions like Diffie-
Hellman (DH), Bilinear Diffie-Hellman (BDH), and their
variants [14, 15, 98]. This underscores GGM’s role in
security proofs within various cryptographic contexts.

In the proofs of further sections, we define the GGM and
random oracle separately as follows:

• Random oracle: The challenger C maintains a list L with
entries of the form <xi, hi, ti>, which is initially empty.
When the adversary A or the simulation inputs an attribute
(or keyword) string xi, C checks if xi already appears
on the list L in a tuple < xi, hi, ti >. If yes, then C re-

sponds with H(xi)=hi∈G1. Otherwise, C picks ti
$←Zp

and computes hi← gti
1 ∈ G1. Then C adds the tuple <

xi, hi, ti> to list L and responds to A by settingH(xi)=hi.

• Generic group model: We consider random encodings
ψ1, ψ2, ψT of the additive group Zp, that is injective
maps ψ1, ψ2, ψT : Zp→ {0, 1}m, where m > 3log(p).
The probability of A guessing an element in the image of
ψ1, ψ2, ψT is negligible. For i= 1, 2, T we write Gi =
{ψi(x) : x ∈ Zp}. We are given oracles to compute the
induced group action onG1,G2,GT and an oracle to com-
pute a non-degenerate bilinear map e :G1×G2→GT .

Theorem 1. Our A-KP-ABE scheme is adaptively IND-CPA
secure under the generic group model by modeling the hash
function H as a random oracle.

Proof. In the IND-CPA game, the only ciphertext com-
ponent that is related to the two challenged messages is
ct4=e(g1, g2)

αs ·msg. Therefore, the adversary A attempts to
win the game by distinguishing ct4 =e(g1, g2)

αs ·msg∗0 from
ct4=e(g1, g2)

αs ·msg∗1.

For θ
$←Zp and β

$←{0, 1}, the probability of distinguishing
e(g1, g2)

αs ·msg∗0 from e(g1, g2)
θ is equal to that of distinguish-

ing e(g1, g2)
θ from e(g1, g2)

αs ·msg∗1. Therefore, if A has
advantage ε in winning the IND-CPA game, then it has advan-
tage ε

2 in distinguishing e(g1, g2)
αs from e(g1, g2)

θ. Thus, we
consider a modified game where A can distinguish e(g1, g2)

αs

from e(g1, g2)
θ. The modified game is simulated as follows:

Setup. The challenger C chooses α, b1, b2
$←Zp and sends

the public key pk=(g1, g2, gb1
2 , gb2

2 , e(g1, g2)
α) to A .

Phase 1. In phase 1, A can make oracle queries to the random
oracle and a key generation oracle as follows:

• Random oracle: Same as defined above.

• Key generation oracle: When A makes a key query for

an access policy A=(M, π, {π(i)}i∈[ℓ]), C picks r $←Zp

and a vector v⃗ $←Zn−1
p . Let λi=Mi(α∥ v⃗)⊤. Note that the

λi are chosen uniformly and independently at random
from Zp subject to the random distribution of α and v⃗.
Then C generates the secret key as the following:

sk1=gr
2, sk2,i=g

(λi+tir)· 1
b1

1 , sk3,i=g
(λi+tir)· 1

b2
1 .

Then C gives sk=(sk1, {sk2,i, sk3,i}i∈[ℓ]) to A .

Challenge. A outputs an attribute set S∗ and two messages
msg∗0, msg∗1 that it intends to attack. C checks if S∗ satisfies
any of the access policy A queried in Phase 1. If yes, C rejects

S∗. Otherwise, C chooses s1, s2, θ
$← Zp and let s = s1 + s2.

Then C selects β
$←{0, 1} for encrypting one set of attributes,

and chooses µ = {0, 1}. If µ = 0, it generates the challenge
ciphertext as follows:

ct1,i=gti
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Otherwise, it generates the challenge ciphertext as follows:

ct1,i=gtis
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

θ.

Then C gives ct=({ct1,i}i∈[m], ct2, ct3, ct4) to A .
Phase 2. It is the same as in Phase 1 with the restriction
that any input access policy A are not allowed to satisfy the
challenge attribute sets S∗.

We can see that if A can construct e(g1, g2)
δαs for some

δ∈Zp that can be combined from the oracle outputs he has
already queried, then A can use it to distinguish e(g1, g2)

αs

from e(g1, g2)
θ. Therefore, we show that A can construct

e(g1, g2)
δαs for some δ with only negligible probability, and

cannot gain a non-negligible advantage in the IND-CPA game.
Then we consider the probability of A constructing

e(g1, g2)
δtis for some δ ∈ Zp from the oracle outputs he has

queried. To do this, we can do a case analysis based on the
information given to A by the simulation. We first summarize
the elements on exponents that could be used in the groups
G1,G2 and GT .

• G1 elements: 1, ti, tis, 1
b1
·(λi+tir), 1

b2
·(λi+tir).

• G2 elements: 1, r, b1s1, b2s2, b1, b2.

• GT elements: α.
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Then we enumerate all rational function queries possible into
GT by means of the bilinear map and the group elements given
A in Table 5. A can query for arbitrary linear combinations
of these, and we will show that none of these polynomials can
be equal to a polynomial of the form δαs.

Let us consider how to construct e(g1, g2)
δαs for some

δ. As we can see from Table 5, since s = s1 + s2 cannot
be combined by any simple addition or subtraction for the
elements on G1, G2, and GT . The only way that A can create
a term containing s is by pairing 1

b1
· (λi + tir) with b1s1 and

pairing 1
b2
·(λi+tir) with b2s2 to get the term (λi+tir)·s1 and

(λi+tir)·s2 separately, and multiply them together to obtain
(λi+tir)·(s1+s2)=λis+tirs on GT .

In this case, the only way that A can construct δαs on GT
is to construct tirs and cancel the term of λis on GT by using
the existing oracle queries. As we can see in Table 5, A can
construct tirs by pairing the tis with r. Then A only needs to
cancel the term λis. In terms of Table 5 and the summary of
the elements on exponents, the only way to cancel λis by using
existing queries is to reconstruct λi to α since αs is known on
GT . However, it is impossible to reconstruct α since any input
access policy A cannot be satisfied by the attribute sets S∗. In
other words, it is impossible for A to construct δαs on GT .

Finally, we can conclude that A gains a negligible advantage
in the modified game, which means that A gains a negligible
advantage in the IND-CPA game. Then the proof of theorem 1
is completed.

Theorem 2. Our A-KP-ABE scheme is anonymous under
the generic group model by modeling the hash function H as
a random oracle.

Proof. In the anonymity game, the only ciphertext compo-
nent that is related to the two challenged attribute sets is
ct1,i =H(xi)

s. Similarly, we can simulate ct1,i =H(xi)
s =gtis

1 .
Therefore, A attempts to win the game by distinguishing
{gti0s

1 }i∈[m] from {gti1s
1 }i∈[m].

For θ
$←Zp and β

$←{0, 1}, the probability of distinguishing

{gti0s
1 }i∈[m] from g

tiβθ

1 is equal to that of distinguishing g
tiβθ

1
from {gti1s

1 }i∈[m]. Therefore, if A has advantage ε in winning
the anonymity game, then it has advantage ε

2 in distinguishing

g
tiβs
1 from g

tiβθ

1 . Thus, we consider a modified game where A
can distinguish g

tiβs
1 from g

tiβθ

1 . For simplicity, we denote g
tiβs
1

and g
tiβθ

1 as gtis
1 and gtiθ

1 respectively in all further paragraphs.
The modified game is simulated as follows:

Setup. The challenger C chooses α, b1, b2
$←Zp and sends

the public key pk=(g1, g2, gb1
2 , gb2

2 , e(g1, g2)
α) to A .

