
Elastic MSM: A Fast, Elastic and Modular
Preprocessing Technique for Multi-Scalar

Multiplication Algorithm on GPUs
Xudong Zhu12, Haoqi He12, Zhengbang Yang12, Yi Deng12, Lutan Zhao12

and Rui Hou12

1 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS,
Beijing, China,

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China,
{zhuxudong,hehaoqi,yangzhengbang,deng,zhaolutan,hourui}@iie.ac.cn

Abstract. Zero-knowledge proof (ZKP) is a cryptographic primitive that enable a
prover to convince a verifier that a statement is true without revealing any other
information beyond the correctness of the statement itself. Due to its powerful
capabilities, its most practical type, called zero-knowledge Succinct Non-interactive
ARgument of Knowledge (zkSNARK), has been widely deployed in various privacy-
preserving applications such as cryptocurrencies and verifiable computation. Although
state-of-the-art zkSNARKs are highly efficient for the verifier, the computational
overhead for the prover is still orders of magnitude too high to warrant use in many
applications. This overhead is due to several time-consuming operations, including
large-scale matrix-vector multiplication (MUL), number-theoretic transform (NTT),
and especially the multi-scalar multiplication (MSM) with the highest proportion.
Thus, further efficiency improvements are needed.

In this paper we focus on comprehensive optimization of running time and storage
space needed by the MSM algorithm on GPUs. Specifically, we propose a new modular
and adaptive parameter configuration technique—elastic MSM to enable us to change
the scale of MSM according to our own wishes by performing a corresponding amount
of preprocessing. This technique enable us to fully unleash the potential of various
efficient parallel MSM algorithms. From another perspective, our technique could also
be regarded as a preprocessing technique over the well-known Pippenger algorithm,
which is modular and could be used to accelerate almost all the most advanced
parallel Pippenger algorithms on GPUs. Meanwhile, our technique provides an
adaptive trade-off between the running time and the extra storage space needed
by parallel Pippenger algorithms on GPUs. We implemented and tested elastic
MSM over two prevailing parallel Pippenger algorithms on GPUs. Given a range of
practical parameters, across various preprocessing space limitations (across various
MSM scales), our constructions achieve up to about 28× and 45× (25× and 40×)
speedup versus two state-of-the-art preprocessing parallel Pippenger algorithms on
GPUs, respectively.
Keywords: Zero-Knowledge Proof · Multi-Scalar Multiplication (MSM) · Parallel
Algorithm · Graphics Processing Unit (GPU)

1 Introduction
The proposal of a zero-knowledge argument system [GMR89], especially the Non-Interactive
Zero-Knowledge argument system (NIZK) [BFM88], has a significant impact on both
cryptography theory research and the application of cryptography. In the last decade,

mailto:{zhuxudong,hehaoqi,yangzhengbang,deng,zhaolutan,hourui}@iie.ac.cn

2 Elastic MSM

remarkable progress has been made in research on zero-knowledge Succinct Non-interactive
ARgument of Knowledge (zkSNARK). After various studies [Kil92, Mic00, Gro10, Lip12,
GGPR13], Groth constructed a pairing-based zkSNARK [Gro16] with only hundreds of
bytes proof and is very fast to be verified within several milliseconds. Then, zkSNARKs
are widely considered to be the most practical zero-knowledge proofs, and they have been
widely applied to privacy-preserving applications, such as verifiable database outsourc-
ing [ZGK+17], verifiable machine learning [ZFZS20], privacy-preserving cryptocurrencies
[BSCG+14, BG17, BMRS20], electronic voting [ZC16], online auction [GY19], and anony-
mous credentials [DLFKP16].

Although proofs of the most state-of-the-art zkSNARKs such as [Gro16, BBB+18,
GWC19, CHM+20] are succinct and fast to verify, their generation remains a bottleneck
in large-scale zkSNARK adoption. For example, to generate a proof for a program (which
could be translated into a usually several times larger constraint system), the prover in
these zkSNARKs need to perform various time-consuming operations, such as large-scale
matrix-vector multiplication (MUL), number-theoretic transform (NTT), and the multi-
scalar multiplication (MSM) on elliptic curves. And the number of operations required is
always super-linear comparing to the number of constraints. As a consequence, it takes
much longer to generate the zkSNARK proof of a program, and could be up to a few
minutes just for a single payment transaction [BSCG+14]. Notably, among these expensive
operations, [Xav22, LWY+23] have mentioned that for some of the most popular zkSNARK
protocols, MSM is the most time-consuming operation, taking more than 70 percent of
the total runtime.

An important research line involves reducing the proof generation time by specifically
designing MSM operations on certain hardware, including GPUs [Min19, Bel19, Spp22,
Yrr22, Mat22, MXS+23, LWY+23], FPGAs [Xav22, ABC+22, Har22], ASICs [ZWZ+21],
and CPU clusters [WZC+18]. Although DIZK [WZC+18] could accelerate the proof
generation algorithm by distributing this algorithm to CPU clusters, it is still not suitable
for widespread deployment due to much higher deployment overhead for CPU clusters
than GPU cards, FPGA chips and ASIC chips. And due to extremely high development
costs of ASIC, the ASIC design [ZWZ+21] is not yet widely adopted. Therefore, most
recent research focus on improving the efficiency of MSM on GPUs or FPGAs.

1.1 Our Contributions
In this paper, our motivation is to design a new adaptive parameter configuration module
that is compatible with almost all the existing most efficient MSM algorithms on GPUs,
and therefore further speed-up all these algorithms. Contributions of this paper are
summarized below:

• Propose a new modular and adaptive parameter configuration technique.
With this series of research [Min19, Bel19, Spp22, Yrr22, Mat22, LWY+23], the fact
that more and more potential of GPUs has been unleashed leads to better and better
performance on the MSM parallel computations. Especially, the faster parallel MSM
algorithm proposed in [LWY+23] has achieved nearly perfect linear speedup over
the Pippenger algorithm [Pip76]. Thus, it seems difficult to further accelerate the
parallel MSM algorithm from the MSM computation algorithm itself. So we change
our perspective and try to find a new technique elastic MSM which enable us to
adaptively change the scale of MSM (with sacrifice in storage space). Notably, while
different algorithms determine different computational complexities, our technique
which is independent and compatible with algorithmic improvements endows us with
the freedom to adjust parameters to maximize the power of a particular algorithm.

• Analysis the advantages of elastic MSM in theory. Interestingly, we find
that the Computation Consolidation technique proposed in [MXS+23] could be

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 3

regarded as a special case of elastic MSM, that is elastic MSM with parameter fixed
to a specific value. Therefore, our theory could provide a theoretical support for
their technique from a higher dimension. With our plug-and-play technique elastic
MSM, for the same MSM instance, regardless of which Pippenger like algorithm
is used, we can freely adjust the instance parameters according to the different
parameter advantage intervals of each algorithm to fully unleash the potential of the
algorithm. As an example, we combine our elastic MSM with two parallel MSM
algorithms, to obtain two efficient preprocessing parallel Pippenger algorithms—
elastic Pippengers, and theoretically analyze their advantages over the preprocessing
parallel Pippenger algorithms obtained by combing these two parallel MSM algorithms
with the preprocessing technique proposed in [MXS+23]. More specifically, the elastic
Pippengers have better time-space flexibility. With the same preprocessing space,
our elastic Pippengers require less PDBLs during the preprocessing. Moreover, our
elastic Pippengers theoretically achieve significant speedup on the MSM PADDs
while only increasing a little extra MSM PDBLs overhead.

• Design some evaluation schemes for elastic MSM . We plug both our prepro-
cessing techniques and the preprocessing techniques proposed in GZKP [MXS+23] in
two common parallel Pippenger algorithms on GPUs to obtain four state-of-the-art
preprocessing parallel Pippenger implementations on GPUs. When we set prepro-
cessing storage space limitations to be 7 · 222, 5 · 222, 3 · 222, 2 · 222 and 222 extra
EC points, the evaluation results show that with other practical parameters fixed,
our MSM algorithm delivers a speedup over 4.0× and up to 28.2×, and 11.8× and
up to 45.2× in two implementations, respectively. Additionally, across MSM scales
from 216 to 222 and with other practical parameters fixed, our MSM algorithm
delivers a speedup over 10.5× and up to 25.5×, and 14.4× and up to 40.8× in two
implementations, respectively. The details of the evaluations are described in Table
5, Table 6, Table 7 and Table 8.

