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Abstract. In this paper, we build a framework for constructing Constrained Pseudorandom
Functions (CPRFs) with inner-product constraint predicates, using ideas from subtractive secret
sharing and related-key-attack security.

Our framework can be instantiated using a random oracle or any suitable Related-Key-Attack
(RKA) secure pseudorandom function. We provide three instantiations of our framework:

1. an adaptively-secure construction in the random oracle model;
2. a selectively-secure construction under the DDH assumption; and
3. a selectively-secure construction in with a polynomial domain under the assumption that

one-way functions exist.

All three instantiations are constraint-hiding and support inner-product predicates, leading to
the first constructions of such expressive CPRFs under each corresponding assumption. More-
over, while the OWF-based construction is primarily of theoretical interest, the random oracle
and DDH-based constructions are concretely efficient, which we show via an implementation.

1 Introduction

Constrained pseudorandom functions (CPRFs) [10, 16, 46] are pseudorandom functions (PRFs) with
a “default mode” associated with a master key msk, and a “constrained mode” associated with a
constrained key csk defined over a predicate C. The constrained key csk can be used to compute the
same “default mode” value of the PRF for all inputs x where C(x) = 0. However, for all inputs x
where C(x) ̸= 0, the constrained key csk can only be used to compute a randomized value that is
computationally independent of the PRF value under msk.

In the basic definition of CPRFs, the constrained key csk can reveal the predicate C (i.e., all inputs
x where C(x) = 0). For example, the GGM PRF [39], admits puncturing constraints [10, 16, 46],
where the constraint C is a point function that outputs 0 on all-but-one input. However, in the GGM
PRF, csk reveals the punctured point to the constraint key holder. An enhanced definition of CPRFs,
first1 formalized by Boneh, Lewi, and Wu [14] (PKC 2017), requires csk to hide C, and is much more
challenging to achieve, even for simple constraints [14, 26, 33].

Constructing CPRFs for expressive constraint classes under standard assumptions has proven to
be a challenging task. Several constructions exist for simple constraint classes, such as prefix-matching,
bit-fixing, and constraints expressible by t-CNF formulas (with constant t) under various assumptions,
including the minimal assumption that one-way functions exist (see the excellent survey of related
works in [33, Appendix A]). However, even slightly more expressive constraints, such as constraints
represented by inner products, constant-degree polynomials, or circuits in NC1 (the class of functions
computable by logarithmic-depth circuits), appear to be much more challenging to construct from
standard assumptions [3, 26, 28, 30].

In a recent breakthrough, Couteau, Meyer, Passelègue, and Riahinia [30] (Eurocrypt 2023) were
able to realize CPRFs for NC1 from DCR (but without the constraint-hiding property), as well as
constraint-hiding CPRF with inner-product constraint predicates, through an elegant connection to
homomorphic secret sharing [18, 19, 21, 52]. In contrast, constraint-hiding CPRFs for NC1 are only
known under LWE [26, 28, 53] (or indistinguishability obfuscation [14, 27]) and can even imply indis-
tinguishability obfuscation in certain cases [26]. Therefore, the result of Couteau et al. significantly
pushes the constraint expressivity of CPRFs under the Decisional Composite Residuosity (DCR)
assumption. Prior to their result, the only known constructions for constraint-hiding CPRFs with

⋆ Work done in part while at Microsoft Research, New England.
1 Alternative notions of constraint PRFs were discovered concurrently in [16, 46].
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sufficiently powerful constraint predicates to evaluate inner-product constraints required either the
learning with errors (LWE) assumption or non-standard assumptions [14, 26, 53]. However, in con-
trast to other constraint predicates which can be realized from one-way functions [10, 16, 33, 46],
there is still a significant gap in our understanding of which assumptions are necessary for realizing
CPRFs for more expressive constraint classes, such as inner-product and NC1 predicates.

Motivation. In this paper we examine the assumption required to construct constraint-hiding CPRFs
for inner-product constraint classes. This is motivated by the existence of CPRFs for NC1 from Diffie-
Hellman-style assumptions [3], as well as constraint-hiding CPRFs for bit-fixing and (constant sized)
t-CNF formulas from the minimal assumption that one-way functions exist [33], Specifically, we ask:

Under what assumptions do constrained PRFs with inner-product predicates exist?

From a theoretical lens, the fact that inner-product predicates lie somewhere in between constant
t-CNF and NC1 predicates in terms of expressivity, motivates the study of CPRFs for inner-product
predicates under weaker assumptions, with the goal of finding new techniques that could lead to more
expressive constraints under weaker assumptions. Indeed, Davidson et al. [33] prove that CPRFs
for inner-product predicates imply CPRFs for constant t-CNFs predicates (see [33, Appendix C]
and Appendix A), which in turn imply CPRFs for bit-fixing predicates. Additionally, inner-product
constraints can be used to construct CPRFs with constraint predicates represented by constant-degree
polynomials and extensions thereof (see Appendix A for details).

From a practical perspective, the current lack of any concretely efficient CPRF constructions for
inner-product predicates,2 motivates the quest of finding assumptions under which efficient construc-
tions can be realized. This is especially motivated by the hope that concretely efficient construc-
tions of CPRFs for inner-product predicates will lead to interesting real-world applications, as has
been the case for the concretely efficient constructions of CPRFs admitting puncturing constraints
(e.g., [5, 6, 15, 22, 36, 42, 48, 50, 55, 56, 57]).

Contributions. In this paper, we make the following three contributions:

New constructions from new assumptions. We construct the first CPRFs for inner-product predicates
with (1) adaptive security in the random oracle model, (2) selective security under the Decisional
Diffie-Hellman (DDH) assumption, and (3) selective security with a polynomial input domain under
the minimal assumption that One-way Functions (OWFs). All three of our results push the frontier of
what was previously known theoretically on CPRFs. Moreover, our constructions are all constraint-
hiding by default.

A simple framework. A very simple framework that uses subtractive secret sharing to construct
CPRFs for inner-product predicates. Our framework makes explicit several ideas that have been used
implicitly in prior works on CPRFs, and may prove useful in obtaining more results in the future.

An implementation. Due to the simplicity of our building blocks, we show that our constructions
result in the first practical constraint-hiding CPRFs under standard assumptions. We implement and
benchmark our constructions, proving that they are concretely efficient. (All prior constructions of
CPRFs for inner-product predicates, including the DCR-based construction of Couteau et al., require
computationally-expensive machinery, making them impractical.)

Applications. Our results have the following immediate applications and implications.

More complex predicates. From inner-product constraints, we can build CPRFs for more complex
predicates via generic transformations, including constraints represented by constant degree polyno-
mials and CPRFs for the “AND” of d distinct inner-product predicates. In particular, this allows
us to construct matrix-product constraint predicates, where the constraint is satisfied if and only if
Ax = 0, for a constraint matrix A.

Lower-bounds in learning theory. In learning theory, Membership Query (MQ) learning provides a
model for quantifying the “learnability” or complexity of a certain class of functions [58]. Informally,
in the MQ learning framework, a learner gets oracle access to a function and must approximate the
function after making a sufficient number of queries. Cohen, Goldwasser, and Vaikuntanathan [29]
introduce a model they call MQ with Restriction Access (MQRA), where in addition to black-box

2 To the best of our knowledge, no constraint-hiding CPRF constructions have been implemented to date.
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Assumption Security Hiding Predicate Practical Comments

[24, 25, 26, 28, 53] LWE Selective ✓/ ✗ ⊇ NC1 ✗ [24] is not constraint hiding

AMNYY18 [3] L-DDHI Selective ✗ NC1 ✗ L-DDHI in QRp ∧ DDH in G

AMNYY18 [3] L-DDHI Adaptive ✗ NC1 ✗ L-DDHI in QRp ∧ ROM

DKNYY20 [33] LWE Adaptive ✗ IP ✗ Is weakly constraint hiding

CMPR23 [30] DCR Selective ✓ IP ✗

CMPR23 [30] DDH Selective ✓ IP ✗ Polynomial input domain

Theorem 1 ROM Adaptive ✓ IP ✓

Theorem 3 DDH Selective ✓ IP ✓

Theorem 5 VDLPN Selective ✓ IP ✗ Only for weak CPRFs

Theorem 8 OWF Selective ✓ IP ✗ Polynomial input domain

Table 1: Related work on CPRFs for Inner-Product (IP) predicates from standard assumptions.
ROM = Random Oracle Model.

DDH = Decisional Diffie-Hellman assumption.

DCR = Decisional Composite Residuosity assumption.

L-DDHI = L-decisional Diffie-Hellman Inversion assumption.

VDLPN = Variable-density Learning Parity with Noise assumption [22].

membership queries, the learner obtains non-black-box access to a restricted subset of the function.
Obtaining (negative) results on the learnability of a particular class in the MQRA model can be done
using a connection to constrained PRFs, which we describe further in Appendix A.

1.1 Related Work

In Table 1, we summarize known constructions of CPRFs for inner-product predicates (including
existing constructions for more general predicates such as NC1 and P/poly) and highlight our results.

CPRFs for inner-product predicates. Attrapadung et al. [3] construct constrained PRFs for NC1

(which includes inner-product predicates) from the L-decisional Diffie-Hellman inversion (L-DDHI)
in combination with DDH over the quadratic residue subgroup QRp (they can make their construc-
tion adaptively-secure by using a random oracle instead of DDH in QRp), but their construction

is not constraint-hiding. Similarly, Couteau et al. [30] also show how to construct CPRFs for NC1

predicates from the DCR assumption through homomorphic secret sharing (but also fail to achieve
constraint privacy). CPRFs for more general predicates are known from multi-linear maps [10, 13],
indistinguishability obfuscation [11, 14, 33, 43, 44], and LWE [24, 25, 26, 28, 53], and can be used to
instantiate CPRFs with inner-product constraints under those assumptions.

Constraint-hiding CPRFs for inner-product predicates. Davidson et al. [33] (Crypto 2020)
construct (weakly) constraint hiding CPRFs for inner-product predicates from the LWE assumption.
Specifically, their construction satisfies a weaker privacy definition, in which the adversary does not
get access to an evaluation oracle. Constraint-hiding CPRFs for more general predicates (that include
inner-product predicates) are known from the LWE assumption [25, 26, 28, 53] and indistinguishability
obfuscation [14]. To the best of our knowledge, Couteau et al. [30] are the first realize constraint-hiding
CPRFs for inner-product predicates from a non-lattice assumption, specifically from DCR.

1.2 Organization

In Section 2, we provide a technical overview highlighting the main ideas behind our framework and
constructions. In Section 3, we cover the necessary preliminaries on CPRFs and RKA-secure PRFs. In
Section 4, we present our framework and provide an adaptively secure CPRF construction for inner-
product predicates in the random oracle model. In Section 5, we show that we can instantiate our
framework from RKA-secure PRFs, without the need for a random oracle. In Section 6, we show how
to instantiate our framework from one-way functions. In Section 7, we discuss the practical efficiency
of our constructions. In Appendix A, we discuss extensions and applications.
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2 Technical Overview

In this section, we provide an overview of our framework and constructions.