Phase 1. In phase 1, A can make oracle queries to the random
oracle and a key generation oracle as follows:

• Random oracle: Same as defined above.

• Key generation oracle: When A makes a key query for

an access policy A=(M, π, {π(i)}i∈[ℓ]), C picks r $←Zp

and a vector v⃗ $← Zn−1
p . Let λi = Mi(α ∥ v⃗)⊤. Then C

generates the secret key as the following:

sk1=gr
2, sk2,i=g

(λi+tir)· 1
b1

1 , sk3,i=g
(λi+tir)· 1

b2
1 .

Then C gives sk=(sk1, {sk2,i, sk3,i}i∈[ℓ]) to A .

Challenge. A outputs two attribute sets S∗0 = {xi0}i∈[m] =
{ni, vi0}i∈[m], S∗1={xi1}i∈[m]={ni, vi1}i∈[m], that it intends to
attack. Note that S∗0, S∗1 must have the same attribute names
{ni}i∈[m]. C checks if S∗0 or S∗1 satisfies any of the access policy
A queried in Phase 1. If yes, C rejects S∗0, S∗1. Otherwise,

C chooses s1, s2, θ
$←Zp and let s = s1+ s2. Then C selects

β
$←{0, 1} for encrypting one set of attributes, and chooses µ=
{0, 1}. If µ=0, it generates the challenge ciphertext as follows:

ct1,i=gtiθ
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Otherwise, it generates the challenge ciphertext as follows:

ct1,i=gtis
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Then C gives ct=({ct1,i}i∈[m], ct2, ct3, ct4) to A .
Phase 2. Same as in Phase 1 except any input access policy A
is not allowed to satisfy the challenge attribute sets S∗0 and S∗1.

We can see that if A can construct e(g1, g2)
δtis for some

δ∈Zp that can be combined from the oracle outputs he has
already queried, then A can use it to distinguish gtiθ

1 from gtis
1 .

Therefore, we need to show that A can construct e(g1, g2)
δtis

for some δ with a negligible probability, which means that A
cannot gain a non-negligible advantage in the anonymity game.

Then we consider the probability of A constructing
e(g1, g2)

δtis for some δ ∈ Zp from the oracle outputs he has
queried. Similarly, we summarize the elements on exponents
that could be used in the groups G1,G2 and GT .

• G1 elements: 1, ti, 1
b1
·(λi+tir), 1

b2
·(λi+tir).

• G2 elements: 1, r, b1s1, b2s2, b1, b2.

• GT elements: α, αs.

Then we enumerate all rational function queries possible into
GT by means of the bilinear map and the group elements given
A in Table 6. A can query for arbitrary linear combinations
of these, and we will show that none of these polynomials can
be equal to a polynomial of the form δtis.

Let us consider how to construct e(g1, g2)
δtis for some

δ. As we can see from Table 6, since s = s1 + s2 cannot
be combined by any simple addition or subtraction for the
elements on G1, G2, and GT . The only way that A can create
a term containing s is by pairing 1

b1
· (λi + tir) with b1s1 and

pairing 1
b2
·(λi+tir) with b2s2 to get the term (λi+tir)·s1 and
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1 r b1s1 b2s2 b1 b2
ti tir tib1s1 tib2s2 b1ti b2ti
tis tisr tisb1s1 tisb2s2 tisb1 tisb2

1
b1
·(λi+tir) r

b1
·(λi+tir) (λi+tir)·s1

b2s2
b1
·(λi+tir) λi+tir

b2
b1
·(λi+tir)

1
b2
·(λi+tir) r

b2
·(λi+tir)

b1s1
b2
·(λi+tir) (λi+tir)·s2

b1
b2
·(λi+tir) λi+tir

Table 5: Pairing elements in GT for the IND-CPA game

1 r b1s1 b2s2 b1 b2
ti tir tib1s1 tib2s2 b1ti b2ti

1
b1
·(λi+tir) r

b1
·(λi+tir) (λi+tir)·s1

b2s2
b1
·(λi+tir) λi+tir

b2
b1
·(λi+tir)

1
b2
·(λi+tir) r

b2
·(λi+tir)

b1s1
b2
·(λi+tir) (λi+tir)·s2

b1
b2
·(λi+tir) λi+tir

Table 6: Pairing elements in GT for the anonymity game

(λi+tir)·s2 separately, and multiply them together to obtain
(λi+tir)·(s1+s2)=λis+tirs on GT .

In this case, the only way that A can construct δtis on
GT is to construct tirs and cancel the term of λis on GT by
using the existing oracle queries. First, for an existing key
query A = (M, π, {π(i)}i∈[ℓ]) and the challenge attribute
set S∗

β
= {xiβ}i∈[m], there could exist some attribute value

π(i) ∈ {xiβ} if only A is not satisfied by S∗
β
. Thus, A can

construct tirs by choosing a π(i)∈{xiβ} such that the random
oracle outputs the same ti for the sk2,i, sk3,i in the key and for
the ct1,i in the challenge ciphertext, and then pairing the tis
with r. Then A only needs to cancel the term λis. In terms
of Table 6 and the summary of the elements on exponents,
the only way to cancel λis by using existing queries is to
reconstruct λi to α since αs is known on GT . However, it is
impossible to reconstruct α since any input access policy A
cannot be satisfied by the attribute sets S∗

β
. In other words, it

is impossible for A to construct δtis on GT .
Finally, we can conclude that A gains a negligible advantage

in the modified game, which means that A gains a negligible
advantage in the anonymity game. Then the proof of theorem 2
is completed.

Theorem 3. FEASE is adaptively IND-CKA secure under
the generic group model by modeling the hash function H as
a random oracle.

Proof. In the IND-CKA game, the only ciphertext compo-
nent that is related to the two challenged keyword sets is
ct1,i =H(xi)

s. Similarly, we can simulate ct1,i =H(xi)
s =gtis

1 .
Therefore, the adversary A attempts to win the game by
distinguishing {gti0s

1 }i∈[m] from {gti1s
1 }i∈[m].

For θ
$←Zp and β

$←{0, 1}, the probability of distinguishing

{gti0s
1 }i∈[m] from g

tiβθ

1 is equal to that of distinguishing g
tiβθ

1
from {gti1s

1 }i∈[m]. Therefore, if A has advantage ε in winning
the IND-CKA game, then it has advantage ε

2 in distinguishing

g
tiβs
1 from g

tiβθ

1 . Thus, we consider a modified game where A
can distinguish g

tiβs
1 from g

tiβθ

1 . For simplicity, we denote g
tiβs
1

and g
tiβθ

1 as gtis
1 and gtiθ

1 respectively in all further paragraphs.
The modified game is simulated as follows:

Setup. The challenger C chooses α, b1, b2
$←Zp and sends

the public key pk=(g1, g2, gb1
2 , gb2

2 , e(g1, g2)
α) to A .

Phase 1. In phase 1, A can make oracle queries to the random
oracle and a trapdoor oracle as follows:

• Random oracle: Same as defined above.