2 Preliminaries
2.1 Elliptic curve
An elliptic curve (EC) is a smooth, projective, algebraic curve consisting of EC points.
These points include the set that satisfies a specific mathematical equation, such as
y2 = x3 + ax+ b, and the point at infinity, denoted as O, could be served as the identity
element in the abelian group formed by all EC points.

These points support several common operations, including point addition (PADD),
point doubling (PDBL) and point scalar multiplication (PMULT), where PADD is the
fundamental operation. PDBL is a special case of PADD, the result of which is equal to
performing a PADD operation on two identical points. As for PMULT of a scalar k and an
EC point P, it can be defined as k times self-PADD of P, denoted by kP = P + P + ...+ P.
In fact, the pair kP is always computed by using double-and-add method to execute a
series of PDBLs and PADDs, we show an example of computing 25P in Figure 1 to
explain this method. We can first represent 25 in its binary form (11001)2 and initialize
the result to be the point at infinity O. Then at each bit position, we execute a PDBL to
double the point. If the bit is 1, we add it to the result using a PADD.

2.2 Multi-scalar Multiplication
MSM performs the vector inner-product on the exponents of group elements. Specifically,
The (n, λ)−MSM is defined as follows: given a vector of group elements (P1, . . . ,Pn), we
need to compute the formula Q =

∑n
i=1 kiPi, using the minimal number of multiplications

4 Elastic MSM

Figure 1: An example of PMULT computation. O is the point at infinity on elliptic curve.

possible, where {ki}i∈[1,n] are all λ bits scalar. If we compute MSM by performing PMULT
for each kiPi and then add all pairs kiPi directly, it is clear that there are many expensive
PMULT operations on an EC are needed. Based on our discussion in Subsection 2.1, if
we simply employ the double-and-add method to compute MSM, we need to perform at
most nλ+n−1 PADDs and nλ−n PDBLs. However in real-world applications, the security
parameter λ commonly ranges from 254 to 768 and the scale of MSM n could be larger
than a million and up to several billion. Even worse, the costs of EC point operations like
PADD and PDBL themselves are much more expensive than the regular scalar operations.
Altogether, the computational cost of simply using the double-and-add method for MSM
calculation is not acceptable. Therefore, some research on more efficient MSM algorithms
has emerged, such as the Pippenger algorithm [Pip76], the Chang-Lou algorithm [CL03],
and the Bos-Coster algorithm reported in [dR95]. Especially, the Pippenger algorithm
performs best when the scale of MSM is very large, as shown in [BDLO12].

2.3 MSM in zkSNARK
zkSNARK is an application oriented variant of ZKP, which is one of the most important
and widely used primitives in cryptography. A zkSNARK could be used by the prover to
convince the verifier that, "given a public relation R and a pubic statement x, I know a
secret witness w such that R(x,w) = 1", without leaking any other information. While
there are several different definitions about zkSNARK, we will provide a brief introduction
to the one known as publicly-verifiable preprocessing zkSNARK (see [BCI+13, GGPR13]
for details). Informally, zkSNARK consists of three algorithms (Setup,Prove,Verify) (see
Figure 2) such that

− (pkR, vkR)← Setup(R) : On input the relation R, this probabilistic algorithm output
a proving key pkR and the verification key vkR. Both keys are public parameters
and they could be used to prove/verify any number of statements about relation R.
That is, the Setup needs to be run only once for a specific relation R.

− π ← Prove(R, pkR, x, w) : For the public relation R, The probabilistic prover receives
the proving key pkR, a public input x for R and a secret input w for R, outputs
a proof π to prove that "I know a secret w such that R(x,w) = 1". Notably, the
generation of π involves randomness that ensures its zero knowledge property.

− 0/1 ← Verify(R, vkR, x, π) : For the public relation R, The deterministic verifier
receives the verification key vkR, a public input x for R and a proof π, outputs a
decision bit 0/1 ("accept" or "reject").

zkSNARK should satisfy the following five properties: (1)completeness, i.e., honestly
generated proof can be verified. (2)knowledge soundness, i.e., if the proof is verified by the
verifier, then the prover must know the witness w such that R(x,w) = 1. (3)zero knowledge,
i.e., there is no any other information could be derived from the proof other than that the
statement x is true. (4)succinctness, i.e., small proof sizes and fast verification regardless

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 5

of R’s complexity. (5)non-interactive, i.e., only a single message from the prover to the
verifier.

It can be seen from the definition that the design intention of zkSNARK determines
that itself has a small proof size and a fast verification. This allows zkSNARKs to serve as a
foundation for highly efficient verifiable computation. However, The trade-off in the prover’s
complexity becomes a computational bottleneck. If we take apart the computation of the
prover, just as shown in the data of [Xav22, LWY+23], the MSM operation accounts for
the vast majority of the proportion (more than 70% for many state-of-the-art zkSNARKs),
making it the main computational bottleneck of the zkSNARK prover’s complexity.

Prove 𝑅, 𝑝𝑘𝑅 , 𝑥, 𝑤

Prover with 𝑹, 𝒙,𝒘

Verify 𝑅, 𝑠𝑘𝑅 , 𝑥, 𝜋

Verifier with 𝑹

Setup 𝑅

Once per 𝑹 setup

𝑝𝑘𝑅

𝜋

0/1
I know a secret 𝑤 s.t.

𝑅 𝑥, 𝑤 = 1

𝑠𝑘𝑅

𝑥

Figure 2: Components of a zkSNARK.

2.4 The Pippenger Algorithm

Four decades ago, Pippenger provided an asymptotically optimal algorithm for the MSM in
[Pip76]. To this day, the Pippenger algorithm and its variants are still the state-of-the-art
and widely used algorithms. It is noticeable that our elastic MSM technique could be
compatible with all the Pippenger-like parallel MSM algorithms. And we review the
Pippenger algorithm and analyze its computational costs in this subsection (also see a
simple example in Figure 3).

Algorithm Description. If we set the scale of MSM to be n, the bit length of scalar
to be λ and the window size to be s (without losing generality, we assume that λ is divisible
by s in our paper), to compute the MSM Q =

∑n
i=1 Qi =

∑n
i=1 kiPi, then the Pippenger

algorithm consists of these three steps:

1. Convert the task using windowed MSM technique. We first divide the original task
Q =

∑n
i=1 kiPi into multiple smaller subtasks according to the window, and we

denote this step by windowed MSM. With the window size s, it is clear that we
could divide each λ bits scalar ki into λ

s parts, and each part is a s bits scalar
mij , satisfying ki =

∑λ
s
j=1 2(j−1)smij . Then the smaller subtasks are defined as the

computation Gj =
∑n
i=1 mijPi, where j ∈

[
1, λs

]
. Therefore, the relation between

the original task and these subtasks can be expressed by Formula (1)

6 Elastic MSM

1

𝑩1

13

𝑩13

14

𝑩14

15

𝑩15

𝑷1

𝑷5

𝑷2 𝑷3

𝑷4

𝑮3 =

𝑖=1

15

𝑖𝑩𝑖 = 𝑩1 + 2𝑩2 + ⋯ + 15𝑩15

= 𝑩15 + 𝑩15 + 𝑩14 + ⋯ + 𝑩15 + 𝑩14 + ⋯ + 𝑩1

𝑸1 = 1101 1001 1010 ∗ 𝑷1

𝑸2 = 1110 1011 1010 ∗ 𝑷2

𝑸3 = 1111 1001 1110 ∗ 𝑷3

𝑸4 = 1111 1010 1010 ∗ 𝑷4

𝑸5 = 1101 1001 1010 ∗ 𝑷5

𝑸 =

𝑖=0

5

𝑸𝑖 =

𝑖=0

5

𝑘𝑖 𝑷𝑖

𝑮3 𝑮2 𝑮1

𝑸 = 28 ⋅ 𝑮3 + 24 ⋅ 𝑮2 + 𝑮1

1

𝑩1

9

𝑩9

10

𝑩10

11

𝑩11

𝑷1

𝑷3

𝑷𝟓

𝑷4 𝑷2

𝑮2 =

𝑖=1

15

𝑖𝑩𝑖 = 𝑩1 + 2𝑩2 + ⋯ + 15𝑩15

= 𝑩15 + 𝑩15 + 𝑩14 + ⋯ + 𝑩15 + 𝑩14 + ⋯ + 𝑩1

15

𝑩15

1

𝑩1

10

𝑩10

14

𝑩14

𝑷1

𝑷2

𝑷4

𝑷5

𝑷3

𝑮1 =

𝑖=1

15

𝑖𝑩𝑖 = 𝑩1 + 2𝑩2 + ⋯ + 15𝑩15

= 𝑩15 + 𝑩15 + 𝑩14 + ⋯ + 𝑩15 + 𝑩14 + ⋯ + 𝑩1

15

𝑩15

Figure 3: An example of Pippenger algorithm with 5 MSM scale, 12-bits scalars, and
window size 4.

