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Abstract. Proxy re-encryption (PRE) allows a proxy to transform a
ciphertext intended for Alice (delegator) to another ciphertext intended
for Bob (delegatee) without revealing the underlying message. Recently,
a new variant of PRE, namely fine-grained PRE (FPRE), was proposed
in [Zhou et al., Asiacrypt 2023]. Generally, FPRE is designed for a func-
tion family F : each re-encryption key rkfA→B is associated with a function
f ∈ F , and with rkfA→B , a proxy can transform Alice’s ciphertext en-
crypting m to Bob’s ciphertext encrypting f(m). However, their scheme
only supports single-hop re-encryption and achieves only CPA security.

In this paper, we formalize multi-hop FPRE (mFPRE) that supports
multi-hop re-encryptions in the fine-grained setting, and propose two
mFPRE schemes achieving CPA security and stronger HRA security
(security against honest re-encryption attacks), respectively.

– For multi-hop FPRE, we formally define its syntax and formalize a
set of security notions including CPA security, HRA security, undi-
rectionality and ciphertext unlinkablity. HRA security is stronger
and more reasonable than CPA security, and ciphertext unlinkablity
blurs the proxy relations among a chain of multi-hop re-encryptions,
hence providing better privacy. We establish the relations between
these security notions.

– Our mFPRE schemes support fine-grained re-encryptions for bounded
linear functions and have security based on the learning-with-errors
(LWE) assumption in the standard model. In particular, one of our
schemes is HRA secure and enjoys all the aforementioned desirable
securities. To achieve CPA security and HRA security for mFPRE,
we extend the framework of [Jafargholi et al., Crypto 2017] and the
technique of the [Fuchsbauer et al., PKC 2019].

1 Introduction

If the re-encryption key rkA→B can implement ciphertext transform not only
from Alice to Bob, but also vice verse, then the PRE scheme is a bidirectional
one. In contrast, if rkA→B does not support ciphertext transformation from Bob
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to Alice, then the PRE scheme is a unidirectional one. Note that the unidirec-
tional property captures a more precise re-encryption authorization than the
bidirectional property. Meanwhile, a unidirectional PRE can support bidirec-
tional re-encryption authorization by issuing both rkA→B and rkB→A to a proxy.
Therefore, unidirectional PRE is more welcome. However, designing unidirec-
tional PREs is more challenging than its bidirectional siblings. In this paper, we
focus on unidirectional PRE.

After transformation from ct(A) to ct(B) with rkA→B , if the resulting ct(B)

cannot be further transformed, the PRE scheme is a single-hop one. Otherwise,
the resulting ct(B) can be further transformed to Charlie’s ciphertext ct(C) with
rkB→C (and so on), then the PRE scheme becomes a multi-hop one. Multi-
hop PRE schemes support ciphertext transformation chains and provide re-
encryption services in a more convenient way.
Fine-Grained Proxy Re-Encryption. Traditionally, PRE provides an all-
or-nothing authorization with which either the receiver can decrypt the trans-
formed ciphertext to obtain the whole message m, or it learns nothing about m.
Recently, PRE was further extended to support fine-grained re-encryption au-
thorization in [21], and this variant PRE is named fine-grained PRE (FPRE). In
an FPRE scheme, the re-encryption key rkfA→B is further equipped with a func-
tion f which captures the precise re-encryption ability granted to a proxy. With
rkfA→B , the proxy can transform Alice’s ciphertext ct(A) encrypting a message
m to Bob’s ciphertext ct(B) encrypting f(m) under pk(B). The recent work in
[21] constructed a single-hop unidirectional FPRE scheme w.r.t. bounded linear
functions, and proved its CPA security based on the learning-with-errors (LWE)
assumption. However, there are two limitations in the FPRE scheme [21].

– The scheme only supports single-hop re-encryption. Suppose that Alice’s
ciphertext ct(A) has been transformed to a re-encrypted ciphertext ct(B) for
Bob. Now Bob wants to forward the underlying message to Charlie, but he
can not ask his proxy to do the ciphertext transformation for him due to
the single-hop limitation of the FPRE. Thus, he has to decrypt ct(B) to
recover the message and encrypt that message under Charlie’s public key
by himself. The decrypt-then-encrypt operation imposes extra working load
to Bob. With a multi-hop FPRE scheme, this job becomes easy. Bob can
simply forward the ciphertext ct(B) to his proxy and his proxy will be in
charge of the ciphertext transformation.

– The scheme only achieves CPA security. In their CPA model, the adversary
is not allowed to learn any re-encryptions from the target user to corrupted
users. This is not reasonable. Consider such a scenario: Alice has sent a
ciphertext ct(A) to her proxy and her proxy has transformed ct(A) to a re-
encrypted ciphertext ct(B) for Bob. Now Bob is corrupted by an adversary.
Later, Alice receives a new ciphertext ct∗(A), and it is natural to require
that the adversary learns nothing about the underlying message of ct∗(A).
However, this desired security cannot be guaranteed by CPA security since
in the CPA model, the adversary is not allowed to learn any re-encryptions
from the target user Alice to a corrupted user Bob.
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In fact, obtaining re-encryptions from the target user to a corrupted
user is the so-called honest re-encryption attacks (HRA) [7]. When taking
HRA attacks into account, the CPA security is lifted to HRA security. As
demonstrated in [7], HRA security is more reasonable than CPA security.

The above two limitations lead to an interesting question:
Can we construct a multi-hop fine-grained PRE scheme, preferably also

achieving HRA security?

Related Works on Multi-Hop PRE Schemes. There already exist some
unidirectional multi-hop PRE schemes in the literature. Chandran et al. [6] de-
signed the first multi-hop unidirectional PRE scheme from program obfuscation
and showed the selective obfuscation-based security of their schemes from the
LWE assumption. Phong et al. [19] proposed a multi-hop PRE scheme with se-
lective CPA security. However, their scheme is interactive, i.e., the re-encryption
key generation algorithm requires both user i and user j’s secret keys. Lai et al.
[14] proposed a multi-hop PRE scheme achieving selective CCA security from
indistinguishability obfuscation (iO). However, iO is a theoretical tool and far
from being practical. Fan et al. [9] presented a latticed-based scheme, achieving
selective tag-based CCA (tbCCA) security, but proxy relations (i.e., challenge
graph of the adversary) are restricted to tree structure. Note that the tbCCA
security and the HRA security are not comparable since tbCCA security model
does not capture honest re-encryption attacks. Later, Fuchsbauer et al. [10] im-
proved Chandran et al.’s scheme [6] to HRA security based on LWE. At the
same time, they presented another multi-hop unidirectional scheme constructed
from fully homomorphic encryption [11] and also achieved HRA security from
LWE on the ideal lattices and circular-security assumption. Recently, Miao et al.
[16] proposed a generic construction of multi-hop PRE with selective HRA secu-
rity, and presented instantiations based on the decisional Diffie-Hellman (DDH)
assumption.

All the existing multi-hop PRE schemes do not consider the fine-grained re-
encryption, so the multi-hop fine-grained PRE with HRA security is still missing.

Our Contributions. In this work, we propose the first multi-hop fine-grained
PRE scheme from LWE in the standard model.

– Formal Definitions for Multi-Hop Fine-Grained PRE and Its Securities. We
formalize multi-hop fine-grained PRE (mFPRE) that supports multiple re-
encryptions in the fine-grained setting. We also present the formal CPA and
HRA security notions for multi-hop FPRE. In addition, we define unidirec-
tionality (UNID) and ciphertext unlinkability (CUL) for mFPRE. The CUL
security guarantees that the chain of multi-hop re-encryptions does not leak
information about proxy relations among them, and hence provide better
privacy. Moreover, we prove that UNID is implied by CPA, and CUL is im-
plied by CPA and a weak security notion named source-hiding (SH).

– Generic Framework for Achieving CPA and HRA Security for Multi-Hop
FPRE. We extend the framework in [13] and adapt the techniques in [10] to
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the multi-hop FPRE setting for achieving (adaptive) CPA and HRA secu-
rity. More precisely, we first define three weaker security notions including
indistinguishability (IND), weak key-privacy (wKP) and source-hiding (SH).
Then, we show that the CPA security of multi-hop FPRE is implied by IND
and wKP, and the HRA security is implied by IND, wKP and SH. For proxy
relations being chains or trees, our reduction only loses a quasi-polynomial
factor. Note that the chain and tree topology have good applications in en-
crypted cloud storage, encrypted email forwarding, etc., as noted by [10].

– Construction of Multi-Hop FPRE from LWE. We propose two unidirectional
multi-hop FPRE schemes, including a CPA secure mFPRE1 and an HRA
secure mFPRE2, for bounded linear functions1. More precisely, we prove that
our first scheme mFPRE1 has IND and wKP securities and hence achieves CPA
security and UNID security, and prove that our second scheme mFPRE2 has
IND, wKP and SH securities and hence achieves HRA security, UNID security
and CUL security. Both of the schemes are based on the LWE assumption in
the standard model.

We refer to Fig. 1 for an overview of the security notions for multi-hop FPRE
and their relations established in this work, and refer to Table 1 for a comparison
of our schemes with known multi-hop unidirectional PRE schemes.

Ciphertext Unlinkability
CUL (Def. 8)

Weak Key-Privacy
wKP (Def. 5)

Indistinguishability 
IND (Def. 4)

Source-Hiding
SH (Def. 6)

CPA Security
(Def. 2)

HRA Security
(Def. 3)

(trivial)

(Thm. 1)

(Thm. 2)

Unidirectionality
UNID (Def. 7)

(Lem. 10)

(Lem. 11)

weaker security 
notions

CPA/HRA 
security other security properties

Fig. 1. Security notions of multi-hop FPRE and their relations.

Technical Overview. Below we give a high-level overview of our multi-hop
fine-grained PRE (mFPRE) scheme. We will first review the single-hop FPRE
scheme proposed in [21]. Then we will explain how we realize multi-hop re-
encryptions and how we achieve HRA security. For simplicity, we do not specify
the dimensions of matrices/vectors.

Recap: The Single-Hop FPRE Scheme in [21] and Its Limitations. We
give a brief description of the single-hop scheme in [21]. For user i, its public key
1 Here “bounded” mean that the coefficients are of bounded norm. We note that the

existing (single-hop) FPRE schemes [21] are also w.r.t. bounded linear functions.
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Table 1. Comparison of multi-hop unidirectional PRE schemes. The column Stan-
dard Model? asks whether the security is proved in the standard model. The column
Adaptive Corruptions? asks whether all the security notions support adaptive cor-
ruptions. The column Security shows the type of security that the scheme achieves,
where “HRA” refers to security against honest re-encryption attacks [7], and “tbCCA”
refers to tag-based CCA [9] which is incomparable with HRA and restricts the proxy re-
lations (i.e., challenge graph) to tree structure. The column UNID shows whether the
scheme has unidirectionality. The column CUL shows whether the scheme has cipher-
text unlinkability. The column Assumption shows the assumptions that the security
of the scheme is based on, where “iO” refers to indistinguishability obfuscation. The
column Post Quantum? asks whether the scheme is based on a post-quantum as-
sumption. The column Fine-Grained? asks whether the scheme supports fine-grained
re-encryptions. The column Maximum Hops shows the maximum re-encryption hops
that the scheme supports, where “poly-log” refers to poly(log λ), “sub-linear” refers to
λε with 0 < ε < 1 in the security parameter λ, and “unbounded∗” means that the
PRE scheme in [16] can support any number of re-encryptions, but at the cost that the
ciphertext length grows linearly with the number of re-encryptions. “–” means that no
proof or discussion is provided.

PRE Scheme Standard
Model?

Adaptive
Corruptions? Security UNID CUL Assumption Post

Quantum?
Fine–

Grained?
Maximum

Hops

FL19 [9] ✓ × tbCCA ✓ – LWE ✓ – poly-log

LHAM20 [15] ✓ × CCA ✓ – iO × – –

MPW23 [16] ✓ × HRA ✓ – DDH × – unbounded∗

FKKP19 [10]+
CCLNX14 [6] ✓ ✓ HRA ✓ ✓ LWE ✓ – sub-linear

FKKP19 [10]
+Gen09 [11] ✓ ✓ HRA ✓ ✓

LWE over
ideal lattice
+ circular
security

✓ – –

mFPRE1 ✓ ✓ CPA ✓ – LWE ✓ ✓ sub-linear

mFPRE2 ✓ ✓ HRA ✓ ✓ LWE ✓ ✓ sub-linear

pk(i) consists of two matrices A
(i)
1 =

(A(i)
1

A
(i)
1

)
and A

(i)
2 =

( A
A

(i)
2

)
, and its secret key

sk(i) contains a trapdoor T(i) of A(i)

1 .2 Here the upper part of A(i)
2 is a (fixed)

matrix A generated by a trusted setup and shared by all users, as required by
the security of the scheme [21].

The ciphertexts of their scheme have two levels. The first-level/second-level
ciphertext ct

(i)
1 /ct

(i)
2 of user i is generated using A

(i)
1 /A

(i)
2 in pk(i) according to

the dual Regev encryption scheme [20], namely for level b ∈ {1, 2},

ct
(i)
b = A

(i)
b s+ e+

(
0

bq/2cm

)
=

(
A

(i)

b s+ e

A
(i)
b s+ e+ bq/2c ·m

)
, (1)

where s and e =
(
e
e

)
are sampled according to a noise distribution χ.

2 With the trapdoor T(i) of A
(i)
1 , one can use the pre-image sampling algorithm

SamplePre developed in [12] to sample a small-norm R such that R · A(i)
1 = B

holds, given any B. We refer to Lemma 3 for more details.
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To realize fine-grained re-encryptions w.r.t. a linear function fM : m 7→
M ·m, the re-encryption key is defined as rkfMi→j :=

(
R

∣∣∣ 0
M

)
, where R is a small

norm matrix satisfying

RA
(i)

1 = A
(j)
2 S+E−

(
0
M

)
A

(i)
1 (2)

with matrices S,E following the noise distribution χ. Such R can be efficiently
found by using the pre-image sampling algorithm SamplePre in [12] with the help
of the trapdoor T(i) of A(i)

1 contained in sk(i) (cf. Footnote 2). Now with rkfMi→j ,
user i’s first-level ciphertext ct

(i)
1 of m can be converted to user j’s second-level

ciphertext ct
(j)
2 of the linear function M ·m via multiplication

ct
(j)
2 := rkfMi→j · ct

(i)
1 =

(
R

∣∣∣ 0
M

)
·
(

A
(i)

1 s+ e

A
(i)
1 s+ e+ bq/2c ·m

)
=

(
RA

(i)

1 +
(
0
M

)
A

(i)
1

)
︸ ︷︷ ︸

=A
(j)
2 S+E by (2)

·s+Re+
(

0
Me

)
+
(

0
⌊q/2⌋·Mm

)

= A
(j)
2 Ss︸︷︷︸

:=s′

+Es+Re+
(

0
Me

)︸ ︷︷ ︸
:=e′

+
(

0
⌊q/2⌋·Mm

)
. (3)

Though a first-level ciphertext ct
(i)
1 can be re-encrypted to a second-level ci-

phertext ct(j)2 , a second-level ciphertext ct(j)2 cannot be re-encrypted furthermore
(no matter to first- or second-level ciphertexts), as explained below.

– To enable further re-encryptions of ct(j)2 to another user (say user k), user j

need to compute a re-encryption key rk
fM′
j→k similar to (2), and in particular,

user j need to compute a small-norm R satisfying

RA = A
(k)
b S+E−

(
0
M′

)
A

(j)
2 for some b ∈ {1, 2}, (4)

where A is the upper part of A(j)
2 .

– Note that A is chosen by a trusted setup, so user j has no trapdoor of A.
This is crucial to the security of their single-hop scheme [21], since their
security proof needs to embed an LWE instance to A. But without knowing
a trapdoor of A, user j cannot generate a R satisfying (4). 3

Overall, it is the security that limits the scheme in [21] serving only for single-hop
re-encryptions.
3 Otherwise, assuming that user j can generate a R satisfying (4) without knowing a

trapdoor of A, then anyone (including user k) can generate such R and thus rk
fM′
j→k

without the help of user j. In this case, user k can translate all ciphertexts ct
(j)
2

intended for j to ciphertexts ct
(k)
b (b ∈ {1, 2}) encrypted under pk(k) by itself, and

then decrypt the re-encrypted ciphertexts using sk(k) to learn information about the
message underlying ct

(j)
2 , violating the confidentiality of encryption scheme.
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Achieving Multi-Hop Re-Encryptions. Note that in the single-hop scheme
[21], the ciphertexts ct

(i)
1 , ct

(i)
2 of two levels have an almost identical form (i.e.,

the dual Regev encryption) except for the matrix (A(i)
1 or A

(i)
2 ) used in the

encryption. The first-level ciphertext ct
(i)
1 can be re-encrypted since user i has

the trapdoor of A(i)

1 , while the second-level ciphertext ct
(i)
2 cannot since user i

does not have the trapdoor of A.
To enable multi-hop re-encryptions, the public key pk(i) in our scheme con-

tains only one matrix A(i) =
(
A

(i)

A(i)

)
, and the secret key sk(i) is the trapdoor

T(i) of A
(i). (So our scheme has a transparent setup in contrast to [21].) The

ciphertexts ct(i) in our scheme stick to A(i) during encryption, i.e.,

ct(i) = A(i)s+ e+
(

0
⌊q/2⌋m

)
.

The re-encryption key rkfMi→j :=
(
R

∣∣∣ 0
M

)
in our scheme generates the small norm

R according to
RA

(i)
= A(j)S+E−

(
0
M

)
A(i).

In a nutshell, we discard the subscripts 1, 2 in our scheme.
Similar to the analysis (3), in our scheme, user i’s ciphertext ct(i) = A(i)s+

e+
(

0
⌊q/2⌋·m

)
of message m can be translated to user j’s ciphertext with

ct(j):= rkfMi→j · ct
(i) = A(j) Ss︸︷︷︸

:=s′

+Es+Re+
(

0
Me

)︸ ︷︷ ︸
:=e′

+
(

0
⌊q/2⌋·M ·m︸ ︷︷ ︸

=fM(m)

)
. (5)

Now in our scheme, user j owns the trapdoor T(j) of A(j) in its secret key, so
it is able to generate rk

fM′
j→k :=

(
R′

∣∣∣ 0
M′

)
by sampling a small norm R′ satisfying

R′A
(j)

= A(k)S′ +E′ −
(

0
M′

)
A(j).

Consequently, with rk
fM′
j→k, the re-encryption ct(j) = A(j)s′ + e′ +

(
0

⌊q/2⌋·M·m
)

generated by (5) can be further re-encrypted to user k’s ciphertext

ct(k):= rk
fM′
j→k · ct

(j) = A(k) S′s′︸︷︷︸
:=s′′

+E′s′ +R′e′ +
(

0
M′e′

)︸ ︷︷ ︸
:=e′′

+
( 0
⌊q/2⌋·M′ · (Mm)︸ ︷︷ ︸

=f
M′ (fM(m))

)
,

which encrypts fM′(fM(m)) := M′ ·M ·m. In this way, the re-encryptions can

be further extended with ct(i)
rk

fM
i→j−−−→ ct(j)

rk
f
M′

j→k−−−−→ ct(k)
rk

f
M′′

k→w−−−−→ · · · , and thus we
achieve multi-hop fine-grained PRE for linear functions. Note that the norm of
the errors e, e′, e′′, · · · increases as the re-encryption continues, so to guarantee
the correctness of decryption, the re-encryption can go on until the norm of errors
reaches bq/4c. In fact, our multi-hop FPRE scheme supports constant hops of
re-encryptions under polynomial modulus q and supports sub-linear hops of re-
encryptions under sub-exponential modulus q.
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Overall, since user j has the trapdoor T(j) of A(j) in our scheme, this rescues
our scheme from single-hop, but at the same time, it incurs an issue: we cannot
embed an LWE instance to A

(j) in the security proof. To avoid this issue, the
scheme in [21] prohibits user j from having the trapdoor of both matrices in
public key, which in turn limits it to supporting only single-hop re-encryption.
To address this issue, we need new techniques to prove security for our mFPRE.

Below we will first show the high-level ideas of the selective CPA security
proof of our scheme, and then explain how we upgrade the selective security
to adaptive security by adapting the framework of [13, 10] to the fine-grained
setting, and explain how we achieve the stronger HRA security.

Selective CPA Security of Our Scheme. We give a high-level overview of
the selective CPA security proof of our scheme. Roughly speaking, the (adaptive)
CPA security asks the hardness of determining whether a ciphertext ct∗ under
pk(i

∗) encrypts m0 or m1, even if an adversary A can get re-encryption keys
{rkfi→j} and secret keys {sk(i)} of some users. To prevent trivial attacks, A
cannot corrupt the target user i∗, and cannot obtain a chain of re-encryption
keys from i∗ to some corrupted user j. Selective CPA security is weaker as it
requires A to declare the target user i∗ and the tuples (i, j) for which A wants
to obtain the corresponding {rkfi→j} at the beginning of the game.

The main ideas for the selective CPA security proof are: we first change the
generations of re-encryption keys {rkfi→j} so that it does not involve sk(i

∗), and
then the indistinguishability of ct∗ essentially follows from the CPA security of
the dual Regev encryption scheme (based on LWE). More precisely,

• Step 1. Simulating the generation of {rkfi→j} without knowing sk(i
∗).

Let us take an (acyclic) chain of re-encryption keys rkf1i∗→j1
, rkf2j1→j2

, · · · , rkfd−1

jd−1→jd
as example to show how we simulate them in a computationally indistin-
guishable way without using sk(i

∗).
Observe that only the generation of rkf1i∗→j1

involves sk(i
∗), where the

trapdoor sk(i
∗) = T(i∗) of A(i∗) is used to sample R satisfying

RA
(i∗)

= A(j1)S+E −
(
0
M

)
A(i∗).

Thus we need an indistinguishable way to sample it without trapdoor T(i∗).
If we can embed an LWE instance to A(j1)S+E in the above equation,

then it can be replaced by a uniform U , and consequently, we have

RA
(i∗)

= A(j1)S+E −
(
0
M

)
A(i∗) c

≈ U −
(
0
M

)
A(i∗) ≡ U .

As a result, we are able to sample R such that RA
(i∗) ≡ U by simply

choosing it according to a proper discrete Gaussian distribution.4 However,
4 By [12], if R follows a proper discrete Gaussian distribution, then RA

(i∗) is statis-
tically close to the uniform distribution U. We refer to Lemma 3 for more details.
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we cannot embed the LWE instance, since the trapdoor of A(j1) is needed
to generate rkf2j1→j2

. This is exactly the issue we mentioned before.
To solve the problem without sacrificing the capability of multi-hop re-

encryptions, we simulate the chain of re-encryption keys in reverse order.
We will first change the generation of the very last rk

fd−1

jd−1→jd
in the chain

as follows. Since rk
fd−1

jd−1→jd
lies in the very end of the chain, we do not need

to generate re-encryption key from user jd to any other users. Moreover,
this chain starting from i∗ contains only uncorrupted users to avoid trivial
attacks. Consequently, the secret key sk(jd) of user jd is in fact not needed
in the experiment, and now we can embed an LWE instance to A(jd)S+ E
such that

RA
(jd−1)

= A(jd)S+E −
(
0
M

)
A(jd−1)

c
≈ U −

(
0
M

)
A(jd−1) ≡ U .

Then R can be simply sampled following the proper discrete Gaussian dis-
tribution so that RA

(jd−1) ≡ U .
After the changing of rkfd−1

jd−1→jd
, the secret key sk(jd−1) of user jd−1 is no

longer involved, and thus through a similar analysis, we can then embed an
LWE instance to A(jd−1)S+E so that the R in the second last rkfd−2

jd−2→jd−1
can

be sampled following discrete Gaussian. By changing the re-encryption keys
one by one, we can eventually simulate all re-encryption keys in the chain
by simply sampling them according to discrete Gaussian, without sk(i∗).

More generally, the re-encryption keys {rkfi→j} queried by A might not
be a chain. Nevertheless, we can simulate them in a similar way, roughly by
processing all the chains simultaneously and for each chain in reverse order.