• Trapdoor oracle: When A makes a trapdoor query for a

keyword policy P=(M, π, {π(i)}i∈[ℓ]), C picks r $←Zp

and a vector v⃗ $← Zn−1
p . Let λi = Mi(α ∥ v⃗)⊤. Then C

generates the trapdoor as the following:

td1=gr
2, td2,i=g

(λi+tir)· 1
b1

1 , td3,i=g
(λi+tir)· 1

b2
1 .

Then C gives td=(td1, {td2,i, td3,i}i∈[ℓ]) to A .

Challenge. A outputs two keyword sets W∗0 = {xi0}i∈[m] =
{ni, vi0}i∈[m], W∗1 = {xi1}i∈[m] = {ni, vi1}i∈[m], that it intends
to attack. Note that W∗0, W∗1 must have the same keyword
names {ni}i∈[m]. C checks if W∗0 or W∗1 satisfies any of the
keyword policy P queried in Phase 1. If yes, C rejects W∗0,W∗1.

Otherwise, C chooses s1, s2, θ
$←Zp and let s= s1+s2. Then

C selects β
$← {0, 1} for encrypting one set of keywords,

and chooses µ = {0, 1}. If µ = 0, it generates the challenge
ciphertext as follows:

ct1,i=gtiθ
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Otherwise, it generates the challenge ciphertext as follows:

ct1,i=gtis
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Then C gives ct=({ct1,i}i∈[m], ct2, ct3, ct4) to A .
Phase 2. It is the same as in Phase 1 with the restriction that
any input keyword policy P are not allowed to satisfy the
challenge keyword sets W∗0 and W∗1.

We can see that if A can construct e(g1, g2)
δtis for some

δ∈Zp that can be combined from the oracle outputs he has
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already queried, then A can use it to distinguish gtiθ
1 from gtis

1 .
Therefore, we need to show that A can construct e(g1, g2)

δtis

for some δ with a negligible probability, which means that A
cannot gain a non-negligible advantage in the IND-CKA game.

Then we consider the probability of A constructing
e(g1, g2)

δtis for some δ ∈ Zp from the oracle outputs he
has queried. Similarly, we first summarize the elements on
exponents that could be used in the groups G1,G2 and GT .

• G1 elements: 1, ti, 1
b1
·(λi+tir), 1

b2
·(λi+tir).

• G2 elements: 1, r, b1s1, b2s2, b1, b2.

• GT elements: α, αs.

Then we enumerate all rational function queries possible into
GT by means of the bilinear map and the group elements given
A in Table 7. A can query for arbitrary linear combinations
of these, and we will show that none of these polynomials can
be equal to a polynomial of the form δtis.

Let us consider how to construct e(g1, g2)
δtis for some

δ. As we can see from Table 7, since s = s1 + s2 cannot
be combined by any simple addition or subtraction for the
elements on G1, G2, and GT . The only way that A can create
a term containing s is by pairing 1

b1
· (λi + tir) with b1s1 and

pairing 1
b2
·(λi+tir) with b2s2 to get the term (λi+tir)·s1 and

(λi+tir)·s2 separately, and multiply them together to obtain
(λi+tir)·(s1+s2)=λis+tirs on GT .

In this case, the only way that A can construct δtis on GT
is to construct tirs and cancel the term of λis on GT by using
the existing oracle queries. First, for an existing trapdoor
query P = (M, π, {π(i)}i∈[ℓ]) and the challenge keyword
set W∗

β
= {xiβ}i∈[m], there could exist some keyword value

π(i) ∈ {xiβ} if only P is not satisfied by W∗
β
. Thus, A can

construct tirs by choosing a π(i)∈{xiβ} such that the random
oracle outputs the same ti for the td2,i, td3,i in the trapdoor and
for the ct1,i in the challenge ciphertext, and then pairing the
tis with r. Then A only needs to cancel the term λis. In terms
of Table 7 and the summary of the elements on exponents,
the only way to cancel λis by using existing queries is to
reconstruct λi to α since αs is known on GT . However, it is
impossible to reconstruct α since any input keyword policy
P cannot be satisfied by the keyword sets W∗

β
. In other words,

it is impossible for A to construct δtis on GT .
Finally, we can conclude that A gains a negligible advantage

in the modified game, which means that A gains a negligible
advantage in the IND-CKA game. Then the proof of theorem 3
is completed.

Theorem 4. The proposed PAEKS scheme is fully CI secure
under the generic group model by modeling the hash function
H as a random oracle.

Proof. In the fully CI game, the only ciphertext component that
is related to the two challenged keyword sets is ct1,i=H(xi)

s
c .

Based on the simulation of the random oracle as above, we
can simulate ct1,i =H(xi)

s
c = g

ti· sc
1 . Therefore, A attempts to

win the game by distinguishing {gti0· sc
1 }i∈[m] from {gti1· sc

1 }i∈[m].

For θ
$←Zp and β

$←{0, 1}, the probability of distinguishing

{gti0· sc
1 }i∈[m] from g

tiβθ

1 is equal to that of distinguishing g
tiβθ

1

from {gti1· sc
1 }i∈[m]. Therefore, if A has an advantage ε in

winning the fully CI game, then it has an advantage ε

2 in

distinguishing g
tiβ· sc
1 from g

tiβθ

1 . Thus, we consider a modified

game where A can distinguish g
tiβ· sc
1 from g

tiβθ

1 . For simplicity,

we denote g
tiβ· sc
1 and g

tiβθ

1 as g
ti· sc
1 and gtiθ

1 respectively in all
further paragraphs. The modified game is simulated as follows:

Setup. The challenger C chooses α, b1, b2, c $← Zp
and sends the challenge data receiver’s public key
pkr = (g1, g2, gb1

2 , gb2
2 , e(g1, g2)

α) and the challenge
data sender’s public key pks=gc

2 to A .
Phase 1. In phase 1, A can query the random oracle, a trapdoor
oracle OT (·, ·), and a ciphertext oracle OC(·, ·) as follows:

• Random oracle: Same as defined above.

• Trapdoor oracle OT (·, ·): When A makes a trapdoor
query for a keyword policy P=(M, π, {π(i)}i∈[ℓ]) and a

data sender’s public key pk, C picks r̂ $←Zp and a vector

v⃗ $← Zn−1
p . Let λi = Mi(α ∥ v⃗)⊤. Then C generates the

trapdoor as the following:

td1=pkr̂, td2,i=g
(λi+ti r̂)· 1

b1
1 , td3,i=g

(λi+ti r̂)· 1
b2

1 .

If the input public key is the challenge data sender’s
public key, the trapdoor is simulated as:

td1=gcr̂
2 , td2,i=g

(λi+ti r̂)· 1
b1

1 , td3,i=g
(λi+ti r̂)· 1

b2
1 .

Then C gives td=(td1, {td2,i, td3,i}i∈[ℓ]) to A .

• Ciphertext oracle OC(·, ·): when A issues a ciphertext
query for a set of keywords W = {xi}i∈[m′] and a data
receiver’s public key pk= (pk1, pk2, pk3, pk4, pk5), C
picks ŝ1, ŝ2

$←Zp, ŝ= ŝ1+ŝ2 and simulates the ciphertext
as follows:

ct1,i=pk
ti· ŝc
1 , ct2=pkŝ1

3 , ct3=pkŝ2
4 , ct4=pkŝ

5.

If the input public key is the challenge data receiver’s
public key, the ciphertext is simulated as:

ct1,i=g
ti· ŝc
1 , ct2=gb1 ŝ1

2 , ct3=gb2 ŝ2
2 , ct4=e(g1, g2)

αŝ.