Q =
n∑
i=1

Qi =
n∑
i=1

kiPi =
n∑
i=1

λ
s∑
j=1

(2(j−1)smij)Pi

=
λ
s∑
j=1

2(j−1)s
n∑
i=1

mijPi

=
λ
s∑
j=1

2(j−1)sGj

(1)

2. Compute subtask results Gj, for each j ∈
[
1, λs

]
. In each subtask (indexed by

j), we put EC points Pi with the same scalar value mij into the specific bucket
whose index is equal to mij . Notably, the points corresponding to zero scalars have
no effect on the final result, so there are only 2s−1 buckets needed. Then to compute
the subtask results Gj , we only need to perform the following two steps:

(a) Sum all points in the bucket to obtain B(j)
l , for each l ∈ [1, 2s − 1]. It is obvious

that in each subtask, the sum of all points in the buckets requires at most n
PADDs.

(b) Sum all bucket points weighted by their bucket indexes, namely Gj =
∑2s−1
l=1 lB(j)

l ,
to obtain Gj . Obviously,

∑2s−1
l=1 lB(j)

l =
∑n
i=1 mijPi = Gj . And by using

an efficient algorithm proposed in [BDLO12] (as shown in Algorithm 1), the
computation of subtask result Gj requires at most 2s+1 − 2 PADDs.

3. Compute the MSM result with subtask results, namely Q =
∑λ

s
j=1 2(j−1)sGj.

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 7

Note that:

Q =
λ
s∑
j=1

2(j−1)sGj

= 2s
(
· · ·
(

2s
(

2sGλ
s

+ Gλ
s−1

)
+ Gλ

s−2

)
· · ·
)

+ G1

(2)

So, computing the MSM result requires at most
(
λ
s − 1

)
s PDBLs and λ

s PADDs.
Then this computation requires at most λ− s PDBLs and λ

s PADDs.

In summary, for each subtask, it requires at most n PADDs to put all points into the
buckets and 2s+1 − 2 PADDs to get the subtask result using Algorithm 1. And to add
the subtask results to the final result, a recursive method based on Formula (2) can be
used, which requires around λ− s PDBLs and λ

s PADDs. Since there are λ
s subtasks, the

total computational consts of the Pippenger algorithm are around λ
s

(
n+ 2s+1) PADDs

plus λ− s PDBLs. Note that the value of λs and s are usually small, so it is common for
us to omit them in the addition or subtraction terms. However, we explicitly express s in
the complexity analysis of PDBLs because it will affect our discussion in Subsection 3.2.
Moreover, we skip the costs of scalar operations here because they are negligible compared
to the costs of EC point operations.

Algorithm 1 BucketPointsReduction [BDLO12]

Require: A point vector −→B(j)
2s−1 =

[
B(j)

1 ,B(j)
2 , . . . ,B(j)

2s−1

]
Ensure: Gj =

∑2s−1
l=1 lB(j)

l

1: Gj,0 ← O; M0 ← O // O is the point at infinity on the elliptic curve.
2: for l← 1 to 2s − 1 do // Add lB(j)

l as
3: Ml ←Ml−1 + B(j)

2s−l // Ml = B(j)
2s−1 + B(j)

2s−2 + · · ·+ B(j)
2s−l

4: Gj,l ← Gj,l−1 + Ml // Gj,l = M1 + M2 + · · ·+ Ml

5: end for
6: Gj ← Gj,2s−1
7: return Gj

2.5 Graphics Processing Units
Graphics Processing Units (GPUs) are platforms composed of hundreds or even thousands of
cores that can handle thousands of threads simultaneously. This makes them particularly
well-suited for tasks that can be broken down into many smaller tasks that can be
executed in parallel, such as matrix operations, convolutional neural networks, and physical
simulations. A typical GPU consists of multiple Streaming Multiprocessors (SMs) and
a global memory. Each SM includes multiple Scalar Processors (SPs), a shared memory,
and several on-chip registers. These registers and various kinds of memory constitute the
multiple memory hierarchy architecture of GPUs. The on-chip registers are the fastest
memory component but have minimal storage capacity, while the global memory provides
the largest storage capacity but is the slowest. The performance of the shared memory is
between the on-chip registers and the global memory.

GPUs has a special execution model—Single Instruction, Multiple Threads (SIMT)
execution model that executes batches of threads in lockstep. In the SIMT model, threads
executing the same instruction are grouped into a fixed-sized batch, called a wavefront
(AMD) or a warp (NVIDIA). The threads of a batch always execute the same instruction
in lockstep on a single instruction, multiple data (SIMD) unit, i.e., in parallel on different
operands.

8 Elastic MSM

3 A New Parameter Configuration Technique
Recently, there are many excellent works such as [Min19, Bel19, Spp22, Yrr22, Mat22,
LWY+23] trying to optimize the parallel Pippenger algorithm itself. Especially, the faster
parallel Pippenger-like algorithm proposed in [LWY+23] has achieved nearly perfect linear
speedup over the Pippenger algorithm [Pip76], where perfect linear speedup means the
parallel speedup ratio is equal to the number of execution threads. Although this road is
thriving, we find that there is another parallel shortcut to efficiency that is often overlooked.

In our opinion, the optimization of parallel MSM algorithms could be divided into
two independent and mutually beneficial directions. While one direction focuses on MSM
algorithm optimization itself, which is currently a popular direction. The other direction
concentrates on techniques to optimize and adjust the scale of MSM to better adapt to
a certain MSM algorithm, which is exactly what we will delve into in this papper. In
fact, as shown in [BDLO12], the Pippenger algorithm performs best when the scale of
MSM is very large. Also as noticed in [LWY+23], the advantage of Pippenger algorithm
only comes when there are a great amount of EC points placed into the same buckets and
processed as a whole, which means that the larger the scale of MSMs is, the more benefits
this advantage brings.

3.1 The Elastic MSM Algorithm
Recall that the first step of the Pippenger algorithm is to divide the original task into
multiple smaller subtasks, using windowed MSM technique. In this subsection, we will
present a new modular and adaptive parameter configuration technique—elastic MSM,
which, like windowed MSM, could also be regarded as a task partitioning scheme.

From Formula (1), it is obvious that we could deduce the equation Q =
∑n
i=1 Qi =∑n

i=1
∑λ

s
j=1

(
2(j−1)smij

)
Pi, thus for each i ∈ [1, n] we have Qi =

∑λ
s
j=1

(
2(j−1)smij

)
Pi.

Now we define the w, k such that λ
s = w · k, this equation could be equivalently expressed

in the form of a matrix multiplication:

Qi =
(
1 2s 22s · · · 2(wk−1)s) ·

mi1Pi

mi2Pi

mi3Pi

...
mi(wk)Pi

 (3)

With the λ
s = w · k, our ideas come from an observation that for each i ∈ [1, n], if we

define Mi(l,t) := mi((l−1)k+t), where l ∈ [1, w] and t ∈ [1, k], then the following equation
holds:

Qi =
wk∑
j=1

(
2(j−1)smij

)
Pi =

w∑
l=1

k∑
t=1

2((l−1)k+(t−1))sMi(l,t)Pi

This means that except the Formula (3), Qi could also be equivalently expressed as
another form of matrix multiplication:

(
1 2ks · · · 2(w−1)ks) ·Pi ·

Mi(1,1) Mi(1,2) · · · Mi(1,k)
Mi(2,1) Mi(2,2) · · · Mi(2,k)

...
...

...
Mi(w,1) Mi(w,2) · · · Mi(w,k)

 ·

1
2s
...

2(k−1)s

 (4)

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 9

If we define Pij := 2(j−1)ksPi, Gil :=
∑w
j=1 Mi(j,l)Pij and Nij :=

∑k
l=1 2(l−1)sMi(j,l)

, where i ∈ [1, n] and j ∈ [1, w], then the Formula (4) can be deduced to the Formula
(5), which is actually a formula similar to the Formula (1).