• Step 2. Computationally hiding m0/m1 in ct(i
∗). After Step 1, sk(i∗) is

not used at all, and thus for the challenge ciphertext ct(i
∗) = A(i∗)s+ e +(

0
⌊q/2⌋mβ

)
(β ∈ {0, 1}), we can embed an LWE instance to A(i∗)s+ e , so

that the underlying message mβ is hidden to the adversary A.
Overall, this proof strategy works only in the selective setting, as it requires to
know the tuples (i, j) for which A wants to obtain {rkfi→j} in advance, so that
they can be properly simulated (i.e., in reverse order for each chain).

To achieve adaptive security, if we guess the tuples (i, j) that A wants to
query at the beginning of game, it will incur a security loss as large as O(2n

2

)
with n the number of users. To reduce the security loss of adaptive security, we
extend the frameworks in [13, 10] to multi-hop FPRE, as explained below.
Achieving Adaptive Security with Jafargholi et al.’s Framework.
Jafargholi et al. [13] proposed a generic framework for upgrading selective se-
curity to adaptive security with a more fine-grained analysis. Later, Fuchsbauer
et al. [10] applied the framework of [13] to the security of (traditional) PRE. In
this work, we extend the framework of Jafargholi et al. [13] and the techniques
of Fuchsbauer et al. [10] to our multi-hop FPRE.

Roughly speaking, the main observations are: although in the above selective
proof strategy, we need the whole information (denoted by w) about the tuples
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(i, j) that A wants to query for re-encryption keys, only part of the information
(denoted by u) is used in simulating the intermediate hybrids. For example,
in the proof strategy shown above, Step 1 consists of many hybrids, while in
each hybrid we only change the generation of a single re-encryption key in the
chain, so a small amount of information u will be sufficient for the reduction to
the LWE assumption; in Step 2, the information of u := i∗ is sufficient for the
reduction. It is shown in [13] that the security loss in such cases can be limited to
the maximum size of the information u used across any two successive hybrids,
which might be much smaller than the size of w.

To apply their techniques [13, 10], we abstract two useful yet weaker security
notions for our multi-hop FPRE, including indistinguishability (IND) and weak
key-privacy (wKP), and then establish a theorem by reducing the adaptive CPA
security to IND and wKP with a smaller security loss. Concretely, the two weaker
notions exactly correspond to Step 1 and Step 2 in the above proof strategy.

Weak Key-Privacy (wKP). It stipulates that the re-encryption key rkfi→j hon-
estly generated by sk(i) can be indistinguishably changed to a simulated one
generated without sk(i) in the view of adversary who gets no secret keys sk(i).

Indistinguishability (IND). It requires the indistinguishability of ciphertext for
adversary who gets no re-encryption keys rkfi→j and no secret keys sk(i).

The theorem showing adaptive CPA security based on IND and wKP for our
multi-hop FPRE is proved in a similar way as [10, 13]. For an arbitrary adversary
who can obtain re-encryption keys {rkfi→j} for arbitrary tuples (i, j), the security
loss of adaptive CPA security is nO(n) in contrast to the naive guessing strategy
O(2n

2

). In many realistic scenarios like key rotation for encrypted cloud storage
or forwarding of encrypted mail, as demonstrated in [10], the proxy relations are
in fact trees, chains or low-depth graphs. In these situations, an adversary can
only obtain {rkfi→j} for tuples (i, j) that form trees, chains or low-depth graphs,
and the security loss is only quasi-polynomial nO(log n).

Achieving HRA Security. Security against honest re-encryption attacks (HRA)
was first introduced by Cohen [7] and is a security notion stronger and more rea-
sonable than CPA. Compared with CPA security, HRA also allows the adversary
A to obtain re-encryptions of ciphertexts from the target user i∗ to corrupted
users, as long as the ciphertexts to be re-encrypted are honestly generated and
are not (re-encryptions of) the challenge ciphertext ct∗. Note that HRA security
is stronger than CPA: in the CPA experiment, A cannot obtain a chain of re-
encryption keys from i∗ to corrupted users in order to prevent trivial attacks,
and thus cannot generate re-encryptions from i∗ to corrupted users by itself.

In order to achieve HRA security, we need to enhance our aforementioned
CPA proof strategy with a new computationally indistinguishable method for
simulating the generation of re-encryptions of ciphertexts from the target user i∗
to corrupted users without using sk(i

∗). Note that the re-encryptions from i∗ to
corrupted users might be a chain ct(i

∗) → ct(j1) → ct(j2) → · · · → ct(jd), the gen-
eration of which involves a chain of re-encryption keys rkf1i∗→j1

, rkf2j1→j2
, · · · , rkfd−1

jd−1→jd
.
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However, we cannot use similar techniques as the CPA security proof strategy to
replace this chain of re-encryption keys with simulated ones, since the involved
users j1, j2, · · · , jd might be corrupted by A.

To bypass this problem, we will simulate the generation of the chain of re-
encryptions ct(i

∗) → ct(j1) → ct(j2) → · · · → ct(jd) directly, without using any
of the re-encryption keys rkf1i∗→j1

, rkf2j1→j2
, · · · , rkfd−1

jd−1→jd
, thus also without using

sk(i
∗). To this end, we abstract a (weak) security notion called source-hiding

(SH) for multi-hop FPRE, by adapting the techniques in [13, 10].

Source-Hiding (SH). It stipulates that the honestly generated re-encryption ct(i) →
ct(j) by using rkfi→j can be indistinguishably changed to a simulated one gen-
erated without rkfi→j .

The SH security is exactly what we need to upgrade our CPA security proof
strategy to HRA security: roughly speaking, by the SH security, we can change
all re-encryptions ct(i) → ct(j) queried by A to simulated ones without using re-
encryption keys (thus sk(i

∗) is not involved); then by the wKP security, we can
change all re-encryption keys {rkfi→j} queried by A to simulated ones without
using sk(i

∗); finally, by the IND security, the challenge ciphertext ct∗ of the target
user i∗ hides the underlying message.

For achieving adaptive HRA security for multi-hop FPRE, we also extend
the framework of Jafargholi et al. [13] and the techniques of Fuchsbauer et al.
[10], and establish a theorem by reducing the adaptive HRA security to IND,
wKP and SH, with similar security loss.

Finally, we give a high-level overview of our second multi-hop FPRE scheme
which additionally satisfies SH security. More precisely, we augment each cipher-
text with a level v ∈ N, and use different noise distribution χv for the generation
of ciphertexts of different levels. Namely, the v-level ciphertext of user i is now
generated by

ct(i)v := A(i)s+ e+
(

0
⌊q/2⌋m

)
with s and e following χv. (6)

Moreover, we randomize the generation of re-encryption ct
(i)
v → ct

(j)
v+1 with rkfMi→j

by adding noises, i.e., choosing s̃ and ẽ according to χv+1 and computing

ct
(j)
v+1:= rkfMi→j · ct

(i)
v + A(j)s̃+ ẽ

= A(j) Ss︸︷︷︸
:=s′

+Es+Re+
(

0
Me

)︸ ︷︷ ︸
:=e′

+
(

0
⌊q/2⌋·M ·m︸ ︷︷ ︸

=fM(m)

)
+ A(j)s̃+ ẽ (7)

= A(j)( s̃ + s′) + ( ẽ + e′) +
(

0
⌊q/2⌋·M · m

)
, (8)

where (7) follows from (5). By choosing the noise distribution χv carefully, we can
ensure that s̃ smudges s′ and ẽ smudges e′. Consequently, the honestly gen-
erated re-encryption ct

(j)
v+1 in (8) is statistically indistinguishable from a freshly

generated (v+1)-level ciphertext of user j that encrypts M ·m according to (6),
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without using rkfMi→j . This shows the SH security of this scheme. Similar to our
first scheme, this scheme also achieves IND and wKP securities, thus achieving
adaptive HRA security via the generic theorem.

Interestingly, we also show that the SH security together with the CPA secu-
rity (or HRA security) imply ciphertext unlinkability (CUL), which can blur the
proxy relations in a chain of multi-hop re-encryptions in a more complex setting.
Relations to Existing Works. Finally, we summarize the results already
known in the non-fine-grained setting or in the single-hop fine-grained setting,
and the results that are novel in our work.

The weaker security notions IND,wKP, SH were originally defined by Fuchs-
bauer et al. [10] for (non-fine-grained) PRE. Fuchsbauer et al. [10] also estab-
lished two theorems showing adaptive CPA security based on IND and wKP and
showing adaptive HRA security based on IND, wKP and SH, respectively, for
(non-fine-grained) PRE, building upon the framework of Jafargholi et al. [13].

The notion of single-hop FPRE and its CUL security were recently introduced
by Zhou et al. [21], where they also formally proved the relation that CPA implies
UNID for single-hop FPRE.

In our work, we propose the concept of multi-hop FPRE to support multi-hop
fine-grained re-encryptions, and formalize a set of security notions CPA,HRA, IND,
wKP, SH,UNID,CUL in the multi-hop fine-grained setting. Moreover, we estab-
lish several useful relations between these security notions for multi-hop FPRE,
by adapting the two theorems in [10] and the relation in [21] to our multi-hop
FPRE. Besides, we show the relation that SH+CPA⇒ CUL holds for our multi-
hop FPRE, which is for the first time established for PRE (no matter in which
setting). Furthermore, we construct two multi-hop FPRE schemes from LWE,
and prove their IND,wKP and SH securities based on the LWE assumption in
the standard model, which are novel in our work. According to the relations we
established (i.e., Theorem 1 and Theorem 2), the two multi-hop FPRE schemes
achieves adaptive CPA and adaptive HRA securities, respectively.

2 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1λ as an implicit
input. If x is defined by y or the value of y is assigned to x, we write x := y.
For i, j ∈ N with i < j, define [i, j] := {i, i + 1, ..., j} and [j] := {1, 2, ..., j}. For
a set X , denote by x ←$ X the procedure of sampling x from X uniformly at
random. If D is distribution, x ←$ D means that x is sampled according to D.
All our algorithms are probabilistic unless stated otherwise. We use y ←$ A(x)
to define the random variable y obtained by executing algorithm A on input
x. If A is deterministic we write y ← A(x). “PPT” abbreviates probabilistic
polynomial-time. Denote by negl some negligible function. By Pri[·] we denote
the probability of a particular event occurring in game Gi.

For random variables X and Y , the min-entropy of X is defined as H∞(X) :=
− log(maxx Pr[X = x] ), and the statistical distance between X and Y is defined
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as ∆(X,Y ) := 1
2 ·
∑

x |Pr[X = x]−Pr[Y = x]|. If ∆(X,Y ) = negl(λ), we say that
X and Y are statistically indistinguishable (close), and denote it by X ≈s Y .

Let n,m,m′, q ∈ N, and let A ∈ Zm×n
q , v ∈ Zn

q , B ∈ Zm′×n
q . Define the lattice

Λ(A) := {Ax | x ∈ Zn}, the q-ary lattice Λq(A) := {Ax | x ∈ Zn
q } + qZm, its

“orthogonal” lattice Λ⊥
q (A) := {x ∈ Zm | x⊤A = 0 mod q}, and the “shifted”

lattice Λv
q (A) := {r ∈ Zm | r⊤A = v⊤ mod q}, which can be further extended

to ΛB
q (A) := {R ∈ Zm′×m | RA = B mod q}. Let ‖v‖ (resp., ‖v‖∞) denote its

ℓ2 (resp., infinity) norm. For a matrix A, we define ‖A‖ (resp., ‖A‖∞) as the
largest ℓ2 (resp., infinity) norm of A’s rows. A distribution χ is B-bounded if its
support is limited to [−B,B]. Let Zq be the ring of integers modulo q, and its
elements are represented by the integers in (−q/2, q/2].

In Appendix A.2, we present necessary lattice backgrounds, including the
definitions of discrete Gaussian distribution, LWE assumption, and the TrapGen,
Invert, SamplePre algorithms introduced in [1, 12, 18].

3 Multi-Hop Fine-Grained PRE

In this section, we formalize a new primitive called Multi-Hop Fine-Grained PRE
(mFPRE), by extending the concept of single-hop FPRE proposed in [21] to
support multi-hop of re-encryptions. Compared with (traditional) PRE, FPRE
allows fine-grained delegations, by associating re-encryption key rkfi→j with a
function f to support the conversion of user i’s ciphertext ct(i) encrypting mes-
sage m to user j’s ciphertext ct(j) encrypting the function value f(m). More-
over, in contrast to single-hop FPRE, our multi-hop FPRE supports multiple
re-encryptions, namely, user j’s re-encrypted ciphertext ct(j) encrypting f(m)
can be further re-encrypted to user k’s ciphertext ct(k) encrypting f ′(f(m)) with
the help of another rkf

′

j→k, and as forth. These multiple re-encryptions can be
correctly decrypted to the corresponding function values, as long as the number
of re-encryption hops does not exceed the maximum level.

As for security, we formalize the CPA and HRA security for multi-hop FPRE.
To achieve both security, we adapt the framework proposed in [13, 10] to fine-
grained setting and establish two theorems reducing CPA and HRA to a set of
weaker security notions, including indistinguishablity (IND), weak key-privacy
(wKP) and source-hiding (SH), for multi-hop FPRE. Furthermore, we introduce
some other security properties including unidirectionality (UNID) and cipher-
text unlinkability (CUL) for multi-hop FPRE. See Fig. 1 in introduction for an
overview of the relations between these security notions.

More precisely, in Subsect. 3.1, we present the syntax of multi-hop FPRE
and define its CPA security and HRA security. In Subsect. 3.2, we give the formal
definitions of the set of weaker security notions IND,wKP and SH, along with
two theorems reducing CPA and HRA security to these weaker security notions.
Finally in Subsect. 3.3, we define the UNID and CUL security under adaptive
corruptions and demonstrate their relations with other security notions.
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3.1 Syntax of Multi-Hop FPRE and Its CPA and HRA Security

Definition 1 (Multi-Hop Fine-Grained PRE). Let F be a family of func-
tions from M to M, where M is a message space. A multi-hop fine-grained
proxy re-encryption (multi-hop FPRE) scheme for function family F is associ-
ated with a maximum level L ∈ N and defined with a tuple of PPT algorithms
mFPRE = (KGen,FReKGen,Enc,FReEnc,Dec).

– (pk, sk) ←$ KGen: The key generation algorithm outputs a pair of public key
and secret key (pk, sk).

– rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f): Taking as input a public-secret key
pair (pk(i), sk(i)), another public key pk(j) and a function f ∈ F , the fine-
grained re-encryption key generation algorithm outputs a fine-grained re-
encryption key rkfi→j that allows re-encrypting ciphertexts intended to i into
ciphertexts encrypted for j.

– ctv ←$ Enc(pk,m, v): Taking as input pk, a message m ∈ M and a level
v ∈ [0, L], the encryption algorithm outputs a v-level ciphertext ctv.

– ct
(j)
v+1 ←$ FReEnc(rkfi→j , ct

(i)
v , v): Taking as input a re-encryption key rkfi→j

and a ciphertext ct(i)v intended for i and its level v ∈ [0, L−1], the fine-grained
re-encryption algorithm outputs a (v+1)-level ciphertext ct(j)v+1 re-encrypted

for j. We denote it by ct
(i)
v

rkfi→j−−−→ ct
(j)
v+1.

– m ← Dec(sk, ct): Taking as input a secret key sk and a ciphertext ct, the
deterministic decryption algorithm outputs a message m.

Correctness. For all m ∈M, v ∈ [0, L], (pk, sk) ←$ KGen, ctv ←$ Enc(pk,m, v),
it holds that Dec(sk, ctv) = m.

Fine-Grained L-Hop Correctness. For all m ∈M, user indices i0, i1, · · · , iL,
functions f1, · · · , fL ∈ F , (pk(ij), sk(ij)) ←$ KGen with j ∈ [0, L], 0-level cipher-

text ct(i0)0 ←$ Enc(pk(i0),m, 0) and re-encryption hops ct(i0)0

rk
f1
i0→i1−−−−−→ ct

(i1)
1

rk
f2
i1→i2−−−−−→

· · ·
rk

fL
iL−1→iL−−−−−−−→ ct

(iL)
L , where each rk

fj
ij−1→ij

←$ FReKGen(pk(ij−1), sk(ij−1), pk(ij), fj)

and each ct
(ij)
j ←$ FReEnc(rk

fj
ij−1→ij

, ct
(ij−1)
j−1 , j − 1), it holds that for all j ∈ [L],

Dec(sk(ij), ct
(ij)
j ) = fj(fj−1(. . . f1(m))).

CPA Security. Below we formalize the indistinguishability of ciphertexts under
chosen-plaintext attacks (CPA) for multi-hop FPRE.

Definition 2 (CPA Security for Multi-Hop FPRE). A multi-hop FPRE
scheme mFPRE is CPA secure, if for any PPT adversary A and any polynomial
n, it holds that AdvCPAmFPRE,A,n(λ) :=

∣∣Pr[ExpCPAmFPRE,A,n ⇒ 1]− 1
2

∣∣ ≤ negl(λ), where
the experiment ExpCPAmFPRE,A,n is defined in Fig. 2.
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ExpCPAmFPRE,A,n:
For i ∈ [n]: (pk(i), sk(i)) ←$ KGen

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥ �record challenge user
(i∗,m0,m1, v, st) ←$ AOReKey(·,·,·),OCor(·)({pk(i)}i∈[n])

If (i∗ ∈ Qc) or CheckTA(i∗,Qrk,Qc) = 1:
Return b ←$ {0, 1} �avoid TA1, TA2

β ←$ {0, 1}
ct∗v ←$ Enc(pk(i∗),mβ , v)

β′ ←$ AOReKey(·,·,·),OCor(·)(st, ct∗v)

If β′ = β: Return 1; Else: Return 0

OReKey(i, j, f): �re-encryption key queries
If CheckTA(i∗,Qrk ∪ {(i, j)},Qc) = 1:

Return ⊥ �avoid TA2

Qrk := Qrk ∪ {(i, j)}
rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkfi→j

OCor(i): �corruption queries
If i = i∗: Return ⊥ �avoid TA1

If CheckTA(i∗,Qrk,Qc ∪ {i}) = 1:
Return ⊥ �avoid TA2

Qc := Qc ∪ {i}
Return sk(i)

CheckTA(i∗,Qrk,Qc): �check TA2

If ∃ (i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk

s.t. jt ∈ Qc for some t ≥ 1:
Return 1

Else: Return 0

Fig. 2. The CPA security experiment ExpCPAmFPRE,A,n for mFPRE. Here CheckTA is a
sub-procedure used to check the trivial attacks.

Remark 1 (On the formalization of CPA security and discussion on trivial at-
tacks). We formalize the CPA security by defining the experiment ExpCPAmFPRE,A,n

in Fig. 2. More precisely, we consider a multi-user setting, and the adversary A
is allowed to make two kinds of oracle queries adaptively:

– through OReKey(i, j, f) query, A can get re-encryption keys rkfi→j , and
– through OCor(i) query, A can corrupt user i and obtain its secret key sk(i).

At some point, A outputs a challenge user i∗, a pair of messages (m0,m1) as well
as a level v, and receives a challenge ciphertext ct∗v which encrypts mβ under
pk(i

∗) at level v, where β is the challenge bit that A aims to guess.
To prevent trivial attacks from A, we keep track of two sets: Qc records the

corrupted users, and Qrk records the tuples (i, j) that A obtains a re-encryption
key rkfi→j . Based on that, there are two kinds of trivial attacks TA1-TA2 to
obtain information about the plaintext underlying the challenge ciphertext ct∗v.

TA1: i∗ ∈ Qc, i.e., A corrupts user i∗ and obtains its secret key sk(i
∗). In this

case, A can decrypt ct∗v directly via Dec(sk(i
∗), ct∗v) and recover mβ .

TA2: ∃(i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk s.t. jt ∈ Qc for some t ≥ 1, i.e.,
A gets a chain of re-encryption keys rkf1i∗→j1

, rkf2j1→j2
, . . . , rkftjt−1→jt

starting
from the challenge user i∗ and ending at some corrupted user jt for whom
A ever obtains its secret key sk(jt). In this case, A can re-encrypt ct∗v via

ct∗v
rk

f1
i∗→j1−−−−−→ ct

(j1)
v+1

rk
f2
j1→j2−−−−−→ · · ·

rk
ft
jt−1→jt−−−−−−→ ct

(jt)
v+t, then simply decrypt ct

(jt)
v+t

with sk(jt) to obtain a function of mβ . This kind of trivial attacks is checked
by the algorithm CheckTA defined in Fig. 2 throughout the experiment.

As such, we exclude the above trivial attacks in the CPA experiment.
We note that in contrast to the CPA security for PRE defined in [10], our CPA

security does not provide a re-encryption oracle for re-encrypting ciphertexts
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from the challenge user i∗ to uncorrupted users j /∈ Qc. This is because in our
CPA experiment, A can obtain re-encryption keys from i∗ to j /∈ Qc through the
OReKey oracle and do re-encryption itself for such ciphertexts.

HRA Security. Next we formalize the indistinguishability of ciphertexts under
honest-re-encryption attacks (HRA) for multi-hop FPRE. Originally, HRA was
first introduced by Cohen [7] as a stronger and more reasonable security notion
than CPA for PRE. Below we adapt HRA security to the fine-grained setting
for mFPRE. Compared with the CPA security, HRA also allows the adversary to
have access to a re-encryption oracle OReEnc, through which the adversary can
learn re-encryptions of ciphertexts from the challenge user i∗ to corrupted users
j ∈ Qc, as long as the queried ciphertexts are honestly generated and different
from (all derivatives of) the challenge ciphertext ct∗v.

Definition 3 (HRA Security for Multi-Hop FPRE). A multi-hop FPRE
scheme mFPRE is HRA secure, if for any PPT adversary A and any polynomial
n, it holds that AdvHRAmFPRE,A,n(λ) :=

∣∣Pr[ExpHRAmFPRE,A,n ⇒ 1]− 1
2

∣∣ ≤ negl(λ), where
the experiment ExpHRAmFPRE,A,n is defined in Fig. 3.

ExpHRAmFPRE,A,n:
For i ∈ [n]: (pk(i), sk(i)) ←$ KGen

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥ �record challenge user
L := ⊥ �record honestly generated ciphertexts
L∗ := ⊥ �record derivatives of the challenge ciphertext
ctr := 0 �index of honestly generated ciphertexts
(i∗,m0,m1, v, st) ←$ AOReKey(·,·,·),OCor(·),OEnc(·,·,·),OReEnc(·,·,·,·)

({pk(i)}i∈[n])

If (i∗ ∈ Qc) or CheckTA(i∗,Qrk,Qc) = 1:
Return b ←$ {0, 1} �avoid TA1, TA2

β ←$ {0, 1}
ctr := ctr + 1

ct∗v ←$ Enc(pk(i∗),mβ , v)

L := L ∪ {(ctr, i∗, (ct∗v, v))}
L∗ := L∗ ∪ {(ctr, i∗)} �index of challenge ciphertext
β′ ←$ AOReKey(·,·,·),OCor(·),OEnc(·,·,·),OReEnc(·,·,·,·)(st, ct∗v)

If β′ = β: Return 1; Else: Return 0

OReKey(i, j, f): �re-encryption key queries
If CheckTA(i∗,Qrk ∪ {(i, j)},Qc) = 1:

Return ⊥ �avoid TA2

Qrk := Qrk ∪ {(i, j)}
rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkfi→j

OCor(i): �corruption queries
If ∃(·, i) ∈ L∗: Return ⊥ �avoid TA1,TA3

If CheckTA(i∗,Qrk,Qc ∪ {i}) = 1:
Return ⊥ �avoid TA2

Qc := Qc ∪ {i}
Return sk(i)

OEnc(i,m, v): �honest encryption queries
ctr := ctr + 1

ct
(i)
v ←$ Enc(pk(i),m, v)

L := L ∪ {(ctr, i, (ct(i)v , v))}
Return (ctr, ct

(i)
v )

OReEnc(i, j, f, k): �honest re-encryption queries
If (k, i) ∈ L∗ and j ∈ Qc:

Return ⊥ �avoid TA3

Retrieve (k, i, (ct′, v′)) from L:
If fails, return ⊥

rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

ct
(j)

v′+1 ←$ FReEnc(rkfi→j , ct
′, v′)

ctr := ctr + 1

L := L ∪ {(ctr, j, (ct(j)v′+1, v
′ + 1))}

If (k, i) ∈ L∗: L∗ := L∗ ∪ {(ctr, j)}
Return (ctr, ct

(j)

v′+1)

CheckTA(i∗,Qrk,Qc): �check TA2

If ∃ (i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk

s.t. jt ∈ Qc for some t ≥ 1:
Return 1

Else: Return 0

Fig. 3. The HRA security experiment ExpHRAmFPRE,A,n for mFPRE. Here the oracles
OReKey, OCor and the sub-procedure CheckTA are the same as those in Fig. 2.

