
A Study of Soft Analytical Side-Channel Attacks
on Secure Hash Algorithms

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe
Clavier2

1 Univ. Grenoble Alpes, CEA, Leti, MINATEC Campus, F-38054 Grenoble, France
2 XLIM, University of Limoges, Limoges

Abstract. Hashing algorithms are one-way functions that are used in cryptographic
protocols as Pseudo Random Functions (PRF), to assess data integrity or to create
a Hash-based Message Authentication Code (HMAC). In many cryptographic con-
structions, secret data is processed with hashing functions. In these cases, recovering
the input given to the hashing algorithm allows retrieving secret data. In this paper,
we investigate the application of Soft Analytical Side-Channel Attacks (SASCA),
based on a Belief Propagation (BP) framework, to recover the input of two popular
hash function families: SHA-2 and SHA-3. Thanks to a simulation framework, we
develop a comprehensive study of the attacker’s recovery capacity depending on the
hash function variant. Then, we demonstrate that an attacker can leverage prior
knowledge on the hashing function input to increase the effectiveness of the attacks.
As an example, in the context of a bootloader doing a hash-based integrity check
on a secret firmware, we show that simple statistics on assembly code injected in
BP improves input recovery. Finally, we study the security implications of SASCA
on cryptosystems performing multiple invocations of hashing functions with inputs
derived from the same secret data. We show that such constructions can be exploited
efficiently by an attacker. We support such statements with experiments on SHA-256
based HMAC and on SHAKE-256 based PRF in Kyber’s encryption routine. We also
show that increasing Kyber’s security parameters implies weaker security against the
proposed SASCA targeting the shared key.
Keywords: Side-Channel Attack · SASCA · SHA-256 · SHA-3 · HMAC · Kyber

1 Introduction
Hashing algorithms are deterministic one-way cryptographic functions that take as input
a message of variable size and produce a fix-sized output called a hash or digest. Main
use-cases of hashing functions include password storage, integrity verification and Message
Authentication Code (MAC) creation. Many applications rely on hashing functions such as
security protocols (TLS, IPsec, SNMP, etc.), blockchain technonogies (Bitcoin, Ethereum,
etc.) and even post-quantum cryptography schemes (Kyber, Dilithium, SPHINCS, etc.).

The Secure Hash Algorithm (SHA) is a family of hashing algorithms that have been
standardized by the National Institute of Standards and Technologies (NIST). Even if
SHA-3 instances have been standardized in 2015, the SHA-2 family (SHA-256, SHA-512,
SHA-224, SHA-384) is still commonly used. At the time of this writing, SHA-256 based
hash-based message authentication code (HMAC) is still enabled by default in SSH, TLS,
or IPsec.

The SHA-3 family differs from SHA-2 in terms of structure. Indeed, the first is based
on a sponge construction built over a permutation function called Keccak-f, whereas SHA-2
is based on a Merkle Damgård scheme relying on a compression function. Note that

2 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

nowadays, no algebraic attack thwarts the theoretical security of SHA-2, which stays a
robust candidate for the aforementioned hashing function use-cases.

When a hashing function manipulates a secret as an input, an attacker can try to
recover the latter by observing side-channel leakages during the hashing process, such as
power consumption or electromagnetic radiations.

So far, the security of SHA-2 implementations has been studied through Differential
Power Analysis (DPA) [MTMM07,BBD+13,KGB+18] and Template Attacks (TA) [BDT+21].
Concerning the SHA-3 family, recent Soft Analytical Side-Channel Attacks (SASCA)
targeting the Keccak-f cryptographic permutation function have shown to be practi-
cal [KPP20,YK21]. SASCA relies on a probabilistic graph model designed to compute
marginal distributions on intermediate variables by combining the output of multiple TAs
performed on the same side-channel trace. The framework aims at correcting prediction
errors resulting from TAs by exploiting the link between intermediate values, which is
known in advance by an attacker.

This paper aims at answering the following questions: (i) What is the resistance of
SHA-2, compared to SHA-3, against SASCA? (ii) Can an attacker exploit the structure of
the input of a hashing function in order to enhance SASCA accuracy? And (iii) To which
extend multiple calls to a hashing function, with their inputs derived from the same secret,
add an additional vulnerability considering SASCA?

1.1 Contributions
In this paper, we implement several soft analytical side-channel attacks based on belief
propagation theory to recover the input of a hashing function by exploiting the leakage of
inter-round states. Thanks to simulations, we evaluate the robustness of SHA-256 against
SASCA, and provide additional insights, with respect to the literature, on the resistance
of SHA-3 to BP-based attacks with a bitwise model. The main contributions of this paper
are the following:

• We implement the first BP-based attack on the SHA-256 compression function. We
perform simulated attacks to find the minimal number of compression rounds to
target with TAs for a successful outcome.

• We extend the work presented in the literature by investigating the resistance of
standard SHA-3 instances regarding SASCA in a simulated context. Namely, we
investigate the accuracy of SASCA with an increasing noise level rather than on a
particular device.

• We compare the resistance of SHA-256 and SHA-3 instances against SASCA. We
claim that the compressive structure of SHA-256 is beneficial from an attacker’s
perspective, and that the Keccak-f permutation function is more resistant to the
attacks we propose.

• We show how an attacker can leverage prior knowledge on the hashing function
input to increase the effectiveness of the attacks. As an illustration, we consider the
scenario of firmware authentication with SHA-256, and show that an attacker can
exploit simple statistics on the Instruction Set Architecture (ISA) of the firmware to
obtain higher attack accuracies.

• We then investigate how SASCA can exploit joint information when multiple hash
functions are called with inputs derived from the same secret. Through the analysis
of SHA-256 based HMAC and SHAKE-256 based error vector derivation in Kyber
post-quantum cryptography standard, we show that protocols that use such “multiple
invocations” structures present an additional security concern.

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 3

All attacks presented in this paper can be performed with less than 30 gigabytes of memory
and a few minutes with a parallel implementation of the BP algorithm on a regular desktop
computer.

Finally, this work deliberately focuses on simulated attacks only. This approach is led
by performing an exhaustive study of SASCA accuracy with varying noise levels. This
allows us to provide insights upon the theoretical resistance of SHA-3 and SHA-2 against
SASCA: such insights can then be used in an evaluation phase of a particular software or
hardware implementation of such hashing functions.