Background on CPRFs. Following prior works [25, 30], for PRF domain X and a constraint
C : X → {0, 1}, we write C(x) = 0 for “true” (authorized), and C(x) ̸= 0 for “false” (unauthorized).
CPRFs consist of a master secret key msk, which can be used to evaluate the PRF on all inputs in
the domain. From msk, it must then be possible to efficiently sample a constrained key csk for a given
constraint C, which can be used to evaluate the PRF on all inputs x in the domain where C(x) = 0.
Constraint hiding CPRFs have the added property that C remains hidden given csk. See Section 3
for formal definitions.

2.1 Our Approach

We now explain the main technical ideas that underpin our framework for constructing CPRFs for
inner-product predicates. We start by explaining how we can use the idea of subtractive secret sharing
to construct a constraint predicate C for inner-product predicates, inspired by Couteau et al.

The power of subtractive secret sharing. Subtractive secret shares of a value s, which we denote
by s0 and s1, have the property that s0 − s1 = s (over Z). By splitting s into two random shares
s0 and s1, individually each share is independent of the secret s. To use subtractive secret sharing
to construct CPRFs, the main idea is to exploit the symmetry between the two shares. Specifically,
consider what happens when the secret s is zero. Because we have that s0 − s1 = 0, it follows that
s0 = s1. This symmetry present in subtractive secret shares has enabled many efficient techniques for
distributed computations [17, 18, 19, 20, 21, 23, 37, 52], and surprisingly, also applies to distributed
CPRFs [30]. Specifically, consider the inner-product constraint Cz parameterized by a vector z and
defined as Cz(x) = ⟨z,x⟩. Next, denote subtractive secret shares of the constraint vector z by z0 and
z1, such that z0 − z1 = z. Thanks to the aforementioned symmetry property, for all input vectors x:

– If ⟨z,x⟩ = 0 (i.e., Cz(x) = 0, authorized), then ⟨z0,x⟩ = ⟨z1,x⟩, and
– If ⟨z,x⟩ ≠ 0 (i.e., Cz(x) ̸= 0, unauthorized), then ⟨z0,x⟩ ≠ ⟨z1,x⟩.

In words, the constraint is satisfied if and only if both shares of the inner product are equal. Moreover,
note that z1 can be sampled after z0, because z0 is a random value independent of the “secret”
constraint z. We now describe how we can use these properties of subtractive secret sharing to
construct a CPRF.

Initial attempt (not secure). Our first idea, which unfortunately turns out to be not secure, is
to let the master secret key msk = z0, for a random z0. Then, for a given constraint vector z, the
constrained key is computed (on-the-fly) as csk = z1, where z1 = z0 − z. The intuition is that for
all x where ⟨z,x⟩ = 0 (i.e., for all authorized x), both the master secret key and the constrained key
can be used to derive the same key k. Specifically, we can simply let k = ⟨z0,x⟩ = ⟨z1,x⟩. Using
the key k, in conjunction with any PRF F , we can define the output of the evaluation on the input
x to be Fk(x). Additionally, for all x where ⟨z,x⟩ ≠ 0 (i.e., for all unauthorized x), the master key
and constrained key derive different PRF keys, which results in the constrained key outputting a
pseudorandom, garbage value.

Unfortunately, while this initial attempt provides the necessary correctness properties, it is not secure
for the following two reasons:

1. the CPRF adversary, knowing the constraint z and given z1 can trivially recover z0 (the master
secret key) simply by computing z0 = z1 + z, and

2. in the case where ⟨z,x⟩ ̸= 0, the derived key is still related to the master key msk, in that
⟨z1,x⟩ = ⟨z0,x⟩ − ⟨z,x⟩.

Second attempt (secure). To fix our initial attempt, we must first prevent the adversary from
recovering z0 (the master secret key) from the constrained key z1, while still guaranteeing the neces-
sary property that ⟨z0,x⟩ = ⟨z1,x⟩ whenever ⟨z,x⟩ = 0. To achieve this, we exploit the linearity of
inner products. Specifically, let F be a finite field of order at least 2λ, for a security parameter λ. As
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before, we let msk := z0, for a random z0 ∈ Fℓ. However, now we let csk := z1, where z1 := z0−∆z,
for a random scalar “shift” ∆ ∈ F. Notice that when ⟨z,x⟩ = 0,

⟨z0,x⟩ = ⟨z0,x⟩ −∆ ⟨z,x⟩ = ⟨z0,x⟩ − ⟨∆z,x⟩
By linearity of

inner products

= ⟨z1,x⟩ ,

which still guarantees that the master secret key and constrained key can be used to derive the same
PRF key k, whenever C(x) = 0. Moreover, because ∆ is uniformly random over F (which has order at
least 2λ), z1 cannot be used to recover z0, even with knowledge of the constraint z, thereby preventing
the CPRF adversary from recovering the master secret key msk from the constrained key csk.

Now, with the random shift ∆, we ensure that the constrained key csk does not leak the master
secret key, and forms the basis for our framework described in Section 4. However, we are still left
with the second problem we identified in our initial attempt: The derived PRF keys are still related to
the master secret key, which does not guarantee that the resulting PRF evaluation is pseudorandom
to the adversary. To deal with this, we can use the random oracle model.

Construction in the random oracle model. One simple way to instantiate the CPRF with
correlated keys is to instantiate the PRF with a random oracle H. This forms the basis for our first
instantiation, which we describe in Section 4.1. In a nutshell, we show that, if we use the derived
key k = ⟨z1,x⟩ with a random oracle H as the PRF, then the construction Fk(x) := H(k,x) is a
secure CPRF. Specifically, the random oracle ensures that each evaluation is uniformly random, while
still guaranteeing both the master secret key and the constrained key derive the same k when the
constraint is satisfied.

Removing the random oracle with an RKA-secure PRF. To remove the random oracle re-
quirement, we show that we can use a “special” PRF that remains provably secure when evaluated
with different related keys. Such PRFs are known as Related-Key-Attack (RKA) secure PRFs [8]
and have been studied extensively [1, 2, 7, 8, 12, 22, 31, 38, 40, 49], yielding several constructions
to choose from. This result is rather surprising, since prior works that require notions of correlation-
robustness (e.g., [45, 47, 54]) could only be constructed from more powerful assumptions. In contrast,
we show that constructing CPRFs with inner-product constraints requires a much weaker flavor of
correlation-robustness satisfied by RKA-secure PRFs with affine key-derivation functions. In partic-
ular, this weaker notion of correlation-robustness can be instantiated unconditionally leading to our
one-way function based CPRF construction in Section 6.

Suitable RKA-secure PRFs. As we have informally shown above, a fully “RKA-secure” PRF can be
realized with a random oracle to remove correlations in the keys. However, constructions of RKA-
secure PRFs exist from several standard assumptions. These constructions achieve security against
adversaries that can adaptively query the PRF when keyed on arbitrary functions of the secret key. In
particular, we require RKA-security against affine functions of the key (see Section 3 for definitions),
which is a stronger notion compared to standard RKA-security against additive functions that is
often considered in the literature. The affine function requirement eliminates many RKA-secure PRF
constructions (e.g., [2, 7, 8, 12, 31, 38, 49]), leaving us only with the DDH-based RKA-secure PRF
for affine functions of Abdalla et al. [1].

The DDH-based RKA-secure PRF forms the basis for our first instantiation in the standard
model. However, we also show that we can use any (weak) PRF3 that is RKA-secure against additive
functions to instantiate our framework and obtain a (weak) CPRF for inner-product predicates. In
particular, this allows us to use the VDLPN-based RKA-secure (weak) PRF of Boyle et al. [22].

Additionally, we show that we can adapt the one-way function based RKA-secure PRF of Apple-
baum and Widder [2] to instantiate our framework (under certain restrictions). Specifically, the PRF
of Applebaum and Widder [2] is only secure against additive functions and requires the number of
related keys that the adversary queries to be apriori bounded by some polynomial t (in the security
parameter). While these restriction makes their RKA-secure PRF construction have limited applica-
tions elsewhere, we find that it is just sufficiently powerful to apply to our framework provided that
we bound the magnitude of the input vectors to be polynomial in t and limit CPRF to a polynomially-
sized domain. However, a problem is that their construction is only proven RKA-secure for additive
functions of the key, which is not suitable to instantiate our framework. Fortunately, however, we can

3 A weak PRF is secure if the adversary only queries it on random inputs.
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easily adapt their result to the case of affine functions, making it compatible with our framework
and leading to the first Minicrypt CPRF construction for inner-product predicates. Prior to this, the
only CPRF for inner-product predicates with a polynomial domain was based on DDH [30].

3 Preliminaries

3.1 Notation

We let λ denote the security parameter. We let F denote a finite field (e.g., integers mod p), Z denote
the set of integers, and N denote the set of natural numbers. A vector v = (v1, . . . , vn) is denoted
using bold lowercase letters. Scalar multiplication with a vector is denoted av = (av1, . . . , avn) and
the inner product between two vectors a and b is denoted ⟨a,b⟩. We let poly(·) denote any polynomial
and negl(·) denote a negligible function. We say an algorithm A is efficient if it runs in probabilistic

polynomial time. For a finite set S, we let x
R← S denote a uniformly random sample from S.

Assignment from a possibly randomized algorithm A on input x is denoted y ← A(x) and intialization
of y to the value x is denoted as y := x.

3.2 Constrained Pseudorandom Functions

We start by recalling the syntax and properties of constrained pseudorandom functions (CPRFs). For
simplicity, we restrict the definition to 1-key, constraint-hiding CPRFs, which is the definition satisfied
by our constructions. We point to Boneh et al. [14] for a more general definition of constraint-hiding
CPRFs (i.e., with polynomial-key security).

Definition 1 (Constrained Pseudorandom Functions; adapted from [14, 30]). Let λ ∈ N be
a security parameter. A Constrained Pseudorandom Function (CPRF) with key space K = Kλ, domain
X = Xλ, and range Y, that supports constraints represented by the class of circuits C = {Cλ}λ∈N,
where Cλ : X → {0, 1}, consists of the following four algorithms.

– KeyGen(1λ)→ msk. Takes as input a security parameter λ. Outputs a master secret key msk ∈ K.
– Eval(msk, x)→ y. Takes as input the master secret key msk and input x ∈ X . Outputs y ∈ Y.
– Constrain(msk, C)→ csk. Takes as input the master secret key msk and a constraint circuit C ∈ C.

Outputs a constrained key csk.

– CEval(csk, x)→ y. Takes as input the constrained key csk and an input x ∈ X . Outputs y ∈ Y.

We let any auxiliary public parameters pp be an implicit input to all algorithms. A CPRF must satisfy
the following correctness and security properties.

Correctness. For all security parameters λ, all constraints C ∈ C, and all inputs x ∈ X such that
C(x) = 0 (authorized), it holds that:

Pr

[
Eval(msk, x) = CEval(csk, x)

msk← KeyGen(1λ),

csk← Constrain(msk, C)

]
= 1− negl(λ).