Qi =
w∑
j=1

NijPij =
w∑
j=1

k∑
l=1

2(l−1)sMi(j,l)Pij

=
k∑
l=1

2(l−1)s
w∑
j=1

Mi(j,l)Pij

=
k∑
l=1

2(l−1)sGil

(5)

By summarizing the above derivation, we then obtain our core technique—elastic MSM.
For λ

s = w · k, i ∈ [1, n] and j ∈ [1, w] and l ∈ [1, k], if we denote N ((i−1)w+j)
l := Mi(j,l),

P((i−1)w+j) := Pij and G(l) :=
∑nw
t=1 N

(t)
l P(t), then the whole computation of MSM can

be represented by Formula (6).

Q =
n∑
i=1

Qi =
n∑
i=1

w∑
j=1

NijPij =
n∑
i=1

w∑
j=1

k∑
l=1

2(l−1)sMi(j,l)Pij

=
nw∑
t=1

k∑
l=1

2(l−1)sN
(t)
l P(t) =

k∑
l=1

2(l−1)s
nw∑
t=1

N
(t)
l P(t)

=
k∑
l=1

2(l−1)sG(l)

(6)

Note that this Formula (6) obtained from our elastic MSM is very similar to the
Formula (1) obtained from the trivial windowed MSM. So we could also perform the
Pippenger algorithm according to the Formula (6) rather than Formula (1). Specifically,
We divide the coefficients of each Qi into windows and express them as a w × k matrix
(each element in this matrix is still a s bit window), instead of expressing them as a long
vector just like windowed MSM. That is, with λ

s = w · k, both our elastic MSM and
windowed MSM choose the same window size s. However, we consider the scale of MSM
as wn rather than n and the bit length of scalar as ks rather than λ (see Figure 4 and
Figure 5 for easier understanding). Moreover, the computation in our elastic MSM is
based on the vectors of EC points Pij := 2(j−1)ksPi, rather than the original vectors of
EC points Pi, for i ∈ [1, n] and j ∈ [1, w]. Fortunately, given points {Pi}i∈[1,n], all the
{Pij}i∈[1,n],j∈[1,w] could be pre-computed. Thus, our elastic MSM could be regarded as a
new modular and adaptive parameter configuration technique, which could be used in all
the Pippenger-like algorithms to replace the windowed MSM technique. In this way, it
could provide a flexible adjustment between the scale of MSM and bit length of scalar,
but at the cost of preprocessing the original vectors of EC points.

Preprocessing complexity. Throughout this paper, we will measure memory space
overhead in theory by the number of extra points that need to be stored. Given the points
{Pi}i∈[1,n], for each i ∈ [1, n], we need to additionally preprocess and store the points{

2jksPi

}
j∈[1,w−1], to obtain all the {Pij}i∈[1,n],j∈[1,w]. Thus, such processing requires

(w−1)ks PDBLs and w−1 extra memory space overhead for each i ∈ [1, n], and n(w−1)ks
PDBLs and n(w − 1) extra memory space overhead in total for all i ∈ [1, n]. Therefore,
from another perspective, our solution actually provides a trade-off between time and
space saving. When our storage space is limited, we can flexibly adjust the storage

10 Elastic MSM

space requirement from 0 point to all n
(
λ
s − 1

)
points by adjusting parameter w and

corresponding k.

Input MSM

Scale: 𝑛
Bit length of scalar: 𝜆
Window size: 𝑠

Elastic MSM

Output MSM

Scale: 𝑤𝑛
Bit length of scalar: 𝑘𝑠
Window size: 𝑠

𝜆

𝑠
= 𝑤 ⋅ 𝑘

𝑤𝑖𝑛𝑑𝑜𝑤𝑒𝑑 𝑀𝑆𝑀

𝑄 =

𝑗=1

𝜆
𝑠

2 𝑗−1 𝑠

𝑖=1

𝑛

𝑚𝑖𝑗𝐏𝑖

𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑆𝑀

𝑄 =

𝑙=1

𝑘

2 𝑙−1 𝑠

𝑡=1

𝑛𝑤

𝑁𝑙
𝑡

𝐏 𝑡

Figure 4: An interpretation of instance conversion.

𝑸𝑖 = 1 2𝑘𝑠 ⋯ 2 𝑤−1 𝑘𝑠

𝑀𝑖 1,1 𝑀𝑖 1,2 ⋯ 𝑀𝑖 1,𝑘

𝑀𝑖 2,1 𝑀𝑖 2,2 ⋯ 𝑀𝑖 2,𝑘

⋮ ⋮ ⋱ ⋮
𝑀𝑖 𝑤,1 𝑀𝑖 𝑤,2 ⋯ 𝑀𝑖 𝑤,𝑘

1𝑠

2𝑠

⋮
2 𝑘−1 𝑠

𝑷𝑖

Preprocessing

𝑸𝑖 =

𝑀𝑖 1,1 𝑀𝑖 1,2 ⋯ 𝑀𝑖 1,𝑘

𝑀𝑖 2,1 𝑀𝑖 2,2 ⋯ 𝑀𝑖 2,𝑘

⋮ ⋮ ⋱ ⋮
𝑀𝑖 𝑤,1 𝑀𝑖 𝑤,2 ⋯ 𝑀𝑖 𝑤,𝑘

1𝑠

2𝑠

⋮
2 𝑘−1 𝑠

𝑷𝑖𝑤 = 2 𝑤−1 𝑘𝑠𝑷𝑖

𝑷𝑖1 = 𝑷𝑖

𝑷𝑖2 = 2𝑘𝑠𝑷𝑖

⋮

𝑸 = ∑

𝑸1 = 𝑘1𝑷1
𝑸2 = 𝑘2𝑷2

⋮
𝑸𝑖 = 𝑘𝑖𝑷𝑖

⋮
𝑸𝑛 = 𝑘𝑛𝑷𝑛

= ∑

𝑀𝑖 1,𝑘 ∥ ⋯ ∥ 𝑀𝑖 1,2 ∥ 𝑀𝑖 1,1 ∗ 𝑷𝑖1
𝑀𝑖 2,𝑘 ∥ ⋯ ∥ 𝑀𝑖 2,2 ∥ 𝑀𝑖 2,1 ∗ 𝑷𝑖2

⋮
𝑀𝑖 𝑤,𝑘 ∥ ⋯ ∥ 𝑀𝑖 𝑤,2 ∥ 𝑀𝑖 𝑤,1 ∗ 𝑷𝑖𝑤

Window size 𝑠

𝑮𝑖𝑘 𝑮𝑖2 𝑮𝑖1

Figure 5: Demonstration of elastic MSM

3.2 From The General to The Specific
In the previous subsection, we have proposed our generic elastic MSM technique. To
deepen our understanding of elastic MSM, we will explain its relationship with two specific
schemes in this subsection. Recall that with the scale of MSM n, the bit length of scalar λ
and window size s, the Pippenger algorithm requires around λ

s

(
n+ 2s+1) PADDs plus

λ− s PDBLs. As we have discussed in Subsection 3.1, with λ
s = w · k, our elastic MSM

could be used to transform the scale of MSM from n to wn, the bit length of scalar from λ
to ks but window size is still s, at the cost of preprocessing requiring n(w − 1)ks PDBLs
and n(w − 1) extra memory space overhead. Then we could conclude that:

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 11

Relationship with the windowed MSM in Pippenger algorithm. It is obviously
that if we set the parameter w = 1 in our elastic MSM, then there is no preprocessing
procedure at all. In this case, by the Formula (4), it is clear that our elastic MSM
degenerates into the windowed MSM in Pippenger algorithm.

Relationship with the Computation Consolidation in GZKP. We find it in-
triguing that the Computation Consolidation technique, employed in GZKP [MXS+23], is
encompassed as a specific instance within our elastic MSM framework. Turning to the
other extreme, if we set the the parameter k = 1 in our elastic MSM, then w reaches
its maximum value λ

s . And the cost of preprocessing also reaches its maximum value
n
(
λ
s − 1

)
s PDBLs and n

(
λ
s − 1

)
extra memory space overhead. However, when elastic

MSM with k = 1 is implemented in the original Pippenger algorithm, there are only
ks
s

(
wn+ 2s+1) = λn

s + 2s+1 PADDs and λ− s = ks− s = 0 PDBLs, which means that
we have transferred many computation of PADDs to the preprocessing computation, and
completely transferred the cost of PDBLs to the preprocessing computation. This transfer
is exactly the same as the Computation Consolidation technique used in GZKP. Therefore,
following our elastic MSM, we may be able to view the idea in Computation Consolidation
from a higher dimension, and to some extent provide theoretical support for its optimality
in cost of both Pippenger PADDs and PDBLs.