1.2 Outline
Necessary background notions are introduced in Section 2. Previous works from the
literature are described in Section 3. We present attacker model considerations in Section 4.
In Section 5 we present the construction of factor graphs for SHA-256 and Keccak-f. We
mount attacks exploiting single invocations of the hashing function in Section 6. Then, we
investigate the benefits of exploiting the underlying structure of input data in Section 7.
We present an attack on SHA-256 HMAC construction in Section 8. Afterwards, we exploit
multiple calls of SHAKE-256 in order to mount an attack on Kyber’s encrypt routine
in Section 9. After presenting possible mitigations to our attacks in Section 10 we conclude
and provide leads regarding further research in Section 11.

2 Background

2.1 SASCA and Belief Propagation
A side-channel attacker that targets a cryptographic application is often able to gain
probabilistic information regarding the value of several intermediate variables. In most
cases, the attacker knows the cryptographic application they are attacking. Thus, they
know the mathematical relationships that link all intermediate variables in the algorithm.
The idea behind SASCA is to combine the likelihoods, gathered from a side-channel
analysis phase, in order to derive a Maximum A Posteriori (MAP) estimation of the
marginal distribution of a secret.

Such MAP estimation can be performed by modeling the link between intermediate
variables within a bipartite graphical model called a factor graph. This model allows to
factor the high dimensional problem of marginal estimation into a set of smaller dimensional
problems.

A factor graph contains two types of nodes. Firstly, variable nodes are used to store
the probability distributions of the target algorithm’s intermediate variables. Secondly,
factor nodes represent the arithmetical links between two or more variables. Factor and
variable nodes are connected with edges that represent the “has-argument” statement.

Upon this graph, the MAP estimation is carried out by a message passing algorithm,
called belief propagation, where likelihoods, or beliefs, are transmitted between variable
nodes and factor nodes.

The message µx→g sent from variable node x to factor node g is defined as fol-
lows [KFL01]:

µx→g(x) =
∏

h∈n(x)\{g}

µh→x(x) (1)

where n(x) corresponds to the set of neighboring nodes of x (i.e., connected to x with
an edge) in the factor graph. Additionally, messages sent by a factor g to a variable x is

4 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

computed with the sum-product formula depicted as follows:

µg→x(x) =
∑
∼{x}

f(X)
∏

y∈n(g)\{x}

µy→f (y)

 (2)

where X represents the set of variable nodes connected to g and ∼ {x} expresses the
summary notation as defined in [KFL01]. Note that the f function is a boolean function
that represents the arithmetical link between variables in n(g). Finally, the marginal
distribution of a variable node is computed as follows:

P (x) = 1
Z

∏
g∈n(x)

µg→x(x) (3)

with a normalization factor Z.
The BP algorithm has been proved to compute exact marginals on tree-like graphs.

However, factor graphs that represent cryptographic applications often contain cycles. The
loopy-BP algorithm has been created to operate on cyclic factor graphs. The key idea of
loopy-BP is to iteratively transmit beliefs from factor nodes to variable nodes, and then
from variable nodes to factor nodes. Even if loopy-BP is not proved to compute exact
marginals, it leads satisfying empirical results in practice.

As the loopy-BP is an iterative algorithm, one has to select one or several arbitrary
criteria to stop the algorithm. A criterion can be a maximum number of iterations (set
in advance) or a metric evaluating the convergence of the algorithm, such as a threshold
on the statistical change of one or several variables’ marginal distributions. This work
considers both aforementioned stopping criteria.

2.2 SHA-256 Specifications
SHA-2 is a hashing function which has been developed by the National Security Agency
(NSA) of the United-States. Together with SHA-512, SHA-256 is a member of the SHA-2
family, that has been standardized in 2002. Even if SHA-2 shares similarities with SHA-1,
which suffers security flaws, no serious collision attack has been found on SHA-2. Hence,
the latter family is still widely in use in cryptographic protocols.

The SHA-256 compression function takes as input a 512-bit message block M and a
256-bit chaining value V . Note that the first chaining value, which is publicly known, is
denoted IV . After a message expansion routine, it iterates the same transformation during
64 rounds (see Algorithm 1). The round is composed of several 32-bit boolean operations.
Let’s define a, b and c three 32-bit variables, the operations are defined as follows:

Σ0(a) = (a≫ 2)⊕ (a≫ 13)⊕ (a≫ 22)
Σ1(a) = (a≫ 6)⊕ (a≫ 11)⊕ (a≫ 25)
Ch(a, b, c) = (a&b)⊕ (¬a&c)
Maj(a, b, c) = (a&b)⊕ (a&c)⊕ (b&c)

where & denotes the bitwise logical and operation, ¬ denotes the bitwise complement
and a≫ i indicates a bitwise right rotation of a of i bits. The message expansion splits the
input M into 32-bit words (M0, ...,M15) and computes the extended message (W0, ...,W63)
by using the following operations:

σ0(a) = (a≫ 7)⊕ (a≫ 18)⊕ (a� 3)
σ1(a) = (a≫ 17)⊕ (a≫ 19)⊕ (a� 10)

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 5

where a� i denotes the bitwise logical shift of a of i bits.

Algorithm 1: SHA-256 compression function.
Data: Data block M = (M0, ...,M15) and chaining value V = (V0, ...V8)
Result: The chaining value F (V,M)

1 (W0, ...W15)← (M0, ...,M15)
2 for t = 16 to 63 do
3 Wt ← σ1(Wt−2)⊕Wt−7 ⊕ σ0(Wt−15)⊕Wt−16

4 (A,B,C,D,E, F,G,H)← (V0, ..., V7)
5 for t = 1 to 64 do
6 T1 ← H ⊕ Σ1(E)⊕ Ch(E,F,G)⊕Kt ⊕Wt

7 T2 ← Σ0(A)⊕Maj(A,B,C)
8 (H,G,F,E,D,C,B,A)← (G,F,E,D ⊕ T1, C,B,A, T1 ⊕ T2)
9 return (V1 ⊕A, ..., V8 ⊕H)

When a message P is longer than 512 bits, it is padded and divided into 512-bit chunks
{P0, ..., Pn−1}. Each chunk is processed through the compression function and chained
thanks to a Merkle Damgård construction (see Figure 1). Finally, the hash Z corresponds
to the output of the last compression function of the chain.