16



Remark 2 (On the formalization of HRA security and discussion on trivial at-
tacks). We formalize the HRA security by defining the experiment ExpHRAmFPRE,A,n

in Fig. 3. More precisely, we consider a multi-user setting, and the adversary A
is allowed to make four kinds of oracle queries adaptively:

– through OReKey(i, j, f) query, A can get re-encryption keys rkfi→j ;
– through OCor(i) query, A can corrupt user i and obtain its secret key sk(i);
– through OEnc(i,m, v) query, A can obtain honestly generated ciphertexts,

which are indexed by counters ctr and can be further re-encrypted through
OReEnc query;

– through OReEnc(i, j, f, k) query, A can obtain re-encryptions of honestly gen-
erated ciphertexts (including the challenge ciphertext ct∗v to be defined later,
as well as the re-encrypted ciphertexts output by OReEnc previously), where
k is the index of the honestly generated ciphertext to be re-encrypted and
i, j, f specify the re-encryption key rkfi→j to be used.

At some point, A outputs a challenge user i∗, a pair of messages (m0,m1) as well
as a level v, and receives a challenge ciphertext ct∗v which encrypts mβ under
pk(i

∗) at level v, where β is the challenge bit that A aims to guess.
Similar to the CPA security, we also exclude the two trivial attacks TA1-TA2

as defined in Remark 1, from which A can trivially obtain information about
the plaintext mβ underlying the challenge ciphertext ct∗v. Moreover, there is an
additional trivial attack TA3 to obtain information about mβ .

TA3: Via OReEnc queries, A obtains a chain of re-encryptions ct∗v
OReEnc−−−−→ ct

(j1)
v+1

OReEnc−−−−→ · · · OReEnc−−−−→ ct
(jt)
v+t starting from the challenge ciphertext ct∗v and ending

at ciphertext ct(jt)v+t of some corrupted user jt ∈ Qc from whom A ever obtains
its secret key sk(jt). In this case, A can use sk(jt) to decrypt ct(jt)v+t to trivially
obtain a function of mβ .

To exclude this additional trivial attack, we keep track of a set L∗ to record
(index of) the challenge ciphertext ct∗v as well as all honestly generated re-
encryptions of ct∗v output by OReEnc.

3.2 Achieving CPA and HRA Security for Multi-Hop FPRE from
Weaker Security Notions: IND, wKP and SH

Our CPA and HRA security for multi-hop FPRE formalized in the previous sub-
section are defined in an adaptive manner, where the adversary A can designate
the challenge user i∗ and make all oracle queries adaptively, including corruption
queries OCor, re-encryption key queries OReKey, and honest encryption queries
OEnc and honest re-encryption queries OReEnc in the case of HRA. Accordingly,
the tuples (i, j) for which A obtains a re-encryption key rkfi→j (i.e., the set Qrk in
Fig. 2 and Fig. 3) are adaptively determined by A and form a complex directed
graph. In the case of HRA, the tuples (i, j) for which A makes a re-encryption
query OReEnc(i, j, ·, ·) form another complex directed graph.
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One possible way to achieve adaptive CPA/HRA security is first proving a se-
lective version of CPA/HRA security, and then reducing the adaptive security to
the selective counterpart via a guessing strategy. The selective CPA/HRA secu-
rity means thatA has to declare the graphs for re-encryption keys/re-encryptions
at the beginning of the experiment, and thus it is relatively easy to prove selec-
tive security in general. However, the price is a considerably large security loss
O(2n

2

) incurred by the guessing of the graphs.
To reduce the security loss of adaptive security, Jafargholi et al. [13] proposed

a generic framework for upgrading selective security to adaptive security with a
more fine-grained analysis. Later, Fuchsbauer et al. [10] applied the framework
of [13] to the CPA/HRA security of (traditional) PRE.

In this subsection, we will extend the framework of Jafargholi et al. [13]
further to the CPA and HRA security of our multi-hop fine-grained PRE, by
adapting the techniques of Fuchsbauer et al. [10] to the fine-grained setting.
More precisely, we will first defined three weaker security notions, including in-
distinguishability (IND), weak key-privacy (wKP) and source-hiding (SH), to our
multi-hop FPRE, and then establish two theorems showing CPA,HRA security
of our multi-hop FPRE based on these weaker security notions. The formaliza-
tion of the weaker security notions and the proofs of the theorems are mainly
adapted from [13, 10].

Now we present the formal definitions of IND, wKP, SH for multi-hop FPRE.
Indistinguishability. The IND security of multi-hop FPRE considers the indis-
tinguishability of ciphertexts in a single-user and multi-challenge setting, where
the adversary is given no re-encryption keys compared with the CPA security.

Definition 4 (IND Security). A multi-hop FPRE scheme mFPRE is IND se-
cure, if for any PPT adversary A, it holds that AdvINDmFPRE,A(λ) := |Pr[Exp

IND
mFPRE,A

⇒ 1]− 1
2 | ≤ negl(λ), where the experiment ExpINDmFPRE,A is defined in Fig. 4.

ExpINDmFPRE,A:
(pk, sk) ←$ KGen

β ←$ {0, 1}
β′ ←$ AOChal(·,·,·)(pk)

If β′ = β: Return 1; Else: Return 0

OChal(m0,m1, v):
ctv ←$ Enc(pk,mβ , v)

Return ctv

Fig. 4. The indistinguishability experiment ExpIND
mFPRE,A for mFPRE.

Weak Key-Privacy. The original key-privacy for PREs was introduced in [4].
In [10], weak key-privacy was introduced and it requires the indistinguishability
between the re-encryption key rk0→j from user 0 to user j and the re-encryption
key rk1→j from user 1 to user j. Below we adapt it to our multi-hop FPRE, by
requiring the existence of a PPT algorithm FReKGen∗ which can simulate the
generation of re-encryption keys rkf0→j without the secret key of source user 0.

Definition 5 (wKP Security). A multi-hop FPRE scheme mFPRE has weak
key privacy (wKP security), if there exists a PPT simulation algorithm FReKGen∗,
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s.t. for any PPT adversaryA and any polynomial n, it holds that AdvwKPmFPRE,A,n(λ) :=

|Pr[ExpwKPmFPRE,A,n ⇒ 1]− 1
2 | ≤ negl(λ), where ExpwKPmFPRE,A,n is defined in Fig. 5.

ExpwKPmFPRE,A,n:
For i ∈ [0, n]: (pk(i), sk(i)) ←$ KGen

β ←$ {0, 1}
β′ ←$ AOReKey(·,·)({pk(i)}i∈[0,n])

If β′ = β: Return 1; Else: Return 0

OReKey(j ∈ [n], f): �user 0 is always the source user
If β = 0: �real re-encryption key

rkf0→j ←$ FReKGen(pk(0), sk(0), pk(j), f)

Else: �simulated re-encryption key
rkf0→j ←$ FReKGen∗(pk(0), pk(j), f)

Returns rkf0→j

Fig. 5. The weak key-privacy experiment ExpwKPmFPRE,A,n for mFPRE.

Source-Hiding. Roughly speaking, source-hiding (SH) requires the indistin-
guishability between freshly-encrypted ciphertexts (via Enc) and re-encrypted ci-
phertexts (via FReEnc), even if the adversary has all secret keys and re-encryption
keys. SH security can help us upgrade CPA security to HRA security for FPRE.

Definition 6 (SH Security). A multi-hop FPRE scheme mFPRE has the prop-
erty of source-hiding (SH security), if for any (unbounded) adversary A, it holds
that AdvSHmFPRE,A(λ) := |Pr[ExpSHmFPRE,A ⇒ 1] − 1

2 | ≤ negl(λ), where experiment
ExpSHmFPRE,A is defined in Fig. 6.

ExpSHmFPRE,A:
(pk(0), sk(0)) ←$ KGen

(pk(1), sk(1)) ←$ KGen

Qf := ⊥ �record functions
L := ⊥ �record honestly generated ciphertexts
ctr := 0 �index of honestly generated ciphertexts
β ←$ {0, 1}
β′ ←$ AOReKey(·),OEnc(·,·),OChal(·,·)(pk(0), sk(0), pk(1), sk(1))

If β′ = β: Return 1; Else: Return 0

OReKey(f): �re-key from user 0 to user 1 on function f

rkf0→1 ←$ FReKGen(pk(0), sk(0), pk(1), f)

Qf := Qf ∪ {f}
Return rkf0→1

OEnc(m, v): �honestly generated ciphertext of user 0
ctr := ctr + 1

ct
(0)
v ←$ Enc(pk(0),m, v)

L := L ∪ {(ctr,m,(ct
(0)
v , v))}

Return (ctr, ct
(0)
v )

OChal(k, f): �challenge oracle
Retrieve (k,m,(ct

(0)
v , v)) from L:

If fails, return ⊥
If β = 0: �re-encrypted ciphertext

If f /∈ Qf : rkf0→1 ←$ FReKGen(pk(0), sk(0), pk(1), f)

ct
(1)
v+1 ←$ FReEnc(rkf0→1, ct

(0)
v , v)

Else: �freshly-encrypted ciphertext
ct

(1)
v+1 ←$ Enc(pk(1), f(m), v + 1)

Return ct
(1)
v+1

Fig. 6. The source-hiding experiment ExpSHmFPRE,A for mFPRE.

Achieving CPA and HRA Security for Multi-Hop FPRE. Now we are
ready to present two theorems showing (adaptive) CPA and HRA of multi-hop
FPRE assuming the weak security notions IND, wKP and SH. The theorems are
essentially applications of the framework of Jafargholi et al. [13] and adaptions
of the techniques of Fuchsbauer et al. [10] to multi-hop FPRE. We postpone the
proofs of the theorems to Appendix B.2 and Appendix B.3 respectively, as they
almost verbatim follow [10, 13].

To state the theorems precisely, we consider an adversaryA in the CPA/HRA
security experiment, and define some notations. If we view users [n] as vertices
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and re-encryption keys rkfi→j that A obtains through OReKey queries as an edge
from i to j, then it forms a directed graph. We define the subgraph that is
reachable from the challenge user i∗ as the challenge graph of A, denoted by G.
For the challenge graph G, if we denote by δ the outdegree (i.e., the maximum
outdegree over all vertices) and d the depth, then the challenge graph is in the
graph class G(n, δ, d) of all graphs with n vertices, outdegree δ and depth d.

In Appendix B.1, we further define the pebbling time complexity τ and space
complexity σ for the class G(n, δ, d), respectively, according to [10, 13].

Theorem 1 (IND + wKP ⇒ CPA for Multi-Hop FPRE). If a multi-hop
FPRE scheme mFPRE has both IND and wKP security, then it is CPA secure.

More precisely, for any PPT adversary A against the CPA security with
challenge graph G in G(n, δ, d) whose pebbling time complexity is τ and space
complexity is σ, there exist PPT algorithms B and B′ s.t. AdvCPAmFPRE,A,n(λ) ≤
(2 · AdvINDmFPRE,B + 2τ · AdvwKPmFPRE,B′,δ) · nσ+δ+1. We refer to Appendix B.1 for the
definitions of pebbling time complexity τ and space complexity σ.

Theorem 2 (IND + wKP + SH ⇒ HRA for Multi-Hop FPRE). If a
multi-hop FPRE scheme mFPRE has IND, wKP and SH security simultaneously,
then it is HRA secure.

More precisely, for any PPT adversary A against the HRA security with
challenge graph G in G(n, δ, d) whose pebbling time complexity is τ and space
complexity is σ, there exist PPT algorithms B,B′ and B′′ s.t. AdvHRAmFPRE,A,n(λ) ≤
(2 ·AdvINDmFPRE,B +2τ ·AdvwKPmFPRE,B′,δ) ·nσ+δ+1+2n(n− 1)L ·AdvSHmFPRE,B′′ , where L

is the maximum level supported by mFPRE. 5 We refer to Appendix B.1 for the
definitions of pebbling time complexity τ and space complexity σ.

Note that the security loss of Theorem 1 and Theorem 2 is dominating by
2τ · nσ+δ+1 and 2n(n− 1)L.

• For an arbitrary adversary A with an arbitrary challenge graph G, accord-
ing to the bounds given in [10] (cf. Lemma 6 in Appendix B.1), we have
the pebbling time complexity τ ≤ (2δ)d, the space complexity σ ≤ n, the
outdegree δ ≤ n and the depth d ≤ n. Moreover, L is (at most) a polynomial
in n. Consequently, the security loss for arbitrary adversary A is nO(n).

• In many realistic scenarios like key rotation for encrypted cloud storage or
forwarding of encrypted mail, as demonstrated in [10], the proxy relations

5 We note that our Theorem 2 has slightly different parameters than the corresponding
theorem (i.e., Theorem 6) in [10]. Jumping ahead, this is because we use slightly
different proof strategy than [10] when reducing to SH, in order to change all re-
encrypted ciphertexts to freshly generated ciphertexts: in [10], they change a pair of
re-encrypted ciphertexts at a time, resulting in the factor (QE +QRE) ·QRE (i.e., the
number of ciphertext pairs); in contrast, we change all re-encrypted ciphertexts in
one layer at a time, and layer by layer, resulting in the factor L (i.e., the maximum
number of layers). We refer to Fig. 12 and Fig. 13 in Appendix B.3 for an illustration
of our strategy.
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are in fact trees, chains or low-depth graphs, so does the challenge graph
G. In these situations, according to the bounds given in [10] (cf. Lemma 6
in Appendix B.1), we have the pebbling time complexity τ = O(1)log n,
the space complexity σ = O(log n) and the outdegree δ = constant, and
consequently, the security loss is only quasi-polynomial nO(log n).

3.3 Other Security Notions for Multi-Hop FPRE: UNID and CUL

In this subsection, we formalize two additional security notions for multi-hop
FPRE, namely unidirectionality (UNID) and ciphertext unlinkability (CUL), by
adapting the formalization in [21] defined for single-hop FPRE.

Unidirectionality. Intuitively, unidirectionality (UNID) means that the proxy
ability in one direction does not imply the proxy ability in the other direction.
More precisely, it requires that given a re-encryption key rkfj∗→i∗ , it is hard for
an adversary to come up with re-encryption key rkf

′

i∗→j∗ of the other direction
even if the adversary is able to obtain some re-encryption keys and corrupt some
users to obtain their secret keys. The formal definition is as follows.

Definition 7 (Unidirectionality for Multi-Hop FPRE). A multi-hop FPRE
scheme mFPRE is unidirectional (UNID secure), if for any PPT adversary A
and any polynomial n, it holds that AdvUNIDmFPRE,A,n(λ) := Pr[ExpUNIDmFPRE,A,n ⇒ 1] ≤
negl(λ), where the experiment ExpUNIDmFPRE,A,n is defined in Fig. 7.

ExpUNIDmFPRE,A,n:
For i ∈ [n]: (pk(i), sk(i)) ←$ KGen

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥, j∗ := ⊥ �record challenge users
(i∗, j∗, f, st) ←$ AOReKey(·,·,·),OCor(·)({pk(i)}i∈[n])

If (i∗ = j∗) or (i∗ ∈ Qc) or CheckTA(i∗, j∗,Qrk,Qc) = 1:
Return 0 �avoid TA1′,TA2′,TA3′,TA4′

rkfj∗→i∗ ←$ FReKGen(pk(j∗), sk(j∗), pk(i∗), f)

Qrk := Qrk ∪ {(j∗, i∗)}
(f ′, rkf

′

i∗→j∗) ←$ AOReKey(·,·,·),OCor(·)(st, rkfj∗→i∗)

If f ′ does not have output diversity:
Return ⊥ �avoid TA5′

�check the functionality of rkf
′

i∗→j∗ in the following way
m ←$ M, ct(i

∗)
0 ←$ Enc(pk(i∗),m, 0)

ct
(j∗)
1 ←$ FReEnc(rkf

′

i∗→j∗ , ct
(i∗)
0 , 0)

If Dec(sk(j∗), ct
(j∗)
1 ) = f ′(m):

Return 1
Else: Return 0

OReKey(i, j, f):
If CheckTA(i∗, j∗,Qrk ∪ {(i, j)},Qc) = 1:

Return ⊥ �avoid TA3′,TA4′

Qrk := Qrk ∪ {(i, j)}
rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkfi→j

OCor(i):
If i = i∗: Return ⊥ �avoid TA2′

If CheckTA(i∗, j∗,Qrk,Qc ∪ {i}) = 1:
Return ⊥ �avoid TA3′,TA4′

Qc := Qc ∪ {i}
Return sk(i)

CheckTA(i∗, j∗,Qrk,Qc): �avoid TA3′,TA4′

If ∃ (i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk

s.t. (jt ∈ Qc) or (jt = j∗) for some t ≥ 1:
Return 1

Else: Return 0

Fig. 7. The Unidirectionality security experiment ExpUNIDmFPRE,A,n for mFPRE, where
“output diversity” is defined as Pr[m0,m1 ←$ M : f ′(m0) 6= f ′(m1)] ≥ 1/poly(λ) (see
Remark 4 in Appendix E.1 for more details).
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In Appendix E.1, we give some explanations of the UNID security definition
and discuss the trivial attacks TA1′-TA5′ in Remark 4, and then show that the
UNID security is implied by the CPA security in Lemma 10 for multi-hop FPRE.

Ciphertext Unlinkability. In real scenarios, re-encryption relations between
ciphertexts often imply the proxy connections between users. Therefore, it is
desirable to hide the relations/connections, which is captured by the property
ciphertext unlinkability (CUL). We formalize CUL for multi-hop FPRE by re-
quiring the indistinguishability between a chain of re-encrypted ciphertexts

ct
(i0)
0

rk
f1
i0→i1−−−−−→ ct

(i1)
1

rk
f2
i1→i2−−−−−→ · · ·

rk
fL
iL−1→iL−−−−−−−→ ct

(iL)
L

generated by FReEnc and a set of freshly and independently encrypted cipher-
texts (ct

(i0)
0 , ct

(i1)
1 , . . . , ct

(iL)
L ) generated by Enc.

Definition 8 (Ciphertext Unlinkability for Multi-Hop PRE). A multi-
hop FPRE scheme mFPRE has ciphertext unlinkability (CUL), if for any PPT ad-
versaryA and any polynomial n, it holds that AdvCULmFPRE,A,n(λ) :=

∣∣Pr[ExpCULmFPRE,A,n

⇒ 1]− 1
2

∣∣ ≤ negl(λ), where the experiment ExpCULmFPRE,A,n is defined in Fig. 8.

In Appendix E.2, we give some explanations of the CUL security definition
and discuss the trivial attacks TA1′′-TA2′′ in Remark 5. We note that CUL
security is similar to the SH security (cf. Def. 6) as they both capture the in-
distinguishability of re-encrypted ciphertexts and freshly generated ciphertexts.
However, CUL security is defined in a much more realistic setting compared with
the SH security: CUL considers a setting of multiple users while SH deals with
only two users, and moreover, CUL protects the unlinkability of a chain of L re-
encrypted ciphertexts with L the maximum level of mFPRE, while SH considers
only chains of two ciphertexts. Nevertheless, in Appendix E.2, we will show that
the CUL security is implied by the SH + CPA security in Lemma 11.

Remark 3 (Post-Compromise Security). In [8], Davidson et al. proposed post-
compromise security (PCS) for PRE, which considers the scenario where PRE
serves for key rotation and guarantees that security still exists after the compro-
mise of past secret keys. More concretely, suppose that Alice has stored some
encrypted data and wants to update her public key from pk to pk′. To this end,
she can generate an update token (i.e., a re-encryption key from pk to pk′), and
re-encrypts the encrypted data using the token. In such scenario, PCS ensures
that an adversary cannot distinguish which of two adversarially-chosen cipher-
texts a re-encryption was created from, even when given the old secret key (i.e.,
the sk corresponding to pk) and the update token. Davidson et al. [8] also dis-
cussed the relations between PCS and other security notions of PRE, and proved
that HRA together with SH imply PCS for (non-fine-grained) PRE.

Following their work [8], we can extend PCS for our multi-hop FPRE, by
requiring the indistinguishability between fine-grained re-encryptions of two ad-
versarially chosen ciphertexts, even if the adversary can obtain the old secret
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ExpCULmFPRE,A,n:
For i ∈ [n]: (pk(i), sk(i)) ←$ KGen

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
Qu := ∅ �record challenge users(
{ij}j∈[0,L],

( (
{fj}j∈[L],m

)
(m0,m1, . . . ,mL)

)
, st

)
←$ AOReKey(·,·,·),OCor(·)

(
{pk(i)}i∈[n]

)
Qu := {ij}j∈[0,L] �update challenge users
If (∃j ∈ [0, L] s.t. ij ∈ Qc) or CheckTA(Qu,Qrk,Qc) = 1:

Return b ←$ {0, 1} �avoid TA1′′, TA2′′

β ←$ {0, 1}
If β = 0:

ct
(i0)
0 ←$ Enc(pk(i0),m, 0)

For j ∈ [L]: �re-encrypted ciphertexts
rk

fj
ij−1→ij

←$ FReKGen(pk(ij−1), sk(ij−1), pk(ij), fj)

ct
(ij)

j ←$ FReEnc(rk
fj
ij−1→ij

, ct(ij−1), j − 1)

If β = 1 :
For j ∈ [0, L]: �independently generated ciphertexts

ct
(ij)

j ←$ Enc(pk(ij),mj , j)

β′ ←$ AOReKey(·,·,·),OCor(·)(st, {rkfjij−1→ij
}j∈[L], {ct

(ij)

j }j∈[0,L])

If β′ = β: Return 1; Else: Return 0

OReKey(i, j, f): �re-encryption key queries
If CheckTA(Qu,Qrk ∪ {(i, j)},Qc) = 1:

Return ⊥ �avoid TA2′′

Qrk := Qrk ∪ {(i, j)}
rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkfi→j

OCor(i): �corruption queries
If i ∈ Qu: Return ⊥ �avoid TA1′′

If CheckTA(Qu,Qrk,Qc ∪ {i}) = 1:
Return ⊥ �avoid TA2′′

Qc := Qc ∪ {i}
Return sk(i)

CheckTA(Qu,Qrk,Qc): �check TA2′′

If ∃ i∗ ∈ Qu and
∃ (i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk

s.t. jt ∈ Qc for some t ≥ 1:
Return 1

Else: Return 0

Fig. 8. The Ciphertext Unlinkability security experiment ExpCULmFPRE,A,n for mFPRE.

key and the fine-grained re-encryption key used to perform the re-encryption.
Moreover, similar to [8], we can also show that HRA+ SH⇒ PCS holds for our
multi-hop FPRE. The formalization of PCS and the proof of HRA+ SH⇒ PCS
for multi-hop FPRE are straightforward based on [8], and we will not elaborate
on them. Jumping ahead, our multi-hop FPRE scheme mFPRE2 in Subsect. 4.2
is both HRA and SH secure, and thus achieves PCS.

4 Constructions of Multi-Hop Fine-Grained PRE Scheme

In this section, we present two constructions of multi-hop fine-grained PRE
(mFPRE) schemes, including a CPA secure scheme mFPRE1 and an HRA secure
scheme mFPRE2, from the LWE assumptions.

4.1 The CPA secure Multi-Hop FPRE Scheme mFPRE1

Parameters. Let ppLWE = (p, q, n,N,L, ℓ, γ,∆, χ) be LWE-related parameters
that meet the following conditions:

– p, q, n,N, L, ℓ, γ,∆ ∈ N are integers, where q := p2, γ ≥ O(
√
n log q) ·

ω(
√
log n);

– χ is a B-bounded distribution, where B satisfies γ ·ω(log n) ≤ B < min{p/2,
q/(10N)} and (nB +NB + ℓ∆)LB < min{p/2, q/(10N)}.

More precisely, we describe two settings of parameter in Table 2, one for constant
hops (L = c) and under polynomial modulus q, while the other for sub-linear
hops (L = c · 3

√
λ) under sub-exponential modulus q. For simplicity, we assume

that all algorithms of our scheme mFPRE1 take ppLWE as an implicit input.
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Table 2. Concrete parameters setting, where λ denotes the security parameter and c
denotes an arbitrary constant.