(1-key, adaptive) Security. A CPRF is (1-key, adaptively)-secure if for all efficient adversaries A,
the advantage of A in the following security experiment ExpsecA,b(λ) is negligible in λ. Here, b denotes
the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅, and runs
A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary inputs x ∈ X to the challenger. For each
x, the challenger computes y ← Eval(msk, x), sends y to A, and proceeds to update Q← Q∪{x}.

3. Constrain query: A sends one constraint C ∈ C to the challenger. The challenger computes
csk← Constrain(msk, C), and sends csk to A.

4. Challenge query: For the single challenge query, A sends input x∗ ∈ X as its challenge query,
subject to the restriction that x∗ ̸∈ Q and C(x∗) ̸= 0. If b = 0, the challenger computes y∗ ←
Eval(msk, x∗). Else, if b = 1, the challenger picks y∗

R← Y. The challenger sends y∗ to A.
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5. Post-challenge queries: A continues to adaptively query the challenger on inputs x ∈ X , subject
to the restriction that x ̸= x∗. For each x, the challenger computes y ← Eval(msk, x) and sends y
to A.

6. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvsecA (λ) is defined as

AdvsecA (λ) :=
∣∣Pr[ExpsecA,0(λ) = 1

]
− Pr

[
ExpsecA,1(λ) = 1

]∣∣ ,
where the probability is over the randomness of A and KeyGen.

Definition 2 (Constraint Privacy; adapted from [14, 30]). A CPRF is (1-key, adaptive)-
constraint-hiding if for all efficient adversaries A, the advantage of A in the following security exper-
iment ExpprivA,b(λ) is negligible in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅, and runs
A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary input values x ∈ X to the challenger.
For each x, the challenger computes y ← Eval(msk, x), sends y to A, and proceeds to update
Q← Q ∪ {x}.

3. Constrain query: A sends a pair of constraints (C0, C1) ∈ C2 to the challenger, subject to the
restriction that C0(x) = C1(x), for all x ∈ Q. The challenger computes csk∗ ← Constrain(msk, Cb),
and sends csk∗ to A.

4. Post-challenge queries: A adaptively sends arbitrary input values x ∈ X to the challenger, sub-
ject to the restriction that C0(x) = C1(x). For each x, the challenger computes y ← Eval(msk, x),
and sends y to A.

5. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage AdvprivA (λ) is defined as

AdvprivA (λ) :=
∣∣∣Pr[ExpprivA,0(λ) = 1

]
− Pr

[
ExpprivA,1(λ) = 1

]∣∣∣ ,
where the probability is over the randomness of A and KeyGen.

Definition 3 ((1-key, selective) Security). A CPRF as defined in Definition 1 is said to be (1-key,
selectively)-secure if the adversary commits to the constraint C before querying the challenger [14].
That is, A sends the constraint C to the challenger before issuing any pre-challenge queries. The same
applies to the constraint-privacy definition (Definition 2).

Remark 1 (Unique evaluation queries). Without loss of generality, we can restrict the PRF adversary
A to issuing only unique evaluation queries (as was also done in prior PRF formalizations [2, 3]).
Note that the adversary is already restricted to a unique challenge query in the above definition.

3.3 RKA-secure PRFs

Here, we formalize the notion of related-key attack (RKA)-secure PRFs.

Remark 2 (Find-then-Guess Security). We slightly modify the standard defintion of RKA-secure
PRFs (e.g., [8]) to better align with the syntax of constrained PRFs. In the basic definition, the
adversary does not obtain evaluation queries from what is guaranteed to be the output of the PRF F
on some key. However, we note that this extra evaluation oracle is without loss of generality, and is
only added to syntactically simplify our proofs. This definition is known as the find-then-guess PRF
security game [30, Definition 10] and implies the real-or-random PRF security game, albeit with a
polynomial loss in security.

Definition 4 (Φ-restricted Adversaries). An efficient RKA-PRF adversary A is said to be Φ-
restricted if its oracle queries have a related-key derivation function ϕ chosen arbitrarily from a set
of valid key derivation functions Φ.
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Definition 5 (Related-Key-Attack Secure PRFs [8]). Let λ ∈ N be a security parameter
and ℓ = ℓ(λ) ∈ poly(λ). Let F = {Fk : Xλ → Y}k∈Kλ

be a family of functions and Φ : Kλ → Kλ

be a family of related-key derivation functions. F is said to be an RKA-secure PRF family if for all
efficient Φ-restricted adversaries A, the advantage of A in the following security experiment ExprkaA,b(λ)
is negligible in λ. Here, b denotes the challenge bit.

– Setup: On input 1λ, the challenger samples k
R← Kλ, initializes the set Q := ∅, and runs A(1λ).

– Pre-challenge queries: For each query (ϕ, x), the challenger computes y ← Fϕ(k)(x), sends y
to A, and proceeds to update Q← Q ∪ {(ϕ, x)}.

– Challenge query: For the single challenge query (ϕ∗, x∗), subject to the restriction that (ϕ∗, x∗) ̸∈
Q, the challenger proceeds based on the bit b as follows. If b = 0, the challenger computes

y ← Fϕ∗(k)(x
∗). If b = 1, the challenger samples y

R← Y. The challenger then sends y to A.
– Post-challenge queries: For each query (ϕ, x), subject to the restriction that (ϕ, x) ̸= (ϕ∗, x∗),

the challenger computes y ← Fϕ∗(k)(x), and sends y to A.
– Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage AdvrkaA (λ) is defined as

AdvrkaA (λ) :=
∣∣∣Pr[ExprkaA,0(λ) = 1

]
− Pr

[
ExprkaA,1(λ) = 1

]∣∣∣ ,
where the probability is over the randomness of A and choice of k.

Definition 6 (Affine Related-Key Derivation Functions [1]). Let F be a finite field and let
n ≥ 1 be an integer, let the class Φaff (aff for affine) denote the class of functions from Fn to Fn that
can be separated into n component functions consisting of degree-1 univariate polynomials. That is,

Φaff :=

{
ϕ : Fn → Fn |

ϕ = (ϕ1, . . . , ϕn);

∀i ∈ [n], ϕi(ki) = γiki + δi, γi ̸= 0

}
.

Note that γi ̸= 0 is necessary to make the derivation function non-trivial.

Remark 3. Note that Φaff captures additive and multiplicative relations, which we denote by Φ+ ⊂ Φaff

and Φ× ⊂ Φaff , respectively.

4 A Basic Framework and Construction

In Construction 1, we present our basic framework for constructing CPRFs for inner-product pred-
icates, and present an instantiation of it in the random oracle model in Section 4.1. We extend
this framework and use it in conjunction with RKA-secure PRFs in Section 5 to realize CPRFs for
inner-product predicates under DDH, VDLPN, and OWFs.

Construction 1 (The basic framework).
Let λ be a security parameter, ℓ ≥ 1 be an integer, and F be a finite field of order at least 2λ.
For a key space K and range Y, a suitable choice of efficiently computable deterministic function
map : F→ K, and a PRF family F =

{
Fk : Fℓ → Y

}
k∈K, the CPRF algorithms are defined as:

KeyGen(1λ, ℓ):

1 : k0
R← F

2 : z0
R← Fℓ

3 : msk := (k0, z0)

Constrain(msk, z):

1 : parse msk = (k0, z0)

2 : ∆
R← F

3 : z1 := z0 −∆z

4 : return csk := (k0, z1)

Eval(msk,x):

1 : parse msk = (k0, z0)

2 : δx := ⟨z0,x⟩
3 : k ← map(k0 + δx)

4 : return Fk(x)

CEval(csk,x):

1 : parse csk = (k0, z1)

2 : δx := ⟨z1,x⟩
3 : k ← map(k0 + δx)

4 : return Fk(x)
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4.1 Instantiation via a Random Oracle

The simplest instantiation of Construction 1 is to let Fk(x) := H(k,x) where H : K × Fℓ → Y
is a random oracle. Doing so ensures that when ⟨z,x⟩ ̸= 0, the output is uniformly random and
independent of the constrained key csk, which guarantees that the evaluation undermsk is independent
of csk. We prove the following theorem.

Theorem 1. Let λ be a security parameter, ℓ ≥ 1 be any integer, F be a finite field of order at least 2λ,
and map be any entropy-preserving map. Construction 1 is a (1-key, adaptively-secure, constraint-
hiding) CPRF in the random oracle model when F =

{
Fk : Fℓ → Y

}
k∈K is a PRF family, where

Fk(x) := H(k,x) for all k ∈ K and x ∈ Fℓ, and where H : K × Fℓ → Y is a random oracle.

Proof. We prove each required property in turn.

Correctness. Correctness follows from the intuition presented in Section 2. For all constraints z and
inputs x, whenever ⟨z,x⟩ = 0, we have that

δx = ⟨z0,x⟩ = ⟨z0,x⟩+ ⟨z,x⟩ = ⟨z0,x⟩+ ⟨∆z,x⟩ = ⟨z1,x⟩ .

Therefore, Eval and CEval (of Construction 1) compute the same key k, because both Eval and CEval
add the same shift δx to the starting key k0. It then follows that the evaluation is identical under the
master key and the constrained key given that Fk is deterministic.

(1-key, adaptive) Security. Our proof consists of a sequence of hybrid games.4

First, we begin by noting that H(k0,x) trivially satisfies the definition of a pseudorandom function
when H is a random oracle and k0 has sufficient entropy to prevent guessing.

Hybrid H0. This hybrid consists of the (1-key, adaptive) CPRF security game. We note that here,
the challenger provides an oracle OH via which the adversary A queries the random oracle H, and we
assume (without loss of generality) that each query issued by A to the challenger (including queries
to OH) is unique.

Hybrid H1. In this hybrid game, the challenger starts by pre-sampling all the responses to the

random oracle H. That is, it samples u1, . . . , uqH
R← Y as the responses for the qH random oracle

queries issued by A, and samples v1, . . . , vqE
R← Y, as the responses to the qE random oracle queries

computed when computing the qE evaluation queries. Specifically, the challenger responds to A’s
queries as follows:

– For the i-th query ri to OH , it responds with ui.

– For the i-th (pre- or post-challenge) query xi, it responds with vi.

Claim. A’s advantage in H1 is at most negl(λ) larger compared to H0.

Proof. We note that in H1, (1) all the responses are computed independently of the master key msk
and (2) the only information given to A that depends on msk is the constrained key and the challenge
response, which are computed as csk = (k0, z0 −∆z

z1

) and y∗ = H(k0 + ⟨z0,x∗⟩ ,x∗), respectively.

Next, note that because z1 = z0 − ∆z, we can equivalently define the challenge response in
terms of z1 as y∗ = H(k0 + ⟨z1,x∗⟩+∆ ⟨z,x∗⟩,x∗). Moreover, because ∆ is sampled uniformly and
independently z0, it follows that z1 and∆ ⟨z,x∗⟩ are uniformly random and independent values (recall
that ⟨z,x∗⟩ ≠ 0), making y∗ independent of z1 since ∆ ⟨z,x∗⟩ acts as an information-theoretic mask.
Therefore, it remains to show that the pre-sampling of all responses in H1 provides the adversary
with a negligible advantage over H0. We define the event bad to be the event that:

∃(i, j) such that ri = (k0 + ⟨z0,xj⟩ ,xj) ∧ ui ̸= vj .