Compress Compress Compress

Figure 1: Merkle Damgård construction for SHA-2.

2.3 Keccak Specifications
SHA-3 is a hashing algorithm based on the Keccak-f permutation function [Dwo15].
Keccak-f takes as input a 5× 5 matrix of elements of size 2l-bits, l ∈ {3, 4, 5, 6}, that are
processed through five sub-routines θ, ρ, π, χ and ι, that are defined hereafter:

θ : a[i][j][k] = a[i][j][k]⊕ parity(a[0..4][j − 1][k])⊕ parity(a[0..4][j + 1][k − 1])
ρ : a[i][j][k] = a[i][j][k − (t+ 1)(t+ 2)/2]
π : a[3i+ 2j][i][k] = a[i][j][k]
χ : a[i][j][k] = a[i][j][k]⊕ ¬(a[i][j + 1][k]&(a[i][j + 2][k])

with t indicating the current round, and ι defining the exclusive-or of the first word with a
constant. These sub-routines are called sequentially for 12 + 2l rounds.

Within the SHA-3 framework, Keccak-f calls are organized with a sponge construction.
The sponge construction consists in two phases: “absorption”, where the data is injected
within the primitive, and “squeezing” where the hash is provided to the user (see Figure 2).
Keccak-f input of size b bits is divided into two parts: the “rate” r and the “capacity”
c = b − r. The security level against collision and preimage attacks is half the size of
c. The input of SHA-3, denoted P is padded and then divided into chunks of size r,
denoted {P0, ..., Pn−1}, that are absorbed one by one by Keccak-f (see Figure 2). Then, the
squeezing part delivers chunks {Z0, ..., Zt−1} of size r that are concatenated to build the

6 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

final hash. In this paper, we only focus on SHA-3 versions with l = 6, with 64-bit words
and 24 rounds (this version is called Keccak[1600]). Depending on the desired application,
one can use Keccak through one of the standard instances depicted in Table 1.

Absorb Squeeze

Figure 2: Keccak-f calls in Keccak.

Table 1: Algorithms that use Keccak and their corresponding parameters.
Algorithms r c
SHAKE-128 1344 256
SHA3-224 1152 448

SHA3-256, SHAKE-256 1088 512
SHA3-384 832 768
SHA3-512 576 1024

3 Related work
Several side-channel attacks targeting hashing functions have been presented in the
literature. McEvoy et al. were the first to mount a Differential Power Analysis (DPA)
based attack on a SHA-2 HMAC [MTMM07]. They consider a Hamming distance leakage
model on a FPGA implementation. They describe masking countermeasures on SHA-2
internal routines that thwart their attack. In 2013, Belaïd et al. showed an improved
attack under the Hamming weight leakage model necessitating less assumptions regarding
the implementation [BBD+13]. They also exposed some countermeasures to cancel their
attack paths. Note that both previous works do not recover the secret key, but rather the
chaining value derived from the secret. The post-quantum cryptographic scheme SPHINCS
was attacked with a DPA through its SHA-256 based pseudo random number generator by
Kannwischer et al. [KGB+18]. More recently, Belenky et al. performed a template attack
on a HMAC-SHA-2 hardware implementation [BDT+21].

Soft analytical side-channel attacks have been introduced by Veyrat et al. on an
AES Furious implementation [VCGS14]. Interestingly, SASCA was shown to outperform
Algebraic Side-Channel Attacks (ASCA), even in noise-free contexts [GS15]. Furthermore,
Grosso et al. showed that SASCA required much less training traces than profiled DPA
attacks. Later on, SASCA was adapted to key recovery on Kyber by targeting the number
theoretic transform [PPM17,PP19,HHP+21,HSST23]. Kannwischer et al. mounted the
first single trace SASCA on Keccak [KPP20]. Their approach used clustered nodes in order
to shift the representation of variables from chunk-level (i.e., 8-bit or 16-bit) to bit-level
in order to perform the θ transform of Keccak-f. Later, You and Kuhn developed a fully

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 7

bit-level approach of SASCA on Keccak [YK21]. Thanks to bit-level likelihoods gathered
from a fragment template attack, they targeted a Keccak-f[1600] implementation on a
Cortex-M4 device. Cassiers et al. implemented a Regression based Linear Discriminant
Analysis (RLDA) [CDSU23] technique that allows templating 32-bit variables efficiently.
They showed the soundness of their approach by attacking a 32-bit implementation of
ASCON.

4 Attacker model
In this paper, we consider a profiled attack scenario. This means that we suppose that an
adversary can train a model, or template, on a clone of the target board that runs the
exact same algorithm, but with controlled data. The adversary is also able to perform
leakage assessment (e.g., in order to identify the leakage model or to select a set of points
of interest for future templating) on a high number of intermediate variables of the target
algorithm.

We consider the attacker to be able to craft templates for inter-round intermediate
variables (including the hashing function input). Namely, our attacker model does not allow
to template intra-round intermediate variables directly. This choice helps to tend towards
a more fair comparison of the studied hash functions, while providing interesting insights
regarding the security of hardware implementations of hashing functions. Indeed, several
hardware implementations of SHA-3 instances use registers to store inputs and outputs of
permutation rounds for Keccak-f [AA+14,SC17,MIV15], and for the compression rounds
of SHA-2 [CKSV06,CL20]. Note that, in practice, a template that targets an inter-round
variable may exploit intra-round leakages, this is especially the case for complex models
(e.g., deep neural networks).

By default, we restrict the attacking phase to the observation of a single side-channel
trace. This model can be relaxed depending on the use-case. For example, attacks
presented in Section 7 and Section 8 can be conducted during the boot phase of a device.
This allows reproducing the measurements with the exact same input data. In these cases,
the attacker could use these multiple measurements in order to obtain better prediction
accuracies on intermediate variables.

4.1 Leakage Simulation
As precised in Section 2, SHA-256 operates with 32-bit variables and Keccak[1600] handles
64-bit variables. Although the templating of 32-bit variables has been shown possi-
ble [CDSU23], manipulating probability distributions upon 232 possible values requires a
high amount of storage. This becomes completely impractical for 64-bit variables.