Parameters p q n N L ℓ γ ∆ B

Settings (L = constant) λ2c+1 λ4c+2 λ λ c λ
√
λ(log λ)2 λ

√
λ(log λ)4

Settings (L = sub-linear) 2
√
λ 22

√
λ λ λ c · 3

√
λ λ

√
λ(log λ)2 λ

√
λ(log λ)4

Bounded Linear function family. The message space isM := Zℓ
p. Define the

family of bounded linear functions Flin from M to M over Zp as follows:

Flin =

{
fM : Zℓ

p → Zℓ
p

m 7→M ·m mod p

∣∣∣∣ M ∈ Zℓ×ℓ
p , ‖M‖∞ ≤ ∆

}
. (9)

LWE-based Multi-Hop FPRE Scheme mFPRE1. Let TrapGen, SamplePre, Invert
be the PPT algorithms defined in Lemmas 1, 2 and 3 in Appendix A.2, respec-
tively. Our LWE-based multi-hop FPRE scheme mFPRE1 = (KGen,FReKGen,Enc,
FReEnc,Dec) for the bounded linear function family Flin (9) is shown in Fig. 9.

(pk, sk) ←$ KGen:
(A ∈ ZN×n

q ,T)← TrapGen(1n, 1N )

A ←$ Zℓ×n
q

pk := A =
(
A
A

)
∈ Z(N+ℓ)×n

q

sk := T

Return (pk, sk)

rkfM
i→j ←$ FReKGen(pk(i) = A(i), sk(i) = T(i), pk(j) = A(j), fM ∈ Flin):

S ←$ χn×n, E ←$ χ(N+ℓ)×n

Parse A(i) =
(
A

(i)

A(i)

)
R ∈ Z(N+ℓ)×N ←$ SamplePre

(
T(i),A

(i)
,A(j)S+E−

(
0
M

)
A(i), γ

)
rkfM

i→j :=

(
R

∣∣∣∣∣ 0

M

)
∈ Z(N+ℓ)×(N+ℓ)

p �M is the description of fM

Return rkfM
i→j

ctv ←$ Enc(pk = A,m ∈M, v ∈ [0, L]):
s ←$ χn, e ←$ χN+ℓ

ctv := As+ e+
(

0
pm

)
∈ ZN+ℓ

q

ct
(j)
v+1 ← FReEnc(rkfM

i→j ∈ Z(N+ℓ)×(N+ℓ)
p ,

ct
(i)
v ∈ ZN+ℓ

q , v ∈ [0, L− 1]):
ct

(j)
v+1 := rkfM

i→j · ct
(i)
v ∈ ZN+ℓ

q

Return ct
(j)
v+1

m← Dec(sk = T, ct ∈ ZN+ℓ
q ):

Parse ct =
(ct∈ZN

q

ct∈Zℓ
q

)
(s, e) ←$ Invert(T, ct)

m̃ = (m̃1, . . . , m̃ℓ) := ct−As

For i ∈ [ℓ] : mi := dm̃i/pc
Return m = (m1,m2, . . . ,mℓ)

Fig. 9. The LWE-based Multi-Hop FPRE scheme mFPRE1 for Flin.

Correctness. Let pk = A and sk = T. For a v-level ciphertext ctv generated by
Enc(pk,m, v), we have ctv =

(
ctv
ctv

)
=

(
As+e

As+e+pm

)
, where e =

(
e
e

)
←$ χN+ℓ and the

upper part is an LWE instance of A. Since e is B-bounded with B < q/(10N),
‖e‖ ≤

√
N ‖e‖∞ ≤

√
NB < q/(10

√
N). Then by Lemma 2 in Appendix A.2,

(s, e) can be correctly recovered via (s, e)← Invert(T, ctv). Thus according to the
decryption algorithm Dec(sk, ctv), we get m̃ = ctv−As = e+pm, and by parsing
e = (e1, . . . , eℓ)

⊤, we have that m̃i = ei + pmi for all i ∈ [ℓ]. Moreover, since e
is B-bounded with B < p/2, each |ei| ≤ B < p/2. Consequently, dm̃i/pc = mi

and Dec can recover m correctly from ctv.

Fine-Grained L-Hop Correctness. For ct
(i)
0

rk
fM1
i→j−−−−→ ct

(j)
1 , where ct

(i)
0 ←$

Enc(pk(i),m, 0), rkfM1
i→j ←$ FReKGen(pk(i), sk(i), pk(j), fM1) and ct

(j)
1 ←$ FReEnc(

rk
fM1
i→j , ct

(i)
0 , 0), we will show that the decryption of ct

(j)
1 results in fM1(m) =
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M1m. More precisely, let rkM1
i→j :=

(
R1

∣∣ 0
M1

)
, we have

ct
(j)
1 :=

(
R1

∣∣∣∣ 0
M1

)
· ct(i)0 =

(
R1

∣∣∣∣ 0
M1

)
·
((

A
(i)

A(i)

)
s0 +

(
e0
e0

)
+

(
0

pm

))
=

(
R1A

(i)
+

(
0

M1

)
A(i)

)
· s0 +R1e0 +

(
0

M1e0

)
+

(
0

p ·M1m

)
=

(
A(j)S+E

)
· s0 +R1e0 +

(
0

M1e0

)
+

(
0

p ·M1m

)
= A(j) Ss0︸︷︷︸

:=s1

+Es0 +R1e0 +

(
0

M1e0

)
︸ ︷︷ ︸

:=e1

+

(
0

p · M1m︸ ︷︷ ︸
=fM1

(m)

)
, (10)

where s0 ←$ χn, e0 =
(
e0

e0

)
←$ χN+ℓ, S ←$ χn×n, E ←$ χ(N+ℓ)×n. Here the sec-

ond last equality follows from the fact that R1 generated by R1 ←$ SamplePre(T(i),

A
(i)
,A(j)S + E −

(
0

M1

)
A(i), γ) satisfies R1A

(i)
= A(j)S + E −

(
0

M1

)
A(i) and

‖R1‖∞ ≤ γ ·ω(log n) according to Lemma 3 in Appendix A.2. Besides, ‖R1‖∞ ≤
γ · ω(log n) implies that ‖R1‖∞ ≤ B due to γ · ω(log n) ≤ B. Now that
S,E,R1, s0, e0 are all B-bounded and M1 is ∆-bounded, so we have ‖s1‖∞ ≤
nB2 and ‖e1‖∞ ≤ (nB +NB + ℓ∆)B < min{p/2, q/(10N)}. Then by a similar
argument as that for correctness, since ‖e1‖∞ < q/(10N) and ‖e1‖∞ < p/2, the
decryption algorithm Dec recovers fM1

(m) = M1m from ct
(j)
1 .

Next suppose that ct(j)1 is further re-encrypted to ct
(k)
2 , i.e., ct(j)1

rk
fM2
j→k−−−−→ ct

(k)
2 ,

where rk
fM2

j→k ←$ FReKGen(pk(j), sk(j), pk(k), fM2
) and ct

(k)
2 ←$ FReEnc(rk

fM2

j→k,

ct
(j)
1 , 1), we will show that the decryption of ct

(k)
2 results in fM2

(fM1
(m)) =

M2 ·M1 ·m. By a similar analysis as above, let rk
fM2

j→k :=
(
R2

∣∣ 0
M2

)
, we have

ct
(k)
2 :=

(
R2

∣∣∣∣ 0
M2

)
· ct(j)1 =

(
R2

∣∣∣∣ 0
M2

)
·
((

A
(j)

A(j)

)
s1 +

(
e1
e1

)
+

(
0

pM1m

))
= A(k) Ss1︸︷︷︸

:=s2

+Es1 +R2e1 +

(
0

M2e1

)
︸ ︷︷ ︸

:=e2

+

(
0

p · M2M1m︸ ︷︷ ︸
=fM2

(fM1
(m))

)
,

where S ←$ χn×n and E ←$ χ(N+ℓ)×n. Similarly, we know that S,E,R2 are B-
bounded and M2 is ∆-bounded. Together with the fact that ‖s1‖∞ ≤ nB2 ≤
(nB + NB + ℓ∆)B and ‖e1‖∞ ≤ (nB + NB + ℓ∆)B, it follows that ‖s2‖∞ ≤
(nB +NB + ℓ∆)nB2 and ‖e2‖∞ ≤ (nB +NB + ℓ∆)2B < min{p/2, q/(10N)}.
Again, with a similar argument as that for correctness, the decryption algorithm
Dec recovers fM2

(fM1
(m)) = M2M1m from ct

(k)
2 .

As the re-encryption proceeds, after L hops of re-encryption under fM1 , fM2 ,

· · · , fML
, we get an L-level ciphertext ct

(η)
L and it satisfies

ct
(η)
L = A(η)sL + eL +

(
0

p · ML · · ·M2M1m︸ ︷︷ ︸
=fML

(···fM2
(fM1

(m)))

)
,
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where ‖sL‖∞ ≤ (nB +NB + ℓ∆)L−1nB2 and ‖eL‖∞ ≤ (nB +NB + ℓ∆)LB <
min{p/2, q/(10N)}. Consequently, the function value fML

(· · · fM2(fM1(m))) =

ML · · ·M2M1m can be recovered from ct
(η)
L by the decryption algorithm Dec.

Below we show the IND security and wKP security of our scheme mFPRE1

via the following two theorems. Then together with Theorem 1 (IND + wKP ⇒
CPA) in Subsect. 3.2, it yields the CPA security of our scheme mFPRE1.

Theorem 3 (IND Security of mFPRE1). Assume that the LWEn,q,χ,N+ℓ-
assumption holds, then the scheme mFPRE1 proposed in Fig. 9 has IND security.
More precisely, for any PPT adversary A that make at most Qchal queries
to OChal, there exists a PPT algorithm B against the LWE assumption s.t.
AdvINDmFPRE1,A(λ) ≤ Qchal · AdvLWE

[n,q,χ,N+ℓ],B(λ).

Proof of Theorem 3. We prove the theorem via two games G0 and G1.

Game G0: This is the IND experiment (cf. Fig. 4). Let Win denote the event
that β′ = β. By definition, AdvINDmFPRE1,A(λ) = |Pr0[Win]− 1

2 |.
Let (pk = A, sk = T). In this game, the challenger chooses a random bit

β ←$ {0, 1} and answersA’sOChal queries (m0,m1, v) with ctv ←$ Enc(pk,mβ , v),
i.e., ctv := As+ e+

(
0

pmβ

)
for s ←$ χn, e ←$ χN+ℓ.

Game G1: It is the same as G0, except that, when answering OChal(m0,m1, v)
queries, the challenger returns a uniformly sampled ctv ←$ ZN+ℓ

q to A. Clearly,
now the challenge bit β is completely hidden to A, thus Pr1[Win] = 1

2 .
It is not hard to see that the ctv ←$ Enc(pk,mβ , v) in G0 is computationally

indistinguishable from the ctv ←$ ZN+ℓ
q in G1 based on the LWE assumption.

Formally, we have the following claim with proof appeared in Appendix D.1.

Claim 1.
∣∣Pr0[Win]− Pr1[Win]

∣∣ ≤ Qchal · AdvLWE
[n,q,χ,N+ℓ],B(λ).

Finally, taking all things together, Theorem 3 follows. ut

Theorem 4 (wKP Security of mFPRE1). Assume that the LWEn,q,χ,N+ℓ-
assumption holds, then the scheme mFPRE1 proposed in Fig. 9 has wKP security.
More precisely, for any PPT adversary A that makes at most Qrk queries to
OReKey and for any polynomial n, there exists a PPT algorithm B against the
LWE assumption s.t. AdvwKPmFPRE1,A,n(λ) ≤ n ·nQrk ·AdvLWE

[n,q,χ,N+ℓ],B(λ)+ negl(λ).

Proof of Theorem 4. We prove the theorem via a sequence of games G0 –G2,
where G0 is the wKP experiment, and in G2, A has a negligible advantage.

Game G0: This is the wKP experiment (cf. Fig. 5). Let Win denote the event
that β′ = β. By definition, AdvwKPmFPRE1,A,n(λ) = |Pr0[Win]− 1

2 |.
Let pk(i) = A(i), sk(i) = T(i) denote the public key and secret key of user

i ∈ [0, n]. In this game, the challenger chooses a random bit β ←$ {0, 1} and
answers A’s OReKey queries (j ∈ [n], fM ∈ Flin) as follows:
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• If β = 0, the challenger invokes rkfM0→j ←$ FReKGen(A(0),T(0),A(j), fM) and
returns rkfM0→j . More precisely, it samples S ←$ χn×n,E ←$ χ(N+ℓ)×n, in-
vokes R ←$ SamplePre

(
T(0),A

(0)
,A(j)S+E−

(
0
M

)
A(0), γ

)
, and returns rkfM0→j :=(

R
∣∣∣ 0
M

)
to A.

• If β = 1, the challenger invokes rkfM0→j ←$ FReKGen∗(A(0),A(j), fM) which
is defined as

FReKGen∗ : R ←$ DZ(N+ℓ)×N ,γ and rkfM0→j :=
(
R

∣∣∣ 0
M

)
.

Then the challenger returns rkfM0→j to the adversary.

Game G0.t, t ∈ [0, n]: It is the same as G0, except for the reply toA’sOReKey(j, fM)
query when β = 0:

– For j ≤ t, the challenger uniformly samples U ←$ Z(N+ℓ)×n
q and invokes

R ←$ SamplePre
(
T(0),A

(0)
,U, γ

)
to get rkfM0→j :=

(
R

∣∣∣ 0
M

)
.

– For j > t, the challenger answers the query just like G0, that is, R ←$ SamplePre(
T(0),A

(0)
,A(j)S+E−

(
0
M

)
A(0), γ

)
with S ←$ χn×n,E ←$ χ(N+ℓ)×n.

Clearly, G0.0 is identical to G0. Thus, we have Pr0[Win] = Pr0.0[Win].
Below we show the computational indistinguishability between G0.t−1 and

G0.t based on the LWE assumption.

Claim 2. For all t ∈ [n], |Pr0.t−1[Win]−Pr0.t[Win] | ≤ nQrk ·AdvLWE
[n,q,χ,N+ℓ],B(λ).

Proof. Firstly, we construct a PPT adversary B′ against the nQrk-LWEn,q,χ,N+ℓ-
assumption, such that |Pr0.t−1[Win]−Pr0.t[Win] | ≤ AdvnQrk-LWE

[n,q,χ,N+ℓ],B′(λ). Then by
a standard hybrid argument, we have AdvnQrk-LWE

[n,q,χ,N+ℓ],B′(λ) ≤ nQrk·AdvLWE
[n,q,χ,N+ℓ],B(λ)

and the claim follows.

Algorithm B′. Given a challenge (A,Z), B′ wants to distinguish Z = AS+ E

from Z ←$ Z(N+ℓ)×nQrk
q , where A ←$ Z(N+ℓ)×n

q , S ←$ χn×nQrk ,E ←$ χ(N+ℓ)×nQrk .
B′ is constructed by simulating G0.t−1/G0.t for A as follows. Firstly, B′ sets

pk(t) := A(t) := A directly for the user t, and invokes KGen honestly to generate
(pk(i), sk(i)) for all other users i ∈ [0, n]\{t}. In particular, B′ owns sk(0) = T(0).
B′ sends {pk(i)}i∈[0,n] to A. Then B′ chooses a random bit β ←$ {0, 1} and parses
Z = (Z1 | · · · | ZQrk

) ∈ Z(N+ℓ)×nQrk
q with each Zk ∈ Z(N+ℓ)×n

q for k ∈ [Qchal].
On receiving anOReKey(j ∈ [n], fM) query fromA, if β = 1, B′ invokes FReKGen∗
to get rkfM0→j and returns it to A, the same as G0.t−1 and G0.t. Otherwise, i.e.,
β = 0, B′ answers the OReKey(j ∈ [n], fM) query in the following way:

– For j ≤ t−1, B′ samples U ←$ Z(N+ℓ)×n
q and invokes R ←$ SamplePre

(
T(0),A

(0)
,

U, γ
)

to get rkfM0→j :=
(
R

∣∣∣ 0
M

)
, the same as G0.t−1 and G0.t.
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– For j = t, suppose that this is the k-th OReKey query with k ∈ [Qrk], B′
makes use of Zk to invoke R ←$ SamplePre

(
T(0),A

(0)
,Zk −

(
0
M

)
A(0), γ

)
to get

rkfM0→t :=
(
R

∣∣∣ 0
M

)
.

In the case of Z = AS+E, by parsing S = (S1 | · · · | SQrk
) ∈ Zn×nQrk

q

with each Sk ∈ Zn×n
q and parsing E = (E1 | · · · | EQrk

) ∈ Z(N+ℓ)×nQrk
q with

each Ek ∈ Z(N+ℓ)×n
q , we have Zk = ASk+Ek = A(t)Sk+Ek for Sk ←$ χn×n

and Ek ←$ χ(N+ℓ)×n, and consequently, B′’s simulation is identical to G0.t−1.
In the case of Z ←$ Z(N+ℓ)×nQrk

q , we have that Zk is uniformly distributed
over Z(N+ℓ)×n

q , so B′’s simulation is identical to G0.t.
– For j > t, B′ samples S̃ ←$ χn×n, Ẽ ←$ χ(N+ℓ)×n and invokes R ←$ SamplePre(

T(0),A
(0)

,A(j)S̃+Ẽ−
(

0
M

)
A(0), γ

)
to get rkfM0→j :=

(
R

∣∣∣ 0
M

)
, the same as G0.t−1

and G0.t.

Finally, B′ receives a bit β′ from A, and B′ outputs 1 to its own challenger if
and only if β′ = β.

Now we analyze the advantage of B′. Overall, B′ simulates G0.t−1 for A in
the case Z = AS+E while simulates G0.t for A in the case Z ←$ Z(N+ℓ)×nQrk

q .
Thus B′ successfully distinguishes Z = AS+E from Z ←$ Z(N+ℓ)×nQrk

q as long
as the probability that β′ = β in G0.t−1 differs non-negligibly from that in
G0.t. Consequently, we have AdvnQrk-LWE

[n,q,χ,N+ℓ],B′(λ) ≥
∣∣Pr0.t−1[Win] − Pr0.t[Win]

∣∣,
as desired. This completes the proof of Claim 2.

Game G1: It’s the same as G0, except for the reply to A’s OReKey(j, fM) query
when β = 0:

– For all j ∈ [n], the challenger uniformly samples U ←$ Z(N+ℓ)×n
q and uses U

to invoke R ←$ SamplePre
(
T(0),A

(0)
,U, γ

)
to obtain rkfM0→j :=

(
R

∣∣∣ 0
M

)
, and

return rkfM0→j to A.

Clearly, G1 = G0.n and Pr1[Win] = Pr0.n[Win]. Thus by Claim 2, we have∣∣Pr0[Win]− Pr1[Win]
∣∣ ≤ n · nQrk · AdvLWE

[n,q,χ,N+ℓ],B(λ).

Game G2: It’s the same as G1, except for the reply to A’s OReKey(j, fM) query
when β = 0. The challenger samples R by R ←$ DZ(N+ℓ)×N ,γ , instead of invoking
R ←$ SamplePre

(
T(0),A

(0)
,U ←$ Z(N+ℓ)×n

q , γ
)

as in G1.
Since γ ≥ O(

√
n log q) · ω(

√
log n), according to the indistinguishability of

preimage-sampling of Lemma 3 in Appendix A.2, G2 is statistically close to G1.
Thus we have

∣∣Pr1[Win]− Pr2[Win]
∣∣ ≤ negl(λ).

Finally, note that in G2, the challenger’s reply to A’s OReKey query in the
case β = 0 is identical to that in the case β = 1. Thus the challenge bit β is
completely hidden to A, and we have Pr2[Win] = 1

2 .

Taking all things together, Theorem 4 follows. ut
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By plugging Theorem 3 (IND security) and Theorem 4 (wKP security) into
Theorem 1 (IND + wKP⇒ CPA) in Subsect. 3.2, we have the following corollary
showing the CPA security of mFPRE1 based on the LWE assumption.

Corollary 1 (CPA Security of mFPRE1). Assume that the LWEn,q,χ,N+ℓ-
assumption holds, then the scheme mFPRE1 proposed in Fig. 9 is CPA secure.
More precisely, for any PPT adversary A that makes at most Qrk queries to
OReKey and forms a challenge graph G (i.e., subgraph reachable from the vertex of
challenge user) in G(n, δ, d), for any polynomial n, there exists a PPT algorithm
B against the LWE assumption s.t.

AdvCPAmFPRE1,A,n ≤ (2τ · nnQrk + 2) · nσ+δ+1 · AdvLWE
[n,q,χ,N+ℓ],B(λ) + negl(λ),

where δ denotes the outdegree, d the depth, τ the pebbling time complexity and
σ space complexity for the class G(n, δ, d), respectively (cf. Appendix B.1).

4.2 The HRA secure Multi-Hop FPRE Scheme mFPRE2

Parameters. Let ppLWE = (p, q, n,N, L, ℓ, γ,∆, χ, {χv}v∈[0,L]) be LWE-related
parameters that meet the following conditions:

– p, q, n,N, L, ℓ, γ,∆ ∈ N are integers, where q := p2, γ ≥ O(
√
n log q) ·

ω(
√
log n);

– χ is a B-bounded distribution, where B satisfies γ · ω(log n) ≤ B.
– For each v ∈ [0, L], χv is the uniform distribution over [−Bv, Bv], where Bv

satisfies Bv ≥ 2
3√
λ·(nB+NB+ℓ∆)Bv−1 for v ≥ 1 and BL ≤ min{p/4, q/(20N)}.

More precisely, we describe two settings of parameter in Table 3, one for constant
hops (L = c) and the other for sub-linear hops (L = c · 3

√
λ), both under sub-

exponential modulus q. For simplicity, we assume that all algorithms of our
scheme mFPRE2 take ppLWE as an implicit input.

Table 3. Concrete parameters setting, where λ denotes the security parameter and c
denotes an arbitrary constant.

Parameters p q n N L ℓ γ ∆ B Bv (v ∈ [0, L])

Settings (L = constant) 2
√
λ 22

√
λ λ λ c λ

√
λ(log λ)2 λ

√
λ(log λ)4 (λ2 · 2

3√
λ+1)v+1

Settings (L = sub-linear) 2λ
3/4

22λ
3/4

λ λ c · 3
√
λ λ

√
λ(log λ)2 λ

√
λ(log λ)4 (λ2 · 2

3√
λ+1)v+1

LWE-based Multi-Hop FPRE Scheme mFPRE2. Our LWE-based FPRE
scheme mFPRE2 = (KGen,FReKGen,Enc,FReEnc,Dec) is also for the bounded
linear function family Flin defined in (9) in Subsect. 4.1, and is shown in Fig. 10.

The analysis for the correctness and fine-grained L-hop correctness of mFPRE2

are similar to those for mFPRE1, and we put the formal analysis in Appendix C.
Next, we show the IND security, wKP security and SH security of mFPRE2

via the following three theorems. Then together with Theorem 2 (IND + wKP +
SH ⇒ HRA) in Subsect. 3.2, it yields the HRA security of our scheme mFPRE2.
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(pk, sk) ←$ KGen:
(A ∈ ZN×n

q ,T)← TrapGen(1n, 1N )

A ←$ Zℓ×n
q

pk := A =
(
A
A

)
∈ Z(N+ℓ)×n

q

sk := T

Return (pk, sk)

rkfM
i→j ←$ FReKGen(pk(i) = A(i), sk(i) = T(i), pk(j) = A(j), fM ∈ Flin):

S ←$ χn×n, E ←$ χ(N+ℓ)×n

Parse A(i) =
(
A

(i)

A(i)

)
R ∈ Z(N+ℓ)×N ←$ SamplePre

(
T(i),A

(i)
,A(j)S+E−

(
0
M

)
A(i), γ

)
rkfM

i→j :=

(
R

∣∣∣∣∣ 0

M

)
∈ Z(N+ℓ)×(N+ℓ)

p �M is the description of fM

Return rkfM
i→j

ctv ←$ Enc(pk = A,m ∈M, v ∈ [0, L]):
s ←$ χn

v , e ←$ χN+ℓ
v

ctv := As+ e+
(

0
pm

)
∈ ZN+ℓ

q

ct
(j)
v+1 ←$ FReEnc(rkfM

i→j ∈ Z(N+ℓ)×(N+ℓ)
p ,

pk(j) = A(j), ct
(i)
v ∈ ZN+ℓ

q , v ∈ [0, L− 1]):
ĉt

(j)
v+1 := rkfM

i→j · ct
(i)
v ∈ ZN+ℓ

q

s ←$ χn
v+1, e ←$ χN+ℓ

v+1

ct
(j)
v+1 := ĉt

(j)
v +A(j)s+ e ∈ ZN+ℓ

q

Return ct
(j)
v+1

m← Dec(sk = T, ct ∈ ZN+ℓ
q ):

Parse ct =
(ct∈ZN

q

ct∈Zℓ
q

)
(s, e) ←$ Invert(T, ct)

m̃ = (m̃1, . . . , m̃ℓ) := ct−As

For i ∈ [ℓ] : mi := dm̃i/pc
Return m = (m1,m2, . . . ,mℓ)

Fig. 10. The LWE-based Multi-Hop FPRE scheme mFPRE2 for Flin. For ease of read-
ing, we emphasize different parts with the CPA secure scheme mFPRE1 in gray boxes .