4 An alternative proof strategy is to use the proof framework of Attrapadung et al. [4] and show that
H(k0 + ⟨z0,x⟩ ,x) is a no-evaluation secure CPRF (similar to the CPRF game but the adversary does
not get access to an evaluation oracle). They prove that any no-evaluation secure and “collision-resistant”
CPRF becomes adaptively secure in the ROM when the output is passed through a random oracle. However,
this then necessitate making the construction of the form H ′(H(k0 + ⟨z0,x⟩ ,x)) or arguing why H ′(H(·))
is equivalent to H(·) in the ROM. We opt here to prove adaptive security directly for simplicity.
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This event corresponds to the case where the adversary happens to query the random oracle OH

on an input corresponding to the evaluation of the CPRF under the master key msk, causing the
response to be inconsistent with respect to the distribution in H0. Note that in H0, by assumption
that each query is unique, for all i ∈ [qH ], j ∈ [qE ], ri and sj = (k0 + ⟨z0,xj⟩ ,xj) are also unique,
making each output yi = H(si) uniform over the range Y, which matches the distribution of each
vi. Moreover, each query response yi of the challenger in H0 can be equivalently described in terms
of z1 as yi = H(k0 + ⟨z1,xi⟩+∆ ⟨z,xi⟩,xi), where again we have that ∆ ⟨z,xi⟩ ≠ 0 by assumption.
Extending the analysis above for y∗, we have that z1 is independent of each si, for all i ∈ [qE ].

We can then compute the probability of the event bad over the choice of ∆ ∈ F by applying a
union bound over all qH + qE queries issued by A to get

Pr
∆

R←F
[bad] ≤ qHqE

|F|
≤ qHqE

2λ
= negl(λ),

bounding the the adversary’s advantage in H1 to a negligible function in λ.

Hybrid H2. In this hybrid game, we swap the definition of the constrained key and master key.
Specifically, in this game, the challenger responds to A’s constrain and challenge queries as follows:

– For the constrain query z, it samples z1
R← Fℓ and responds with csk = z1.

– For the challenge query x∗, it samples ∆
R← F, computes z0 = z1 + ∆z, and responds with

y∗ = H(k0 + ⟨z0,x∗⟩ ,x∗).

Claim. A’s advantage in H2 is equivalent to its advantage in H1.

Proof. This change is purely syntactic and therefore does not affect the distribution of the keys. In
particular, note that the challenge query response is still computed as in H1.

Hybrid H3. This hybrid consists of the find-then-guess PRF security game with PRF Fk(x) :=
H(k,x). Specifically, the challenger samples a random bit b ∈ {0, 1}. If b = 0, the challenger samples

a random k
R← F, then computes y∗ ← Fk(x

∗). Else, if b = 1, the challenger picks y∗
R← Y. In both

cases, the challenger sends y∗ to A.

Claim. A’s advantage in H3 is equivalent to its advantage in H2.

Proof. The claim follows immediately from the challenger already sampling a uniformly random and
independent key k to answer the challenge query in H2. In particular, in H2, ∆ is sampled uniformly
at random, making k0 + ⟨z0,x∗⟩ = k0 + ⟨z1,x∗⟩ + ∆ ⟨z,x∗⟩ a uniformly random and independent
value of F because we have that ⟨z,x∗⟩ ≠ 0.

Constraint Privacy. We must prove that for all z and z′ provided by the adversary A, the con-
strained key, and all evaluation and challenge queries, do not reveal whether the constraint z or z′ is
used by the challenger.

First, we begin by noting that, even given (z, z′, ∆), z0+∆z is distributed identically to z0+∆z′

because z0 is uniformly random and independent of z and z′. Therefore, the constrained key, absent
the evaluation queries, is efficiently simulatable regardless of the constraint chosen by the challenger.

Now, we must show that this remains the case even when the adversary is given access to the
evaluation and challenge oracles. Observe that we can proceed via the same sequence of hybrids used
in the pseudorandomness proof. Then, in the game defined by Hybrid H2, each constrained query is
answered using a uniformly random key ki ∈ K. As such, the evaluation queries on constrained inputs
are independent of the constraint, which guarantees that A cannot distinguish between z and z′ with
better than negligible advantage.

■

Remark 4 (Replacing the random oracle with a correlated-input secure hash). As noted by several
prior works (e.g., [34, 40, 45]), the random oracle model is an overkill when all that is required is a
notion of “correlation-robustness.” Specifically, in our case, all we require is that H removes specific
types of correlations present in its inputs. With this in mind, we can replace the random oracle H
with a correlated-input secure hash (CIH) function [3, 34, 40, 45]. At a high level, a CIH is a publicly
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parameterized function H whose outputs “look random and independent” to a computationally-
bounded adversary, even when the inputs are correlated. Specifically, we require the CIH to be secure
against affine correlations between the inputs. The proof of security for Theorem 1 then follows the
same blueprint, but instead hinges on the correlated-input security ofH to ensure that the outputs are
computationally indistinguishable from uniform. Unfortunately, we are not aware of an adaptively-
secure CIH function construction (to the best of our knowledge, all existing constructions are in
the selective-security regime). However, we note that there exist strong connections between CIH
functions and RKA-PRFs, as discussed in-depth by Goyal, O’Neill, and Rao [40]. RKA-PRFs form
the basis of our next instantiation of Construction 1.

5 Extended Framework and Constructions

In this section, we instantiate our framework via RKA-secure PRFs. In Section 5.1, we start by
extending the basic framework from Section 4 to make it more amenable with RKA-secure PRF
constructions. We then prove that this framework yields constraint-hiding CPRFs from any RKA-
secure PRF supporting Φaff key derivation functions. In Sections 5.2 and 5.3, we plug in the DDH-
based and VDLPN-based RKA-secure PRF constructions into the framework. We defer instantiating
the framework with our OWF-based RKA-secure PRF to Section 6, as there, we must first construct
a Φaff -RKA-secure PRF from OWFs.

5.1 Extended Framework

Existing constructions of RKA-secure PRFs (e.g., [1, 2, 7, 22]) have a key that is a vector of n
field elements. As such, we cannot directly instantiate Construction 1 because the inner products are
performed in F but the keys live in the vector space Fn (or subfield thereof). We therefore provide an
extended version of our framework in Construction 2, that can be instantiated with the parameters of
existing RKA-secure PRFs. At a high level, to accommodate keys that are vectors of n elements, we
apply Construction 1 independently n times to derive a key for each coordinate. Formally, we capture
this in Construction 2.

Construction 2 (The extended framework).
Let λ be a security parameter, n, ℓ ≥ 1 be integers, and F be a finite field. For a key space K and
range Y, a suitable choice of efficiently computable deterministic function map : Fn → K, and a
PRF family F =

{
Fk : Fℓ → Y

}
k∈K, the CPRF algorithms are defined as:

KeyGen(1λ, ℓ):

1 : k0
R← Fn

2 : foreach i ∈ [n] :

3 : z0i
R← Fℓ

4 : msk := (k0, z01, . . . , z0n)

Constrain(msk, z):

1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : ∆i
R← F

4 : z1i := z0i −∆iz

5 : return csk := (k0, z11, . . . , z1n)

Eval(msk,x):

1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : δxi := ⟨z0i,x⟩
4 : δx := (δx1, . . . , δxn)

5 : k ← map(k0 + δx)

6 : return Fk(x)

CEval(csk,x):

1 : parse csk := (k0, z11, . . . , z1n)

2 : foreach i ∈ [n] :

3 : δxi := ⟨z1i,x⟩
4 : δx := (δx1, . . . , δxn)

5 : k ← map(k0 + δx)

6 : return Fk(x)

Theorem 2. Let K be a subfield of F and let the PRF key space K = Kn. Fix map to be any non-
trivial ring homomorphism applied component-wise. If F is a family of RKA-secure pseudorandom
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functions with respect to affine related key derivation functions Φaff , as defined in Definition 6, then
Construction 2 instantiated with F is a (1-key, selectively-secure, constraint-hiding) CPRF.

Proof. We prove the required properties in turn.

Correctness. For all constraints z and inputs x, whenever ⟨z,x⟩ = 0, we have that δxi = ⟨z0i,x⟩ =
⟨z0i,x⟩ +∆i ⟨z,x⟩ = ⟨z0i,x⟩ + ⟨∆iz,x⟩ = ⟨z1i,x⟩ ∈ F. Therefore, the resulting δx (as computed in
Eval and CEval of Construction 1) is the same. Moreover, this holds for all i ∈ [n], and because map
is a the ring homomorphism to a subfield of F, the resulting keys are also identical when ⟨z,x⟩ = 0.
It then follows that the PRF evaluation is identical under the master key and the constrained key,
because both Eval and CEval add the same shift δx.

(1-key, selective) Security. We prove security by a reduction to the RKA-security of F . Our proof
consists of a sequence of hybrid games.

Hybrid H0. This hybrid consists of the (1-key, selective) CPRF security game.

Hybrid H1. In this hybrid, the challenger first samples the constrained key and then samples the
master key. Specifically, at the start of the game, given the constraint z (we’re in the selective security

regime), the challenger first samples the constrained key csk := (k0, z11, . . . , z1n), where k0
R← Fn

and z1i
R← Fℓ, for all i ∈ [n]. Then, the challenger computes the master secret key as msk :=

(k0, z01, . . . , z0n), where z0i := z1i +∆iz and ∆i
R← F, for all i ∈ [n].

Claim. A’s advantage in H1 is identical to A’s advantage in H0.

Proof. The claim follows immediately by observing that the distribution of msk and csk in H1 is
identical to H0, because the change is merely syntactic.

Hybrid H2. In this hybrid game, the challenger does not sample ∆ anymore. Instead, it is given
access to the following stateful oracle Orka:

Oracle Orka

Initialize. Sample ∆
R← Kn.

Evaluation. On input a affine function ϕ ∈ Φaff and x ∈ Fℓ, return Fϕ(∆)(x).

The challenger is then defined as follows.

1. Setup: On input (1λ, z), B initializes Q := ∅, samples csk according to H1 by sampling k0
R← Fn,

and z1i
R← Fℓ, for all i ∈ [n], and runs A on input csk := (k0, z11, . . . , z1n).

2. Pre-challenge queries: For each query x issued by A, the challenger updates Q ← Q ∪ {x},
then does the following to compute y:

- Compute ai := map(⟨z,x⟩) and bi := map(k0i + ⟨z1i,x⟩), for all i ∈ [n].

- Set ϕ : u 7→ a ◦ u + b where a := (a1, . . . , an) and b := (b1, . . . , bn), where ◦ denotes the
component wise (i.e., Hadamard) product.

- Query Orka on input (ϕ,x), and forward the response y to A.
▷ Note that y is computed by Orka as Fk′(x) where
▷ k′ = a ◦∆+ b ∈ Kn = ϕ(∆), for ϕ ∈ Φaff .

3. Challenge: For the single challenge query x∗, subject to ⟨z,x∗⟩ ̸= 0 and x∗ ̸∈ Q, the challenger
does the following. Sample b ∈ {0, 1}.
- If b = 0, then

- Compute ai := map(⟨z,x⟩) and bi := map(k0i + ⟨z1i,x∗⟩), for all i ∈ [n].