Another strategy is the so-called fragment template approach. This approach consists
in dividing a n-bit variable into smaller chunks (or fragments), and applying a template
attack on each chunk. Interestingly, You and Kuhn [YK21] showed that the fragment
size has no significant impact on bit-level marginal distribution prediction. This means
that, in their particular case, a bit-level fragment template attack is as relevant as for
other fragment sizes. Consequently, in this paper, we consider a bit-level leakage model to
conduct our experiments. This model is particularly interesting when considering SHA-256
and Keccak-f, that essentially use bitwise operations in their internal routines. Namely,
for each bit b, the leakage L is described as follows:

L = α · b+ β, β ∼ N (µ, σ2) (4)

where α is a multiplicative coefficient and β is a Gaussian noise parameter. Different
levels of noise can then be simulated by modifying σ, the standard derivation of the noise
distribution.

8 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.25

0.50

0.75

1.00

good guess probability
classifier accuracy
bitflip probability
random guess

Figure 3: Bit leakage simulation statistics for increasing noise parameter σ, results are
obtained with 1000 experiences per noise level. The orange curve depicts the average
accuracy of a LDA classifier. The green curve represents the average bitflip probability.
The blue curve illustrates the average probability of the good hypothesis, with standard
deviation illustrated by the light-blue surface.

Fisher’s Linear Discriminant Analysis (LDA) is selected as our classifier. This choice
is sound in our simulated context because (i) the leakage is univariate, (ii) the simulated
leakage model is linear and (iii) there are two classes to discriminate, with same covariance
matrix by construction.

We perform a random sampling of leakages following Equation 4 with an increasing
noise level. Statistics of the LDA classifier are depicted in Figure 3. As expected, when
increasing the noise parameter σ, the accuracy of a LDA classifier converges towards a
random guess (i.e., 0.5).

Evaluation. We evaluate the accuracy of the attacks in this paper thanks to a “recovery
ratio” that indicates the proportion of correctly recovered bits from the secret part of the
hash function input, denoted S. Namely, considering #S as the number of secret bits, we
have:

recovery ratio = number of correct bits
#S (5)

We choose to evaluate the recovery ratio instead of the success rate because the latter
does not indicate the remaining quantity of the secret to be enumerated after the attack.
In other terms, we believe that the recovery ratio is more suitable to indicate further
practicality of key-enumeration algorithms [VCGRS13,Gro19,PSG16].

Baseline attack. To provide a comparison basis in the remainder of this paper, we
introduce the notion of “baseline attack” which describes an attack that is only headed
thanks to templating the input variables (without BP). For example, the accuracy of
a baseline attack on a hashing function is obtained by only templating its input. The
baseline allows to evaluate the correction capacity brought by SASCA.

Limitations. In this work, bit-level leakage modeling allows to lead attack simulations
with varying noise level in order to evaluate the robustness of targeted algorithms against
SASCA. Nevertheless, this bit-level model is a simplified version of the leakage models
that can be observed in a real-case scenario.

Furthermore, our SASCA approach relies on an underlying classifier that provides
likelihoods to the probabilistic model. Hence, all advances and techniques in terms of

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 9

σ1 σ0

j > 10? j > 3?

wi−2,j−17%32 wi−2,j−19%32 wi−2,j−10 wi−15,j−18%32 wi−15,j−7%32 wi−15,j−4

⊕

wi−7,j wi−2,j wi,j

(a) subgraph for message expansion.

⊕& &¬

ab c¬atmp1 tmp2

(b) subgraph for the Ch transform.

⊕ & & &

a b ctmp1 tmp2 tmp3

(c) subgraph for the Maj transform.

Figure 4: Bit-level subgraphs for SHA-256 message expansion, Ch and Maj routines

supervised side-channel analysis can be used to increase classification accuracy before
being plugged into the probabilistic model.

5 Factor Graph Construction
5.1 SHA-256 Factor Graph
We build a factor graph where each bit of the SHA-256 intermediate states’ 32-bit variables
is considered as a variable node in a factor graph.

Variables. Hereafter, we describe the naming conventions for the variable nodes that are
represented in the factor graph:

• The expanded message is composed of 64 × 32 variables denoted wi,j , with i ∈
{0, ..., 63} indicating the corresponding 32-bit word and j ∈ {0, ..., 31} indicating
each bit of such word in big-endian encoding (e.g., w1,0 is the most significant bit of
the second 32-bit word of the expanded message).

• At each round t of the compression function, we define the intermediate state V t
as (At, Bt, Ct, Dt, Et, F t, Gt, Ht). Each element of this tuple represents a set of 32
single bit variables.

• Variables corresponding to V t are denoted vti,j , with i ∈ {0, ..., 7} (e.g., v6
3,4 denotes

the fifth most significant bit of D6.

• The input vector IV and the constants vectors K are defined as constants in the
graph. Unlike variables, constants never update their marginal distributions.

Inner routines. The factor graph designed for SHA-256 can be viewed as a concatenation
of several subgraphs. These subgraphs represent the inner logics of the message expansion
and the compression rounds. First, the computation of a bit wi,j , with i < 16, by the

10 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

message expansion function is represented with the subgraph illustrated in Figure 4a. This
subgraph implements the σ1 and σ2 functions depicted in Subsection 2.2. We stress that
the subgraphs of Σ0 and Σ1 are built analogously to the σ0 and σ1 parts in Figure 4a.
Both Ch and Maj operations on 32-bit words are divided into 32 bit-level transforms
(see Figure 4b and Figure 4c). Finally, the factor graph construction is parametrized in
order to build a graph incorporating variables for the desired number of rounds.

Adding leakage. Adding leakage to the factor graph is performed by connecting an
“observational factor” to the inter-round and expanded message variables. This factors’
only function is to transmit the probability distribution corresponding to the template
output.

5.2 Keccak-f Factor Graph
In this paper, we build a bit-level factor graph based on the work of You and Kuhn [YK21].
Namely, for each round of Keccak-f, the subgraph representing the θ routine incorporates
nodes representing the parity intermediate variables C and D. Note that π and ρ routines
are implemented with a simple wiring.

Adding leakage. Regarding the leakage, observational factors are linked to each round
inputs and outputs. This differs from the approach taken in [YK21], where C and D related
variables could also be connected to observational nodes, allowing explicit intra-round
leakage exploitation. Finally, we allow the attacker to craft templates on the input variables
of Keccak-f.