In addition to the extreme parameter selection, it is the parameter adjustment in other
situations that is the core of our elastic MSM, and we will discuss it in detail in Section
4. In fact, the GZKP failed to view the preprocessing procedure from a higher perspective
like we do, so the preprocessing MSM scheme in GZKP failed to adjust parameters itself,
which leads to huge memory space overhead required to store the precomputed points.
Though it has been mentioned in GZKP that adjustments of memory space overhead could
be achieved through additional combination of a checkpoint strategy, this strategy will
incur a significant amount of additional MSM computation.

4 The Elastic Pippenger Algorithm
For the reason that MSM is the most time-consuming operation in zkSNARK, it is
very necessary for us to develop the efficient parallel MSM algorithm. And due to the
outstanding performance of the Pippenger algorithm, parallel MSM methods based on it
have been experimentally shown to perform better than other MSM algorithms. Thus,
in this section, as an example of analysis, we will plug our elastic MSM technique into
two commonly used parallel Pippenger algorithms to get two new preprocessing parallel
Pippenger algorithms—elastic Pippengers. Then we will conduct a detailed theoretical
comparison between elastic Pippengers and the preprocessing parallel Pippenger algorithm
obtained by combing the same parallel Pippenger algorithms as elastic Pippengers with the
preprocessing scheme in GZKP. Note that our elastic MSM technique is clearly modular
and could be plugged in all Pippenger-like algorithms which include windowed MSM to
flexibly optimize the original algorithm. Additionally, our elastic MSM technique also
seems to be compatible with other pre-computation techniques such as the recent one
proposed in [LFG23].

4.1 Some Common Parallel Pippenger Algorithms
Based on the original Pippenger algorithm, it is easy to come up with three naive parallel
Pippenger algorithms. While the recent work [LWY+23] has summarized them very clearly,
for the completeness of our discussion, we will also provide some explanations on these
algorithms.

Approach 1. The first naive approach could be regard as a natural derivative of
the original Pippenger algorithm. As deduced in the Formula (1), we establish that

12 Elastic MSM

Q =
∑λ

s
j=1 2(j−1)sGj , signifying the existence of λ

s natural subtasks. So we could just
arrange λ

s threads to perform these subtasks simultaneously, which however at most
provides a speedup of λs . This means that we cannot fully utilize the potential of GPUs
for that the λ

s is usually much smaller than the number of cores provided by GPUs (λ
typically ranges from 254 to 768 and s can be chosen at will).

The complexity of the first naive approach. Just as the original Pippenger
algorithm, the first naive approach also converts the task using windowed MSM technique
first, then however it only need to compute subtask results Gj , for each j ∈

[
1, λs

]
in

parallel and at once, these steps require, as analyzed earlier, at most n + 2s+1 PADDs.
Finally, computing the MSM result with subtask results requires, as analyzed earlier, at
most λ− s PDBLs and λ

s PADDs. Thus, the total first naive approach require at most
n+ 2s+1 + λ

s PADDs and λ− s PDBLs.
Approach 2. The second naive approach is just a general method for dividing a large-

scale task into small-scale modular subtasks. We denote t as the number of total threads
(w.l.o.g. we assume that n is divisible by t), then we have Q =

∑n
i=1 kiPi =

∑t
j=1 Qj ,

where Qj =
∑n

t
i=1 k(j−1)nt +iP(j−1)nt +i where j ∈ [1, t]. So we could perform serial

Pippenger algorithms in parallel for all the small-scale MSM corresponding to {Qj}j∈[1,t].
Finally, the result Q could be computed just with parallel sum algorithm.

The complexity of the second naive approach. We could perform t Pippenger
algorithms in parallel and at once for all the small-scale MSM corresponding to {Qj}j∈[1,t]
with λ bits scalar, s bits window size and n

t MSM scale, this computation clearly requires
λ
s

(
n
t + 2s+1) PADDs and λ − s PDBLs. Plus log t PADDs required by parallel sum

algorithm, the total second naive approach requires at most λ
s

(
n
t + 2s+1)+ log t PADDs

and λ− s PDBLs.
Approach 3. The third naive approach is a combination of the above two approaches.

With total t threads, we could use the second approach and then the first approach to
decompose the original computation and then perform Pippenger algorithm in parallel.
Specifically, we denote the smallest subtask result as Gj,l, then we have that

Q =
n∑
i=1

kiPi =
t/λs∑
j=1

Qj =
t/λs∑
j=1

λ
s∑
l=1

2(l−1)sGj,l (7)

The complexity of the third naive approach. According to the Formula (7),
we could compute our result Q by first using the first approach to compute each the
small-scale MSM corresponding to Qj∈[1,t/λs] (with λ bits scalar, s bits window size and
n
t/λs

MSM scale) in parallel, which requires n
t/λs

+ 2s+1 + λ
s = λ

s ·
n
t + 2s+1 + λ

s PADDs
and λ − s PDBLs. Then we only need to perform parallel sum algorithm to sum all
the {Qj}j∈[1,t/λs], which requires log

(
t/λs
)
PADDs. Thus, the total third naive approach

requires at most λ
s ·

n
t + 2s+1 + λ

s + log
(
t/λs
)
PADDs and λ− s PDBLs.

It is clearly that the third naive approach performs better than other two approaches
in the case of high parallelism in theory. However, it is worth noting that compared to the
third approach, the second approach could be optimized more by preprocessing techniques.
Therefore, the second approach is more worthy of preprocessing preprocessing and often
used with preprocessing techniques. In fact, if combined with preprocessing techniques,
the second approach may be as fast as the third approach in implementation. So in our
next discussion, we will consider both these approaches simultaneously. Form now on, we
call the second approach and the third approach just fast parallel Pippenger 2 and fast
parallel Pippenger 3 respectively. Although there have been faster algorithms recently
such as the scheme in [LWY+23], to provide a more concise explanation of the advantages
that our elastic MSM technique will bring, we will only plug our elastic MSM into fast

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 13

parallel Pippenger 2 (3) to obtain our elastic Pippenger 2 (3), and analyze them as an
example. In fact, Since our elastic MSM is a modular technique, it could also be plugged
into any similar algorithm which has windowed MSM technique for speed improvement,
including the scheme in [LWY+23].

4.2 About the Checkpoint Strategy Used in GZKP
From our discussed in Subsection 3.2, as a special case of elastic MSM with k = 1, the
Computation Consolidation technique proposed in GZKP [MXS+23] seems to be optimal in
terms of MSM computation. However, as has also been mentioned in GZKP, the memory
space overhead required to store the pre-computed points is over 5 GB at the MSM scale
of 221, and further grows as the MSM scale increases. Thus to endow the Computation
Consolidation technique with the ability to adapt to different space limitations, GZKP also
proposed a Checkpoints technique to better balance between the time and space saving.
For the convenience of our subsequent comparison, we will first introduce the Checkpoints
technique in this subsection.

As we have discussed in Subsection 3.2, while GZKP could reduce the MSM compu-
tation, the cost of preprocessing of GZKP reaches its maximum value n(λs − 1)ks PDBLs
and n(λs − 1) extra memory space overhead, fortunately, Checkpoints technique proposed
in GZKP shows that we could only preprocess and store the points with fixed weights,
called checkpoints, i.e. (2M∗s, 2(2M)∗s, . . . , 2

⌊
λ/s
M

⌋
∗M∗s) ∗ Pi for i ∈ [1, n], rather than

all the points (2s, 22∗s, . . . , 2(λs−1)∗s) ∗ Pi for i ∈ [1, n], where 1 ≤ M < λ
s is an integer

interval. So, when we sum all points in the bucket, for each point, we could first find
the closest checkpoint to the needed point, and then perform at most (M − 1) s PADDs
to get the desired point. If t is the number of total threads, It is clear that the total
additional preprocessing cost brought by Checkpoints technique is at most n

⌊
λ/s
M

⌋
extra

memory space overhead, nt
⌊
λ/s
M

⌋
Ms PDBLs. And the total additional MSM computation

cost brought by Checkpoints technique is at most n
t (λs − 1)(M − 1)s PADDs. For the

convenience of theoretical comparison, we summarize in Table 1 the additional overhead
brought by Checkpoints technique and our elastic MSM technique both in parallel setting.