- Set ϕ∗ : u 7→ a ◦ u+ b where a := (a1, . . . , an) and b := (b1, . . . , bn), where ◦ denotes the
component wise product.

- Query Orka on input (ϕ∗,x∗), and forward the response y∗ to A.
- Else if b = 1, then
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- Sample y∗
R← Y and send y∗ to A.

4. Post-challenge queries: Answered identically to pre-challenge queries.

Claim. A’s advantage in H2 is identical to A’s advantage in H1.

Proof. The difference between H2 and H1 is again purely syntactic since each output is computed
identically in both games, with the only difference being that the challenger now only has access to
∆ via the oracle Orka.

Hybrid H3. This hybrid consists of the RKA security game for F with respect to affine related key
derivation functions Φaff .

Claim. If there exits an efficient adversary A for H2 that wins with non-negligible advantage, then
there exists an efficient Φaff -restricted adversary B that wins the H3 game (RKA security game) with
the same advantage as A.

Proof. The challenger in H2 is already playing the role of a Φaff -restricted adversary when querying
the oracle Orka to answer the pre- and post-challenge queries. The reduction to RKA security of F is
therefore straightforward.

Constraint Privacy. For constraint privacy, we must show that if F is an RKA-secure PRF family,
then all evaluation and challenge queries remain pseudorandom, regardless of whether constraint z
or z′ is used by the challenger.5

Again, note that z0i +∆iz is distributed identically to z0i +∆iz
′, thereby making the constraint

key, absent the evaluation queries, efficiently simulatable regardless of the constraint chosen by the
challenger. Now, we must show that this remains the case even when the adversary is given access
to the evaluation oracles. We prove this via the following lemma. Roughly speaking, the lemma
states that if the underlying PRF is RKA-secure, then distinguishing between evaluations under two
different related-key derivation functions of the PRF key contradicts the RKA security of the PRF.

Lemma 1. Let λ be a security parameter and F = {Fk : X → Y}k∈K be an RKA-secure PRF. Then,
for all efficient Φ-restricted adversaries A, the advantage in the following game is negligible in λ.

– Setup: On input 1λ, the challenger samples k
R← K, samples a random bit b ∈ {0, 1}, initializes

the set Q := ∅, and runs A(1λ).
– Pre-challenge queries: For each query (ϕ, x), the challenger computes y ← Fϕ(k)(x), sends y

to A, and proceeds to update Q← Q ∪ {(ϕ, x)}.
– Challenge query: A sends challenge query (ϕ∗0, ϕ

∗
1, x
∗), subject to the restriction that (ϕ∗c , x

∗) ̸∈
Q, ∀c ∈ {0, 1}. The challenger computes y∗ ← Fϕ∗

b (k)
(x∗) and sends y∗ to A.

– Post-challenge queries: For each query (ϕ, x) subject to the restriction that (ϕ, x) ̸= (ϕ∗c , x
∗),∀c ∈

{0, 1}, the challenger computes y ← Fϕ(k)(x), and sends y to A.
– Guess: A outputs its guess b′.

A wins if b′ = b and its advantage is defined as |Pr[A wins]− 1
2 |, where the probability is over the

internal coins of A and choice of k.

The lemma follows immediately from a standard hybrid argument. By RKA-security of the PRF F
we have that Fϕ0(k)(x) ≈c R(x) ≈c Fϕ1(k)(x), where R is a random function. Therefore, a distinguisher
would directly contradict the security of the RKA-PRF.

■

5.2 DDH-based Construction

In this section, we describe the DDH-based RKA-secure PRF construction of Bellare and Cash [7]
(later extended by Abdalla et al. [1]) and describe how it fits into Construction 2 to realize a DDH-
based CPRF for inner-product predicates.

5 Recall that the adversary provides two constraints z and z′.
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RKA-secure PRF from DDH. The multiplicative variant [1, 7] of the Naor-Reingold PRF [51] is
parameterized by an integer n ≥ 1 and a multiplicative group G of prime order p with generator g. The
PRF key k = (a1, . . . , an) ∈ Zn

p consists of n random elements in Zn
p and the input x ∈ {0, 1}n \ {0n}

is chosen from the set of all non-zero n-bit strings. The PRF NR∗ is then defined as:

NR∗((a1, . . . , an), x) = g
∏n

i=1 a
xi
i . (1)

The RKA-secure version of the multiplicative Naor-Reingold PRF is parameterized by a collision-
resistant hash function h : {0, 1}n ×Gn → {0, 1}n−2 and is defined as:6

NR∗((a1, . . . , an), 11∥h(x, ga1 , . . . , gan)). (2)

Abdalla et al. [1, Section 4] show that Equation (2) is an RKA-secure PRF for Φaff -restricted adver-
saries. We provide an informal merger of the main theorems from Abdalla et al. [1] pertaining to this
construction here, for completeness.

Proposition 1 (Merge of [1, Theorems 4.5, 5.1, & A1]). Let G be a multiplicative group
of prime order p and let NR∗ be defined as in Equation (1). Let h : {0, 1}n × Gn → {0, 1}n−2 be
a collision-resistant hash function. Define the PRF family F = {Fk : {0, 1}n → G}k∈Zn

p
to be as in

Equation (2). Then, if the DDH assumption holds in G, F is RKA-secure against all efficient, Φaff-
restricted adversaries A.

Remark 5 (RKA security under DDH). Abdalla et al. [1] prove the RKA security of their construction
for Φaff -restricted adversaries under the 1-DDHI assumption (which is known to be equivalent to the
Square DDH assumption [9]). However, they explicitly note that, by combining Theorems 4.5, 5.1, &
A1 (found in the full version of their paper), they obtain the same result under the DDH assumption.
This same result was also used by Attrapadung et al. [3].

Remark 6 (Supporting vector inputs). NR∗ takes as input a binary string x ∈ {0, 1}n as opposed
to a vector x ∈ Fℓ as is assumed by our framework. However, we can easily map any x ∈ Fℓ to a
binary string of required length via any collision-resistant hash function, which are known from the
discrete logarithm assumption [32] (implied by DDH, see also Appendix B), making vector inputs
x ∈ Fℓ syntactically cleaner and without any loss of generality. Moreover, this hashing already takes
place in the RKA-secure variant of NR∗ of Equation (2) and therefire does not further increase the
computational complexity.

Construction from DDH-based RKA-secure PRF. With the RKA-secure PRF construction of
Proposition 1, we can instantiate Construction 2. To satisfy the key space and related-key derivation
requirements, we must instantiate our extended framework with the following parameters. Let p be
the order of the DDH-hard group G. We set F to be a field extension of Fp, and let n = n(λ) ∈ poly(λ),
following Equation (2). Applying Theorem 2 in conjunction with Proposition 1 yields:

Theorem 3. Assume that the DDH assumption holds in a group G of order p. Then there exists a (1-
key, selectively-secure, constraint-hiding) CPRF for inner-product constraint predicates with vectors
in Fℓ

p, for any ℓ ≥ 1.

Remark 7 (Complexity of the DDH-based construction). The Naor-Reingold PRF from Equation (1)
can be evaluated in NC1. Interestingly, the same is true of the RKA-secure variant of Equation (2),
provided that the collision resistant hash function can be evaluated in NC1 (which is the case of the
discrete log based construction [32]; see also Appendix B). We will use this later in Appendix A when
applying our construction to lower bounds in learning theory.

5.3 VDLPN-based Construction

In this section, we show that we can instantiate Construction 2 from any RKA-secure weak PRF3

supporting only additive key derivation functions Φ+ ⊂ Φaff . In particular, this allows us to instantiate
our framework using the weak PRF candidate of Boyle et al. [22] based on the Variable-density

6 Note that the prefix “11” ensures that the input is never 0n, and therefore always in the domain of NR∗ [1, 7].
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Learning Parity with Noise (VDLPN) assumption. Which yields the first construction of a (weak)
CPRF for inner-product predicates under a code-based assumption.

RKA-secure weak PRF candidate from VDLPN. For a security parameter λ, the VDLPN-
based weak PRF candidate of Boyle et al. [22] is parameterized by integers D = D(λ), w = w(λ),
input space {0, 1}n and key space {0, 1}n, where n := w ·D(D − 1)/2. The PRF FK is defined as:

FK(x) =

D⊕
i=1

w⊕
j=1

i∧
k=1

(Ki,j,k ⊕ xi,j,k). (3)

Theorem 4 (Informal; adapted from [22, Theorem 6.9]). Let λ be a security parameter and
suppose that the VDLPN assumption holds with parameters w(λ) and D(λ). Then, the PRF in Equa-
tion (3) is an RKA-secure weak PRF with respect to additive key derivation functions Φ+.

Construction from VDLPN-based RKA-secure weak PRF. With the RKA-secure weak PRF
construction of Equation (3), we can instantiate Construction 2. To satisfy the key space and related-
key derivation requirements, we must instantiate our extended framework with the following param-
eters. We set F to be a field extension of F2n , n = n(λ) ∈ poly(λ), map maps from F to Fn

2 , and
ℓ ≥ n (inputs of length ℓ can be truncated to n, without loss of generality). Applying Theorem 2 in
conjunction with Theorem 4, and noticing that Φaff is equivalent to Φ+ in the case of F2 yields:

Theorem 5. Assume that the VDLPN assumption holds. Then there exists a (1-key, selectively-
secure, constraint-hiding) weak CPRF for inner-product constraint predicates computed over vectors
in Fℓ

2, where ℓ ≥ n.

6 CPRFs for Inner-Product Predicates from OWFs

In this section, we instantiate our extended framework from Section 5.1 under the minimal assumption
that one-way functions exist. Unlike our constructions in Section 5.1, here we will require that the set
of possible evaluation queries is bounded by a fixed polynomial t = t(λ). We show that we can satisfy
this requirement without placing any restrictions on the adversary if the CPRF inputs are vectors in
[0, B)ℓ with B ∈ O(1) and ℓ = ℓ(λ) ∈ O(log λ). These restrictions limit the L∞-norm of each input
vector and make the input domain of the CPRF polynomial in the security parameter. We note that
this is the same class of inner-product constraints considered by Davidson et al. [33] (inner products
over Z) albeit here we will only have a polynomial input domain.

Our construction builds off of a result by Applebaum and Widder [2], which constructs a restricted
class of RKA-secure PRFs from any PRF and am-wise independent hash function. Their construction
is secure against additive relations over a group, provided that the RKA adversary uses at most
t = t(λ) different related-key derivation functions ϕ1 . . . , ϕt ∈ Φ+, where t ≪ m. Because m-wise
independent hash functions can be constructed unconditionally [59], the resulting RKA-secure PRF
can be realized from any PRF, thus relying only on the assumption that one-way functions exist [2, 39].
More formally, they prove:

Theorem 6 (Adapted from [2]). Let K = {Gλ}λ∈N be a sequence of efficiently computable additive
groups, and t = t(λ) be an arbitrary fixed polynomial. Then, assuming the existence of a PRF F =
{Fk : Xλ → Y}k∈Gλ

, there exists an RKA-secure PRF with respect to addition over K provided that
the total number of unique related-key derivation functions queried by the adversary is bounded by t.
(The adversary is allowed to query each function on any number of inputs.)