Then C gives ct=({ct1,i}i∈[m′], ct2, ct3, ct4) to A .
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1 r b1s1 b2s2 b1 b2
ti tir tib1s1 tib2s2 b1ti b2ti

1
b1
·(λi+tir) r

b1
·(λi+tir) (λi+tir)·s1

b2s2
b1
·(λi+tir) λi+tir

b2
b1
·(λi+tir)

1
b2
·(λi+tir) r

b2
·(λi+tir)

b1s1
b2
·(λi+tir) (λi+tir)·s2

b1
b2
·(λi+tir) λi+tir

Table 7: Pairing elements in GT for the IND-CKA game

Challenge. A outputs two keyword sets W∗0 = {xi0}i∈[m] =
{ni, vi0}i∈[m], W∗1 = {xi1}i∈[m] = {ni, vi1}i∈[m], that it intends
to attack. Note that W∗0, W∗1 must have the same keyword
names {ni}i∈[m]. C checks if W∗0 or W∗1 satisfies any of the
keyword policy P queried in Phase 1. If yes, C rejects W∗0,W∗1.

Otherwise, C chooses s1, s2, θ
$←Zp and let s= s1+s2. Then

C selects β
$← {0, 1} for encrypting one set of keywords,

and chooses µ = {0, 1}. If µ = 0, it generates the challenge
ciphertext as follows:

ct1,i=gtiθ
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Otherwise, it generates the challenge ciphertext as follows:

ct1,i=g
ti· sc
1 , ct2=gb1s1

2 , ct3=gb2s2
2 , ct4=e(g1, g2)

αs.

Then C gives ct=({ct1,i}i∈[m], ct2, ct3, ct4) to A .
Phase 2. It is the same as in Phase 1 with the restriction that
any input keyword policy P are not allowed to be satisfied by
the challenge keyword sets W∗0 and W∗1.

We can see that it is impossible for A to construct ti · sc onG1,
G2, and GT since A does not own the denominator c on Zp.
But if A can construct e(g1, g2)

δtis for some δ∈Zp that can
be combined from the oracle outputs he has already queried,
then A can use it to distinguish gtiθ

1 from g
ti· sc
1 because the c

and cr occurs on G2. Therefore, we need to show that A can
construct e(g1, g2)

δtis for some δ with a negligible probability,
which means that A cannot gain a non-negligible advantage
in the fully CI game.

Then we consider the probability of A constructing
e(g1, g2)

δtis for some δ ∈ Zp from the oracle outputs he
has queried. Similarly, we first summarize the elements on
exponents that could be used in the groups G1,G2 and GT .

• G1 elements: 1, ti, 1
b1
·(λi+tir), 1

b2
·(λi+tir).

• G2 elements: 1, c, cr, b1s1, b2s2, b1, b2.

• GT elements: α, αs.

Then we enumerate all rational function queries possible into
GT by means of the bilinear map and the group elements given
A in Table 8. A can query for arbitrary linear combinations
of these, and we will show that none of these polynomials can
be equal to a polynomial of the form δtis.

Let us consider how to construct e(g1, g2)
δtis for some

δ. As we can see from Table 8, since s = s1 + s2 cannot
be combined by any simple addition or subtraction for the

elements on G1, G2, and GT . The only way that A can create
a term containing s is by pairing 1

b1
· (λi + tir) with b1s1 and

pairing 1
b2
·(λi+tir) with b2s2 to get the term (λi+tir)·s1 and

(λi+tir)·s2 separately, and multiply them together to obtain
(λi+tir)·(s1+s2)=λis+tirs on GT .

In this case, the only way that A can construct δtis on GT
is to construct tirs and cancel the term of λis on GT by using
the existing oracle queries. First, for an existing trapdoor
query P = (M, π, {π(i)}i∈[ℓ]) and the challenge keyword
set W∗

β
= {xiβ}i∈[m], there could exist some keyword value

π(i) ∈ {xiβ} if only P is not satisfied by W∗
β
. Thus, A can

construct tirs by choosing a π(i)∈{xiβ} such that the random
oracle outputs the same ti for the td2,i, td3,i in the trapdoor and
for the ct1,i in the challenge ciphertext, and then pairing the
ti · sc with cr. Then A only needs to cancel the term λis. In terms
of Table 8 and the summary of the elements on exponents,
the only way to cancel λis by using existing queries is to
reconstruct λi to α since αs is known on GT . However, it is
impossible to reconstruct α since any input keyword policy
P cannot be satisfied by the keyword sets W∗

β
. In other words,

it is impossible for A to construct δtis on GT .
Finally, we can conclude that A gains a negligible advantage

in the modified game, which means that A gains a negligible
advantage in the fully CI game. Then the proof of theorem 4
is completed.

Theorem 5. The proposed PAEKS scheme is fully TI secure
under the generic group model by modeling the hash function
H as a random oracle.

Proof. In the fully TI game, the trapdoor compo-
nents that relate to the two challenged keyword

policies are td2,i = (gMi(α∥⃗v)⊤
1 · H(π(i))r)

1
b1 and

td3,i = (gMi(α∥⃗v)⊤
1 · H(π(i))r)

1
b2 . Based on the simula-

tion of the random oracle as above, let λi = Mi(α ∥ v⃗)⊤, we

can simulate td2,i =g
(λi+tir)· 1

b1
1 , td3,i =g

(λi+tir)· 1
b2

1 . Therefore,
the adversary A attempts to win the game by distinguishing

{g
(λi+ti0r)· 1

b1
1 }i∈[ℓ] from {g

(λi+ti1r)· 1
b1

1 }i∈[ℓ], or distinguishing

{g
(λi+ti0r)· 1

b2
1 }i∈[ℓ] from {g

(λi+ti1r)· 1
b2

1 }i∈[ℓ]. For simplicity, we

denote g
(λi+tir)· 1

b1
1 and g

(λi+tir)· 1
b2

1 together as g
(λi+tir)· 1b
1 .

For θ
$←Zp and β

$←{0, 1}, the probability of distinguishing

{g(λi+ti0r)· 1b
1 }i∈[ℓ] from g

(λi+tiβθ)· 1b
1 is equal to that of distin-
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1 c cr b1s1 b2s2 b1 b2
ti tic ticr tib1s1 tib2s2 b1ti b2ti

1
b1
·(λi+tir) c

b1
·(λi+tir) cr

b1
·(λi+tir) (λi+tir)·s1

b2s2
b1
·(λi+tir) λi+tir

b2
b1
·(λi+tir)

1
b2
·(λi+tir) c

b2
·(λi+tir) cr

b2
·(λi+tir)

b1s1
b2
·(λi+tir) (λi+tir)·s2

b1
b2
·(λi+tir) λi+tir

Table 8: Pairing elements in GT for the fully CI game

guishing g
(λi+tiβθ)· 1b
1 from g

(λi+ti1r)· 1b
1 . Therefore, if A has an

advantage ε in winning the fully TI game, then it has an advan-

tage ε

2 in distinguishing g
(λi+tiβr)· 1b
1 from g

(λi+tiβθ)· 1b
1 . Thus, we

consider a modified game where A can distinguish g
(λi+tiβr)· 1b
1

from g
(λi+tiβθ)· 1b
1 . For simplicity, we denote g

(λi+tiβr)· 1b
1 and

g
(λi+tiβθ)· 1b
1 as g

(λi+tir)· 1b
1 and g

(λi+tiθ)· 1b
1 respectively in all

further paragraphs. The modified game is simulated as follows:

Setup. The challenger C chooses α, b1, b2, c $← Zp
and sends the challenge data receiver’s public key
pkr = (g1, g2, gb1

2 , gb2
2 , e(g1, g2)

α) and the challenge
data sender’s public key pks=gc

2 to A .
Phase 1. In phase 1, A can query the random oracle, a trapdoor
oracle OT (·, ·), and a ciphertext oracle OC(·, ·) as follows:

• Random oracle: Same as defined above.