Table 1: Additional preprocessing overhead comparison

Space Overhead Extra PDBLs (Prep) Extra PADDs (MSM)

Checkpoints technique n
⌊
λ/s
M

⌋
n
t

⌊
λ/s
M

⌋
Ms n

t (λs − 1)(M − 1)s
elastic MSM technique n(w − 1) n

t (w − 1)ks 0

This table shows us the extra overhead brought by Checkpoints technique and our elastic MSM
technique both in parallel setting. We use (Prep) and (MSM) to represent the extra preprocessing overhead
and the extra MSM computation overhead respectively. n is the MSM scale, t is the number of total
threads, λ is the bit length of scalar, s is the window size, the flexible parameter M is an integer interval
and the flexible parameter w, k satisfy λ

s
= w · k. The memory space overhead in theory is measured by

the number of EC points that need to be additionally stored.

So far, it seems that while our elastic MSM technique could be used directly to
balance between the time and space saving by adjusting the flexible parameter w, k, the
Computation Consolidation technique and the Checkpoints technique both proposed in
GZKP could also be used together to achieve the same thing by choosing appropriate M .
However, we need to emphasize that in order to achieve the same goal (in other words,
computing MSM under the same storage space limitations), the additional computational
cost of our solution is much smaller than that of GZKP’s solution as we will discuss next.

14 Elastic MSM

4.3 Theoretical Analysis and Comparison
From the discussion of the previous subsections, we could know that the preprocessing tech-
nique Computation Consolidation itself does not contain any flexible parameter, and when
we plug it into the Pippenger-like parallel algorithms (we use the fast parallel Pippenger 2
(3) as an example in this paper), it should be combined with Checkpoints technique to
support balance between the time and space saving. And we call fast parallel Pippenger 2
and fast parallel Pippenger 3 combined with both the Computation Consolidation technique
and Checkpoints technique GZKP Pippenger 2 and GZKP Pippenger 3 respectively. Recall
that our preprocessing technique elastic MSM itself could be regarded as a modular and
adaptive parameter configuration technique, so it is a plug-and-play technique, that is
when we plug the elastic MSM into the Pippenger-like parallel algorithms (the fast parallel
Pippenger 2 (3) as an example in this paper), we could directly obtain algorithms elastic
Pippenger 2 and elastic Pippenger 3, which support balance between the time and space
saving. In this subsection, we will show the theoretical analysis about various complexities
of GZKP Pippenger 2 (3) and elastic Pippenger 2 (3), then we will evaluate and compare
these two algorithms in theory under some practical parameters.

Algorithm with approach 2. Recall that we have introduced in Subsection 4.1,
to compute MSM, fast parallel Pippenger 2 requires at most λ

s

(
n
t + 2s+1)+ log t PADDs

and λ− s PDBLs. As has been discussed in Subsection 3.1, to compute the MSM with
n scale, λ bit length scalar and s window size, our elastic MSM could be used to first
transform this MSM instance into another with wn scale, ks bit length scalar and s window
size, where λ

s = w · k. So the elastic Pippenger 2 algorithm requires λ
s ·

n
t + k · 2s+1 + log t

PADDs and ks − s PDBLs to compute the MSM. From the Subsection 3.2, we could
know that the Computation Consolidation technique is included as a special case in our
elastic MSM (k = 1). Thus, the GZKP Pippenger 2 algorithm (regardless of Checkpoints
technique) requires λ

s ·
n
t + 2s+1 + log t PADDs and 0 PDBLs to compute the MSM. Now,

we summarize in Table 2 the overall theoretical complexity of the GZKP Pippenger 2
algorithm and the elastic Pippenger 2 algorithm.

Table 2: Comparison between GZKP Pippenger 2 and elastic Pippenger 2

Space Precomputing MSM MSM
Overhead PDBLs PDBLs PADDs

GZKP Pippenger 2 n
⌊
λ/s
M

⌋
n
t

⌊
λ/s
M

⌋
Ms 0 λ

s ·
n
t + 2s+1 + log (t) + n

t (λs − 1)(M − 1)s
elastic Pippenger 2 n(w − 1) n

t (w − 1)ks ks− s λ
s ·

n
t + k · 2s+1 + log (t)

This table shows us overall theoretical complexity of the GZKP Pippenger 2 algorithm and the elastic
Pippenger 2 algorithm. n is the MSM scale, t is the number of total threads, λ is the bit length of scalar,
s is the window size, the flexible parameter M is an integer interval and the flexible parameter w, k satisfy
λ
s

= w · k. The memory space overhead in theory is measured by the number of EC points that need to be
additionally stored.

At first glance, compared to the GZKP Pippenger 2, it is easy for us to see from the
Table 2 that our elastic Pippenger 2 sacrificed a very small amount of computational
efficiency for MSM PDBLs and also a amount of computational efficiency for MSM PADDs
(regardless the n

t (λs −1)(M−1)s MSM PADDs brought by GZKP preprocessing). However,
these sacrifices are relatively small compared to the additional MSM PADDs overhead
brought by GZKP preprocessing.

Algorithm with approach 3. Recall that we have introduced in Subsection 4.1,
to compute MSM, fast parallel Pippenger 3 requires at most λ

s ·
n
t + 2s+1 + λ

s + log
(
t/λs
)

PADDs and λ−s PDBLs. As has been discussed in Subsection 3.1, to compute the MSM
with n scale, λ bit length scalar and s window size, our elastic MSM could be used to first
transform this MSM instance into another with wn scale, ks bit length scalar and s window
size, where λ

s = w ·k. So the elastic Pippenger 3 algorithm requires λs ·
n
t +2s+1 +k+log

(
t
k

)

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 15

PADDs and ks − s PDBLs to compute the MSM. From the Subsection 3.2, we could
know that the Computation Consolidation technique is included as a special case in our
elastic MSM (k = 1). Thus, the GZKP Pippenger 3 algorithm (regardless of Checkpoints
technique) requires λ

s ·
n
t + 2s+1 + 1 + log (t) PADDs and 0 PDBLs to compute the MSM.

Now, we summarize in Table 3 the overall theoretical complexity of the GZKP Pippenger
3 algorithm and the elastic Pippenger 3 algorithm.

Table 3: Comparison between GZKP Pippenger 3 and elastic Pippenger 3

Space Precomputing MSM MSM
Overhead PDBLs PDBLs PADDs

GZKP Pippenger 3 n
⌊
λ/s
M

⌋
n
t

⌊
λ/s
M

⌋
Ms 0 λ

s ·
n
t + 2s+1 + 1 + log (t) + n

t (λs − 1)(M − 1)s
elastic Pippenger 3 n(w − 1) n

t (w − 1)ks ks− s λ
s ·

n
t + 2s+1 + k + log

(
t
k

)
This table shows us overall theoretical complexity of the GZKP Pippenger 3 algorithm and the elastic

Pippenger 3 algorithm. n is the MSM scale, t is the number of total threads, λ is the bit length of scalar,
s is the window size, the flexible parameter M is an integer interval and the flexible parameter w, k satisfy
λ
s

= w · k. The memory space overhead in theory is measured by the number of EC points that need to be
additionally stored.

At first glance, compared to the GZKP Pippenger 3, it is easily for us to see from
the Table 3 that we sacrificed a very small amount of computational efficiency for MSM
PDBLs in exchange for a huge improvement in MSM PADDs efficiency. Moreover, it is
clear that the overhead of MSM computation in GZKP Pippenger 3 is almost the same
as that in GZKP Pippenger 2. This shows that the second approach could be optimized
more by preprocessing techniques for that the third approach performs better than the
second approach in the case of just parallelism.

We assume that the size of the storage space is only enough to accommodate Q extra
points, according to the Table 3 we have that n(w−1) = Q, then w = Q

n +1, k = λ
s(Q/n+1) .