Theorem 5 (IND Security of mFPRE2). Assume that the LWEn,q,χi,N+ℓ-
assumption holds for all i ∈ [0, L], then the scheme mFPRE2 proposed in Fig. 10
has IND security. More precisely, for any PPT adversary A that make at most
Qchal queries to OChal, there exist PPT algorithms B0, . . . ,BL against the LWE
assumptions such that AdvINDmFPRE2,A(λ) ≤ Qchal ·

∑L
i=0 Adv

LWE
[n,q,χi,N+ℓ],Bi

(λ).

We refer the proof of Theorem 5 to Appendix D.2.

Theorem 6 (wKP Security of mFPRE2). Assume that the LWEn,q,χ,N+ℓ-
assumption holds, then the scheme mFPRE2 proposed in Fig. 10 has wKP security.
More precisely, for any PPT adversary A that makes at most Qrk queries to
OReKey and for any polynomial n, there exists a PPT algorithm B against the
LWE assumption s.t. AdvwKPmFPRE2,A,n(λ) ≤ n ·nQrk ·AdvLWE

[n,q,χ,N+ℓ],B(λ)+ negl(λ).

Note that the KGen and FReKGen algorithms of scheme mFPRE2 are the same
as those of mFPRE1 in Subsect. 4.1, so does the wKP security. Consequently, the
proof of Theorem 6 is identical to that for Theorem 4 and we omit it.

Theorem 7 (SH Security of mFPRE2). The scheme mFPRE2 proposed in
Fig. 10 has SH security. More precisely, for any (unbounded) adversary A, we
have AdvSHmFPRE2,A(λ) ≤ negl(λ).

Proof of Theorem 7. To show that AdvSHmFPRE2,A(λ) ≤ negl(λ), we first elabo-
rate the SH experiment ExpSHmFPRE,A defined in Fig. 6.

Let pk(i) = A(i), sk(i) = T(i) denote the public key and secret key of user
i ∈ {0, 1}. In the experiment, the challenger initiates Qf := ⊥, L := ⊥, ctr := 0,
chooses β ←$ {0, 1} and answers A’s OReKey,OEnc,OChal queries as follows:

– On receiving an OReKey(fM) query from A, the challenger adds fM to Qf ,
invokes rkfM0→1 ←$ FReKGen(A(0),T(0),A(1), fM), and returns rkfM0→1 to A.
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– On receiving an OEnc(m, v) query from A, the challenger increases the
counter ctr, invokes ct

(0)
v ←$ Enc(A(0),m, v), adds the tuple (ctr, (ct

(0)
v , v))

to L, and returns the ciphertext ct
(0)
v along with the counter ctr to A.

– On receiving an OChal(k, fM) query from A, the challenger first retrieves
(k, (ct

(0)
v , v)) from L by the counter k, and returns ⊥ to A directly if the

retrieval fails. Otherwise, the challenger answers the query as follows.
• If β = 0, the challenger first generates rkfM0→1 ←$ FReKGen(A(0),T(0),A(1),

fM) in the case fM /∈ Qf (i.e., rkfM0→1 has not been generated yet), then
it computes the re-encryption ct

(1)
v+1 ←$ FReEnc(rkfM0→1, ct

(0)
v , v), i.e.,

ct
(1)
v+1 := ĉt

(1)

v+1 +A(1)s′ + e′ with ĉt
(1)

v+1 := rkfM0→1 · ct(0)v , s′ ←$ χn
v+1, e

′ ←$ χN+ℓ
v+1 ,

(11)
and returns the re-encrypted ciphertext ct

(1)
v+1 to A.

• If β = 1, the challenger generates ct(1)v+1 ←$ Enc(A(1), fM(m) = Mm, v+
1) freshly, i.e.,

ct
(1)
v+1 := A(1)s+ e+

(
0

pMm

)
with s ←$ χn

v+1, e ←$ χN+ℓ
v+1 , (12)

and returns the fresh ciphertext ct
(1)
v+1 to A.

Finally, A outputs β′, and the advantage of A is defined by AdvSHmFPRE2,A(λ) =

|Pr[β′ = β]− 1
2 | =

1
2 ·

∣∣Pr[β′ = 1 |β = 0]− Pr[β′ = 1 |β = 1]
∣∣.

Below we analyze A’s advantage. We will show that A has negligible ad-
vantage in distinguishing β = 0 and β = 1. More precisely, we note that the
only differences between β = 0 and β = 1 are the replies ct

(1)
v+1 for OChal(k, fM)

queries, and we will show that the distributions of ct(1)v+1 in (11) are statistically
close to the distributions of ct(1)v+1 in (12), from the point of view of A.

In the case of β = 0, ct(1)v+1 is generated according to (11), and by a similar
analysis as that for Fine-Grained L-Hop Correctness, we have

ĉt
(1)

v+1 = A(1) Ss0︸︷︷︸
:=s1

+Es0 +R1e0 +
(

0
Me0

)︸ ︷︷ ︸
:=e1

+
(

0
pMm

)
,

where s0 ←$ χn
v , e0 =

(
e0

e0

)
←$ χN+ℓ

v , S ←$ χn×n, E ←$ χ(N+ℓ)×n, and it follows
that ‖s1‖∞ ≤ nBBv and ‖e1‖∞ ≤ (nB +NB + ℓ∆)Bv. Then for ct

(1)
v+1 in (11),

it holds that

ct
(1)
v+1 = ĉt

(1)

v+1 +A(1)s′ + e′ = A(1)(s1 + s′) + (e1 + e′) +
(

0
pMm

)
, (13)

where s′ ←$ χn
v+1, e

′ ←$ χN+ℓ
v+1 . Since χv+1 = [−Bv+1, Bv+1] with Bv+1 ≥ 2

3√
λ ·

(nB + NB + ℓ∆)Bv ≥ 2
3√
λ · {‖s1‖∞, ‖e1‖∞}, by Lemma 5 (the Smudging

Lemma), s′ and e′ smudge s1 and e1 respectively, so that the ct
(1)
v+1 in (13)
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is statistically close to the ct
(1)
v+1 in (12) with statistical distance at most (n +

N + ℓ)/2
3√
λ.

By a union bound over all OChal queries made by A (say Qchal number
of queries), all replies ct

(1)
v+1 in (13) (corresponding to β = 0) are statistically

close to those in (12) (corresponding to β = 1) with statistical distance at most
Qchal · (n+N + ℓ)/2

3√
λ = negl(λ). Consequently, A has negligible advantage in

distinguishing β = 0 and β = 1, and Theorem 7 follows. ut

By plugging Theorem 5 (IND security), Theorem 6 (wKP security) and Theo-
rem 7 (SH security) into Theorem 2 (IND + wKP + SH⇒ HRA) in Subsect. 3.2,
we have the following corollary showing the HRA security of our scheme mFPRE2

based on the LWE assumption.

Corollary 2 (HRA Security of mFPRE2). Assume that the LWEn,q,χ,N+ℓ-
assumption and the LWEn,q,χi,N+ℓ-assumption hold for all i ∈ [0, L], then the
scheme mFPRE2 proposed in Fig. 10 is HRA secure. More precisely, for any PPT
adversary A that makes at most Qrk queries to OReKey and forms a challenge
graph G (i.e., subgraph reachable from the vertex of challenge user) in G(n, δ, d),
for any polynomial n, there exists PPT algorithms B0, . . . ,BL and B against the
LWE assumption s.t.

AdvHRA
mFPRE2,A,n ≤

(
2
∑L

i=0 Adv
LWE
[n,q,χi,N+ℓ],Bi

(λ) + 2τ · nnQrk · AdvLWE
[n,q,χ,N+ℓ],B(λ)

)
· nσ+δ+1 + negl(λ),

where δ denotes the outdegree, d the depth, τ the pebbling time complexity and
σ space complexity for the class G(n, δ, d), respectively (cf. Appendix B.1).
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Supplementary Material
A Additional Preliminaries

A.1 Multi-Hop Proxy Re-Encryption
We recall the syntax of multi-hop proxy re-encryption according to [10].

Definition 9 (Multi-Hop PRE). A multi-hop proxy re-encryption (mPRE)
scheme is associated with a message space M, a maximum level L ∈ N and
defined with five PPT algorithms mPRE = (KGen,ReKGen,Enc,ReEnc,Dec).

– (pk, sk) ←$ KGen: The key generation algorithm outputs a pair of public key
and secret key (pk, sk).

– rki→j ←$ ReKGen(pk(i), sk(i), pk(j)): Taking as input a public-secret key pair
(pk(i), sk(i)) and another public key pk(j), the re-encryption key generation
algorithm outputs a re-encryption key rki→j that allows re-encrypting cipher-
texts intended to i into ciphertexts encrypted for j.

– ctv ←$ Enc(pk,m, v): Taking as input pk, a message m ∈ M and a level
v ∈ [0, L], the encryption algorithm outputs a v-level ciphertext ctv.

– ct
(j)
v+1 ←$ ReEnc(rki→j , ct

(i)
v , v): Taking as input a re-encryption key rki→j

and a ciphertext ct
(i)
v intended for i and its level v ∈ [0, L − 1], the re-

encryption algorithm outputs a (v+1)-level ciphertext ct(j)v+1 re-encrypted for
j. We denote it by ct

(i)
v

rki→j−−−→ ct
(j)
v+1.

– m ← Dec(sk, ct): Taking as input a secret key sk and a ciphertext ct, the
deterministic decryption algorithm outputs a message m.

Correctness. For all m ∈M, v ∈ [0, L], (pk, sk) ←$ KGen, ctv ←$ Enc(pk,m, v),
it holds that Dec(sk, ctv) = m.
L-Hop Correctness. For all m ∈M, user indices i0, i1, · · · , iL, (pk(ij), sk(ij))
←$ KGen with j ∈ [0, L], 0-level ciphertext ct

(i0)
0 ←$ Enc(pk(i0),m, 0) and re-

encryption hops ct
(i0)
0

rki0→i1−−−−−→ ct
(i1)
1

rki1→i2−−−−−→ · · ·
rkiL−1→iL−−−−−−−→ ct

(iL)
L , where each

rkij−1→ij ←$ ReKGen(pk(ij−1), sk(ij−1), pk(ij)) and each ct
(ij)
j ←$ ReEnc(rkij−1→ij ,

ct
(ij−1)
j−1 , j − 1), it holds that for all j ∈ [L], Dec(sk(ij), ct(ij)j ) = m.

Note that the above mPRE is defined as a non-interactive one, since sk(j) is
not needed in algorithm ReKGen for the generation of rki→j .

A.2 Lattice Backgrounds
Definition 10 (Discrete Gaussian Distribution). The Gaussian function
with parameter s and center c ∈ Rn is defined as ρs,c : Rn → R, ρs,c(x) :=

e−π∥x−c∥2/s2 . For a countable set S ⊂ Rn, the discrete Gaussian distribution
DS,s,c parameterized with s and c is defined as DS,s,c(x) := ρs,c(x)/

∑
x∈S ρs,c(x)

for x ∈ S and DS,s,c(x) := 0 for x /∈ S. Usually, s is omitted when s = 1 and c
is omitted if c = 0.
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Below we recall the LWE and multi-secret LWE assumptions, where both
the secret vector and the error vector are sampled from the same distribution
(say χ). This version of LWE was formalized by Applebaum et al. [2] and was
proved at least as hard as the usual definition of LWE where the secret vector
is sampled uniformly at random.
Definition 11 (LWE Assumption [20, 2]). Let n,m, q ∈ N and χ be a
distribution over Zq. The LWEn,q,χ,m-assumption requires that for any PPT
adversary A, it’s advantage function satisfies AdvLWE

[n,q,χ,m],A(λ) :=
∣∣Pr[A(A,As+

e) = 1] − Pr[A(A,u) = 1]
∣∣ ≤ negl(λ), where A ←$ Zm×n

q , s ←$ χn, e←$ χm,
u ←$ Zm

q .
For Q ∈ N, the Q-LWEn,q,χ,m-assumption requires that for any PPT A, its

advantage satisfies AdvQ-LWE
[n,q,χ,m],A(λ) :=

∣∣Pr[A(A,AS+E) = 1]−Pr[A(A,U) =

1]
∣∣ ≤ negl(λ), where A ←$ Zm×n

q , S ←$ χn×Q, E ←$ χm×Q and U ←$ Zm×Q
q .

A simple hybrid argument shows that AdvQ-LWE
[n,q,χ,m](λ) ≤ Q · AdvLWE

[n,q,χ,m](λ).
In [1, 18], an algorithm named TrapGen is proposed to sample a “nearly”

uniform random matrix A along with a low-norm trapdoor matrix TA such
that TA ·A = 0 (cf. Lemma 1). Meanwhile, another algorithm called Invert is
proposed to make use of TA to invert an LWE sample (A,As + e) to obtain s
and e (cf. Lemma 2).
Lemma 1 ([1, 18]). There exists a PPT algorithm TrapGen that takes as input
positive integers n, q (q ≥ 2) and a sufficiently large m = O(n log q), outputs a
matrix A ∈ Zm×n

q and a trapdoor matrix TA ∈ Zm×m
q such that A is statistically

close to the uniform distribution, TA ·A = 0, and ‖T̃A‖ ≤ O(
√
n log q), where

T̃A denotes the Gram-Schmidt orthogonalization of TA.
Lemma 2 ([18, Theorem 5.4]). There exists a deterministic polynomial-time
algorithm Invert that takes as inputs the trapdoor information TA and a vector
v := A · s+ e with s ∈ Zn

q and ‖e‖ ≤ q/(10
√
m), and outputs s and e.

Lemma 3 ([12]). Let n,m, q ∈ N with q ≥ 2, and γ ≥ O(
√
n log q) ·ω(

√
log n).

– Preimage-sampling. Let A ∈ Zm×n
q be a matrix with a trapdoor TA. Let

B ∈ Zm′×n
q . There exists a PPT algorithm SamplePre(TA,A,B, γ) that out-

puts a matrix R ∈ Zm′×m which is sampled from a distribution statistically
close to DΛB

q (A),γ and satisfies R ·A = B and ‖R‖∞ ≤ γ · ω(log n) (except
with a negligible probability).

– Indistinguishability of preimage-sampling. Let TrapGen be the algorithm
defined in Lemma 1. Let m ≥ O(n log q). Then we have (A,R,B) ≈s

(A,R′,B′), where the probability is over (A,TA) ←$ TrapGen(n, q,m), B←$

Zm′×m
q , R ←$ SamplePre(TA,A,B, γ), R′ ←$ DZm′×m,γ , and B′ := R′ ·A.

Lemma 4 (Randomness Extraction, Particular case of [17, Lemma
2.3]). Let n,m, q ∈ N, ϵ ∈ (0, 1). Suppose that r is chosen from some distribu-
tion over Zm

q s.t. for q’s prime factor p it holds that H∞(r mod p) ≥ 2n log q +

2 log( 1ϵ ). Then for A ←$ Zm×n
q , u ←$ Zn

q , we have ∆
(
(A, r⊤ ·A), (A,u⊤)

)
≤ ϵ.
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Lemma 5 (Smudging Lemma, [3, Lemma 1]). Let B,B′ be positive inte-
gers, and e ∈ [−B,B] a fixed integer. Then for a uniformly chosen e′ ←$ [−B′, B′],
it holds that ∆(e+ e′, e′) = B/B′.

B Proofs of Theorem 1 and Theorem 2

In this section, we will provide the proofs of Theorem 1 and Theorem 2. Our
proofs mainly follow the frameworks of [13, 10], so we will first recall their frame-
works in Appendix B.1. Then we present the proofs of Theorem 1 and Theorem 2
in Appendix B.2 and Appendix B.3, respectively.

B.1 Additional Preliminaries

Notations. For two sets X ,Y we write X∆Y for the symmetric difference.
With X ≡ Y we denote that algorithm X has exactly the same input/output
distribution as Y. For graphs, let G = (V, E) denote a directed graph with
vertices V (usually V = [n] for some n ∈ N) and edges E ⊆ V2. The indegree
(resp., outdegree) of a vertex is defined as the number of edges coming in to
(resp., going out of) that vertex. The indegree (resp., outdegree) of the graph
is the maximum indegree (resp., outdegree) over all the vertices. A vertex with
indegree (resp., outdegree) zero is called a source (resp., sink). Let G(n, δ, d)
denote the class of all directed graphs with n vertices, outdegree δ and depth d.
A vertex i is connected to another vertex j (or alternatively j is reachable from
i) if there is a directed path from i to j in G. children(i, G) refers to the set of
vertices j such that (i, j) ∈ E . “DAG” abbreviates directed acyclic graph.

B.1.1 Pebbling Game

The classical reversible black pebbling game on DAGs was introduced in [5] to
model reversible computation. In [10], Fuchsbauer et al. defined a variant in
order to adapt this technique for application to PREs. We adopt their pebbling
rule: a pebble can be placed on or removed from a vertex i if all its children
children(i, G) carry a pebble.

Definition 12 (Pebbling Game [10]). A reversible pebbling of a directed
acyclic graph G = (V, E) with a unique source vertex i∗ is a sequence P :=
(P0, . . . ,Pτ ) of pebbling configurations Pt ⊆ V with t ∈ [0, τ ]. Two subsequent
configurations differ only in one vertex and the following rule is respected in a
move: a pebble can be placed on or removed from a vertex iff all its children carry
a pebble. That is, P = (P0, . . . ,Pτ ) is a valid sequence iff

∀t ∈ [τ ] ∃!i ∈ Pt−1∆Pt and children(i, G) ⊆ Pt−1.

Starting with an empty graph (i.e., P0 = ∅), the goal of the game is to place
a pebble on the source (i.e., i∗ ∈ Pτ ).
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For a DAG G, let PG denote the set of all valid reversible pebbling se-
quences (as per Def. 12) for G. The time complexity of a particular sequence
P = (P0, . . . ,Pτ ) for a DAG G is defined as τG(P) := τ , whereas its space
complexity is defined as σG(P) := maxt∈[0,τ ] |Pt|.

Definition 13 (Time- and space-complexity of a class of DAGs [10]).
We say that a class of DAGs G has time complexity τ and space complexity σ if

∀G ∈ G, ∃P ∈ PG : τG(P) ≤ τ and σG(P) ≤ σ.

In [10], Fuchsbauer et al. analysed time complexity and space complexity of
different DAGs, including arbitrary DAGs, complete binary trees and chains.
Thus, we have following lemma:

Lemma 6 (Concrete Bounds on Pebbling Time Complexity σ and
Space Complexity τ [10]). An arbitrary graph class G(n, δ, d) has time-
complexity τ = (2δ)d and space-complexity σ = (δ + 1) · d.

Complete binary trees of size n, i.e., B(n) = G(n, 2, log n), have time-complexity
τ = n2 and space-complexity σ = 3 · log n.

Chains of length n, i.e., C(n) = G(n, 1, n), have time-complexity τ = 3log n

and space-complexity σ = log n+ 1.

B.1.2 Framework of Jafargholi et al. [13]

Jafargholi et al. [13] proposed a framework that can help us reduce the security
loss of reduction when we try to raise selective security to adaptive security.
Fuchsbauer et al. [10] applied this framework on the proof of adaptive security
of PRE schemes. Below we recall some useful definitions and theorems from [13].

We consider a game described via a challenger G which interacts with an
adversary A. At the end of the game, G outputs a decision bit b and we let AdvGA
denote the advantage of A against G.

Let W denote the set of information that the adversary A initially has to
commit. The selectivized game is defined as follows.
Definition 14 (Selectivized Game [13]). Given an (adaptive) game G and
some function g : {0, 1}∗ →W, the selectivized game H = SELW [G, g] is defined
as follows. The adversary A first sends a commitment w ∈ W to H. Then H runs
the challenger G against A, at the end of which G outputs a bit b′. Let transcript
denote all communication exchanged between G and A. If g(transcript) = w, then
H outputs the bit b′ and else it outputs 0.

Note that the selectivized game gets a commitment w from the adversary
A but essentially ignores it during the rest of the game. Only, at the very end
of the game, it checks that the commitment matches what actually happened
during the game.

Let U denote the set of partial information which is associated to A’s par-
tial choices and assume |U| � |W|. The further selectivized game is defined as
follows.
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Definition 15 (Further Selectivized Game [13]). Assume Ĥ is a (partially
selective) game which expects to receive some commitment u ∈ U from the ad-
versary in the first round. Given functions g : {0, 1}∗ → W and h : W → U ,
the further selectivized game H = SELU→W [Ĥ, g, h] is defined as follows. The
adversary A first sends a commitment w ∈ W to H and H begins running Ĥ
and passes it u = h(w). It then continues running the game between Ĥ and A
at the end of which Ĥ outputs a bit b′. Let transcript denote all communication
exchanged between Ĥ and A. If g(transcript) = w then H outputs the bit b′ and
else it outputs 0.

Compared with selectivized game defined in Def. 14, H invokes a partially
selective game Ĥ to against the adversary A instead of invoking the adaptive
game G. Note that although H requires A to commit w ∈ W at the beginning
of the game, it only sends a partial message u = h(w) to A. The main idea
of Jafargholi et al.’s framework [13] is to show that a sequence of selectivized
games SELW [G, g] can be replaced by a sequence of further selectivized game
SELU→W [Ĥ, g, h], and then our task is to guess u ∈ U rather than the whole
w ∈ W . In this way, we are able to avoid exponential security loss to a certain
extent. Formally, we recall the following theorem from [13].

Theorem 8 ([13, Theorem 2]). Let GL and GR be two adaptive games.
For some function g : {0, 1}∗ → W we define the selectivized games HL =
SELW [GL, g], HR = SELW [GR, g]. Let HL = H0,H1, . . . ,Hℓ = HR be some se-
quence of hybrid games. Assume that for each i ∈ [0, ℓ−1], there exists a function
hi :W → U and games Ĥi,0, Ĥi,1 such that:

Hi ≡ SELU→W [Ĥi,0, g, hi] , Hi+1 ≡ SELU→W [Ĥi,1, g, hi].

Furthermore, if for any PPT adversary B and any i ∈ [0, ℓ− 1], it holds that

|AdvĤi,0

B − Adv
Ĥi,1

B | ≤ ε,

then for any PPT adversary A, we have that

|AdvGL

A − AdvGR

A | ≤ ε · ℓ · |U|.

In summary, assuming that GL and GR are two adaptive game that we wish
to prove indistinguishable, Jafargholi et al.’s framework [13] works as follows:

(1) Design HL = SELW [GL, g] and HR = SELW [GR, g] and prove selective security
by a sequence of hybrid HL = H0,H1, . . . ,Hℓ = HR.

(2) For each i ∈ [0, ℓ− 1], design partially selective games Ĥi,0, Ĥi,1 such that:

Hi ≡ SELU→W [Ĥi,0, g, hi] , Hi+1 ≡ SELU→W [Ĥi,1, g, hi].

(3) Minimize the partial information, i.e., the size of U , when we are proving
the indistinguishability between Ĥi,0 and Ĥi,1 for each i ∈ [0, ℓ− 1].
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B.2 Proof of Theorem 1 (IND+wKP ⇒ CPA)

In this proof, we will apply the framework proposed by Jafargholi et al. [13].
More precisely, we first design a sequence of fully-selective hybrids G0-Gτ+1 and
show the selective CPA security of an FPRE scheme based on its IND security
and wKP security. Next, for each Gt, t ∈ [0, τ ], we design partially selective games
Ĝt,0, Ĝt,1. Finally, we apply Theorem 8 to them and prove Theorem 1.