Unfortunately, we require the PRF to be RKA-secure with respect to affine relations Φaff and
therefore cannot apply Theorem 6 directly. More concretely, the issue with affine (as opposed to
additive) relations is that they are not “claw-free,” meaning that there exist pairs of different functions
ϕ1, ϕ2 ∈ Φaff such that for a key k ∈ K, ϕ1(k) = ϕ2(k). The lack of claw-freeness poses problems in
security proofs because, if an adversary is able to find two different ϕ1, ϕ2 ∈ Φaff such that ϕ1(k) =
ϕ2(k), the adversary learns information about k and can then break the RKA-security of the PRF [1].
To address this, we need to strengthen Theorem 6 for the case of Φaff -restricted adversaries by showing
that the number of collisions is bounded by a negligible factor in the security parameter and prove a
stronger theorem using their approach.
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6.1 Affine RKA-secure PRFs from OWFs

In this section, we show how to construct RKA-secure PRFs for affine related-key derviation functions
from one-way functions. The framework and proof closely follows that of Applebaum and Widder [2]
for constructing RKA-secure PRFs from m-wise independent hash functions.

Immunizing PRFs against RKA. The idea of Applebaum and Widder [2] is to to immunize
any regular PRF family F with key space K = Kλ against a bounded related-key attack, where the
adversary makes at most t related key queries for some apriori fixed t = t(λ) ∈ poly(λ). The high
level idea is to use a long key s from a large key space S (larger than Kt) and use a public hash
function h to derive shorter key h(s) ∈ K for F . Here we generalize their framework to the case of
affine functions.

Definition 7 (t-good hash function). Let λ be a security parameter, F be finite field of or-
der at least 2λ, and K ⊆ {0, 1}λ be a set of strings. A hash function h : F → K is said to be
t-good if for any t-tuple of distinct affine function (ϕ1, . . . , ϕt) ∈ Φt

aff , the joint distribution of

(h(s), h(ϕ1(s)), . . . , h(ϕt(s)) induced by a random choice of s
R← F, is ε-close in statistical distance to

the uniform distribution over Kt+1, for some negligible ε = ε(λ).

Definition 8 (t-good hash family). Let λ be a security parameter, F be a finite field of order at
least 2λ, and Z,K ⊆ {0, 1}λ. A family of hash functions H = {hz : F→ K}z∈Z is said to be t-good if

with all-but-negligible probability, for a randomly selected z
R← Z, the hash function hz is t-good.

We now prove that if we have a t-good hash family, we can immunize any PRF against affine
related key attacks. Later, in Lemma 2, we show how to construct a t-good hash family from m-wise
independent hash functions.

Theorem 7. Let λ be a security parameter, t = t(λ) ∈ poly(λ), F be a finite field of order at least
2λ, and Z,K ⊆ {0, 1}λ. Let F = {Fk : X → Y}k∈K be a PRF family and H = {hz : F→ K}z∈Z be

a t-good hash family. The PRF family G = {Gs,z : X → Y}s∈F,z∈Z , parameterized by a secret s
R← F

and public z
R← Z, and defined by the mapping:

Gs,z(x) 7→ Fk(x), where k ← hz(s),

is an RKA-secure PRF family against t-bounded Φaff-restricted adversaries.

Proof. Suppose, towards contradiction, there exists an efficient Φaff -restrictedA that has non-negligible
advantage in the RKA-security game for G. Then, there exists a non-negligible function ν such that,∣∣∣∣∣ Pr

s
R←F,z R←Z

[AGs,z (1λ, z)]− Pr
z

R←Z
[AR(1λ, z)]

∣∣∣∣∣ ≥ ν(λ),

where R is a truly random function.

Then, consider a vector of t+ 1 keys k := (k0, k1, . . . , kt) ∈ Kt+1, and define a stateful oracle Ok

as follows.

Oracle Ok

Initialize. Set Qϕ := {}, define a dictionary T = [ ], and counter j ← 1.

Evaluation.

- For each non-RKA query x, output Fk0
(x).

- For each RKA query (ϕ, x):

- If ϕ ∈ Qϕ, retrieve ki ← T [ϕ] and output Fki(x).

- If ϕ ̸∈ Qϕ, set T [ϕ]← kj , set j ← j + 1, and output Fkj
(x).
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In words, Ok outputs Fki
(x), and stores the association between ϕ and ki to answer all future queries

involving ϕ using PRF key ki.

Now, because hz is t-good, for a random vector k of t+ 1 keys, we have that∣∣∣∣∣ Pr
k

R←Kt+1,z
R←Z

[AOk(1λ, z)]− Pr
z

R←Z
[AGs,z (1λ, z)]

∣∣∣∣∣ ≥ ν(λ)− negl(λ).

By a straightforward hybrid argument, it follows that A has non-negligible advantage in win-
ning the (standard) PRF game by distinguishing between Ok and the truly random function R,
contradicting that F is a PRF. This proves security against Φaff -restricted adversaries.

■

The following lemma shows that any Ω(λ · t2)-wise independent hash function with a sufficiently
large domain is t-good in the sense of Definition 7. Moreover, an m-wise independent hash function
can be constructed unconditionally for any m (e.g., using random polynomials [59]).

Lemma 2. Let λ be a security parameter, t = t(λ) ∈ poly(λ), and H be a family of m-wise inde-
pendent hash function with domain S = {Sλ} and range K = {Kλ} where m ≥ λ(3t + 5)(t + 1),
|Kλ| = 2λ, and |Sλ| = 2λ(2t+6). Then, H is a t-good family of hash function. In particular, for all but

a 2−λ fraction of the functions in H, the distribution of hz
R← H is 2−0.99λ-close to uniform.

Proof. The proof is almost identical (occasionally taken verbatim) to the related proof of Applebaum
and Widder [2, Lemma 7.2] for the case of additive functions. However, it differs in several key places
where we must consider affine functions and their impact on the corresponding distributions, which
has sufficient repercussions to necessitate rewriting the proof in full.

Fix a sequence of t distinct affine functions ϕ := (ϕ0, ϕ1, . . . , ϕt) where we define ϕ0 to be the
identity function for notational convenience. We say that hz ∈ H is ε-good for ϕ if for a random s,
the distribution {hz(ϕi(s)}0≤i≤t is ε-close to the uniform distribution over Kt+1. In order to bound
the statistical distance, we must prove the following claim.

Claim. For all but a 2−2λ(t+1)−λ-fraction of the h ∈ H the following holds. For every vector of (not
necessarily distinct) keys k := (k0, . . . , kt) ∈ Kt+1,

Pr
s

R←S

[
t∧

i=0

h(ϕi(s)) = ki

]
∈
(

1

|K|t+1
· (1± 2−0.99λ)

)
.

Proof. Fix a vector of keys k ∈ Kt+1. For every s ∈ S, define the indicator random variable χs which
takes on the value 1 if h(ϕi(s)) = ki for all i ∈ {0, 1, . . . , t} and a random choice of h ∈ H. Observe
that the random variable χ̄ taking the value of Prs[

∧t
i=0 h(ϕi(s)) = ki], and induced by a choice of

h, can be written as χ̄ =
∑

s∈S
χs

|S| . Next, we must prove the following bound:

Pr
h

R←H

[
χ̄ ̸∈

(
1

|K|t+1
· (1± 2−0.99λ)

)]
≤ 2−3λ(t+1)−λ, (4)

which we will later use to prove the claim via a simple union bound. To prove Equation (4), observe
that since H is an m-wise independent hash family and m > t + 1, we have that E[χs] = 1/|K|t+1,
for every s. Then, by linearity of expectation, it is easy to see that E(χ̄) = 1/|K|t+1. Next, we show
that the average of χs is concentrated around its expectation. Following the proof of Applebaum and
Widder [2, Claim 7.3], we can show that the χs’s are r-wise independent, for r ≥ 3t+5, which yields
a strong concentration bound despite local dependencies in the χs’s (see the result of Gradwohl and
Yehudayoff [41] for an overview of the deployed proof strategy).

To formally prove the bound, define a graph G over any pair of s, s′ ∈ S by placing an edge between
s and s′ if ϕi(s) = ϕj(s

′) for some i ̸= j. It then follows that the degree of each node in G is at most
d = (t+1)2. We claim that for every independent set I in the graph, the random variables {χs : s ∈ I}
are r-wise independent (or using the terminology of Gradwohl and Yehudayoff [41], the random
variable r-agree with G). To show this, consider any independent set I ⊆ S. For any r-sized subset
(s1, . . . , sr) ⊆ I, the value of each random variable χsj for sj ∈ I, solely depends on the value of h
evaluated on the set of t+1 points (ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)). Moreover, observe that for all choices

17



of t + 1 distinct affine functions (ϕ1, . . . , ϕt+1), all elements of the set {ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)}
are also distinct with probability at least 1 − t+1

2λ
, since the probability of a collision between any

distinct ϕu and ϕv is exactly 1/|S| < 2−λ ≤ 1/|K|. It then follows (via a union bound and using
the fact that I is an independent set) that the sets {ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)} for all j ∈ [r] are

distinct with probability at least 1− r(t+1)
2λ

.
From the above, we conclude that with all but negligible probability in λ, the image of these

sets under a randomly chosen h are statistically independent, since h is m-wise independent for
m ≥ r(t+ 1). It then follows that χs1 , . . . , χsr are statistically independent, or in other words, agree
with G [41]. Applying the bound of [41, Corollary 3.2] and taking into account the negligible collision
probability computed above, we get that:

Pr
h

R←H

[
χ̄ ̸∈

(
1

|K|t+1
· (1± δ)

)]
< 4
√
πr

(
|K|t+1

√
(d+ 1)r

δ
√
|S|

)r

+
r(t+ 1)

2λ
. (5)

Then, setting δ = 2−0.99λ, |K| = 2λ, |S| = 2(2t+6)λ, and r, t ∈ poly(λ), Equation (5) is upper-bounded
by 2−λr ≤ 2−3λ(t+1)−λ,7 for all sufficiently large λ, and so Equation (4) follows. The claim then
follows by applying a union bound over all 2λ(t+1) possible k ∈ Kt+1, since λ(t+1)− 3λ(t+1)−λ =
−2λ(t+ 1)− λ. ■

To complete the proof of the lemma, note that any h that satisfies the lemma is 2−0.99λ-good
(as defined in the beginning of the proof) for the fixed sequence of affine functions ϕ. Specifically,
(h(ϕ0(s)), . . . , ht(ϕt+1(s))) has a statistical distance of at most 2−0.99λ from the uniform distribution.
Moreover, as shown above, all but a 2−2λ(t+1)−λ-fraction of the h ∈ H are t-good for the fixed vector
ϕ. By applying a union bound over all possible 22λ(t+1) affine functions, we conclude that all but a
2−λ-fraction of the h ∈ H are t-good, in the sense of Definition 7, and the lemma follows. ■

Construction from OWFs. We can instantiate Construction 2 with F = Fp, for sufficiently large
p ≥ 2λ(2t+6) as required by Lemma 2, and n ≥ 1. However, we must set the input vector domain
to [0, B)ℓ ⊂ Zℓ with the vector length ℓ such that Bℓ ≤ t. Specifically, this ensures that the total
number of unique inputs to the t-good hash is bounded by t = t(λ) ∈ poly(λ). To see this, note
that there are Bℓ possible values for the inner product ∆ ⟨z,x⟩ + ⟨z0,x⟩ given that z and z0 are
fixed while x ∈ [0, B)ℓ. Hence, we can simply let map be defined by applying n different t-good hash
functions component-wise to derive the PRF key in Kn. Then, applying Theorem 2 in conjunction
with Theorem 7 yields:

Theorem 8. Let λ be a security parameter and fix a polynomial t = t(λ) ∈ poly(λ). Assume that
one-way functions exist. Then, there exists a (1-key, selectively-secure, constraint-hiding) CPRF for
inner-product constraint predicates with ℓ = ℓ(λ) ∈ O(log λ) and input vectors in the range [0, B) for
any constant B such that Bℓ ≤ t.