Standard instances. Recall that different Keccak[1600] standard instances exist. These
different instances differ by the rate r and capacity c sizes used (see Figure 2). The versions
studied in this paper are depicted in Table 1. In this work, when not precised otherwise,
we consider by default the whole rate bits to constitute the secret. Formally, we consider
#S = r.

6 Single call attacks
The aim of this section is to cover a general attack scenario where a side-channel attacker
has the possibility to apply previously crafted templates upon a measurement of a single
call to a hash function. Along this section, we aim at addressing the following questions:
(i) What is the maximum noise level achievable for a successful attack? (ii) What is the
minimum number of rounds to profile in order to obtain satisfactory recovery? (iii) Do
structural aspects of SHA-256’s compression function leads to non-homogeneous recovery
of the input and how can it be compared to Keccak-f? And (iv) What accuracies can an
attacker expect for different instances of Keccak and SHA-256?

6.1 Assessing the number of target rounds
Firstly, the purpose of our analysis is to assess the minimal number of rounds that must
be profiled by an attacker in order to get satisfactory recovery of the input considering
noise. Indeed, finding such minimal number of rounds to be profiled allows reducing
the number of variables to be templated by the attacker, with hopefully similar recovery
potential. Hereafter, we evaluate this criterion through simulations at various noise levels
for SHA-256 and Keccak.

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 11

6.1.1 SHA-256

For this simulation, the attacker is able to gain probabilistic information (i.e., likelihoods
originating from bit-level template attacks) on the whole expanded message W , as well
as the output of several rounds’ intermediate variables V . The chaining value is set to
the default SHA-256 IV , which can either be known or unknown to the attacker. When
unknown, IV can be templated by the attacker.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Number of rounds

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

(a) SHA-256 compression function attack with a known IV .

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Number of rounds

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

(b) SHA-256 compression function attack with an unknown IV .

Figure 5: Recovery ratio for SHA-256 belief propagation attack considering variable rounds
and noise levels with known (top) and unknown (bottom) chaining value IV .

The recovery ratio after SASCA on SHA-256 with increasing noise level and varying
number of profiled rounds is depicted in Figure 5. We observe that (i) a recovery ratio
of 1 is always achieved with a noise parameter inferior to 0.4, regardless the number of
profiled rounds (superior to 3), (ii) increasing the number of profiled rounds above 20
does not allow to significantly increase the recovery capacity for high noise levels for both
known IV scenario (see Figure 5a) and unknown IV scenario (see Figure 5b, and (iii) the
knowledge of the IV is beneficial to SASCA, allowing perfect recovery at a higher noise
level. Considering (ii), further SASCA on SHA-256 will be performed with 20 profiling
rounds.

6.1.2 Keccak-f

Similarly to the previous analysis, we aim at finding the number of Keccak-f rounds to be
templated by an attacker. We perform two simulations with varying noise parameter σ
and number of templated rounds. The first experiment evaluates the recovery ratio over
the input for a SHA3-256/SHAKE-256 instance (see Figure 6a). The second experiment
measures the recovery ratio for a fully unknown Keccak-f input state (see Figure 6b). This
case corresponds to attacking a late invocation of Keccak-f in the sponge construction
without prior knowledge of the output of the previous invocation.

In Figure 6 we can observe that attacking SHA3-256 allows to stay with a recovery ratio
of 1 up to σ = 0.6, which is superior to what can be recovered for a full random input. Still,
with σ < 0.5, an attacker can recover a high proportion of the full random input (superior

12 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

1 5 9
Number of rounds

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

(a) Keccak-f[1600] with rate r = 1088 and capac-
ity c = 512. This case corresponds to targeting
the first Keccak-f call of a SHA3-256 instance.

1 5 9
Number of rounds

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

(b) Keccak-f[1600] with full random input. This
case corresponds to a late invocation of Keccak-f
of any standard Keccak instance with b = 1600.

Figure 6: Recovery ratios after simulated BP attacks on Keccak-f[1600] with full unknown
inputs (right) and r = 1088 unknown bits, the SHA3-256 FIPS standard (left).

to 0.9). We also notice that, regardless the targeted version, no significant improvement is
brought by profiling more than 5 Keccak-f rounds. Further Keccak-f related analyses in
this paper will be conducted considering templates on 5 rounds.

6.2 Error location
We investigate the location of recovery errors after the attack. In Figure 7a, we illustrate
the error rate for each bit, averaged on 50 runs of the attack on SHA-256 for σ = 1. This
error rate is measured for two instances: the “default IV” version where the attacker knows
the chaining value IV , and the “unknown IV” version where the attacker does not know
the chaining value, but has the possibility to craft bit-level templates on the latter.

Interestingly, in the “default IV” scenario, we observe that the error rate is increasing
together with the index of 32-bit input words Wi. Recall from Algorithm 1 that the IV is
manipulated together with K1 (a public constant) and W1 during the first compression
round. Then, first round leakages of T1, and hence D and A, are very informative regarding
W1. At the end of the first round, the 32-bit words vector (B,C,D, F,G,H) still contain
known data. This reduces the entropy for T1 and T2 computations. The further the round,
the more the uncertainty coming from the template attacks is spread in 32-bit words A
to H. This explains the increasing error rate in the “default IV” case with respect to i,
the index of the 32-bit input word Wi. Finally, after round 11, the uncertainty spreading
makes the error rate of Wi, i ≥ 11 similar to the “unknown IV” case.

Similar analysis is accomplished with Keccak-f with r = 576 unknown input bits and
c = 1024 bits set to the default value 0. Results are depicted in Figure 7b. Unlike SHA-256,
Keccak-f with partially known input shows no meaningful error location biases at a 64-bit
word scale. This can be explained by the fact that Keccak-f is a permutation function,
that efficiently blends known and unknown data, notably though θ, ρ, π and χ routines.
Along with having good properties against cryptanalysis [MDA17], this structure has the
advantage to quickly spread the uncertainty coming from the template attack.

Consequently, under the scenario of BP-based attacks, the compressive structure of

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 13

SHA-256 is a shortcoming regarding the confidentiality of the secret input. The “word by
word” handling of the input with, at first, known data, gradually spreads the uncertainty
coming from the templates, hence enabling a better recovery ratio on the first 32-bit words.
As a result, small sized secrets processed as input of SHA-256 with known IV are more
prone to be recovered when placed at the beginning of the input buffer. Interestingly, this
case is encountered in SHA-256 based HMAC constructions. From a defensive point of
view, if a compromise must be reached on a countermeasure against the attack proposed
in this paper (countermeasures are later discussed in Section 10), protecting the first
compression rounds must be a priority.