Since w and k together represent the dimension of a matrix, both of them are at least
equal to or greater than 1. Then we have λ

s(Q/n+1) ≥ 1, that is Q ≤ nλ
s − n. In

fact, if the inequality Q ≥ nλ
s − n holds, then there is enough space to store all the

n
(
λ
s − 1

)
points, in which case our elastic MSM technique will degenerate into the

Computation Consolidation technique. Next, we will use some specific parameters to
conduct a very rough theoretical evaluation of these two schemes. If we set the parameter
n = 222, t = 212, λ = 3 · 28, s = 23, Q = 7 · 222, then we have the following evaluation:

We first consider the GZKP Pippenger 2 and GZKP Pippenger 3, from n
⌊
λ/s
M

⌋
= Q we

could know that the minimum M that satisfies this equation is 13. Then the check points
are {213s, 226s, 239s, 252s, 265s, 278s, 291s} ∗Pi for i ∈ [1, n], the parallel pre-computation of
which requires n

t

⌊
λ/s
M

⌋
Ms = 91 · 213 PDBLs. During the MSM computation, the points

{2s, 22s, . . . , 295s} ∗ Pi for i ∈ [1, n] need to be additionally computed from the check
points by n

t · 304s = 19 · 217 PADDs. So, it is clear that the MSM computation in GZKP
Pippenger 2 needs a total of 19 · 217 + 3 · 215 + 29 + 12 ≈ 79 · 215 PADDs. And the MSM
computation in GZKP Pippenger 3 needs a total of 19 · 217 + 3 · 215 + 29 + 1 + 12 ≈ 79 · 215

PADDs.
Then we consider the elastic Pippenger 2 and elastic Pippenger 3, from Q = 7 · 222 we

know that w = Q
n + 1 = 8, then k = λ/s

w = 12. Thus, the preprocessing of elastic Pippenger
2 (3) requires n

t (w − 1)ks = 21 · 215 PDBLs. While the elastic Pippenger 2 (3) requires
ks−s = 11 ·23 MSM PDBLs, the MSM PADDs required by elastic Pippenger 2 and elastic
Pippenger 3 are just 3 · 215 + 3 · 211 + 12 ≈ 3 · 215 and 3 · 215 + 29 + 12 + 10− log 3 ≈ 3 · 215

respectively.
Using the same evaluation method as the above example, we compare the theoretical

results of the GZKP Pippenger 2 (3) and the elastic Pippenger 2 (3) under different

16 Elastic MSM

storage space limitations. Due to our rough theoretical estimation, theoretical results
about approach 2 and approach 3 are the same. Then, we present them in Table 4. It is
clear that the additional MSM overhead caused by the preprocessing in GZKP Pippenger
2 (3) is unacceptable. Compared to the GZKP Pippenger 2 (3), it is obvious that our
elastic Pippenger 2 (3) requires less PDBLs during the preprocessing. Moreover, our elastic
Pippenger 2 (3) requires significantly less MSM PADDs while only increasing the very few
extra MSM PDBLs cost. Note that as a norm in Pippenger-like algorithms, if we assume
for simplicity the computational cost of PDBLs and that of PADDs in EC are the same, it
is clear that extra MSM PDBLs cost in our elastic Pippenger could be just ignored.

Table 4: Comparison of theoretical valuations for GZKP Pippenger and elastic Pippenger.

GZKP Pippenger 2 (3) elastic Pippenger 2 (3)
Extra Space Precomputing MSM MSM Precomputing MSM MSM
Overhead PDBLs PDBLs PADDs PDBLs PDBLs PADDs

7 · 222 22.75 · 215 0 79 · 215 21 · 215 11 · 23 3 · 215(26.3×)
5 · 222 21.25 · 215 0 106.75 · 215 20 · 215 15 · 23 3 · 215(35.6×)
3 · 222 18.75 · 215 0 172.5 · 215 18 · 215 23 · 23 3 · 215(57.5×)
2 · 222 16.5 · 215 0 179.75 · 215 16 · 215 31 · 23 3 · 215(59.9×)

222 12.25 · 215 0 423.25 · 215 12 · 215 47 · 23 3 · 215(141.1×)

This table shows us the theoretical performance comparison under different preprocessing storage
space limitations when we set the parameter n = 222, t = 212, λ = 3 · 28, s = 23.

5 Evaluation
In this section, we first give our experimental setting in Subsection 5.1. Then, we show
some experimental results of both GZKP Pippenger 2 (3) and elastic Pippenger 2 (3)
in Subsection 5.2 to highlight the improvement that our preprocessing parallel MSM
algorithm provides.

5.1 Methodology
Our experiments are conducted on a server with daul 2.20 GHz Inter Xeon E5-2630
processors and 128 GB DRAM, running Ubuntu 20.04.6 with CUDA Toolkit 11.6. It
is equipped with one NVIDIA GeForce GTX 2080Ti GPU card (with 11 GB memory).
Its CPU-GPU data transfer is completed through PCI-E. Recognize that distinctions in
hardware resources may exert a substantial influence on the outcomes of comparisons. Con-
sequently, to facilitate comparisons with a degree of fairness, we meticulously orchestrate
the evaluation of GPU implementations within a uniform testbed environment. Notably,
just moving EC points from host memory to device memory takes much time on data
transfer. Thus we overlap the CPU-GPU data transfer and device computing based on
the multi-streaming technique during our experiments.

5.2 Performance
Here, we examine and compare the execution time of the preprocessing parallel MSM
algorithms GZKP Pippenger 2 (3) and elastic Pippenger 2 (3). We evaluate all these
algorithms on the dense synthetic data created by libsnark [lib14] with the 753-bit MNT4753
curve.

Table 5 andTable 6 provide the evaluation results on the precomputing time and MSM
time of GZKP Pippenger 2 (3) and elastic Pippenger 2 (3) across various preprocessing

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 17

storage space limitations. Given a range of practical parameters, it can be concluded from
these tables that our elastic Pippenger 2 (3) has a slight advantage in precomputing time
compared to the GZKP Pippenger 2 (3) across almost all preprocessing storage space
limitations. Notably, the precomputing time of GZKP Pippenger 2 or elastic Pippenger
2 is the same as the precomputing time of GZKP Pippenger 3 or elastic Pippenger 3.
This is because the only difference lies in the use of different MSM algorithms, but the
preprocessing methods are consistent.

Additionally, the difference in MSM time between GZKP Pippenger 2 and GZKP
Pippenger 3 is very small. This is because theoretically, their computational complexity
are almost the same. However, the MSM time of the elastic Pippenger 2 is obviously
longer than that of the elastic Pippenger 3, due to significant differences in computational
complexity. When the storage space is limited to storing 7 · 222 − 222 extra points, our
elastic Pippenger 2 achieves about 4− 28× speedup versus the GZKP Pippenger 2 and
our elastic Pippenger 3 achieves about 11− 45× speedup versus the GZKP Pippenger 3.
Therefore, under the same storage space limitations, our solution has significant efficiency
advantages. From another perspective, we can infer that under the same time constraints,
our solution requires less storage space. Furthermore, the stricter the restrictions on
storage space, the more advantageous our construction is.

Table 5: Performance results (in seconds) about approach 2 and across various storage
space limitations.

GZKP Pippenger 2 elastic Pippenger 2
Extra Space Precomputing MSM Precomputing MSM
Overhead time time time time

7 · 222 19.215 1.167 17.691 0.290(4.0×)
5 · 222 13.604 4.783 12.942 0.313(15.3×)
3 · 222 8.322 8.289 8.053 0.325(25.5×)
2 · 222 5.744 10.148 5.609 0.414(24.5×)

222 3.214 12.134 3.149 0.431(28.2×)

This table shows us the experimental performance comparison under different preprocessing storage
space limitations when we set the parameter n = 222, t = 212, λ ≈ 3 · 28, s = 23.

Table 6: Performance results (in seconds) about approach 3 and across various storage
space limitations.

GZKP Pippenger 3 elastic Pippenger 3
Extra Space Precomputing MSM Precomputing MSM
Overhead time time time time

7 · 222 19.215 1.087 17.691 0.092(11.8×)
5 · 222 13.604 4.837 12.942 0.161(30.0×)
3 · 222 8.322 8.285 8.053 0.203(40.8×)
2 · 222 5.744 10.080 5.609 0.230(43.8×)

222 3.214 12.104 3.149 0.268(45.2×)

This table shows us the experimental performance comparison under different preprocessing storage
space limitations when we set the parameter n = 222, t = 212, λ ≈ 3 · 28, s = 23.

Table 7 and Table 8 give the precomputing time and MSM time of GZKP Pippenger
2 (3) and elastic Pippenger 2 (3) across various MSM scales. The parameters t, λ and
s selected in this experiment are consistent with the parameters used in the previous

18 Elastic MSM

experiment. We chose a moderate storage space limit in the previous experiment, which
means that we fix Q = 3 · 2c, integer c ∈ [16, 22] in this experiment (note that Q
should change with n to be meaningful). It can be concluded from these tables that
our elastic Pippenger 2 (3) has a slight advantage in precomputing time compared to
the GZKP Pippenger 2 (3) across almost all MSM scales. As we have discussed above,
the precomputing time of GZKP Pippenger 2 or elastic Pippenger 2 is the same as the
precomputing time of GZKP Pippenger 3 or elastic Pippenger 3, the MSM time of the
GZKP Pippenger 2 is almost the same as that of the GZKP Pippenger 3, and the MSM
time of the elastic Pippenger 2 is obviously longer than that of the elastic Pippenger 3.