The fully-selective hybrids. The first step of our proof is to design the se-
lectivized version of CPA experiment defined in Fig. 2. In fact, if we view users
as vertices and re-encryption keys rkfi→j that A obtains through OReKey queries
as an edge from i to j, then users [n] and Qrk form a directed graph. For the
directed graph, we define the subgraph that is reachable from the challenge user
i∗ as the challenge graph, denoted by G. In the selectivized game, we require the
adversary to commit the challenge graph G that contains the challenger user
i∗ as well as all (honest) users reachable from i∗ and the corresponding paths
(re-encryption keys). More precisely, the selective experiment is thus defined as
SELG [Exp

CPA
mFPRE,A,n, g], where G denotes the set of challenge graphs and g is the

function that extracts the challenge graph G ∈ G from transcripts.
Our next step is to show that mFPRE is selectively secure, i.e., the advantage

of any PPT adversary A against SELG [Exp
CPA
mFPRE,A,n, g] is negligible. Assuming

that the adversary does not issue any re-encryption key queries from the chal-
lenge user i∗ to other users, the FPRE scheme is the same as a PKE scheme with
different levels of encryption algorithms. Thus, the CPA security follows directly
from the IND security (cf. Def. 4) of mFPRE. More precisely, we can embed the
challenge public key on the challenger user of CPA security

Unfortunately, any re-encryption key queries from the challenge user i∗ to
another user will cause this method to fail. This is because when we are trying
to reduce CPA security to IND security, we do not know the secret key of i∗.
As a result, if the adversary issues a query OReKey(i

∗, j, f), we cannot invoke
FReKGen(pk(i

∗), sk(i
∗), pk(j), f) to answer the query. Note that wKP security (cf.

Def. 5) provides us with the ability to simulate re-encryption keys from user i to j
without knowing sk(i). Therefore, before reducing CPA security to IND security,
we need to arrive at a hybrid Gτ with τ ∈ N where we are able to simulate
re-encryption keys from i∗ for the adversary without knowing sk(i

∗).
To arrive at Gτ , we should make sure we can simulate Gτ−1 for A without

knowledge of secret keys of children(i∗, G), where we embed the challenge user
0 in Fig. 5 to i∗ and embed other users to children(i∗, G). Finally, wKP security
implies that the advantage for A to distinguish Gτ−1 and Gτ is negligible.

The sequence of hybrids from G0 (i.e., the original game SELG [ExpCPAmFPRE,A,n, g])
to Gτ is exactly a pebbling sequence P = (P0, . . . ,Pτ ) for the challenge graph G.
A pebbling configuration Pt ⊆ [n], t ∈ [0, τ ] is a set of pebbled vertices. A vertex
i is pebbled in Pt, i.e., i ∈ Pt, means that in the hybrid Gt, we can answer the
re-encryption queries with i as the source without the knowledge of its secret
key sk(i). This pebbling game starts from a graph without any pebbles and ends
with a graph where the challenge vertex i∗ is pebbled, just like Def. 12. Note
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that if P is a valid sequence, the rules (cf. Def. 12) of pebbling game ensure that
neighbouring hybrids are indistinguishable assuming wKP security.

Formally, we first show that IND security and wKP security imply selective
CPA security via the following lemma.

Lemma 7. For any PPT A against the selectivized game SELG [Exp
CPA
mFPRE,A,n, g]

with challenge graph G (i.e., subgraph reachable from the vertex of challenge user)
in G(n, δ, d) for n, δ, d ∈ N, there exist PPT algorithms B and B′ s.t. the advantage
of A, i.e., Adv

SELG [ExpCPAmFPRE,A,n,g]

A (λ) ≤ 2 · AdvINDmFPRE,B(λ) + 2τ · AdvwKPmFPRE,B′,δ(λ),
where τ denote the time complexity for the class G(n, δ, d).

Proof. Let P = (P0, . . . ,Pτ ) be a pebbling sequence for the challenge graph G
of A. We prove the lemma via a sequence of game G0-Gτ and Gτ+1, where Gt

(t ∈ [0, τ ]) corresponds to the pebble configuration Pt. More precisely, G0 is the
original selectivized game SELG [Exp

CPA
mFPRE,A,n, g] of ExpCPAmFPRE,A,n and P0 contains

no pebbles, i.e., all re-encryption key queries are honestly generated. In Pτ , the
source vertex/challenge user i∗ is pebbled, which means that all re-encryption
keys from i∗ are fake (i.e., generated by simulation). Finally, in Gτ+1, we will
show that the advantage of A is negligible assuming IND security.

Game G0: This is the original selectivized game SELG [Exp
CPA
mFPRE,A,n, g], corre-

sponding to the pebble configuration P0. Let Win denote the event that β′ =

β in the case of g(transcript) = G. By definition, AdvSELG [ExpCPAmFPRE,A,n,g](λ) =
|Pr0[Win]− 1

2 |.
At the beginning of this game, the adversary A commits a challenge graph

G ∈ G(n, δ, d) to the challenger. According to G, the challenger computes a valid
sequence of pebbling configurations P = (P0, . . . ,Pτ ) with each Pt ⊆ [n].6 G0

is corresponding to P0 = ∅, i.e., all re-encryption keys are honestly generated
via FReKGen by the challenger. Then the challenger answers A’s queries just like
ExpCPAmFPRE,A,n (cf. Fig. 2). At the end of the game, on receiving a bit β′ fromA, the
challenge extracts the real challenge graph G′ := g(transcript), where transcript
denotes the transcripts throughout the game. If the real challenge graph G′ is
equal to the committed graph G (i.e., G′ = G) and β′ = β, the challenger
outputs 1. Otherwise, the challenger outputs 0.

Game Gt, t ∈ [τ ]: Game Gt is corresponding to the pebbling configuration Pt.
Each Gt is identical to G0 except for the reply to A’s re-encryption key queries
OReKey(i, j, f).

– If i ∈ Pt and j ∈ children(i, G), the challenger invokes the simulation algo-
rithm rkfi→j ←$ FReKGen∗(pk(i), pk(j), f) guaranteed by the wKP security
to generate rkfi→j , rather than invoking FReKGen(pk(i), sk(i), pk(j), f).

– Otherwise, the challenger invokes rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f),
just like G0.

6 We refer to [10, Algorithm 1] for an algorithm for computing pebbling sequence.
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By the pebbling rules in Def. 12, we have that for each t ∈ [τ ], ∃! k ∈ Pt−1∆Pt

and children(k,G) ⊆ Pt−1. Thus, we can reduce the indistinguishability between
Gt−1 and Gt to wKP security on user k. Formally, we have the following claim.

Claim 3. For all t ∈ [τ ], |Prt−1[Win]− Prt[Win] | ≤ 2 · AdvwKPmFPRE,B′,δ.

Proof. We construct a PPT algorithm B′ against the wKP security by simulating
Gt−1/Gt for A as follows.

Algorithm B′. Algorithm B′ is given the public keys {pk(i)wKP}i∈[0,δ] from its
own challenger and has access to its own re-encryption key oracle OReKey(·, ·).
Let βwKP denote the challenge bit chosen by B′’s own challenger. B′ wants to
distinguish whether the re-encryption keys generated by its own oracle are real
(i.e., βwKP = 0) or simulated (i.e., βwKP = 1).
B′ is constructed by simulating Gt−1/Gt for A as follows. At the beginning

of the game, B′ receives a challenge graph G from A and computes Pt−1,Pt.
W.l.o.g., we assume that |Pt−1| ≤ |Pt|. B′ finds the unique user k ∈ Pt−1∆Pt

and its children children(k,G), then it embeds pk(0)wKP to pk(k) and {pk(i)wKP}i∈[δ] to
{pk(j)}j∈children(k,G) (if |children(k,G)| < δ, then B′ embeds the first |children(k,G)|
public keys). For all other users i ∈ [n] \ (children(k,G) ∪ {k}), B′ invokes KGen
honestly to generate (pk(i), sk(i)). B′ initializes Qrk = ∅,Qc = ∅, i∗ = ⊥ and
sends {pk(i)}i∈[n] to A.

– On receiving a re-encryption key query (i, j, f) from A, if CheckTA(i∗,Qrk ∪
{(i, j)},Qc) = 1, B′ returns ⊥ to A, just like ExpCPAmFPRE,A,n. Otherwise, B′
replies the query as follows:
• If i ∈ Pt−1 and j ∈ children(i, G), B′ invokes rkfi→j ←$ FReKGen∗(pk(i), pk(j), f)

and sends the simulated re-encryption key rkfi→j to A.
• If i = k and j ∈ children(k,G), B′ queries (j, f) to its own oracle OReKey.

On receiving rkfk→j from OReKey(j, f), B′ passes it to A.
• Otherwise, B invokes rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f) and sends

the real re-encryption key rkfi→j to A.
Note that in the case of i = k and j /∈ children(k,G), B′ cannot

generate rkfk→j without the knowledge of sk(k). But this case will lead
to g(transcript) 6= G in both Gt−1 and Gt.

– On receiving a corruption query i from A, if CheckTA(i∗,Qrk,Qc∪{i}) = 1,
B′ returns ⊥ to A, just like ExpCPAmFPRE,A,n. Otherwise, B′ returns sk(i) to A.

Note that in the case of i = k or i ∈ children(k,G), B does not possess
sk(i). But this case will lead to g(transcript) 6= G in both Gt−1 and Gt.

– On receiving the challenge tuple (i∗,m0,m1, v) from A, if (i∗ ∈ Qc) or
CheckTA(i∗,Qrk,Qc) = 1, B′ aborts the game with A and returns a random
bit β′

wKP ←$ {0, 1} to its own challenger. Otherwise, B′ chooses a random bit
β for A and returns ct∗v ←$ Enc(pk(i

∗),mβ , v) to A.
– Finally, B′ receives a bit β′ from A, and B′ outputs β′

wKP = 1 to its own
challenger if and only if β′ = β and g(transcript) = G. Otherwise, B′ outputs
a uniform bit β′

wKP ←$ {0, 1}.
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Note that in the case of g(transcript) 6= G, B′ will outputs a uniform bit β′
wKP

in both Gt−1 and Gt and this will have no effect on the difference in probability
of the event Win.

Now we analyze the advantage of B′ in the case of g(transcript) = G. If the
challenge bit βwKP = 0, i.e., B′’s own OReKey(·, ·) oracle always returns real re-
encryption keys, B′ simulates Gt−1 perfectly for A. If the challenge bit βwKP = 1,
i.e., B′’s own OReKey(·, ·) oracle always returns simulated re-encryption keys, B′
simulates Gt perfectly for A. Thus,

AdvwKPmFPRE,B′,δ(λ) = |Pr[β′
wKP = βwKP]− 1

2 |
= 1

2 · |Pr[β
′
wKP = 1 | βwKP = 0]− Pr[β′

wKP = 1 | βwKP = 1] |
= 1

2 · |Pr[β
′ = β ∧ g(transcript) = G | βwKP = 0] −

Pr[β′ = β ∧ g(transcript) = G | βwKP = 1] |
= 1

2 · |Prt−1[Win]− Prt[Win] |.

This completes the proof of Claim 3.
Game Gτ : Game Gτ is corresponding to the pebbling configuration Pτ . By
Claim 3 and a simple hybrid, we have

|Pr0[Win]− Prτ [Win]| ≤ 2τ · AdvwKPmFPRE,B′,δ.

Note that in Gτ , the challenge user i∗ is pebbled, which means the secret key
sk(i

∗) is not needed anymore.
Game Gτ+1: It is the same as Gτ , except for the generation of the challenge ci-
phertext ct∗v. Now the challenger always encrypts m1, i.e., ct∗v ←$ Enc(pk(i

∗),m1, v),
regardless of the challenge bit β.

We show the computational indistinguishability between Gτ and Gτ+1 via
the following claim.

Claim 4. |Prτ [Win]− Prτ+1[Win] | ≤ AdvINDmFPRE,B.

Proof. We construct a PPT algorithm B against the IND security by simulating
Gτ/Gτ+1 for A as follows.
Algorithm B. Algorithm B is given a public key pk from its own challenger
and has access to its own challenge oracle OChal(·, ·, ·). B wants to guess the
challenge bit βIND chosen by its own challenger.
B is constructed by simulating Gτ/Gτ+1 for A as follows. At the beginning of

the game, B receives a challenge graph G from A and computes Pτ . B embeds pk
to the public key pk(i

∗) of the challenge user i∗. For all other users i ∈ [n] \ {i∗},
B invokes KGen honestly to generate (pk(i), sk(i)). B initializes Qrk = ∅,Qc =
∅, i∗ = ⊥ and sends {pk(i)}i∈[n] to A.

– On receiving a re-encryption key query (i, j, f) from A, if CheckTA(i∗,Qrk ∪
{(i, j)},Qc) = 1, B returns ⊥ to A, just like ExpCPAmFPRE,A,n. Otherwise, B
replies the query as follows:
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• If i ∈ Pτ and j ∈ children(i, G), B invokes rkfi→j ←$ FReKGen∗(pk(i), pk(j), f)

and sends the simulated re-encryption key rkfi→j to A.
• Otherwise, B invokes rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f) and sends

the real re-encryption key rkfi→j to A.
Note that in the case of i = i∗ and j /∈ children(i, G), B cannot

generate rkfi∗→j without the knowledge of sk(i∗). But this case will lead
to g(transcript) 6= G in both Gτ and Gτ+1.

– On receiving a corruption query i from A, if CheckTA(i∗,Qrk,Qc∪{i}) = 1,
B returns ⊥ to A, just like ExpCPAmFPRE,A,n. Otherwise, B returns sk(i) to A.

Note that in the case of i = i∗, B does not possess sk(i
∗). But this case

will lead to g(transcript) 6= G in both Gτ and Gτ+1.
– On receiving the challenge tuple (i∗,m0,m1, v) from A, if (i∗ ∈ Qc) or

CheckTA(i∗,Qrk,Qc) = 1, B aborts the game with A and returns a random
bit β′

IND ←$ {0, 1} to its own challenger. Otherwise, B queries (m0,m1, v) to
its own challenge oracle OChal and receives ctv. Then B chooses a random
bit β ←$ {0, 1} for A. In the case of β = 0, B sets ct∗v := ctv and in the case
of β = 1, B generates ct∗v ←$ Enc(pk(i

∗),m1, v) itself. B returns ct∗v to A.
– Finally, B receives a bit β′ from A, and B outputs β′

IND = 1 to its own
challenger if and only if β′ = β and g(transcript) = G. Otherwise, B outputs
a uniform bit β′

IND ←$ {0, 1}.

Note that in the case of g(transcript) 6= G, B will outputs a uniform bit β′
IND

in both Gτ and Gτ+1 and this will have no effect on the difference in probability
of the event Win.

Now we analyze the advantage of B in the case of g(transcript) = G. If the
challenge bit βIND = 0, i.e., B’s own challenge oracle OChal(m0,m1, v) always
encrypts m0, B simulates Gτ perfectly for A. If the challenge bit βIND = 1, i.e.,
B’s own challenge oracle OChal(m0,m1, v) always encrypts m1, B simulates Gτ+1

perfectly for A. Thus,

AdvINDmFPRE,B(λ) = |Pr[β′
IND = βIND]− 1

2 |
= 1

2 · |Pr[β
′
IND = 1 | βIND = 0]− Pr[β′

IND = 1 | βIND = 1] |
= 1

2 · |Pr[β
′ = β ∧ g(transcript) = G | βIND = 0] −

Pr[β′ = β ∧ g(transcript) = G | βIND = 1] |
= 1

2 · |Prτ [Win]− Prτ+1[Win] |.

This completes the proof of Claim 4.

Finally, note that in Gτ+1, the challenge bit β is completely hidden to A,
thus we have Prτ+1[Win] = 1

2 .
Taking all things together, Lemma 7 follows. ut

The partially-selective hybrids. For any two neighboring hybrids Gt and
Gt+1, t ∈ [0, τ − 1], the only difference between them is the unique vertex k =
Pt∆Pt+1. Consequently, to simulate Gt/Gt+1 for the adversaryA, we do not need
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the whole challenge graph G, but the set of pebbled vertices Pt, one vertex k that
needs to be pebbled (or unpebbled) together with its children children(k,G)7.
Note that once the adversary queries a re-encryption key query from user k to
user j (regardless of whether j belongs to children(k,G)), we always return the
simulated re-encryption key. Then there are two cases:

– There exists a re-encryption key query OReKey(k, j, f) s.t. j /∈ children(k,G).
In this case, the real challenge graph g(transcript) differs from the committed
graph G, and the challenger always outputs a random bit b.

– Otherwise, the simulation of Gt/Gt+1 is perfect.

Thus, we can define U as the set of elements (Pt, k, children(k,G)) and have

|U| ≤ |V|σ+δ+1 = nσ+δ+1,

where σ := maxt∈[0,τ ] |Pt| denotes the space complexity of the pebbling sequence
P = (P0, . . . ,Pτ ) and δ the outdegree of G.

Now, for any Gt,Gt+1 (t ∈ [0, τ ]) used in the proof of Lemma 7, we present
the further selectivized games SELU→W [Ĝt,0, g, ht], SELU→W [Ĝt,1, g, ht] and the
partially selective hybrids Ĝt,0, Ĝt,1 as below.

Further Selectivized Game SELU→W [Ĝt,b̂, g, ht], t ∈ [0, τ ], b̂ ∈ {0, 1} : At the
beginning of the game, the adversary A commits a challenge graph G ∈ G(n, δ, d)
to the challenger. According to G, the challenger first computes a valid sequence
of pebbling configurations P = (P0, . . . ,Pτ ) with each Pt ⊆ [n] and computes
the partial information ht(G) := (Pt, k, children(k,G)) as follows:

– In the case of t ≤ τ − 1, it finds the unique k := Pt∆Pt+1 along with its
children children(k,G).

– In the case of t = τ , it sets k to the challenge user i∗, and children(k,G) = ∅.

Then the challenger runs the partially-selective game Ĝt,b̂(Pt, k, children(k,G))
as defined below:

Partially-selective Games Ĝt,b̂(Pt, k, children(k,G)), t ∈ [0, τ ], b̂ ∈ {0, 1}: If t ≤
τ − 1, this game is the same as the (adaptive) CPA experiment ExpCPAmFPRE,A,n,
except for the reply to A’s re-encryption key queries OReKey(i, j, f) in the case
that no trivial attacks occur. Here, w.l.o.g., we assume that k /∈ Pt, i.e., k is
vertex that needs to be pebbled.8

– If i ∈ Pt, the challenger invokes FReKGen∗(pk(i), pk(j), f) to generate rkfi→j

and returns the simulated re-encryption key to the adversary.
– If i = k and b̂ = 1, the challenger invokes FReKGen∗(pk(k), pk(j), f) to gen-

erate rkfk→j and returns the simulated re-encryption key to the adversary.
7 Note that we need the information children(k,G) to embed δ public keys when re-

ducing the difference of Ĝt,0/Ĝt,1 to the wKP security (cf. the proof of Claim 3).
8 If k ∈ Pt, then we need to unpebble k, i.e., convert the reply of re-encryption key

queries from simulated re-encryption keys to real re-encryption keys.
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– If i = k and b̂ = 0, the challenger invokes FReKGen(pk(k), sk(k), pk(j), f) to
generate rkfk→j and returns the real re-encryption key to the adversary.

– Otherwise, the challenger invokes FReKGen(pk(i), sk(i), pk(j), f) to generate
rkfi→j and returns the real re-encryption key to the adversary.

On receiving the output bit b′ from Ĝt,b̂(Pt, k), the challenger checks if g(transcript) =
G. In the case of g(transcript) = G, the challenger outputs b := b′, otherwise,
the challenger outputs a uniform bit b ←$ {0, 1}. It is easy to verify that for any
PPT adversary A, we have |AdvĜt,0

A (λ)−Adv
Ĝt,1

A (λ)| ≤ 2 ·AdvwKPmFPRE,B′,δ(λ). The
proof is similar to the proof of Claim 3.

If t = τ , Ĝτ,0 is identical to Ĝτ−1,1, and Ĝτ,1 is almost identical to Ĝτ,0 except
that the challenge ciphertext is always generated by ct∗v ←$ Enc(pk(i

∗),m1, v),
regardless of β. It is easy to verify that for any PPT adversary A, we have
|AdvĜτ,0

A (λ) − Adv
Ĝτ,1

A (λ)| ≤ 2 · AdvINDmFPRE,B(λ). The proof is similar to the proof
of Claim 4.

Finally, for each t ∈ [0, τ ], we have Gt ≡ SELG→Vσ+1 [Ĝt,0, g, ht] and Gt+1 ≡
SELG→Vσ+1 [Ĝt,1, g, ht] hold for the ht : G → Vσ+δ+1 and partially-selective games
Ĝt,0, Ĝt,1 defined above. By applying Theorem 8, we complete the proof of The-
orem 1. ut

B.3 Proof of Theorem 2 (IND+wKP+SH ⇒ HRA)

The proof of Theorem 2 consists of two main steps. In the first step, we de-
fine an intermediate security notion, i.e., shHRA security, via the experiment
ExpshHRAmFPRE,A,n illustrated in Fig. 11. Roughly speaking, the challenger will answer
A’s re-encryption queries OReEnc(i, j, f, k) with freshly generated ciphertexts,
instead of re-encrypted ciphertexts, in the case (k, i) /∈ L∗, i.e., the ciphertext
to be re-encrypted is not (derivative of) the challenge ciphertext ct∗v. At the
end of the first step, we will show the indistinguishability of ExpHRAmFPRE,A,n and
ExpshHRAmFPRE,A,n. Note that in ExpshHRAmFPRE,A,n, the OEnc oracle and OReEnc do not
leak any information of the challenge bit β beyond the challenge ciphertext ct∗v
to A and the answers no longer involve sk(i

∗) to compute the re-encryption
keys for those (k, i) /∈ L∗. Then, in the second step, we prove the shHRA secu-
rity of mFPRE in a similar way as the strategy we proved the CPA security in
Appendix B.2.

We first present the formal definition of the intermediate security notion, i.e.,
the shHRA security of mFPRE.

Definition 16 (shHRA Security for Multi-Hop FPRE). A multi-hop FPRE
scheme mFPRE is shHRA secure, if for any PPT adversary A and any polyno-
mial n, it holds that AdvshHRAmFPRE,A,n(λ) :=

∣∣Pr[ExpshHRAmFPRE,A,n ⇒ 1] − 1
2

∣∣ ≤ negl(λ),
where the experiment ExpshHRA

mFPRE,A,n is defined in Fig. 11.