0 100 200 300 400 500
Input bits

0.0

0.2

0.4

Av
er

ag
e

er
ro

r r
at

e W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16

SHA-256 (default IV)
SHA-256 (unknown IV)

(a) Average error rate per SHA-256 input bit,
computed for noise parameter σ = 1.0. Straps
indicate 32-bit words of the input message.

0 100 200 300 400 500
Input bits

0.2

0.3

0.4

Av
er

ag
e

er
ro

r r
at

e

A1 A2 A3 A4 A5 A6 A7 A8 A9

Keccak[r=576, c=1024]

(b) Average error rate per Keccak-f input bit,
computed for noise parameter σ = 1.0. Straps
indicate 32-bit words of the input message.

Figure 7: Average error rate per bit for SHA-256 and Keccak-f.

6.3 Evaluation of SHA-2 and SHA-3 attacks
We now compare the resistance of several SHA-2 and SHA-3 instances against SASCA.
Each attack exploits templates applied upon 20 compression rounds for SHA-256 and 5
Keccak-f rounds for Keccak. For an increasing noise level, we run the attack 50 times on
random inputs and we average the recovery ratio. In order to assess the benefits of SASCA
against a baseline attack, the result of a baseline classifier, as defined in Section 4, is used
as a reference. Results of such simulations are illustrated in Figure 8.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

Baseline
Keccak[r=1344,c=256]
Keccak[r=1152,c=448]
Keccak[r=1088,c=512]
Keccak[r=832,c=768]
Keccak[r=576,c=1024]
Keccak[r=1600,c=0]
SHA-256 (default IV)
SHA-256 (unknown IV)

Figure 8: Comparison of the recovery ratios of a baseline classifier (without BP), SHA-2
and Keccak-f attacks. The gray surface represents the standard deviation of the baseline
classifier’s recovery ratio.

Benefits of SASCA. In Figure 8, we observe that SASCA provides better recovery ratios
than baseline classifiers up to σ = 0.75 for all Keccak instances and up to σ = 1.25 for
all SHA-256 instances. Beyond these noise levels, the SASCA approach does not seem to
be significantly beneficial compared to the baseline attack. Finally, all attacks seem to
converge to a recovery ratio of 0.5, which is equivalent to a random guess, when σ tends
to infinity.

14 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

Known data proportion. Results provided in Figure 8 show that the proportion of known
data plays an important role regarding the resistance of the attack to noise. Indeed, for
Keccak instances, the success of the attack with higher noise levels is directly proportional
to the size of the capacity c of the input, which is filled with zeros. Regarding SHA-256,
we observe that the knowledge of the chaining value IV is beneficial to the attacker.

Comparing SHA-3 and SHA-256. In our setup, Keccak is globally more resistant to
SASCA than SHA-256. Moreover, from an attacker point of view, the hardest SHA-2
instance (i.e., SHA-256 with unknown input) can be attacked up to a higher noise level
than the easiest SHA-3 instance (i.e., Keccak[r=576, c=1024]).

Comparison with You and Kuhn’s work. We recall that You and Kuhn [YK21] managed
to reach a success rate superior to 0.9 with SASCA on Keccak-f for all standard instances
presented in Table 1, this on a software implementation running on a Cortex-M4 controller.
Moreover, they reported a bit-level template attack accuracy of approximately 0.73. When
reporting this value onto the baseline classifier recovery ratio curve in Figure 8, one can
notice that only SHA3-512 instance (i.e., Keccak[r = 576, c = 1024]) presents similar
recovery ratios in our setup. This can be explained by several elements. Firstly, as
precised in Section 4, we do not allow the attacker to build templates on intra-round
intermediate variables (e.g., C and D for Keccak-f, or T1 and T2 for SHA-256 compression
function). Depending on actual implementation, templating these intra-round variables
and including the obtained likelihoods into the graph in real-case attack scenarios could be
beneficial to all attacks illustrated in Figure 8. Secondly, the results presented in [YK21]
are derived from real-case attacks, with potential high-variability regarding template
accuracies upon intermediate variables, due to the potential presence of different leakage
models. Consequently, the set of template outputs for all intermediate variables are not
compulsorily drawn from the same probability distribution. This differs with the work
presented in this paper, where the same leakage model is considered for each variable.

6.4 Discussion
In this section, we presented a methodology to assess the minimal number of hashing
function rounds necessary to mount successful SASCA on SHA-256 and SHA-3. Then, we
identified biases regarding the error rate of SASCA induced by the compressive structure
of SHA-2’s internals. Noticeably, we showed that the first 32-bit words of the input can be
recovered more easily with our attack. After, we analysed the benefits of SASCA compared
to a baseline attack, and showed that the more input (and IV , in the particular case of
SHA-256) is known, the easier it is for an attacker to recover the secret portion of the input
with higher noise. For instance, this implies that Keccak instances with smaller rate r,
while having higher security against cryptanalysis, are more sensitive to SASCA. Moreover,
we showed that, with our setup, SHA-256 can be accurately attacked with SASCA up to
higher noise levels than any considered SHA-3 instance. Furthermore, when comparing
our simulated results with attacks previously proposed in the literature, we can assess that
SHA-2 can be targeted with single trace SASCA in real-case scenarios.

7 Hashing on structured data
Until now, attack scenarios developed in this paper assumed that the target hashing
function would take random data as input. However, when considering a firmware integrity
check, the data processed by the hashing function consists in portions of a binary file
partially composed of assembly instructions. The encoding of instructions is ruled by the
relative ISA. Hence, the latter, as well as the implementation choices made by the compiler,

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 15

0 5 10 15 20 25 30
Bit index

0.00

0.25

0.50

0.75

1.00
Pr

ob
ab

ilit
y

0
1

(a) ARMv7-A 32-bit instruction bits biases, bit
index 0 indicates the least significant bit.

0 5 10 15 20 25 30
Bit index

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

0
1

(b) RISC-V 32-bit instruction bits biases, bit
index 0 indicates the least significant bit.

Figure 9: ARMv7-A and RISC-V instructions bit-level biases.

induce a structure on the binary file’s data. In this section, we investigate the possible
benefits of exploiting this structure from an attacker’s perspective.