As a corollary, we obtain an analogous result to Theorem 8 but with an exponential input domain
provided that the adversary makes at most t evaluation queries.

Corollary 1. Let λ be a security parameter and fix a polynomial t = t(λ) ∈ poly(λ). Assume that one-
way functions exist. Then, there exists a (1-key, selectively-secure, constraint-hiding) CPRF for inner-
product constraint predicates for any ℓ ≥ 1 provided that the adversary makes at most t constrained
evaluation queries.

7 Evaluation

In this section, we implement8 and benchmark our CPRF constructions. For each construction, we first
analyze the complexity (in terms of multiplication, additions, and invocations of other cryptographic
primitives) and then report the concrete performance of our Go (v1.20) implementation benchmarked
on an Apple M1 CPU. All benchmarks are performed on a single core.

7 Recall that d = (t+ 1)2 and r ≥ 3t+ 5.
8 Our implementation is open source: https://github.com/sachaservan/cprf.
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7.1 Complexity and Benchmarks

Random oracle construction. The random oracle construction requires computing the inner product
in F followed by a call to a random oracle. We heuristically instantiate the random oracle using the
SHA256 hash function. We let the F = Fp be a finite field where p is a 128-bit prime. The bottleneck
of the construction is computing the inner product (modulo p), which requires a total of ℓ modular
multiplications and additions. We report the concrete performance in Table 2. Overall, evaluation
required a few microseconds of computation time, ranging from 2µs for small vectors (ℓ = 10) and
200µs for large vectors (ℓ = 1000).

DDH-based construction. In the DDH-based construction, the bulk of the required operations are
performed modulo p, where p is the order of the DDH-hard group. For a security parameter λ and
n = n(λ), the CPRF construction requires computing (1) nℓ multiplications and nℓ additions (mod
p) to compute the inner products between length-ℓ vectors, (2) one invocation of a collision-resistant
hash function, and (3) n multiplications (mod p) and n + 1 group operations in G to compute the
PRF evaluation. This results in a total complexity of n(ℓ+ 1) multiplications (mod p), nℓ additions,
n+1 group operations, and one invocation of a CRHF. Using the P256 elliptic curve, letting n = 128,
and using the discrete logarithm based CRHF construction (see Appendix B), each CPRF evaluation
requires a few ms to compute (note that in practice, the DL-based CRHF can be replaced with a
fixed-key AES or SHA256 hash function for better performance). We report the concrete performance
in Table 3. The concrete performance is worse for smaller vectors due to constant overheads of
computing the CRHF and PRF relative to computing the inner product. For larger vectors, however,
the inner product computation dominates the cost.

(ℓ) 10 50 100 500 1000

2 µs 10 µs 19 µs 98 µs 200 µs

Table 2: Concrete evaluation time for our RO-based
CPRF construction for vectors of length ℓ.

(ℓ) 10 50 100 500 1000

8 ms 11 ms 16 ms 46 ms 85 ms

Table 3: Concrete evaluation time for our DDH-
based CPRF construction for vectors of length ℓ.

OWF-based construction. Our OWF-based construction requires computing the inner products
over the integers, which requires ℓ multiplications and ℓ additions in Z to compute inner products.
Then, we need to evaluate an m-wise independent hash function. This requires evaluating a random
polynomial of degree m = λ(3t+5)(t+1) with log2(λ(2t+6))-bit coefficients (recall Lemma 2). Here,
we let λ = 40 as it is a statistical security parameter of the t-good hash function. For very small
values of B and ℓ, we obtain reasonable concrete efficiency when evaluating the m-wise independent
hash function (less than one second of computation for B = 2 and ℓ = 5 and roughy 50MB public
parameters). However, for larger parameters, the concrete efficiency quickly becomes impractical. This
blowup is due to the quadratic overhead of Lemma 2. Additionally, the public parameters quickly
become impractically large (e.g., petabytes) as ℓ increases due to the cubic factor in t. Furthermore,
the concrete size of the public parameters required to store the description of the m-wise independent
hash function (m coefficients of a random polynomial) is exceedingly large. This description already
reaches terabytes in size with B = 2 and ℓ = 10, barring any concretely practical instantiation.

7.2 Comparison to other CPRF constructions

Prior CPRF constructions for inner product (and NC1) predicates [4, 30, 33] do not have implementa-
tions, and due to large parameters or heavy building blocks, are far too inefficient to be implemented.
We briefly discuss the concrete efficiency roadblocks associated with these constructions.

– The LWE-based CPRF construction of Davidson et al. [33] is implementable but very inefficient
due to the large parameters required for security and computationally expensive building blocks.
Specifically, their construction requires computing a linear (in the input size) matrix-matrix prod-
ucts of LWE matrices, which poses a major efficiency roadblock. Similar roadblocks are faced with
other LWE-based constructions, even if adapted to the simpler case of inner-product constraints.
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– The constructions of Attrapadung et al. [3] is tailored to evaluating NC1 boolean circuits and
requires computing a linear number of group exponentiations in the degree of the universal NC1

circuit computing the constraint predicate. While their construction can be theoretically applied
to computing inner-product predicates, it does lend itself to a practical solution as it would require
emulating field operations inside of the universal circuit.

– The approach of Couteau et al. [30] based on DCR requires evaluating a PRF using HSS (where
the PRF key is encoded as an HSS input share). This requires evaluating a linear (in the degree of
the polynomial computing the PRF) number of HSS multiplications. Using a DCR-based variant
of the Naor-Reingold PRF (the only DCR-based PRF in NC1, as required for HSS evaluation)

necessitates computing g
∏n

i a
xi
i in HSS, where the key k = (a1, . . . , an) is the PRF key provided

as input. The exceedingly high degree of this polynomial eliminates the possibility of a concretely
practical instantiation, since even low-degree polynomials can already be concretely expensive to
evaluate in HSS schemes [19].

7.3 Discussion

In light of the concrete performance of our constructions, is becomes clear that the OWF-based
constructions is primarily of theoretical interest on realistic parameters, as it does not scale well with
the length of the input vectors. In contrast, the random oracle and DDH-based constructions are
both very efficient and require only a few microseconds or milliseconds to evaluate on long input
vectors. To the best of our knowledge, these are the first concretely efficient constrained PRFs for
inner-product predicates. We hope that these constructions might pave the way to more real-world
applications of constrained PRFs in future work.

8 Conclusion and Future Work

In conclusion, this paper contributes a simple framework for constructing constraint-hiding CPRFs
with inner-product constraint predicates through subtractive secret sharing and related-key-attack-
secure PRFs. Through our framework, we constructed the first (1-key, selectively-secure, constraint-
hiding) CPRFs with inner-product constraint predicates from DDH and from one-way functions, and
the first (1-key, adaptively-secure, constraint-hiding) CPRFs in the random oracle model.

Future work. We identify several interesting avenues for future work. The first open problem is con-
structing (constraint-hiding) CPRFs for more expressive constraints from new assumptions, especially
for NC1 and puncturing constraints. Given the tight connection between our framework and RKA-
secure PRFs, an additional avenue of exploration is constructing suitable RKA-secure PRFs from new
assumptions (which will immediately enable instantiating our framework under those assumptions as
well). Second, there are currently no practical applications of CPRFs with inner-product predicates
that we are aware of, which we believe is due to the previous lack of concretely efficient constructions.
Finding practical use cases for CPRFs with inner-product predicates (constraint-hiding or not), is an
interesting question and worth exploring in light of our efficient instantiations.
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[37] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Advances
in Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings
33, pages 640–658. Springer, 2014.

[38] David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In Theory of Cryp-
tography Conference, pages 255–272. Springer, 2010.

[39] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM (JACM), 33(4):792–807, 1986.

[40] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In
Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI,
USA, March 28-30, 2011. Proceedings 8, pages 182–200. Springer, 2011.

[41] Ronen Gradwohl and Amir Yehudayoff. t-wise independence with local dependencies. Informa-
tion processing letters, 106(5):208–212, 2008.

[42] David Heath and Vladimir Kolesnikov. One hot garbling. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 574–593, 2021.

[43] Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively secure
constrained pseudorandom functions. In International Conference on Financial Cryptography
and Data Security, pages 357–376. Springer, 2019.

[44] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseu-
dorandom functions in the standard model. In International conference on the theory and appli-
cation of cryptology and information security, pages 79–102. Springer, 2015.

[45] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In Annual International Cryptology Conference, pages 145–161. Springer, 2003.

[46] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 669–684, 2013.

[47] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Automata, Languages and Programming: 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35, pages 486–498. Springer, 2008.

[48] Arthur Lazzaretti and Charalampos Papamanthou. Treepir: Sublinear-time and polylog-
bandwidth private information retrieval from DDH. Cryptology ePrint Archive, 2023.

[49] Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Improved constructions of PRFs
secure against related-key attacks. In Applied Cryptography and Network Security: 12th Interna-
tional Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings 12, pages
44–61. Springer, 2014.

[50] Yiping Ma, Ke Zhong, Tal Rabin, and Sebastian Angel. Incremental offline/online PIR. In 31st
USENIX Security Symposium (USENIX Security 22), pages 1741–1758, 2022.

[51] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. Journal of the ACM (JACM), 51(2):231–262, 2004.

[52] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Paillier: homomorphic secret
sharing and public-key silent OT. In Advances in Cryptology–EUROCRYPT 2021: 40th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17–21, 2021, Proceedings, Part I 40, pages 678–708. Springer, 2021.

[53] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE way.
In IACR International Workshop on Public Key Cryptography, pages 675–701. Springer, 2018.

[54] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based
on OT extension. ACM Transactions on Privacy and Security (TOPS), 21(2):1–35, 2018.

[55] Kim Ramchen and Brent Waters. Fully secure and fast signing from obfuscation. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security, pages 659–673,
2014.
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Appendix

A Extensions and Applications

In this section, we describe extensions to CPRFs with inner-product constraints and an application
to learning theory.

A.1 Extensions to other Constraint Predicates

It is known (in some cases folklore) that CPRFs for inner-product constraint predicates yield CPRFs
with constraints described by constant-degree polynomials, t-CNF formulas (with constant t) [33], and
the “AND” of an arbitrary set of constraint predicates. We explicitly describe these extensions here
for completeness. We note that all the presented extensions preserve the constraint-hiding property.