• Trapdoor oracle OT (·, ·): When A makes a trapdoor
query for a keyword policy P=(M, π, {π(i)}i∈[ℓ′]) and a

data sender’s public key pk, C picks r̂ $←Zp and a vector

v⃗ $← Zn−1
p . Let λi = Mi(α ∥ v⃗)⊤. Then C generates the

trapdoor as the following:

td1=pkr̂, td2,i=g
(λi+ti r̂)· 1

b1
1 , td3,i=g

(λi+ti r̂)· 1
b2

1 .

If the input public key is the challenge data sender’s
public key, the trapdoor is simulated as:

td1=gcr̂
2 , td2,i=g

(λi+ti r̂)· 1
b1

1 , td3,i=g
(λi+ti r̂)· 1

b2
1 .

Then C gives td=(td1, {td2,i, td3,i}i∈[ℓ′]) to A .

• Ciphertext oracle OC(·, ·): when A issues a ciphertext
query for a set of keywords W = {xi}i∈[m] and a data
receiver’s public key pk= (pk1, pk2, pk3, pk4, pk5), C
picks ŝ1, ŝ2

$←Zp, ŝ= ŝ1+ŝ2 and simulates the ciphertext
as follows:

ct1,i=pk
ti· ŝc
1 , ct2=pkŝ1

3 , ct3=pkŝ2
4 , ct4=pkŝ

5.

If the input public key is the challenge data receiver’s
public key, the ciphertext is simulated as:

ct1,i=g
ti· ŝc
1 , ct2=gb1 ŝ1

2 , ct3=gb2 ŝ2
2 , ct4=e(g1, g2)

αŝ.

Then C gives ct=({ct1,i}i∈[m], ct2, ct3, ct4) to A .

Challenge. A outputs two keyword policies P∗0 =
(M∗, π∗, {π(i)0}i∈[ℓ]), P∗1 = (M∗, π∗, {π(i)1}i∈[ℓ]), that it
intends to attack. Note thatP∗0,P∗1 must have the same (M∗,π∗).
C checks if P∗0 or P∗1 can be satisfied by any of the keyword set
W queried from the OC in Phase 1. If yes, then C rejectsP∗0,P∗1.

Otherwise, C chooses r, θ
$←Zp. Then C selects β

$←{0, 1}
for generating a challenge trapdoor, and chooses µ= {0, 1}.
If µ=0, it generates the challenge ciphertext as follows:

td1=gcr
2 , td2,i=g

(λi+tiθ)· 1
b1

1 , td3,i=g
(λi+tiθ)· 1

b2
1 .

Otherwise, it generates the challenge trapdoor as follows:

td1=gcr
2 , td2,i=g

(λi+tir)· 1
b1

1 , td3,i=g
(λi+tir)· 1

b2
1 .

Then C gives td=(td1, {td2,i, td3,i}i∈[ℓ′]) to A .
Phase 2. It is the same as in Phase 1 with the restriction
that any input keyword set W are not allowed to satisfy the
challenge keyword policy P∗0 and P∗1.

We can see that it is impossible for A to construct (λi+tir)· 1b
on G1, G2 and GT since A does not own the denominator
b1, b2 on Zp. But if A can construct e(g1, g2)

δ(λi+tir) for some
δ∈Zp that can be combined from the oracle outputs he has

already queried, then A can use it to distinguish g
(λi+tiθ)· 1b
1

from g
(λi+tir)· 1b
1 because b1 and b2 occurs onG2. Therefore, we

need to show that A can construct e(g1, g2)
δ(λi+tir) for some

δ with a negligible probability, which means that A cannot
gain a non-negligible advantage in the fully TI game.

Then we consider the probability of A constructing
e(g1, g2)

δ(λi+tir) for some δ∈Zp from the oracle outputs he
has queried. Similarly, we first summarize the elements on
exponents that could be used in the groups G1,G2 and GT .

• G1 elements: 1, ti, tis
c .

• G2 elements: 1, c, cr, b1s1, b2s2, b1, b2.

• GT elements: α, αs.

Then we enumerate all rational function queries possible
into GT by means of the bilinear map and the group elements
given A in Table 9. A can query for arbitrary linear combina-
tions of these, and we will show that none of these polynomials
can be equal to a polynomial of the form δ(λi+tir).

Let us consider how to construct e(g1, g2)
δ(λi+tir) for some

δ. As we can see from Table 9, only the terms tirc and tirs
include tir which is possible to construct (λi+tir). Thus, there
are only two possible cases:
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1 c cr b1s1 b2s2 b1 b2
ti tic ticr tib1s1 tib2s2 b1ti b2ti

1
c ·tis tis tisr 1

c ·(b1s1tis) 1
c ·(b2s2tis) 1

c ·(b1tis) 1
c ·(b2tis)

Table 9: Pairing elements in GT

• Case 1: A constructs (λi+tir)·c by using oracle queries.

• Case 2: A constructs (λi+tir)·s by using oracle queries.

For Case 1, A can calculate the pairing between (λi+tir)· 1b
on and c, and then attempt to construct λi · c

b +
tirc
b . However,

both the term λi · c
b and the term tirc

b cannot be constructed
on GT since A does not own 1

b1
and 1

b2
. In other words, it is

impossible for A to construct (λi+tir)·c for Case 1.
For Case 2, A can calculate the pairing between 1

b1
·(λi+tir)

and b1s1 and pairing between 1
b2
·(λi+tir) and b2s2 to get the

term (λi + tir) · s1 and (λi + tir) · s2 separately, and multiply
them together to obtain (λi+tir)·(s1+s2)=λis+tirs on GT .
The only way that A can construct (λi + tir) · s on GT is to
construct tirs and cancel the term of λis on GT by using the
existing oracle queries. First, for an existing ciphertext query
for keyword set W = {xi}i∈[m] and the challenge keyword
policy P∗

β
= (M, π, {π(i)}i∈[ℓ]), there could exist some

keyword value xi ∈ {π(i)β)} if only W does not satisfy P∗
β
.

Thus, A can construct tirs by choosing a xi∈{π(i)β)} such that
the random oracle outputs the same ti for the td2,i, td3,i in the
challenge trapdoor and for the ct1,i in the ciphertext, and then
pairing the tis

c with cr. Then A only needs to cancel the term
λis. In terms of Table 9 and the summary of the elements on
exponents, the only way to cancel λis by using existing queries
is to reconstruct λi to α since αs is known on GT . However, it
is impossible to reconstruct α since any input keyword set W
cannot be satisfied by the keyword policy P∗

β
. In other words,

it is impossible for A to construct (λi+tir)·s for Case 2.
Finally, we can conclude that A gains a negligible advantage

in the modified game, which means that A gains a negligible
advantage in the fully TI game. Then the proof of theorem 5
is completed.

7 Implementation and performance

We first introduce the roadmap of our experiments. Then we
analyze the performance of the expressive ASE and KP-ABE
schemes. Finally, we conduct an additional set of experiments
for larger datasets.