Bit-level biases. For this study, we aim at leveraging bit-level statistics from two sets of
binary programs. We gather 1419 and 343 ARMv7-A and RISC-V binary files respectively.
We disassemble all these binaries and only keep the 32-bit instructions contained in the
.text section of the binary programs. This leads to datasets of approximately 27 and 7
million instructions for ARMv7-A and RISC-V, respectively.

For both datasets, each 32-bit instruction can be represented as X = (xi)0≤i<32. Then,
we want to compute the likelihood for each xi such as 0 ≤ i < 32.

Statistics on per-bit instructions biases are depicted in Figure 9a and Figure 9b for
ARMv7-A and RISC-V respectively. Firstly, we observe that both instruction sets lead to
bitwise probability distributions that are not uniform. Moreover, we clearly observe the
two most significant bits set to 1 systematically for the RISC-V instruction set, which is
precised in the ISA specification.

Each bit prior distribution can be injected within the factor graph in order to take the
bit-level biases into account while performing the attack.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.6

0.8

1.0

Re
co

ve
ry

 ra
tio

Baseline
Baseline (ARM)
Baseline (RISC-V)
SHA-256 (ISA-agnostic)
SHA-256 (ARMv7-A)
SHA-256 (RISC-V)

Figure 10: SHA-256 SASCA attacks considering ARM and RISC-V code input compared
to baseline (i.e., non SASCA) attacks and ISA-agnostic attack. For each noise level, the
recovery ratio is averaged over 50 runs. The IV is known to the attacker.

Attack scenario. In order to perform the simulation, we randomly select a set of consec-
utive instructions within the code database and run the attack for increasing noise levels.
Note that, for simplification purposes, we suppose the input of SHA-256 to be aligned to
32-bit words. Moreover, we consider the chaining value to be known: this corresponds
to the “default IV” case scenario. In a real-case attack scenario, this would imply that
targeting a compression phase in the Merkle Damgård scheme with prior knowledge of the
preceding chaining value. The latter is either the known IV for the first compression call,
or obtained by attacking the previous calls. In order to recover several compression input

16 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

blocks, the adversary can either chain the attacks, or, at the cost of fewer noise tolerance,
perform attacks in an “unknown IV” scenario, as depicted in Subsection 6.3.

Simulation results. Results of this experiment are depicted in Figure 10. We observe
that (i) considering either ARM or RISC-V priors allows a better recovery ratio compared
to the ISA-agnostic baseline attack (default IV case in Figure 10), (ii) ARMv7-A biases
provide better attack results than RISC-V for σ superior to 1, both for the baseline and
SASCA approaches, and (iii) each attack accuracy converges towards the corresponding
baseline attack accuracy when the noise increases. Note that if we target a 0.9 recovery
ratio, ARMv7-A and RISC-V priors lead to the same noise resistance against SASCA (i.e.,
σ = 1). Only higher noise levels highlight the superior contribution of ARMv7-A biases
against RISC-V biases from an attacker’s perspective.

Discussion. This experiment shows that when the secret input of a hashing function is
structured, the latter can be exploited by an attacker in order to enhance the attack accuracy.
When considering the specific case of a secure boot executed at each device startup, an
attacker could reach higher template accuracies by exploiting side-channel measurements
originating from multiple startups of the device. Finally, note that instructions coming
from a firmware are a specific type of structured data. Indeed, the approach developed in
this section could also be applied on other structured data such as JSON files, PDFs or
images.

8 Targeting SHA-256 HMAC
In this section, we study the security implications of several calls to a hashing function with
inputs derived from the same secret through the use-case of a SHA-256 HMAC. Precisely,
we investigate how combining multiple invocation of a SHA-256 compression function can
be beneficial from an attacker’s perspective.

Attack principle. A HMAC provides authentication and integrity verification of the data
P by using a key K and a hash function h. Formally, HMAC based on SHA-256 is
computed as follows (see Figure 11):

HMACK = h
(

(K ⊕ opad)||h
(
(K ⊕ ipad)||P

))
(6)

One can observe that two derivations of K are processed in the SHA-256 compression
function: K ⊕ ipad and K ⊕ opad. Note that ipad and opad are known parameters of
the scheme. In this case study, we consider a 128-bit key K. An attacker can perform
a SASCA upon the two SHA-256 calls h(K ⊕ ipad) and h(K ⊕ opad) simultaneously by
joining the two corresponding factor graphs with variables that represent the bits of K.

Simulation results. Simulation results are depicted in Figure 12a. We observe that
combining the two graphs is beneficial to the attacker, as the recovery ratio is higher for
the double graph attack than the simple graph one. As previous attacks developed in this
paper, the advantage of the BP approach compared to a baseline classifier becomes less
significant as the noise increases.

Noise and BP Convergence. In Figure 12b, we illustrate the recovery ratio and the
number of loopy-BP iterations obtained for several runs of the double graph HMAC attack
for an increasing noise level. Recall from Subsection 2.1 that a threshold on the maximal
statistical change of marginals from one iteration to the next is setup as a stopping criterion.
One can see that, for low noise levels (i.e., inferior to σ = 1), the number of iterations for

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 17

Compress Compress

Compress

Compress

Compress
Outer hash

Inner hash

Figure 11: HMAC construction for SHA-256.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

Baseline
Baseline (double graph)
HMAC
HMAC (double graph)

(a) Comparison of HMAC attacks, with simple and
double graph variants, to baseline classifier.

0 1 2 3

0.5

0.6

0.7

0.8

0.9

1.0

Re
co

ve
ry

 ra
tio

Baseline (double graph)
0

125

250

Ite
ra

tio
ns

(b) Number of iterations of the loopy-BP
algorithm on the double graph attack.

Figure 12: HMAC attack accuracy with single and double graph and relationship between
the noise level and the number of iterations.

all runs stays low (i.e., inferior to 70) while the recovery ratio is at 1. This means that the
loopy-BP algorithm converges quickly to the good hypothesis. From σ = 1 to σ = 2, the
intermediate zone, the majority of runs that do not lead to a perfect recovery reach the
maximum number of iterations (250 in this experiment), indicating that loopy-BP did not
converge. Finally, after σ = 2, the number of iterations for all the runs drops below 70.