CPRFs for constant-degree polynomials. A CPRF for inner-product constraint predicates
can be converted to a CPRF for constraint predicates described by constant-degree polynomials
P by associating each entry in the constraint vector z with a coefficient of P . Specifically, let
z = (ad, ad−1, . . . , a1, a0) be the coefficients describing the degree-d polynomial over F. Then, for
input vectors of the form x = (xd, xd−1, . . . , x, 1), it holds that P (x) = 0 if and only if ⟨z,x⟩ = 0.

CPRFs for t-CNF formulas. Any t-CNF formula can be defined as the AND of d =
(
m
t

)
· 2t NC0

t

circuits, where NC0
t is the class of NC0 circuits that read at most t indices of the input bits [33]. More

formally, a t-CNF circuit C : {0, 1}m → {0, 1} can be defined as:

C(x) =

d∧
i=1

Ci(x) where Ci ∈ NC0
t . (6)

Davidson et al. [33, Appendix C] provide a simple reduction from CPRFs for inner-product pred-
icates to CPRFs for t-CNF formulas. The high level idea is to let x = (C1(x), C2(x), . . . , Cd(x),−1),
where the Ci’s describe the t-CNF circuit C, as per Equation (6). The constraint vector is then defined
as z = (z1, . . . , zd, w), where zi = 1 if the i-th circuit needs to be satisfied and zi = 0 otherwise, and
w is the hamming weight of (z1, . . . , zd). It then holds that ⟨z,x⟩ = 1 if and only if C(x) = 0. This
reduction to t-CNF formulas implicitly uses the fact that we can describe constraints as the “AND”
of many individual, simpler constraints. We describe this trick explicitly, and explain how it applied
to constructing constraint predicates described by matrix-vector products.

Conjunction of constraints. Here, we show that if we have a CPRF for a constraint class C, then
we can construct a CPRF for the constraint class

∧d
i=1 Ci where ∀i, Ci ∈ C. In a nutshell, we can

define the CPRF for “AND constraints” as a vector of d CPRFs such that the output is defined to
be the addition of all the individual CPRF outputs. It is not difficult to see that the sum of the d
individual CPRF outputs will be consistent with the evaluation under the master secret key if and
only if all the constraints are satisfied. To the best of our knowledge, we are the first to formalize this
simple folklore extension to CPRFs.

Let CPRF = (CPRF.Gen,CPRF.Eval,CPRF.Constrain,CPRF.CEval) be a CPRF for constraints in

the class C. We construct the CPRF ĈPRF for the AND of d constraints in C as follows. Let ⊕ denote
the group operation over the range Y.

– ĈPRF.Gen(1λ, d):

1: Compute mski ← CPRF.Gen(1λ) for all i ∈ [d].

2: Output msk = (msk1, . . . ,mskd).

– ĈPRF.Eval(msk, x):

1: Parse msk = (msk1, . . . ,mskd).

2: Compute yi ← CPRF.Eval(mski, x) for all i ∈ [d].

3: Output
⊕d

i=1 yi.



– ĈPRF.Constrain(msk, Ĉ):

1: Parse msk = (msk1, . . . ,mskd) and Ĉ = (C1, . . . , Cd) ∈ Cd.
2: Compute csk(i) ← CPRF.Constrain(mski, Ci) for all i ∈ [d].

3: Output csk = (csk(1), . . . , csk(d)).

– ĈPRF.CEval(csk, x):

1: Parse csk = (csk(1), . . . , csk(d)).

2: Compute yi ← CPRF.CEval(csk(i), x) for all i ∈ [d].

3: Output
⊕d

i=1 yi.

We prove the following proposition with regards to the above construction.

Proposition 2. Let CPRF = (CPRF.Gen,CPRF.Eval,CPRF.Constrain,CPRF.CEval) be a CPRF for

constraints in the class C. Then ĈPRF is a CPRF for constraint predicates described as
∧d

i=1 Ci,

where Ci ∈ C. Moreover, if CPRF is constraint-hiding, then so is ĈPRF.

Proof sketch. We briefly sketch the proofs of correctness and security.

Correctness. Correctness holds because if all d constraints C1, . . . , Cd are satisfied, then Êval and

ĈEval agree on all yi computed as CPRF.Eval(mski, x) and CPRF.CEval(csk(i), x), respectively. It then
follows that the sum of the outputs is identical under both the master secret key and constrained key.

Security. If at least one C1, . . . , Cd is not satisfied, then CPRF.CEval(csk(i), x), for at least one i ∈ [i]
will output a pseudorandom value in Y (by the security of CPRF). By a straightforward hybrid

argument, it then follows that ĈPRF.CEval(csk(i), x) outputs a pseudorandom value that is indepen-
dent of the CPRF evaluation under the master key. Constraint hiding follows by a similar hybrid
argument. ■

Matrix-vector product constrains. As a corollary of Proposition 2 and our constructions of CPRF
for inner-product predicates, we can construct CPRFs for constraints where the constraint is satisfied
if and only if Ax = 0, for some constraint matrix A. Specifically, for a matrix A ∈ Fd×ℓ where
(a1, . . . ,ad) ∈ (Fℓ)d is the vector of rows of A, it holds that Ax = 0⇐⇒

∧d
i=1 ⟨ai,x⟩ = 0.

A.2 Applications to Learning Theory

Here, we highlight known connections between learning theory and CPRFs and provide a corollary
that is implied by our CPRF construction from DDH.

Membership queries with restriction access. Motivated by the goal of providing stronger lower
bound in learning theory, Cohen, Goldwasser, and Vaikuntanathan [29] introduce a learning model
they call MQ with Restriction Access (MQRA) and show that CPRFs naturally define a concept
class that is not learnable, even when the learner obtains non-black-box access to the function on
a restricted subset of the domain. Informally, in the basic MQ learning framework [58] (without
restriction access), a learner gets oracle access to a function and must approximate the function after
a sufficient number of queries. Restriction access [35] is a different model in learning theory, where the
learner obtains a non-black-box implementation of the function computing a restricted set of function
evaluations. Cohen et al. merge the two model to introduce the model of MQ with Restriction Access
(MQRA), where in addition to black-box membership queries, the learner obtains non-black-box access
to a restricted “simplified” version of the function. We provide the informal definition here, and point
the reader to Cohen et al. for details and further discussion.

Definition 9 (Membership queries with restriction access (MQRA) [29]). Let C : X → {0, 1}
be a concept class, and S = {S ⊆ X} be a collection of subsets of the domain X . S is the set of
allowable restrictions for concepts f ∈ C. Let Simp be a “simplification rule” which, for a concept f
and restriction S outputs a “simplification” of f restricted to S. An algorithm A is an (ϵ, δ, α)-MQRA

learning algorithm for representation class C with respect to a restrictions in S and simplification
rule Simp if, for every f ∈ C, Pr

[
ASimp(f,·) = h

]
≥ 1 − δ, where h is an ϵ-approximation to f , and

furthermore, A only requests restrictions for an α-fraction of the whole domain X .
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Cohen et al. prove the following theorem (restated here in its informal version since the formal
definitions require substantial notation):

Theorem 9 (Informal). Suppose F is a family of constrained PRFs which can be constrained to
sets in S = {S ⊆ X}. If F is computable in circuit complexity class C, then C is hard to MQRA-learn
with restrictions in S.

Let IP =
{
{x1, . . . ,xN , z} | x1, . . . ,xN , z ∈ Fℓ; ⟨xi, z⟩ = 0,∀i ∈ [N ]

}
N∈N be the subsets of the

input domain Fℓ that satisfy the inner-product relation with respect to a vector z. Using our CPRFs
for inner-product predicates, we immediately obtain the following two corollaries.

Corollary 2. Assuming the DDH assumption holds in a cyclic group G, there is a simplification rule
such that NC1 is hard to MQRA-learn with respect to restrictions in IP.

In particular, Corollary 2 uses the fact that our DDH-based CPRF construction can be evaluated in
NC1 (recall Remark 7).

B Collision-resistant Hashing from Discrete Logarithms

Here, we describe a construction of Collision-resistant Hash Function (CRHF) family from the Discrete
Logarithm (DL) assumption that generalizes the construction of Damg̊ard [32] in the natural way.
Importantly, this construction is in the complexity class NC1, which makes the CPRF construction
from the DDH assumption (when instantiated with this DL-based CRHF family) have an evaluation
function that is computable in the complexity class NC1.

Construction. Fix a prime-order group G in which the discrete logarithm problem is hard and let
extract : G → {0, 1}k be a randomness extractor with λ ≤ k ≤ log2(|G|) with public parameters
ppe. Let p > 2λ be the order of G and define the CRHF family H =

{
hg : Zn

p → {0, 1}k
}
g∈Gn ,

parameterized by n random generators g = (g1, . . . , gn) and public parameters pp consisting of the
group description and ppe, where the function hg : Zn

p → {0, 1}k is defined as

hg(x) = extract(
n∏

i=1

gxi
i ).

Claim. The function family H :=
{
hg : Zn

p → {0, 1}k
}
g∈Gn is a CRHF family.

Proof. Consider the simpler hash function ĥg(x) =
∏n

i=1 g
xi
i parameterized by g = (g1, . . . , gn).

Suppose, towards contradiction, that there exists an efficient A that finds a pair of colliding inputs
to ĥg with non-negligible probability ν(λ). Then, on input (1λ,G,g), A outputs (x,x′) such that

x ̸= x′ and ĥg(x) = ĥg(x
′), with probability at least ν(λ). Therefore, when A succeeds, we have that∏n

i=1 g
xi
i =

∏n
i=1 g

x′
i

i . We can use A to solve the discrete logarithm problem as follows. On input a
generator g for G and an element y ∈ G,

1: Sample i
R← [n].

2: Sample (a1, . . . , ai−1, ai+1, . . . , an)
R← Zn−1

p \ {0}.
3: Set g = (ga1 , . . . , gai−1 , y, gai+1 , . . . , gan).

4: Run A on input (1λ,g) and obtain as output (x,x′).

5: Compute z ←
∑n

j=1,j ̸=i ajxj and z′ ←
∑n

j=1,j ̸=i ajx
′
j .

6: Output ai ← (z′ − z)/(xi − x′i).

We now analyze the reduction. The probability that xi ̸= x′i is at least 1
n because i is chosen

uniformly from the set {1, . . . , n}. Second, observe that

n∑
j=1

ajxj −
n∑

j=1

ajx
′
j = z − z′ + ai(xi − x′i) = 0,

which implies that (z′ − z)/(xi − x′i) = ai. As such, the reduction succeeds with probability 1
nν(λ),

which is non-negligible, contradicting the discrete logarithm assumption in G.
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Finally, it follows that hg is a CRHF if ĥg is a CRHF because extract is a randomness extractor and
k ≥ λ, making the advantage of A in the case where it is given outputs of the randomness extractor
equivalent to the case where it is given the explicit description of group elements. Specifically, this
follows from a random element of G having at least λ bits of min entropy.

■
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