Additionally, when the MSM scale is limited to 216 − 222, our elastic Pippenger 2
achieves about 10− 25× speedup versus the GZKP Pippenger 2 and our elastic Pippenger
3 achieves about 14− 40× speedup versus the GZKP Pippenger 3. Therefore, the larger
the scale of MSM, the more advantageous our constructions are.

Table 7: Performance Results (in seconds) about approach 2 and across various MSM
scales.

GZKP Pippenger 2 elastic Pippenger 2
MSM Precomputing MSM Precomputing MSM
Scale time time time time
216 0.178 0.220 0.173 0.021(10.5×)
217 0.328 0.371 0.314 0.026(14.3×)
218 0.563 0.698 0.528 0.045(15.5×)
219 1.091 1.392 1.050 0.074(18.8×)
220 2.081 2.029 2.024 0.117(17.3×)
221 4.181 4.162 4.004 0.191(21.8×)
222 8.322 8.289 8.053 0.325(25.5×)

This table shows us the experimental performance comparison under different MSM scales when we
set the parameter t = 212, λ ≈ 3 · 28, s = 23.

Table 8: Performance Results (in seconds) about approach 3 and across various MSM
scales.

GZKP Pippenger 3 elastic Pippenger 3
MSM Precomputing MSM Precomputing MSM
Scale time time time time
216 0.178 0.216 0.173 0.015(14.4×)
217 0.328 0.361 0.314 0.021(17.2×)
218 0.563 0.691 0.528 0.034(20.3×)
219 1.091 1.374 1.050 0.055(25.0×)
220 2.081 2.018 2.024 0.105(19.2×)
221 4.181 4.151 4.004 0.170(24.4×)
222 8.322 8.285 8.053 0.203(40.8×)

This table shows us the experimental performance comparison under different MSM scales when we
set the parameter t = 212, λ ≈ 3 · 28, s = 23.

References
[ABC+22] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas

Stalder, and Javier Varela. FPGA acceleration of multi-scalar multiplication:

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 19

Cyclonemsm. IACR Cryptol. ePrint Arch., page 1396, 2022.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions
and more. In 2018 IEEE Symposium on Security and Privacy (SP), pages
315–334, 2018.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs. In
Amit Sahai, editor, Theory of Cryptography - 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume
7785 of Lecture Notes in Computer Science, pages 315–333. Springer, 2013.

[BDLO12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk.
Faster batch forgery identification. In Steven Galbraith and Mridul Nandi,
editors, Progress in Cryptology - INDOCRYPT 2012, pages 454–473, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[Bel19] Bellperson: Gpu parallel acceleration for zksnark, 2019. https://github.
com/filecoin-project/bellperson, Accessed: 2023-10-10.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 103–112, New York, 1988. ACM.

[BG17] Juan Benet and Nicola Greco. Filecoin: A decentralized storage network.
Protocol Labs, pages 1–36, 2017.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda:
Decentralized cryptocurrency at scale. IACR Cryptol. ePrint Arch., page 352,
2020.

[BSCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474, 2014.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zksnarks with universal and
updatable SRS. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 738–768. Springer, 2020.

[CL03] Chin-Chen Chang and Der-Chyuan Lou. Fast parallel computation of multi-
exponentiation for public key cryptosystems. In Proceedings of the Fourth
International Conference on Parallel and Distributed Computing, Applications
and Technologies, pages 955–958, 2003.

[DLFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan
Parno. Cinderella: Turning shabby x.509 certificates into elegant anonymous
credentials with the magic of verifiable computation. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 235–254, 2016.

https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/bellperson

20 Elastic MSM

[dR95] Peter de Rooij. Efficient exponentiation using precomputation and vector
addition chains. In Alfredo De Santis, editor, Advances in Cryptology —
EUROCRYPT’94, pages 389–399, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Thomas Johans-
son and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT
2013, pages 626–645, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, Advances in Cryptology - ASIACRYPT 2010, pages
321–340, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. IACR Cryptol. ePrint Arch., page 953, 2019.

[GY19] Hisham S. Galal and Amr M. Youssef. Verifiable sealed-bid auction on the
ethereum blockchain. In Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy
Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala, editors,
Financial Cryptography and Data Security, pages 265–278, Berlin, Heidelberg,
2019. Springer Berlin Heidelberg.

[Har22] Hardcaml zprize, 2022. https://zprize.hardcaml.com/, Accessed: 2023-10-
10.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A.
Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory
of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages
723–732, New York, 1992. ACM.

[LFG23] Guiwen Luo, Shihui Fu, and Guang Gong. Speeding up multi-scalar multi-
plication over fixed points towards efficient zksnarks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2023(2):358–380, 2023.

[lib14] libsnark: a c++ library for zksnark proofs, 2014. https://github.com/
scipr-lab/libsnark, Accessed: 2023/12/1.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor, Theory
of Cryptography, pages 169–189, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[LWY+23] Tao Lu, Chengkun Wei, Ruijing Yu, Yi Chen, L. xilinx Wang, Chaochao Chen,
Zeke Wang, and Wenzhi Chen. cuzk: Accelerating zero-knowledge proof with
a faster parallel multi-scalar multiplication algorithm on gpus. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2023:194–220, 2023.

https://zprize.hardcaml.com/
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

Xudong Zhu, Haoqi He, Zhengbang Yang, Yi Deng, Lutan Zhao and Rui Hou 21

[Mat22] Accelerating msm operations on gpu/fpga, 2022. https://github.com/
matter-labs/z-prize-msm-gpu, Accessed: 2023-10-10.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[Min19] Mina: gpu groth16 prover, 2019. https://github.com/MinaProtocol/
gpu-groth16-prover-3x, Accessed: 2022-10-10.

[MXS+23] Weiliang Ma, Qian Xiong, Xuanhua Shi, Xiaosong Ma, Hai Jin, Haozhao
Kuang, Mingyu Gao, Ye Zhang, Haichen Shen, and Weifang Hu. Gzkp: A
gpu accelerated zero-knowledge proof system. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS 2023, page 340–353,
New York, NY, USA, 2023. Association for Computing Machinery.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (sfcs 1976),
pages 258–263, 1976.

[Spp22] Zero-knowledge template library, 2022. https://github.com/
supranational/sppark, Accessed: 2023-10-10.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. Dizk: A distributed zero knowledge proof system. In Proceedings of
the 27th USENIX Conference on Security Symposium, SEC’18, page 675–692,
USA, 2018. USENIX Association.

[Xav22] Charles. F. Xavier. Pipemsm: Hardware acceleration for multi-scalar mul-
tiplication. Cryptology ePrint Archive, Paper 2022/999, 2022. https:
//eprint.iacr.org/2022/999.

[Yrr22] Z-prize msm on the gpu submission, 2022. https://github.com/yrrid/
submission-msm-gpu, Accessed: 2023-10-10.

[ZC16] Zhichao Zhao and T.-H. Hubert Chan. How to vote privately using bitcoin.
In Sihan Qing, Eiji Okamoto, Kwangjo Kim, and Dongmei Liu, editors,
Information and Communications Security, pages 82–96, Cham, 2016. Springer
International Publishing.

[ZFZS20] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge
proofs for decision tree predictions and accuracy. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, CCS
’20, page 2039–2053, New York, NY, USA, 2020. Association for Computing
Machinery.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. vsql: Verifying arbitrary sql queries over dynamic
outsourced databases. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 863–880, 2017.

[ZWZ+21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk:
Accelerating zero-knowledge proof with a pipelined architecture. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 416–428, 2021.

https://github.com/matter-labs/z-prize-msm-gpu
https://github.com/matter-labs/z-prize-msm-gpu
https://github.com/MinaProtocol/gpu-groth16-prover-3x
https://github.com/MinaProtocol/gpu-groth16-prover-3x
https://github.com/supranational/sppark
https://github.com/supranational/sppark
https://eprint.iacr.org/2022/999
https://eprint.iacr.org/2022/999
https://github.com/yrrid/submission-msm-gpu
https://github.com/yrrid/submission-msm-gpu

	Introduction
	Our Contributions

	Preliminaries
	Elliptic curve
	Multi-scalar Multiplication
	MSM in zkSNARK
	The Pippenger Algorithm
	Graphics Processing Units

	A New Parameter Configuration Technique
	The Elastic MSM Algorithm
	From The General to The Specific

	The Elastic Pippenger Algorithm
	Some Common Parallel Pippenger Algorithms
	About the Checkpoint Strategy Used in GZKP
	Theoretical Analysis and Comparison

	Evaluation
	Methodology
	Performance