Compared with the HRA experiment ExpHRAmFPRE,A,n (cf. Fig. 3), the first dif-
ference in ExpshHRAmFPRE,A,n is that the challenger uses an extra column in L to store
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ExpshHRAmFPRE,A,n:
For i ∈ [n]: (pk(i), sk(i)) ←$ KGen

Qrk := ∅ �record re-encryption key queries
Qc := ∅ �record corruption queries
i∗ := ⊥ �record challenge user
L := ⊥ �record honestly generated ciphertexts
L∗ := ⊥ �record derivatives of the challenge ciphertext
ctr := 0 �index of honestly generated ciphertexts
(i∗,m0,m1, v, st) ←$ AOReKey(·,·,·),OCor(·),OEnc(·,·,·),OReEnc(·,·,·,·)

({pk(i)}i∈[n])

If (i∗ ∈ Qc) or CheckTA(i∗,Qrk,Qc) = 1:
Return b ←$ {0, 1} �avoid TA1, TA2

β ←$ {0, 1}
ctr := ctr + 1

ct∗v ←$ Enc(pk(i∗),mβ , v)

L := L ∪ {(ctr, i∗,mβ , (ct
∗
v, v))}

L∗ := L∗ ∪ {(ctr, i∗)} �index of challenge ciphertext
β′ ←$ AOReKey(·,·,·),OCor(·),OEnc(·,·,·),OReEnc(·,·,·,·)(st, ct∗v)

If β′ = β: Return 1; Else: Return 0

OReKey(i, j, f): �re-encryption key queries
If CheckTA(i∗,Qrk ∪ {(i, j)},Qc) = 1:

Return ⊥ �avoid TA2

Qrk := Qrk ∪ {(i, j)}
rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

Return rkfi→j

OCor(i): �corruption queries
If ∃(i, ·) ∈ L∗: Return ⊥ �avoid TA1,TA3

If CheckTA(i∗,Qrk,Qc ∪ {i}) = 1:
Return ⊥ �avoid TA2

Qc := Qc ∪ {i}
Return sk(i)

OEnc(i,m, v): �honest encryption queries
ctr := ctr + 1

ct
(i)
v ←$ Enc(pk(i),m, v)

L := L ∪ {(ctr, i,m, (ct
(i)
v , v))}

Return (ctr, ct
(i)
v )

OReEnc(i, j, f, k): �honest re-encryption queries
If (k, i) ∈ L∗ and j ∈ Qc: Return ⊥�avoid TA3

Retrieve (k, i,m, (ct′, v′)) from L:
If fails, return ⊥

If (k, i) /∈ L∗ :

ct
(j)

v′+1 ←$ Enc(pk(j), f(m), v′ + 1)

Else:
rkfi→j ←$ FReKGen(pk(i), sk(i), pk(j), f)

ct
(j)

v′+1 ←$ FReEnc(rkfi→j , ct
′, v′)

ctr := ctr + 1

L := L ∪ {(ctr, j, f(m), (ct
(j)

v′+1, v
′ + 1))}

If (k, i) ∈ L∗: L∗ := L∗ ∪ {(ctr, j)}
Return (ctr, ct

(j)

v′+1)

CheckTA(i∗,Qrk,Qc): �check TA2

If ∃ (i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk

s.t. jt ∈ Qc for some t ≥ 1:
Return 1

Else: Return 0

Fig. 11. The shHRA security experiment ExpshHRA
mFPRE,A,n for mFPRE. For ease of reading,

we emphasize different parts with the HRA experiment ExpHRAmFPRE,A,n in gray boxes .

the underlying message m, which is intended for the change of the re-encryption
oracle OReEnc. The second difference in ExpshHRAmFPRE,A,n is that the challenger now
answers A’s re-encryption queries OReEnc(i, j, f, k) with freshly generated ci-
phertexts ct

(j)
v′+1 in the case (k, i) /∈ L∗, i.e., the ciphertext to be re-encrypted is

not (derivative of) the challenge ciphertext ct∗v.
Next we prove the indistinguishability between ExpHRAmFPRE,A,n and ExpshHRAmFPRE,A,n

based on the SH security via the following lemma.

Lemma 8. For any PPT adversary A and n ∈ N, there exists a PPT B s.t.

|AdvHRAmFPRE,A,n(λ)− AdvshHRAmFPRE,A,n(λ)| ≤ 2n(n− 1)L · AdvSHmFPRE,B.

Proof. We begin by introducing a new notion named ciphertext freshness (from
A’s view), denoted by Fresh(ct) ∈ [0, L] for ciphertext ct. The freshness of a ci-
phertext ct(i)v generated by the OEnc(i,m, v) oracle is defined as Fresh(ct(i)v ) := 0,
regardless of its level v. If a ciphertext ct

(j)
v′+1 is generated by OReEnc(i, j, f, k)

and the ciphertext ct′ indexed by k (i.e., the ct′ contained in the retrieval
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(k, i,m, (ct′, v′)) from L) has freshness s, then Fresh(ct
(j)
v′+1) := s + 1. For any

ciphertext generated by OEnc or OReEnc, the challenger can easily obtain its
freshness by recording the freshness of them at the moment of answering the
queries. In addition, we say a ciphertext is fresh if it is generated by the Enc
algorithm.

Now consider the ciphertexts that A obtains from the challenger and let
C(i)s denote the set of ciphertexts encrypted under i’s public key with freshness
s, where i ∈ [n] and s ∈ [0, L]. Note that in ExpshHRAmFPRE,A,n, except for the re-
encryptions of the challenge ciphertext ct∗v, all ciphertexts obtained by A is
fresh, although the freshness of them may be different.

As an example, in the case L = 2, we show possible relations between C(i)s

with i ∈ [n] and s ∈ [0, 2] in Fig. 12. Taking C(2)1 as an example, ciphertexts
ct ∈ C(2)1 may be re-encryptions of ciphertexts in C(1)0 or C(j)0 , and some of
ct ∈ C(2)1 may be further re-encrypted to ciphertexts in C(1)2 .

s = 0 1 2 · · · j · · · n

s = 1 1 2 · · · j · · · n

s = 2 1 2 · · · j · · · n

Fig. 12. Possible relations between all ciphertexts the A obtains from the challenger
in the case of L = 2. The round node i ∈ [n] in the row of s ∈ [0, 2] denotes the set
C(i)s of ciphertexts encrypted under pk(i) with freshness s. An arrow from node i to j
means that A has queried OReEnc(i, j, ·, ·).

Our final goal is to replace ciphertexts in C(i)s with fresh ciphertexts for all
i ∈ [n] and s ∈ [0, L]. The graph shown in Fig. 12 can help us replace the
re-encryptions accurately, however, this graph is clear only at the very end of
the experiment ExpHRAmFPRE,A,n/ExpshHRAmFPRE,A,n since A can adaptively issue its re-
encryption queries. As a result, we have to replace all possible queries by fresh
ciphertexts, instead of real re-encryptions.

SH security (cf. Def. 6) can help us accomplish the replacement above, since
it guarantees that A cannot tell whether a ciphertext ct(j)v′+1 is a re-encryption of
another ciphertext ct(i)v′ or is freshly encrypted. Note that the SH security requires
the underlying ciphertext ct(i)v′ to be freshly encrypted. Thus we will perform the
replacement row by row. More precisely, we first replace all ciphertexts with
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freshness s = 1 by fresh ciphertexts, then replace all ciphertexts with freshness
s = 2 and so on, ending with highest level s = L.

s = 0 1 2 · · · j · · · n

s = 1 1 2 · · · j · · · n

Fig. 13. Users i ∈ [n] \ {j} we need to consider when replacing ciphertexts C(j)1 with
fresh generated ciphertexts.

Before we replace all ciphertexts with freshness 1, let us first consider to
replace ciphertexts with freshness s = 1 under user j’s public key, i.e., C(j)1 .
Ciphertexts in C(j)1 have n− 1 possible sources as shown in Fig. 13 and we have
no idea about A’s choices. Thus, for all re-encryption queries targeting user j,
we replace the real re-encryptions by fresh ciphertexts source by source.

For each user couple (i, j), the SH security makes sure that the change is
indistinguishable to A. Informally, when reducing to the SH security, the reduc-
tion algorithm B will embed user 0 and user 1 in the SH experiment to user i
and user j, respectively. When A issues OEnc and OReEnc queries, B will send
them to its own OEnc and OChal oracles and simply pass the answer to A. For
other queries, as sk(0) and sk(1) are known to the reduction algorithm B, B can
generate the answers itself.

Below we present a formal description of a sequence of games G0-Gn.n−1.L

with G0 = ExpHRAmFPRE,A,n and Gn.n−1.L = ExpshHRAmFPRE,A,n, and describe the reduction
algorithm B.
Game G0: This is the HRA experiment ExpHRAmFPRE,A,n (cf. Fig. 3). Let Win denote
the event that β′ = β. By definition, AdvHRAmFPRE,A,n(λ) = |Pr0[Win]− 1

2 |.
Next we present n(n − 1)L games and each game is labeled by j, i, s with

j ∈ [n], i ∈ [n] \ {j}, s ∈ [L]. The first game is G1,2,1 and the order of games is
defined as:

(1) Increment i until running out of the set [n] \ {j}.
(2) Increment j until j = n and reset value of i ∈ [n] \ {j}. Now all ciphertexts in
C(j)s have been replaced by fresh ciphertexts and we move to the next user
j+ 1.

(3) Increment s until s = L and reset the values of j ∈ [n] and i ∈ [n] \ {j}. Now
all ciphertexts with freshness s have been replaced by fresh ciphertexts and
we move to the next freshness s+ 1.

Game Gj.i.s, j ∈ [n], i ∈ [n] \ {j}, s ∈ [L]: It is the same as the previous game (de-
noted by Gpre), except for the reply toA’s re-encryption queriesOReEnc(i, j, f, k).
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– If i = i, j = j and the challenger successfully retrieves (k, i,m, (ct′, v′)) from L
with Fresh(ct′) = s−1, the challenger returns ct(j)v′+1 ←$ Enc(pk(j), f(m), v′+
1) instead of the real re-encrypted ciphertext.

– Otherwise, the challenger answers in the same way as in Gpre.

Claim 5. For all j ∈ [n], i ∈ [n] \ {j}, s ∈ [L], |Prpre[Win] − Prj.i.s[Win]| ≤
2 · AdvSHmFPRE,B(λ).

Proof. We construct a PPT algorithm B against the SH security by simulating
Gpre/Gj.i.s for A as follows.
Algorithm B. Algorithm B is given (pk

(0)
SH , sk

(0)
SH , pk

(1)
SH , sk

(1)
SH ) from its own chal-

lenger and has access to its own oracles OReKey,OEnc,OChal. B wants to guess
the challenge bit βSH chosen by its own challenger.
B is constructed by simulating Gpre/Gj.i.s for A as follows. For user i and

j, B sets pk(i) := pk
(0)
SH , sk

(i) := sk
(0)
SH and pk(j) := pk

(1)
SH , sk

(j) := sk
(1)
SH . For all

other users i ∈ [n] \ {i, j}, B invokes KGen honestly to generate (pk(i), sk(i)).
Note that B owns the secret keys {sk(i)}i∈[n] of all users. Then B initializes
Qrk = ∅,Qc = ∅, i∗ = ⊥,L = ∅,L∗ = ∅, ctr = 0 and sends {pk(i)}i∈[n] to A.

– On receiving the a re-encryption key query (i, j, f) from A that leads to no
trivial attack, if i = i and j = j, B queries OReKey(f) to its own challenger
and returns the received rkfi→j to A. Otherwise, B answers the query in the
same way as in ExpHRAmFPRE,A,n.

– On receiving a honest encryption query (i,m, v) from A, if i = i, B queries
OEnc(m, v) to its own challenger and receives (ctrSH, ct). B labels ct with its
own counter ctr, stores (ctr, i,m, (ct, v)) to L and returns (ctr, ct

(i)
v := ct) to

A. Otherwise, B answers the query in the same way as in ExpHRAmFPRE,A,n.
– On receiving a re-encryption query (i, j, f, k) from A that leads to no trivial

attack, B first retrieves (k, i,m, (ct′, v′)) from L. If i = i, j = j, (k, i) /∈ L∗

and Fresh(ct′) = s−1, it finds out the corresponding index ctrSH and queries
OChal(ctrSH, f) to its own challenger. On receiving ct from B’s challenger, B
labels ct with its own counter ctr, stores (ctr, j,m, ct, v′+1)) to L and returns
(ctr, ct

(j)
v′+1 := ct) to A. Otherwise, B answers the query in the same way as

in ExpHRAmFPRE,A,n.
– On receiving a corruption query i fromA, B answers the query just as defined

in ExpHRAmFPRE,A,n.
– On receiving the challenge tuple (i∗,m0,m1, v), B answers A in the same

way as in ExpHRAmFPRE,A,n.
– Finally, B receives a bit β′ from A, and B outputs β′

SH = 1 to its own
challenger if and only if β′ = β.

Now we analyze the advantage of B. Overall, if βSH = 0, B simulates Gpre

perfectly for A, and if βSH = 1, B simulates Gj,i,s perfectly for A. Thus,

AdvSHmFPRE,B(λ) =
1
2 · |Pr[β

′
SH = 1 | βSH = 0]− Pr[β′

SH = 1 | βSH = 1] |
= 1

2 · |Prpre[Win]− Prj.i.s[Win] |.
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Note that in Gn.n−1.L, all ciphertexts that A obtains from the challenger
have been replaced by fresh ciphertexts. Thus, we have AdvshHRAmFPRE,A,n(λ) =

|Prn,n−1,L[Win]− 1
2 |.

Finally, by Claim 5 and a simple hybrid argument, we complete the proof of
Lemma 8. ut

In the second part of the proof, we show that mFPRE is selectively shHRA
secure if it has both IND security and wKP security via the following lemma.

Lemma 9. For any PPT A against the selectivized game SELG [Exp
shHRA
mFPRE,A,n, g]

with challenge graph G (i.e., subgraph reachable from the vertex of challenge
user) in G(n, δ, d), there exist PPT algorithms B and B′ s.t. the advantage of A,
i.e., AdvSELG [ExpshHRA

mFPRE,A,n,g]

A (λ) ≤ 2 · AdvINDmFPRE,B(λ) + 2τ · AdvwKPmFPRE,B′,δ(λ), where
τ denote the time complexity for the class G(n, δ, d).

Proof sketch. Now if the adversary issues a re-encryption query OReEnc(i, j, f, k)
and (k, i) ∈ L∗, an edge (i, j) will be added to the challenge graph. The remaining
proof of Lemma 9 is identical to the proof of Lemma 7 since the extra oracles
OEnc and OReEnc do not leak any other information9 about the challenge bit β
beyond the challenge ciphertext ct∗v.

The construction of the partially selective hybrids and analysis are similar
to that of the CPA security in Appendix B.2. ut

Finally, combining Lemma 8, Lemma 9 and Theorem 8 together, we complete
the proof of Theorem 2. ut

C Correctness and Fine-Grained L-Hop Correctness of
mFPRE2

Correctness. For a v-level ciphertext ctv generated by Enc(pk,m, v), we have
ctv =

(
ctv
ctv

)
=

(
As+e

As+e+pm

)
, where e =

(
e
e

)
←$ χN+ℓ

v . Since e ←$ χN+ℓ
v is Bv-

bounded and we have Bv ≤ BL < min{p/2, q/(10N)} for all v ∈ [0, L], we
can show that the decryption algorithm Dec recovers m correctly from ctv by a
similar analysis as that for mFPRE1 in Subsect. 4.1.

Fine-Grained L-Hop Correctness. For ct
(i)
0

rk
fM1
i→j−−−−→ ct

(j)
1 , where ct

(i)
0 ←$

Enc(pk(i),m, 0), rkfM1
i→j ←$ FReKGen(pk(i), sk(i), pk(j), fM1) and ct

(j)
1 ←$ FReEnc(

rk
fM1
i→j , ct

(i)
0 , 0), we will show that the decryption of ct

(j)
1 results in fM1

(m) =

M1m. Note that ct
(j)
1 := ĉt

(j)

1 + A(j)s′1 + e′1 with ĉt
(j)

1 := rkfMi→j · ct
(i)
0 and

9 Note that in the last game, the challenger re-encrypts challenge ciphertexts with the
simulated re-encryption key.
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s′1 ←$ χn
1 , e

′
1 ←$ χN+ℓ

1 . With a similar analysis as that for mFPRE1 in Sub-
sect. 4.1, i.e., (10), we have that

ĉt
(j)

1 = A(j) Ss0︸︷︷︸
:=s1

+Es0 +R1e0 +
(

0
M1e0

)︸ ︷︷ ︸
:=e1

+
(

0
p· M1m︸ ︷︷ ︸

=fM1
(m)

)
,

where s0 ←$ χn
0 , e0 =

(
e0

e0

)
←$ χN+ℓ

0 , S ←$ χn×n, E ←$ χ(N+ℓ)×n, and it follows
that ‖s1‖∞ ≤ nBB0 and ‖e1‖∞ ≤ (nB +NB + ℓ∆)B0. Consequently,

ct
(j)
1 = ĉt

(j)

1 +A(j)s′1 + e′1 = A(j) · (s1 + s′1︸ ︷︷ ︸
:=s′′1

) + e1 + e′1︸ ︷︷ ︸
:=e′′

1

+
(

0
p· M1m︸ ︷︷ ︸

=fM1
(m)

)
,

and we have ‖s′′1‖∞ ≤ ‖s1‖∞ + ‖s′1‖∞ ≤ nBB0 + B1 ≤ 2B1 and ‖e′′1‖∞ ≤
‖e1‖∞+‖e′1‖∞ ≤ (nB+NB+ℓ∆)B0+B1 ≤ 2B1 ≤ 2BL < min{p/2, q/(10N)}.
Therefore, the decryption algorithm Dec recovers fM1

(m) = M1m from ct
(j)
1 .

As the re-encryption proceeds, after L hops of re-encryption under fM1
, fM2

,

· · · , fML
, we can get an L-level ciphertext ct

(η)
L and it satisfies

ĉt
(η)

L = A(η) Ss′′L−1︸ ︷︷ ︸
:=sL

+Es′′L−1 +RLe′′L−1 +
(

0
M1e′′

L−1

)
︸ ︷︷ ︸

:=eL

+
(

0
p· ML · · ·M2M1m︸ ︷︷ ︸

=fML
(···fM2

(fM1
(m)))

)
,

ct
(η)
L = ĉt

(η)

L +A(η)s′L + e′L = A(η) · (sL + s′L︸ ︷︷ ︸
:=s′′L

) + eL + e′L︸ ︷︷ ︸
:=e′′

L

+
(

0
p· ML · · ·M2M1m︸ ︷︷ ︸

=fML
(···fM2

(fM1
(m)))

)
,

where ‖sL‖∞ ≤ nB · 2BL−1, ‖eL‖∞ ≤ (nB +NB + ℓ∆) · 2BL−1 and s′L ←$ χn
L,

e′L ←$ χN+ℓ
L . Then we have ‖s′′L‖∞ ≤ nB · 2BL−1 + BL ≤ 2BL and ‖e′′L‖∞ ≤

(nB +NB + ℓ∆) · 2BL−1 +BL ≤ 2BL < min{p/2, q/(10N)}, and consequently,
the function value fML

(· · · fM2(fM1(m))) = ML · · ·M2M1m can be recovered
from ct

(η)
L by the decryption algorithm Dec.

D Omitted Proofs

D.1 Proof of Claim 1

Proof of Claim 1. Firstly, we construct a PPT adversary B′ against the Qchal-
LWEn,q,χ,N+ℓ-assumption, such that

∣∣Pr0[Win]−Pr1[Win]
∣∣ ≤ AdvQchal-LWE

[n,q,χ,N+ℓ],B′(λ).
Then by a standard hybrid argument, we have AdvQchal-LWE

[n,q,χ,N+ℓ],B′(λ) ≤ Qchal ·
AdvLWE

[n,q,χ,N+ℓ],B(λ) and the claim follows.

Algorithm B′. Given a challenge (A,U), B′ wants to distinguish U = AS+E

from U ←$ Z(N+ℓ)×Qchal
q , where A ←$ Z(N+ℓ)×n

q , S ←$ χn×Qchal ,E ←$ χ(N+ℓ)×Qchal .
B′ is constructed by simulating G0/G1 for A as follows. Firstly, B′ sets

the public key pk := A and returns pk to A. Then B′ chooses a random bit
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β ←$ {0, 1} and parses U = (u1 | · · · | uQchal
) ∈ Z(N+ℓ)×Qchal

q with each
uk ∈ ZN+ℓ

q for k ∈ [Qchal]. On A’s k-th OChal(m0,m1, v) query (k ∈ [Qchal]),
B′ computes ctv := uk +

(
0

pmβ

)
and returns ctv to A. Finally, B′ receives a bit

β′ from A, and B′ outputs 1 to its own challenger if and only if β′ = β.
Now we analyze the advantage of B′.

– In the case of U = AS + E, by parsing S = (s1 | · · · | sQchal
) ∈ Zn×Qchal

q

with each sk ∈ Zn
q and parsing E = (e1 | · · · | eQchal

) ∈ Z(N+ℓ)×Qchal
q with

each ek ∈ ZN+ℓ
q , we have uk = Ask + ek for sk ←$ Zn

q and ek ←$ ZN+ℓ
q

for all k ∈ [Qchal]. Consequently, the ciphertext simulated by B′ is ctv :=
uk +

(
0

pmβ

)
= Ask + ek +

(
0

pmβ

)
, the same as that in G0.

– In the case of U ←$ Z(N+ℓ)×Qchal
q , each uk is uniformly distributed over

ZN+ℓ
q for k ∈ [Qchal]. Therefore, the ciphertext ctv := uk +

(
0

pmβ

)
simulated

by B′ is also uniformly distributed over ZN+ℓ
q , the same as that in G1.

Overall, B′ simulates G0 for A in the case U = AS+E and simulates G1 for A
in the case U ←$ Z(N+ℓ)×Qchal

q . Thus B′ successfully distinguishes U = AS+E

from U ←$ Z(N+ℓ)×Qchal
q as long as the probability that β′ = β in G0 differs

non-negligibly from that in G1. Consequently, we have AdvQchal-LWE
[n,q,χ,N+ℓ],B′(λ) ≥∣∣Pr0[Win]− Pr1[Win]

∣∣, as desired. This completes the proof of Claim 1.

D.2 Proof of Theorem 5

Proof of Theorem 5. We prove the theorem via a sequence of games G0−GL+1.

Game G0: This is the IND experiment (cf. Fig. 4). Let Win denote the event
that β′ = β. By definition, AdvINDmFPRE2,A(λ) = |Pr0[Win]− 1

2 |.
Let (pk = A, sk = T). In this game, the challenger chooses a random bit

β ←$ {0, 1} and answersA’sOChal queries (m0,m1, v) with ctv ←$ Enc(pk,mβ , v),
i.e., ctv := As+ e+

(
0

pmβ

)
for s ←$ χn

v , e ←$ χN+ℓ
v .

Game Gt, t ∈ [L+ 1]: It is the same as G0, except for the reply to A’s OChal(m0,
m1, v) query:

– For v ≤ t− 1 the challenger returns a uniformly sampled ctv ←$ ZN+ℓ
q to A.

– For v ≥ t, the challenger answers the query just like G0, that is, ctv ←$ Enc(pk,mβ , v).

Note that the only difference between Gt−1 and Gt is the reply to A’s
OChal(m0,m1, v) queries when v = t − 1: in Gt−1, the challenger answers the
queries with real ciphertexts ctt−1 := As+e+

(
0

pmβ

)
where s ←$ χn

t−1, e ←$ χN+ℓ
t−1 ,

while in Gt, the challenger answers with random ciphertexts ctt−1 ←$ ZN+ℓ
q .

Thus, assuming that A makes at most Qchal queries to OChal, the difference
between Gt−1 and Gt can be reduced to the Qchal-LWEn,q,χt−1,N+ℓ-assumption.
Formally, we have the following claim. Its proof is essentially the same as that
for Claim 1 in the proof of Theorem 3, thus we omit it.
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Claim 6. For all t ∈ [L+1], |Prt−1[Win]−Prt[Win] | ≤ Qchal·AdvLWE
[n,q,χt−1,N+ℓ],Bt−1

(λ).

Finally, note that in GL+1, all OChal(m0,m1, v) queries are answered with
random ciphertexts ctv ←$ ZN+ℓ

q , thus the challenge bit β is completely hidden
to A, and we have PrL+1[Win] = 1

2 .

Taking all things together, Theorem 5 follows. ut

E More Discussions on Other Security Notions for
Multi-Hop FPRE in Subsect. 3.3

E.1 More Discussions on UNID Security (Def. 7) and Its Relation
to CPA Security

Remark 4 (On the formalization of UNID security and discussion on trivial at-
tacks). Unidirectionality of a multi-hop FPRE scheme requires that given a
re-encryption key rkfj∗→i∗ , it is hard for the adversary to come up with re-
encryption key rkf

′

i∗→j∗ of the other direction even if the adversary is able to
obtain some re-encryption keys and corrupt some users to obtain their secret
keys.

We note that there might not exist a specialized PPT algorithm to check
whether rkf

′

i∗→j∗ is indeed a re-encryption key from i∗ to j∗. Thus in ExpUNIDmFPRE,A,n,
we actually check the functionality of rkf

′

i∗→j∗ , i.e., whether it can convert a (0-
level) ciphertext of user i∗ that encrypts a randomly chosen message m into a
(1-level) ciphertext of user j∗ that encrypts f ′(m).

Actually, there are five trivial attacks TA1′-TA5′ to obtain rkf
′

i∗→j∗ or obtain
the functionality of rkf

′

i∗→j∗ for some f ′.