7.1 Implementation roadmap
We implement our FEASE, PAEKS, A-KP-ABE schemes and
the most efficient expressive ASE and ABE schemes in Python
3.9.16 using the Charm 0.5 framework [4] and the MNT224
curve for pairings because it is the best Type-III curve in PBC,

the default pairing library in Charm. All running times below
were measured on a PC with a 3.59 GHz AMD Ryzen 5 3600
6-Core Processor and 16GB RAM. The implementation code
is available on GitHub [1].

In particular, we compare our FEASE and PAEKS
scheme with the most efficient expressive ASE schemes
CWDWL16 [41] and MZNLHS17 [79] and compare our A-
KP-ABE scheme with the most efficient KP-ABE schemes
FAME [3] and FABEO [92] 13. Among these schemes, only
CWDWL16 is constructed on a symmetric setting. In order to
compare their efficiency on the same level, we transfer the con-
struction of CWDWL16 to the asymmetric setting (presented
in Appendix A). We choose not to compare FEASE with former
expressive ASE schemes [66,72,78] since they are all based on
the inefficient composite order groups. According to the anal-
ysis in [47, 54], in terms of the pairing-friendly elliptic curves,
prime order groups have a clear advantage in both parameter
size and computational efficiency over composite order groups.

For the expressive ASE schemes, we first choose random
words from the English vocabulary to form keyword names
and randomly assign a positive integer between 1 - 100 as a
keyword value to each keyword name. Thus, every keyword is
in the format of “Department: 2”, “Professional: 6”, “Hospital:
7”, etc. The keyword values are the input of the trapdoor and
encryption algorithm and the keyword names are exposed.
We ensure that the keyword names in every trapdoor are
included in the ciphertext, i.e., the keyword names can always
match regardless of the policy, but the keyword values are
chosen randomly for the trapdoor and ciphertext side. i.e.,
the keyword values only have little probability to match 14.
In this way, we can simulate the worst case that the search
has to traverse every subset of the matched keyword names
to maximize the search time. On the ciphertext side, we test
the encryption for 10, 20, ..., 100 keywords. On the trapdoor
side, we choose 10, 15, ..., 50 keywords and assign “AND”
and “OR” gates between the keywords to form policies.

For the KP-ABE schemes, We separate it into two cases:
for our A-KP-ABE scheme, we create the attribute set and
access policies in the way as the keyword set and keyword
policies as stated above. For FAME and FABEO KP-ABE
schemes, the partially hidden structure is not needed since they
do not aim to protect attribute privacy. Thus, their attributes
are straightforward and their policies are to use AND gate
between any attribute because all the attributes are then
required for decryption. We test these schemes against policies
and attribute sets of size 10, 20, ..., 100 since large policy sizes
are quite likely in typical use cases [53].

For both the keyword policies and access policies, we first
convert the policies into a Boolean formula and then to an
MSP using Lewko-Waters’ method [74] (see Sec. 3.2 for a
detailed discussion) so that the matrix M has only entries in

13The reasons are separately shown in Sec. 2.1 and 2.5
14If the keyword names are not matched, the search algorithm will terminate

in a very short time.
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Groups Choose Multiply Exp. Hash Pairing
G1 0.58 0.02 0.57 0.04

3.68G2 4.32 0.28 4.37 10.85
GT - 0.05 0.96 -

Table 10: Average time (in milliseconds) for various operations
on MNT224 curve.

Scheme Setup KeyGens KeyGenr KeyGenc
CWDWL16 [41] 31.56 - - 4.1
MZNLHS17 [79] 25.7 - - 1.2
FEASE (Fig. 4) 19.44 - - -
PAEKS (Fig. 5) 9.33 4.2 11.34 -

FAME [3] 21.69 - - -
FABEO [92] 9.8 - - -

A-KP-ABE (Fig. 3) 19.1 - - -

Table 11: Setup time and sender/receiver/server key generation
time for various schemes (in milliseconds)

.

{0, 1,−1} and the reconstruction coefficients {γi} are always
0 or 1, which reduces the number of exponentiations.

We present the setup times for the expressive ASE schemes
and KP-ABE schemes in Table 11. Then we show the running
times for the expressive ASE schemes in Fig. 6 and for the
KP-ABE schemes in Fig. 7. These results are supported by our
theoretical overview in Table 12 and Table 13 which lists the
number of multiplications and exponentiations for each group
as well as the number of hashing and pairing operations for
each scheme. Additionally,we provide the number of group ele-
ments of trapdoor/secret key and ciphertext in Table 14. A more
detailed explanation of running times and sizes is shown below.

7.2 Basic operation and initializations

Table 10 lists the average time taken by various operations
on MNT224 in milliseconds. We can see that operations on
group G2 are much more expensive than on G1, in which it
has 8 times for choosing an element and exponentiation, 14
times for multiplication, and 271 times for hashing. Pairing
is also a relatively expensive operation that is close to the cost
of exponentiation on G2. It is also important to note that the
size of an element in G2 is 3 times that of G1.

Setup time. In Table 11, we show the time of setup,
data sender/data receiver key generation (only used in our
PAEKS scheme), and cloud server key generation (used in
CWDWL16 and MZNLHS17) of the schemes listed in our
evaluation. Since all schemes support large universes of
keywords/attributes, all of these schemes have a constant
setup time and user/server key generation time and are almost
equally fast. In specific, the setup time of FEASE/PAEKS is
a bit faster than CWDWL16 and MZNLHS17, and the setup
time for our A-KP-ABE lies between FAME and FABEO.

7.3 Expressive ASE schemes

The running times for expressive ASE schemes are shown in
Fig. 6. For encryption, MZNLHS17 and our FEASE/PAEKS
have a very close time around 0.06∼ 0.07s for encrypting 100
keywords, in which CWDWL16 is nearly 7 times slower. This
result can be supported by Table 12: Although FEASE/PAEKS
has two more exponentiations in G2, MZNLHS17 has 6
more exponentiations and m + 2 multiplications in G1 and
CWDWL16 has much more of them.

For the trapdoor generation algorithm, FEASE/PAEKS has
the fastest 0.03s for generating a trapdoor with 50 keywords,
followed by 3.76s from CWDWL16, and the MZNLHS17
runs a very inefficient 53.75s for 50 keywords. In terms of
Table 12, almost all the multiplications and exponentiations
of CWDWL16 and MZNLHS17 are calculated on G2. Instead,
FEASE/PAEKS has less number of them and they happened
in G1. Besides, MZNLHS17 has a quadratic increasing
time regarding keyword numbers in a trapdoor, in which the
trade-off is brought from the target of constant-size ciphertext.

For the search algorithm, we can see from Fig. 6 (c) that,
all the schemes are linear to the number of matched keyword
names subset. For the special case that we implement (each
subset contains only one keyword), FEASE/PAEKS runs
the fastest 0.1s for 10 subsets which is 2 times faster than
CWDWL16 and MZNLHS17. Then Fig. 6 (d) shows that
FEASE/PAEKS is the only one that remains a constant time
around 0.011s for searching no matter how many keywords
are included in a subset, while CWDWL16 and MZNLHS
has a linear increase. We can see this in Table 13. First of all,
FEASE/PAEKS has the least number of multiplications in
GT and pairings. Second, the pairing number of CWDWL16
is related to x2 - the total number of keywords needed for
search, which is why the search time is both related to x1 -
the matched subset number, and the number of keywords in
each subset. Instead, the pairing number of MZNLHS17 and
FEASE/PAEKS is only related to x1. However, MZNLHS17
has extra calculations to multiply 4 components for each
trapdoor element in each subset, before carrying out the
pairing operations. This calculation is on the costly G2 group
and is linear to x2, which incurs a linear increase for their
search time. Note that FEASE/PAEKS also has a linear
increase regarding x2 for multiplications in G1, but as shown
in Table 10, it only takes 0.02ms for each hence it does not
impact the search time for a limited number of keywords.

Then we can see the comparison of the communication over-
head in Table 14, which shows the number of group elements
of trapdoor and ciphertext. Note that in general, elements inG2
are about 2 to 3 times the size of elements inG1. For ciphertext,
MZNLHS17 has a constant of 6 ciphertext elements in G1.
FEASE/PAEKS has m element in G1 and 2 elements in G2,
which is less than CWDWL16 that has 5m+ 1 elements on
G1. For trapdoor, FEASE/PAEKS has 2ℓ elements in G1 and
1 element in G2 while CWDWL16 has 6ℓ+1 elements in G2
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Schemes
Trapdoor/Secret Key Encryption

G1 G2 G1 G2
Mul Exp Hash Mul Exp Hash Mul Exp Hash Mul Exp Hash

CWDWL16 [41] - 1 - 3ℓ 8ℓ+1 - 2m 6m+2 - - - -
MZNLHS17 [79] - 1 - 3ℓ 4ℓ2+4ℓ+1 - m+2 m+6 - - - -
FEASE (Fig. 4) 2ℓ 4ℓ ℓ - 1 - - m m - 2 -
PAEKS (Fig. 5) 2ℓ 4ℓ ℓ - 1 - - m m - 2 -

FAME [3] 9ℓn+3n 9ℓ+3n 6ℓ+6n - 3 - 3m 6m 6m - - -
FABEO [92] ℓ 2ℓ ℓ - 1 - - m m - 1 -

A-KP-ABE (Fig. 3) 2ℓ 4ℓ ℓ - 1 - - m m - 2 -

Table 12: Computational overhead for trapdoor/key generation and encryption between ASE (top)/KP-ABE (bottom) schemes.
m denotes the number of keywords/attributes in the ciphertext, ℓ, and n are the number of rows and columns of the MSP matrix.

Schemes
Search/Decryption

G1 G2 GT
Mul Mul Exp Mul Pairing

CWDWL16 [41] - 1 - 5x2 6x2+1
MZNLHS17 [79] - 7x2−x1+1 - 5 6x1+1
FEASE (Fig. 4) 3x2 - - 2 3x1
PAEKS (Fig. 5) 3x2 - - 2 3x1

FAME [3] 6x2 - - 6 6
FABEO [92] 2x2 - - 2 2

A-KP-ABE (Fig. 3) 3x2 - - 3 3x1

Table 13: Computational overhead for search/decryption
between ASE (top)/KP-ABE (bottom) schemes. x1 denotes
the total number of matched keyword/attribute names subset.
x2 denotes the total number of keywords/attributes under every
matched names subset.

Schemes Trapdoor/Secret key Ciphertext
G1 G2 G1 G2

CWDWL16 [41] 1 6ℓ+1 5m+1 -
MZNLHS17 [79] 1 4ℓ2+2ℓ+1 6 -
FEASE (Fig. 4) 2ℓ 1 m 2
PAEKS (Fig. 5) 2ℓ 1 m 2

FAME [3] 3ℓ 3 3m 3
FABEO [92] ℓ 1 m 1

A-KP-ABE (Fig. 3) 2ℓ 1 m 2

Table 14: Comparison of communication overhead between
ASE (top)/KP-ABE (bottom) schemes. m denotes the number
of keywords/attributes in the ciphertext, and ℓ is the number
of rows of the MSP matrix.

group and 1 element in G1. The worst one is MZNLHS17
that they have quadratic 4ℓ2+2ℓ+1 trapdoor elements in G2,
which is a trade-off of their constant-size ciphertext.

7.4 KP-ABE schemes

We can see the running times for KP-ABE schemes in Fig. 7.
For encryption, our A-KP-ABE scheme runs a very fast 0.07s
for the encryption of 100 keywords, with only 0.01s slower
than FABEO! FAME needs 0.38s in the same case, which is 5
times slower than our A-KP-ABE. Referring to Table 12, this
is because our A-KP-ABE has the same m exponentiations

and hashes in G1 as same as FABEO while FAME has 6m.
The only difference between our A-KP-ABE and FABEO is
that we have one more exponentiation in G2.

For key generation, FABEO has the fastest 0.13s for a secret
key with 100 attributes. Our A-KP-ABE doubles the time
with 0.24s but it is 3.5 times faster than FAME. As Table 12
shows, all schemes mainly build elements in G1. FABEO
has ℓ hashes and 2ℓ exponentiations in G1, our A-KP-ABE
has double size calculations for them in order to build the
D-LIN type construction. Nevertheless, it is more efficient
than FAME since the number of exponentiations, hashes, and
multiplications of FAME all depend on ℓ and n.

For decryption, the Fig. 7 (c) shows that FAME and FABEO
all have a constant decryption time of 0.02s and 0.007s re-
spectively while our A-KP-ABE has a linear increase with the
number of matched attribute names subset x1. Even in this case,
our A-KP-ABE is only 0.08s slower than FAME and 0.093s
slower than FABEO when x1=10. We can see from Fig. 7 (d)
that when x1=1, our A-KP-ABE has a constant 0.012s no mat-
ter how many attributes are included in the subset, which is very
close to FABEO and even two times faster than FAME. In other
words, when x1≤2, our A-KP-ABE can decrypt at least as fast
as FAME. Table 13 shows the reason that, when x1=1, our A-
KP-ABE has a constant 3 pairings that lie between FABEO (2
pairings) and FAME (6 pairings). The linear relation to x1 is the
main bottleneck between our A-KP-ABE and non-anonymous
FAME and FABEO since the former protects anonymity by
using the partially hidden structure while the latter does not.
However, it is common sense that stronger security requirement
leads to the degradation of efficiency. Compared to former A-
KP-ABE schemes, our scheme already achieves the smallest
gap between the anonymous ABE and non-anonymous ABE
field, in which our A-KP-ABE scheme can even have compara-
ble efficiency to the fastest non-anonymous KP-ABE schemes!

To compare the communication overhead, we can go
through Table 14. For ciphertexts, FABEO has only m elements
inG1 and one element inG2, FAME is three times heavier than
FABEO in every parameter. Our A-KP-ABE only adds one
more element in G2 so it has a very similar ciphertext size as
FABEO. For the secret key, FABEO has ℓ size elements in G1
and 1 element in G2, while FAME has thrice more again. Our
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(a) ASE Encryption (b) ASE Trapdoor generation (c) ASE Search regarding matched sub-
set number (assume only one keyword
in each subset)

(d) ASE Search regarding keyword num-
ber in a matched subset (assume there is
only one matched subset)

Figure 6: Running times for ASE schemes

(a) KP-ABE Encryption (b) KP-ABE Key generation (c) KP-ABE Decryption regarding
matched subset number (assume only
one attribute in each subset)

(d) KP-ABE Decryption regarding key-
word number in a matched subset (as-
sume there is only one matched subset)

Figure 7: Running times for KP-ABE schemes

A-KP-ABE doubles the size of elements in G1 of FABEO, so
the communication overhead lies between FABEO and FAME.