TA1′: i∗ = j∗, in this case, A directly gets rkf
′

i∗→j∗ = rkfj∗→i∗ for f ′ = f .
TA2′: i∗ ∈ Qc, i.e., A ever obtains sk(i∗). In this case, A can use sk(i

∗) to gener-
ate rkf

′

i∗→j∗ itself by invoking rkf
′

i∗→j∗ ←$ FReKGen(pk(i
∗), sk(i

∗), pk(j
∗), f ′).

TA3′: ∃(i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk s.t. jt ∈ Qc for some t ≥ 1, i.e., A
gets a chain of re-encryption keys rkf1i∗→j1

, rkf2j1→j2
, . . . , rkftjt−1→jt

starting from
user i∗ and ending at some corrupted user jt for whom A ever obtains its se-
cret key sk(jt). In this case, A can invoke rk

ft+1

jt→j∗ ←$ FReKGen(pk(jt), sk(jt),

pk(j
∗), ft+1), so that the chain of re-encryption keys from i∗ to jt is further

extended to j∗, i.e.,

rkf1i∗→j1
, rkf2j1→j2

, . . . , rkftjt−1→jt
, rk

ft+1

jt→j∗ .

This new chain of re-encryption keys achieves the same functionality of
rkf

′

i∗→j∗ with f ′ = ft+1 ◦ ft ◦ · · · ◦ f2 ◦ f1.
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TA4′: ∃(i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk s.t. jt = j∗ for some t ≥ 1, i.e.,
A gets a chain of re-encryption keys rkf1i∗→j1

, rkf2j1→j2
, . . . , rkftjt−1→j∗ starting

from user i∗ and ending at user j∗. In this case, this chain already achieves
the same functionality of rkf

′

i∗→j∗ with f ′ = ft ◦ · · · ◦ f2 ◦ f1.
TA5′: The function f ′ is a constant function or an almost constant function, i.e.,

f ′ maps (almost) all messages m ∈M to a constant c = f ′(m) ∈M. In this
case, the functionality of rkf

′

i∗→j∗ can be approximated by Enc(pk(j
∗), c) =

Enc(pk(j
∗), f ′(m)).

To exclude TA5′, we require that the function f ′ for which A produces rkf
′

i∗→j∗

satisfies the property of output diversity, i.e.,

Pr[m0,m1 ←$M : f ′(m0) 6= f ′(m1)] ≥ 1/poly(λ). (14)

In [21], Zhou et al. formally proved that the CPA security implies the UNID
security in the single-hop setting. Below we show that the relation CPA⇒ UNID
also holds for multi-hop FPRE.

Lemma 10 (CPA ⇒ UNID for Multi-Hop FPRE). If a multi-hop FPRE
scheme mFPRE is CPA secure, then it is also UNID secure.

Proof of Lemma 10. To prove this, we show that if there exists a PPT adver-
sary A breaking the unidirectionality (UNID) of mFPRE, then we can construct
a PPT algorithm B to break the CPA security by simulating ExpUNIDmFPRE,A,n for A.

Algorithm B. Algorithm B is given the public keys {pk(i)}i∈[n] from its own
challenger and has access to its own oracles OReKey,OCor.

(1) B initializes Qrk = ∅,Qc = ∅, i∗ = ⊥, j∗ = ⊥ and sends {pk(i)}i∈[n] to A.
– On receiving a re-encryption key query (i, j, f) from A, B checks A’s triv-

ial attacks by checking if CheckTA(i∗, j∗,Qrk ∪ {(i, j)},Qc) = 1, just like
ExpUNIDmFPRE,A,n. If trivial attacks occur, B returns ⊥ to A, otherwise B adds
(i, j) to Qrk and queries (i, j, f) to its own oracle OReKey. On receiving rkfi→j

from OReKey(i, j, f), B returns rkfi→j to A.
– On receiving a corruption query i from A, B checks A’s trivial attacks by

checking if i = i∗ or CheckTA(i∗, j∗,Qrk,Qc∪{i}) = 1, just like ExpUNIDmFPRE,A,n.
If trivial attacks occur, B returns ⊥ to A, otherwise B adds i to Qc and
queries i to its own oracle OCor. On receiving sk(i) from OCor(i), B returns
sk(i) to A.

– On receiving the challenge tuple (i∗, j∗, f) from A, B first checks if (i∗ = j∗)
or (i∗ ∈ Qc) or CheckTA(i∗, j∗,Qrk,Qc) = 1 to identify trivial attacks, just
like ExpUNIDmFPRE,A,n. If yes, B aborts the experiment with A and returns a
random bit β′ ←$ {0, 1} to its own challenger. Otherwise, B adds (j∗, i∗)
to Qrk, and queries j∗ to its own oracle OCor. On receiving sk(j

∗) from
OCor(j

∗), B invokes rkfj∗→i∗ ←$ FReKGen(pk(j
∗), sk(j

∗), pk(i
∗), f) and return

rkfj∗→i∗ to A.

55



(2) Finally, on receiving A’s answer (f ′, rkf
′

i∗→j∗), B checks whether f ′ has out-
put diversity efficiently. If f ′ does not have output diversity, B aborts the
experiment with A and returns a random bit β′ ←$ {0, 1} to its own chal-
lenger. Otherwise, B chooses m0,m1 ←$M s.t. f ′(m0) 6= f ′(m1), and sends
challenge tuple (i∗,m0,m1, 0) to its own challenger.

On receiving ct
(i∗)
0 from its own challenger, B invokes ct(j

∗)
1 ←$ FReEnc(rkf

′

i∗→j∗ ,

ct
(i∗)
0 , 0) using the rkf

′

i∗→j∗ produced byA and computes m′ := Dec(sk(j
∗), ct

(j∗)
1 ).

If m′ = f ′(m0), B sets β′ = 0, and if m′ = f ′(m1), B sets β′ = 1, otherwise,
B picks a random bit β′ ←$ {0, 1}. B returns β′ to its own challenger.

In the simulation, if A implements trivial attacks TA1′-TA5′, B will abort
the experiment, just like ExpUNIDmFPRE,A,n. Otherwise, no trivial attacks from A
implies that i∗ /∈ Qc and there does not exist a chain of re-encryption keys from
i∗ to j ∈ Qc ∪ {j∗}, while Qc ∪ {j∗} is exactly the corrupted users set for B’s
challenger. Thus, B never issue queries leading to trivial attacks TA1 and TA2.
So B is able to simulate ExpUNIDmFPRE,A,n perfectly for A.

Now we analyze the advantage of B. Note that A wins in ExpUNIDmFPRE,A,n means
that the rkf

′

i∗→j∗ produced by A passes the check of functionality. Therefore, in
the case of A wins, for the challenge ciphertext ct(i

∗)
0 that encrypts the randomly

chosen message mβ , the re-encrypted ciphertext ct(j
∗)

1 ←$ FReEnc(rkf
′

i∗→j∗ , ct
(i∗)
0 , 0)

using the rkf
′

i∗→j∗ produced by A will decrypt to m′ := Dec(sk(j
∗), ct

(j∗)
1 ) =

f ′(mβ), and thus B can guess β correctly with probability 1. Otherwise, B will
submit a random bit β′ to its own challenger, and thus guess β correctly with
probability 1/2. Overall,

AdvCPAmFPRE,B,n(λ) = |Pr[β′ = β]− 1
2 |

= |Pr[A wins] · Pr[β′ = β |A wins] + Pr[¬A wins] · Pr[β′ = β |¬A wins]− 1
2 |

= |Pr[A wins] · 1 + (1− Pr[A wins]) · 12 −
1
2 | =

1
2 · Pr[A wins] = 1

2 · Adv
UNID
mFPRE,A,n(λ).

Consequently, if A breaks the unidirectionality (UNID) of mFPRE with a non-
negligible advantage AdvUNIDmFPRE,A,n(λ), then B will break the CPA security with
a non-negligible advantage AdvCPAmFPRE,B,n(λ) =

1
2 · Adv

UNID
mFPRE,A,n(λ) as well. ut

E.2 More Discussions on CUL Security (Def. 8)

Remark 5 (On the formalization of CUL security and discussion on trivial at-
tacks). We formalize the CUL security by defining the experiment ExpCULmFPRE,A,n

in Fig. 8. Similar to previous security notions, we consider a multi-user setting,
and the adversary A is allowed to make OReKey and OCor queries adaptively to
obtain re-encryption keys and secret keys, respectively. At some point, A out-
puts a set of challenge users Qu = {ij}j∈[0,L], a sequence of functions {fj}j∈[L]

together with a message m, as well as a sequence of messages {mj}j∈[0,L], and
receives a set of challenge ciphertexts (ct

(i0)
0 , ct

(i1)
1 , . . . , ct

(iL)
L ) which is
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- (Case β = 0) either a chain of ciphertexts generated by re-encryption hops,

i.e., ct(i0)0 ←$ Enc(pk(i0),m, 0) and ct
(i0)
0

rk
f1
i0→i1−−−−−→ ct

(i1)
1

rk
f2
i1→i2−−−−−→ · · ·

rk
fL
iL−1→iL−−−−−−−→ ct

(iL)
L ,

- (Case β = 1) or a set of ciphertexts generated by the encryption algorithms
independently, namely ct

(ij)
j ←$ Enc(pk(ij),mj , j) for j ∈ [0, L].

A aims to guess which case it is.
To prevent trivial attacks from A, we also keep track of two sets Qc and Qrk

to record the corrupted users and the tuples (i, j) that A obtains a re-encryption
key rkfi→j , respectively. Based on that, there are two trivial attacks TA1′′-TA2′′

to obtain information about the plaintexts underlying the challenge ciphertexts
{ct(ij)j }j∈[0,L].

TA1′′: ∃ j ∈ [0, L], s.t. ij ∈ Qc, i.e., A ever corrupts a challenge user ij and ob-
tains its secret key sk(ij). In this case, A can decrypt the challenge ciphertext
ct

(ij)
j with sk(ij) and learn the underlying plaintext.

TA2′′: ∃ i∗ ∈ Qu and ∃ (i∗, j1), (j1, j2), . . . , (jt−1, jt) ∈ Qrk s.t. jt ∈ Qc for some
t ≥ 1, i.e., A gets a chain of re-encryption keys rkf

′
1

i∗→j1
, rk

f ′
2

j1→j2
, . . . , rk

f ′
t

jt−1→jt
starting from some challenge user i∗ and ending at some corrupted user jt
that A ever obtains its secret key sk(jt). In this case, A can re-encrypt

the challenge ciphertext ct
(i∗)
v corresponding to user i∗ via ct

(i∗)
v

rk
f′
1

i∗→j1−−−−−→

ct
(j1)
v+1

rk
f′
2

j1→j2−−−−−→ · · ·
rk

f′
t

jt−1→jt−−−−−−→ ct
(jt)
v+t, then decrypt ct

(jt)
v+t with sk(jt) to learn

information about the plaintext contained in the challenge ciphertext ct
(i∗)
v .

This kind of trivial attacks is checked by the algorithm CheckTA defined in
Fig. 8 throughout the experiment.

As such, we exclude the above two trivial attacks in the CUL experiment.

Below we show that the CUL security is implied by the SH security together
with the CPA security for multi-hop FPRE.

Lemma 11 (SH + CPA ⇒ CUL for Multi-Hop FPRE). If a multi-hop
FPRE scheme mFPRE is both SH and CPA secure, then it is also CUL secure.
More precisely, for any PPT adversary A against the CUL security, there exist
PPT algorithm B and B′ s.t.

AdvCULmFPRE,A,n(λ) ≤ 2n2L · AdvSHmFPRE,B(λ) + 2(L+ 1) · AdvCPAmFPRE,B′(λ).

Proof of Lemma 11. We prove the theorem via a sequence of games G0-G3,
where G0 is the CUL experiment, and in G3, A has a negligible advantage.

Game G0: This is the CUL experiment (cf. Fig. 8). Let Win denote the event
that β′ = β. By definition, AdvCULmFPRE,A,n = |Pr0[Win]− 1

2 |.

Game G0.t, t ∈ [0, L]: It is the same as G0, except that in the case of β = 0,
the challenger generates the first t challenge ciphertexts {ct(ij)j }j∈[t] by invoking
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ct
(ij)
j ←$ Enc(pk(j), fj(· · · f1(m)), j) independently for each j ∈ [t], instead of

generating them by re-encryption ct
(ij)
j ←$ FReEnc(rk

fj
ij−1→ij

, ct(ij−1), j − 1).
Clearly, G0.0 is identical to G0. Thus, we have Pr0[Win] = Pr0.0[Win].
Below we show the computational indistinguishability between G0.t−1 and

G0.t based on the SH security.

Claim 7. For all t ∈ [L], |Pr0.t−1[Win]− Pr0.t[Win] | ≤ 2n2 · AdvSHmFPRE,B(λ).

Proof. We construct a PPT algorithm B to break the SH security of mFPRE by
simulating G0.t−1/G0.t for A as follows.
Algorithm B. Algorithm B is given the public keys (pk

(0)
SH , sk

(0)
SH , pk

(1)
SH , sk

(1)
SH )

from its own challenger and has access to its own oracles OReKey,OEnc,OChal.
B wants to guess the challenge bit βSH chosen by its own challenger.
B is constructed by simulating G0.t−1/G0.t for A as follows. B chooses two

distinct user indices i′t−1, i
′
t ←$ [n] uniformly at random. For user i′t−1 and user

i′t, B sets pk(i
′
t−1) := pk

(0)
SH , sk

(i′t−1) := sk
(0)
SH and pk(i

′
t) := pk

(1)
SH , sk

(i′t) := sk
(1)
SH .

For all other users i ∈ [n] \ {i′t−1, i
′
t}, B invokes KGen honestly to generate

(pk(i), sk(i)). Note that B owns the secret keys {sk(i)}i∈[n] of all users.

(1) B initializes Qrk = ∅,Qc = ∅,Qu = ∅ and sends {pk(i)}i∈[n] to A.
– On receiving a re-encryption key query (i, j, f) from A, B checks A’s

trivial attacks by checking if CheckTA(Qu,Qrk ∪ {(i, j)},Qc) = 1, just
like ExpCULmFPRE,A,n. If trivial attacks occur, B returns ⊥ to A. Otherwise
B adds (i, j) to Qrk and
• if i = i′t−1 and j = i′t, B queries OReKey(f) to its own challenger and

returns rkfi′t−1→i′t
it receives to A;

• otherwise, B answers A’s query honestly by invoking rkfi→j ←$

FReKGen(pk(i), sk(i), pk(j), f) using the secret key sk(i).
– On receiving a corruption query i from A, B checks A’s trivial attacks

by checking if (i ∈ Qu) or CheckTA(Qu,Qrk,Qc ∪ {i}) = 1, just like
ExpCULmFPRE,A,n. If trivial attacks occur, B returns ⊥ to A, otherwise B
adds i to Qc and returns sk(i) to A.

– On receiving the challenge tuple ({ij}j∈[0,L],
( ({fj}j∈[L],m)

(m0,m1,...,mL)

)
) from A, B

defines Qu := {ij}j∈[0,L] and checks A’s trivial attacks by checking if
(∃j ∈ [0, L] s.t. ij ∈ Qc) or CheckTA(Qu,Qrk,Qc) = 1. If trivial attacks
occur, B aborts the game with A and returns a random bit β′

SH ←$ {0, 1}
to its own challenger. If it−1 6= i′t−1 or it 6= i′t, B also aborts the game
and returns a random bit β′

SH ←$ {0, 1} to its own challenger. Otherwise,
B chooses a random bit β ←$ {0, 1} for A. If β = 1, B answers A in
the same way as in ExpCULmFPRE,A,n. If β = 0, B generates the challenge
ciphertexts {ct(ij)j }j∈[0,L] as follows and returns them to A.
• For j = 0, B generates ct

(i0)
0 by invoking ct

(i0)
0 ←$ Enc(pk(i0),m, 0).

• For 1 ≤ j < t−1, B generates ct(ij)j by invoking ct
(ij)
j ←$ Enc(pk(ij),

fj(· · · f1(m)), j).
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• For j = t − 1, B queries OEnc(ft−1(· · · f1(m)), t − 1) to its own
challenger and receives (ctr, ct). B sets ct

(it−1)
t−1 := ct.

• For j = t, B queries OChal(ctr, ft) to its own challenger and receives
ct′. B sets ct

(it)
t := ct′.

• For t < j ≤ L, B generates ct(ij)j in the same way as in ExpCULmFPRE,A,n.
(2) Finally, B receives a bit β′ from A, and B outputs β′

SH = 1 to its own
challenger if β′ = β.

Let T denote the event that i′t−1 = it−1 and i′t = it. Note that the values
of i′t−1 and i′t are completely hidden to A before A submits the challenge tuple
({ij}j∈[0,L], · · · ). Consequently, we have Pr[T] = 1/n(n− 1) ≥ 1/n2.

Now we analyze the advantage of B. If T does not occur, i.e., it−1 6= i′t−1 or
it 6= i′t, β′

SH ←$ {0, 1} is randomly chosen by B, and in particular, independent
of βSH. If T occurs, it is not hard to see that B simulates G0.t−1 perfectly for
A in the case βSH = 0 and simulates G0.t perfectly for A in the case βSH = 1.
Consequently, we have that

AdvSHmFPRE,B(λ) = |Pr[β′
SH = βSH]− 1

2 |
= 1

2 · |Pr[β
′
SH = 1 | βSH = 0]− Pr[β′

SH = 1 | βSH = 1] |
= 1

2 Pr[T] · |Pr[β
′ = β | βSH = 0 ∧ T]− Pr[β′ = β | βSH = 1 ∧ T] |

= 1
2 Pr[T] · |Pr0.t−1[Win]− Pr0.t[Win] |

≥ 1
2n2 · |Pr0.t−1[Win]− Pr0.t[Win] |.

This completes the proof of Claim 7.

Game G1: It is the same as G0, except that in the case of β = 0, the chal-
lenger generates all challenge ciphertexts {ct(ij)j }j∈[L] (except ct(i0)0 ) by invoking
ct

(ij)
j ←$ Enc(pk(j), fj(· · · f1(m)), j) independently for all j ∈ [L].

Clearly G1 = G0.L and by Claim 7, we have

|Pr0[Win]− Pr1[Win] | ≤ 2n2L · AdvSHmFPRE,B(λ).

Game G1.t, t ∈ [0, L]: It is the same as G1, except that in the case of β = 0, the
challenger generates the first t challenge ciphertexts {ct(ij)j }j∈[t] by encrypting
mj , i.e., ct

(ij)
j ←$ Enc(pk(j),mj , j), instead of encrypting fj(· · · f1(m)), where

j ∈ [t].
Clearly, G1.0 is identical to G1. Thus, we have Pr1[Win] = Pr1.0[Win].
Below we show the computational indistinguishability between G1.t−1 and

G1.t based on the CPA security.

Claim 8. For all t ∈ [L], |Pr1.t−1[Win]− Pr1.t[Win] | ≤ 2 · AdvCPAmFPRE,B′(λ).

Proof. We construct a PPT algorithm B′ to break the CPA security of mFPRE
by simulating G1.t−1/G1.t for A as follows.
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Algorithm B′. Algorithm B′ is given the public keys {pk(i)}i∈[n] from its own
challenger and has access to its own oracles OReKey,OCor. B′ wants to guess the
challenge bit βCPA chosen by its own challenger.
(1) B′ initializes Qrk = ∅,Qc = ∅,Qu = ∅ and sends {pk(i)}i∈[n] to A.

– On receiving a re-encryption key query (i, j, f) from A, B′ checks A’s triv-
ial attacks by checking if CheckTA(Qu,Qrk ∪ {(i, j)},Qc) = 1, just like
ExpCULmFPRE,A,n. If trivial attacks occur, B′ returns ⊥ to A, otherwise B′ adds
(i, j) to Qrk and queries (i, j, f) to its own oracle OReKey. On receiving rkfi→j

from OReKey(i, j, f), B′ returns rkfi→j to A.
– On receiving a corruption query i from A, B′ checks A’s trivial attacks by

checking if (i ∈ Qu) or CheckTA(Qu,Qrk,Qc∪{i}) = 1, just like ExpCULmFPRE,A,n.
If trivial attacks occur, B′ returns ⊥ to A, otherwise B′ adds i to Qc and
queries i to its own oracle OCor. On receiving sk(i) from OCor(i), B′ returns
sk(i) to A.

– On receiving the challenge tuple ({ij}j∈[0,L],
( ({fj}j∈[L],m)

(m0,m1,...,mL)

)
) from A, B′ de-

fines Qu := {ij}j∈[0,L] and checks A’s trivial attacks by checking if (∃j ∈
[0, L] s.t. ij ∈ Qc) or CheckTA(Qu,Qrk,Qc) = 1. If trivial attacks occur, B′
aborts the game with A and returns a random bit β′

CPA ←$ {0, 1} to its own
challenger, otherwise, B′ chooses a random bit β ←$ {0, 1} for A. If β = 1,
B′ answers A in the same way as in ExpCULmFPRE,A,n. If β = 0, B′ generates the
challenge ciphertexts {ct(ij)j }j∈[0,L] as follows and returns them to A.
• For j = 0, B′ generates ct

(i0)
0 by invoking ct

(i0)
0 ←$ Enc(pk(i0),m, 0).

• For each 1 ≤ j ≤ t−1, B′ generates ct(ij)j by invoking ct
(ij)
j ←$ Enc(pk(ij),mj , j).

• For j = t, B′ sends (it,m
′
t := ft(· · · f1(m)),mt, t) to its own challenger

and receives ct∗. B′ sets ct
(it)
t := ct∗.

• For t < j ≤ L, B′ generates ct
(ij)
j in the same way as in ExpCULmFPRE,A,n.

(2) Finally, B′ receives a bit β′ from A, and B′ outputs β′
CPA = 1 to its own

challenger if β′ = β.
In the simulation, if A implements trivial attacks TA1′-TA2′, B′ will abort

the experiment, just like ExpCULmFPRE,A,n. Otherwise, no trivial attacks from A
implies that it /∈ Qc and there does not exist a chain of re-encryption keys from
it to j ∈ Qc, while Qc is also the corrupted users set for B′’s challenger. Thus,
B′ never issue queries leading to trivial attacks TA1 and TA2. So B′ is able to
simulate the game for A.

Now we analyze the advantage of B′. If βCPA = 0, then ct∗ is an encryption
of m′

t = ft(· · · f1(m)), and thus B′ simulates G1.t−1 perfectly for A. If βCPA = 1,
then ct∗ is an encryption of mt, and thus B′ simulates G1.t perfectly for A.
Consequently, we have that

AdvCPAmFPRE,B′(λ) = |Pr[β′
CPA = βCPA]− 1

2 |
= 1

2 · |Pr[β
′
CPA = 1 | βCPA = 0]− Pr[β′

CPA = 1 | βCPA = 1] |
= 1

2 · |Pr[β
′ = β | βCPA = 0]− Pr[β′ = β | βCPA = 1] |

= 1
2 · |Pr1.t−1[Win]− Pr1.t[Win] |.
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This completes the proof of Claim 8.

Game G2. It is the same as G1, except that in the case of β = 0, the challenger
generates all challenge ciphertexts {ct(ij)j }j∈[L] (except ct(i0)0 ) by encrypting mj ,
i.e., ct(ij)j ←$ Enc(pk(j),mj , j) for all j ∈ [L].

Clearly, G2 = G1.L and by Claim 8, we have

|Pr1[Win]− Pr2[Win] | ≤ 2L · AdvCPAmFPRE,B′(λ).

Game G3. It is the same as G2, except that in the case of β = 0, the challenger
generates the 0-th challenge ciphertext ct(i0)0 by encrypting m0, i.e., ct(i0)0 ←$ Enc(
pk(0),m0, 0), instead of encryption m.

Similar to Claim 8, we can show the computational indistinguishability be-
tween G2 and G3 based on the CPA security, and get that |Pr2[Win]−Pr3[Win] | ≤
2 · AdvCPAmFPRE,B′(λ).

Finally, note that in G3, all challenge ciphertexts {ct(ij)j }j∈[0,L] are always
independently generated encryptions of mj , i.e., ct

(ij)
j ←$ Enc(pk(j),mj , j) for

all j ∈ [0, L], regardless of the challenge bit β. Consequently, β is completely
hidden to A, and we have Pr3[Win] = 1

2 .

Taking all things together, Lemma 11 follows. ut
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