7.5 Experiments with larger datasets

In the previous sections, we compared our schemes with the
state-of-the-art expressive ASE and ABE schemes using 100
keywords. Despite being acknowledged as the fastest in the
expressive ASE field, we recognized the importance of testing
our schemes on a larger, more practical dataset size. Thus, we
expand our dataset to 1000, 5000, and 10000 keywords for both
our FEASE and PAEKS schemes. This decision was influenced
by the fact that many state-of-the-art SSE schemes evaluate
their efficiency on much larger datasets. This marks the first
ASE work to explore datasets of such a substantial scale.

Table 15 presents the setup, trapdoor generation, encryption,
and search algorithms for both our FEASE and PAEKS
schemes. These algorithms were tested with 1000, 5000,
and 10000 keywords, considering "AND" gates between all
keywords in the policy for simplicity. First, the setup time for
both schemes remains constant and unaffected by the number

Schemes Dataset Setup Trap Enc Search

FEASE
1000 0.018 2.17 0.62 0.068
5000 0.018 14.13 3.28 1.5

10000 0.018 35.64 6.61 6.76

PAEKS
1000 0.031 2.05 0.64 0.076
5000 0.031 12.81 3.05 1.75

10000 0.031 33.4 6.31 6.55

Table 15: The running time (in seconds) for our FEASE
and PAEKS in larger datasets with 1000, 5000, and 10000
keywords for both the keyword sets and keyword policies.

of keywords 15. In the case of FEASE, with a dataset containing
1000 keywords, trapdoor generation, and encryption take
2.17s and 0.62s, respectively. The search algorithm operates at
0.068s. As the dataset expands to 5000 keywords, these times
increase to 14.13s, 3.28s, and 1.5s, respectively. For a dataset
of 10,000 keywords, these times further rise to 35.64s, 6.61s,

15The same considerations apply to the data sender key and data receiver
key generation algorithms in the PAEKS scheme. Therefore, we have omitted
the running time for these two algorithms in our evaluation.
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and 6.76s. Besides, the results from the PAEKS scheme mirror
those of FEASE closely, given their similar constructions.

The diagrams in Figure 6 show a strict linear correlation
between the running time of encryption and the number of
keywords in the dataset. However, there are deviations in the
running time of trapdoor generation and the search algorithm,
exceeding the linear relation with the keyword count. This
discrepancy arises because when the number of keywords
surpasses 1000, the built-in recursive functions "evalStack"
and “requiredAttributes” utilized in the trapdoor and search
algorithm hit the maximum recursion depth of the program.
Consequently, the program requires additional memory to exe-
cute, leading to increased running times. Addressing this issue
and optimizing the program remain areas for our future work.

Based on the results of this experiment, it is evident that
while the efficiency of ASE has not yet reached the same level
as SSE, our FEASE demonstrates state-of-the-art efficiency in
the expressive ASE field. In summary, the asymptotic perfor-
mance of the expressive ASE field is developing from the fully
hidden scheme using IPE [66] to partially hidden schemes in
composite order groups [72,78], and further to partially hidden
schemes in prime order group [41, 79]. Furthermore, the
foundation KP-ABE scheme is chosen from [73] for [72, 78],
to [93] for [41,79], and finally to the most efficient FABEO [92]
for our FEASE and PAEKS. The progress in group settings,
partially hidden structure, and KP-ABE schemes together
form the efficiency enhancement for expressive ASE schemes.
We anticipate that future research efforts will continue to
explore novel techniques to further enhance ASE efficiency.

8 Conclusion

In this paper, we have proposed a fast and expressive asym-
metric searchable encryption (FEASE) scheme and applied
similar techniques to create two other fast and expressive ap-
plications: a public key authenticated encryption with key-
word search (PAEKS) scheme and an anonymous key-policy
attribute-based encryption (A-KP-ABE) scheme. The perfor-
mance of these three schemes reaches the highest efficiency
level in these three primitives, and it is comparable to the state-
of-the-art non-anonymous ABE schemes FAME and FABEO.
Compared to SSE, the lack of capabilities supporting dynamic
updates is still a shortcoming of ASE schemes. In the future, we
will carry on our research for the dynamism of the ASE field.
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A CWDWL16 scheme in the Type-III setting

Fig. 8 shows the CWDWL16 scheme that we transformed into
the Type-III asymmetric setting.

(pp, sk)←KeyGen(1λ). Run GroupGen(1λ) to obtain

par := (p, e, G1, G2, GT , g1, g2). Pick u1, h1, δ1
$← G1,

u2, h2, δ2
$←G2, α, d1, d2, d3, d4

$←Zp, and a hash function
H :GT→G2. Compute the public key and secret key as

pp=(par,H, g1, u1, h1, δ1, u2, gd1
1 , gd2

1 , gd3
1 , gd4

1 , e(g1, g2)
α)

sk=(α, g2, h2, δ2, d1, d2, d3, d4)

(pkc, skc)←KeyGenc(pp). Pick β
$←Zp and compute

pkc=gβ

1 , skc=β

td←Trap(pp, pkc, sk, P=(M, π, P=(M, π, {π(i)}i∈[ℓ])).

Pick r, r′, t1,1, t1,2, ..., tℓ,1, tℓ,2
$←Zp, v $←Zn−1

p . Compute

td1,i=gMi(α∥v)⊤
2 ·δd1d2ti,1+d3d4ti,2

2 ,

td2,i=H(e(pkc, td8)
r)·gd1d2ti,1+d3d4ti,2

2 ,

td3,i=(uπ(i)
2 h2)

−d2ti,1 , td4,i=(uπ(i)
2 h2)

−d1ti,1 ,

td5,i=(uπ(i)
2 h2)

−d4ti,2 , td6,i=(uπ(i)
2 h2)

−d3ti,2 ,

td7=gr
1, td8=gr′

2 .

Output td=((M, π, {nπ(i)}i∈[ℓ]), {td1,i, td2,i, td3,i, td4,i, td5,i,
td6,i}i∈[ℓ], td7, td8).

ct←Enc(pk,W={wi}i∈[m]={ni, vi}i∈[m]).

Pick µ, s1,1, s1,2, ..., sm,1, sm,2, z1, ..., zm
$←Zp and compute

ct1=gµ
1, ct2,i=δ

−µ
1 (uwi

1 h1)
zi , ct3,i=g

d1(zi−si,1)
1 , ct4,i=g

d2si,1
1 ,

ct5,i=g
d3(zi−si,2)
1 , ct6,i=g

d4si,2
1 , ct7=e(g1, g2)

αµ

Output ct=({ni}i∈[m], ct1, {ct2,i, ct3,i, ct4,i, ct5,i, ct6,i}i∈[m], ct7).

1/0←Search(pp, skc, ct, td). Tests if there is any subset
I that matches the keyword names {ni}i∈[m] in ct with
(M, π, {nπ(i)}i∈[ℓ]) in td. If not, return 0. Otherwise, it finds
constants {γi}i∈I s.t. ∑i∈I γiMi=(1, 0, ..., 0) and computes:

ct7=∏
i∈I

(e(ct1, td1,i)e(ct2,i,
td2,i

H(e(td7, td8)β)
)e(ct3,i, td3,i)

e(ct4,i, td4,i)e(ct5,i, td5,i)e(ct6,i, td6,i))
γi ,

If the equation holds, return 1. Otherwise, the cloud server
continues to find another subset of I and repeats the checking.
If the above equation does not hold for all subsets, return 0.

Figure 8: The construction of Cui et al. [41] ASE scheme
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