If, in a black box context, an attacker observes that loopy-BP algorithm reaches the
maximum number of iterations, this means that the initial template accuracy probably
corresponds to the intermediate zone depicted in Figure 12b. The attacker, then, has the
options of (i) trying to reach higher initial template accuracies, (ii) exploit the resulting
marginal distributions to conduct a key enumeration strategy, or (iii) retry the attack later
and hope to reach a low number of iterations of loopy-BP and reach a perfect recovery.

Discussion. The attack presented in this section shows that processing derivations of a
secret value multiple times through a hashing function is beneficial from an attacker’s
perspective. Hence, such structures, that can be found in SHA-256 based HMAC, present
a vulnerability allowing a side-channel attacker to extract secret data in presence of greater
noise. Note that SHA-256 based HMAC is still widely used by default in several protocols
and applications such as IPsec, SNMPv3, EIGRP or SSH.

One can remark that the presented HMAC attack does not rely on the data P .
Consequently, if the same key K is used to compute the HMAC for several files, an attacker
can extract the appropriate compression function calls for each file (i.e., the ones taking
K ⊕ ipad and k⊕ opad as input) in order to enhance template accuracy (e.g., by averaging
the traces), or to link them in a wider graph.

18 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

Interestingly, if the attacker has the possibility to observe the processing of known data
P through the HMAC function, they could perform a non-profiled attack as presented
in [BBD+13] in order to recover the chaining value Vout outputted by h(IV,K⊕ipad). Then,
as Vout is known and P1 controlled by the attacker, the latter can predict intermediate values
of h(Vout, P1) and consequently train models in order to obtain templates. Eventually,
these templates can be applied in order to recover K with the attack presented in this
section. Note that this scenario alleviates the attacker model, as the profiling and inference
phases of the template attack can be performed on the same target device.

9 Targeting Kyber’s encrypt function
Kyber is a post-quantum Key Encapsulation Mechanism (KEM) that has been standardized
by the NIST in 2022 [ABD+19]. Kyber is a lattice-based scheme that aims at encapsulating
a shared key for secure key exchange. Kyber’s encapsulation relies on an encryption
procedure that consists in projecting the message (i.e., the shared key) in a lattice and
adding an error, which is derived from a secret coin.

Interestingly, to reach IND-CCA2 security, the receiver needs to perform a Fujisaki-
Okamoto transform [FO99], that includes a re-encrypt operation. This means that a
side-channel attack targeting the encryption function to recover the shared key can either
target the sender or the receiver device.

Encryption function. Pseudocode of the encryption algorithm used in Kyber is depicted
in Algorithm 2. This algorithm takes as input a secret message (i.e., the shared key to
be recovered by the attacker). As one can see, a 32-bytes secret random coin r is derived
thanks to a Pseudo Random Function (PRF) in order to generate a secret vector r̂ and
error vectors e1 and e2. We stress that, with the knowledge of the ciphertext c (which
can be intercepted by the adversary), the public key pk and the secret random coin r, an
attacker is able to recover the message m (see Appendix A for a proof of this statement).

Attacking the PRF. The derivation in Kyber uses SHAKE-256 as a PRF. As seen
in Table 1, SHAKE-256 is based on Keccak[r=1088, c=512]. Namely, in Algorithm 2, r is
manipulated with PRF (r,N), for N ∈ {0, ..., 2k}, with PRF (k,N) = SHAKE-256(r||N).
As r is a 256-bit variable and N is known at each step, it is possible to mount an attack
targeting the Ntot = 2k + 1 calls to SHAKE-256 (see Table 3 in Appendix A). Note that
the higher Ntot, the higher is Kyber’s security level.

We create a joint factor graph that represents intermediate variables of all Ntot SHAKE-
256 calls. The factor graph has bit-level variables that represent the 256-bit secret coin r.
This structure allows to aggregate the results originating from a template attack performed
on each SHAKE-256 call.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.6

0.8

1.0

Re
co

ve
ry

 ra
tio

Baseline (Ntot = 1)
Baseline (Ntot = 5)
Baseline (Ntot = 7)
Baseline (Ntot = 9)
SHAKE-256 (Ntot = 1)
SHAKE-256 (Ntot = 5)
SHAKE-256 (Ntot = 7)
SHAKE-256 (Ntot = 9)

Figure 13: Average recovery ratio over 50 runs with increasing noise on Kyber’s encryption
attack considering multiple SHAKE-256 calls.

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 19

Algorithm 2: Kyber encryption function [ABD+19].
Input: Public key pk ∈ B12·k·n/8+32

Input: Message m ∈ B32

Input: Random coin r ∈ B32

Result: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1 N ← 0
2 t̂← decode12(pk)
3 Â← generate_public_matrix(pk)
4 for i from 0 to k − 1 do
5 r[i]← CBDη1(PRF (r,N))
6 N ← N + 1
7 for i from 0 to k − 1 do
8 e1[i]← CBDη2(PRF (r,N))
9 N ← N + 1

10 e2 ← CBDη2(PRF (r,N))
11 r̂ = NTT (r)
12 u = NTT−1(ÂT ◦ r̂) + e1

13 v = NTT−1(t̂T ◦ r̂) + e2 + decompressq(decode1(m), 1)
14 c1 = encodedu(compressq(u, du))
15 c2 = encodedv (compressq(v, dv))
16 return c = (c1||c2)

Simulation results. Attack results with increasing level of noise are illustrated in Figure 13.
First, one can observe that the noise level supported by the attack of a single SHAKE-256
call is superior to what is depicted in Figure 8. Indeed, even if SHAKE-256 is based on
Keccak[r=1088, c=512], the secret coin r is concatenated to a known value N and then
padded with the Keccak standard padding scheme, denoted 10∗1, to fill the rate part of the
input of Keccak-f. This leads to 1344 known bits and #S = 256 unknown bits within the
latter input. The size of the manipulated secret being smaller than all previously analysed
Keccak instances, the higher accuracy observed for the SHAKE-256 (Ntot = 1) instance
follows the conclusions brought in Section 6.

Most importantly, analogously to the results presented in Section 8, considering several
calls to SHAKE-256 sharing the same secret allows to drastically increase the level of noise
supported by the attack, folliwing the evolution of Ntot.

10 Countermeasures
In this section we present several countermeasures suggestions to cope with the attacks
presented in this paper.

Protocol. In Section 8 and Section 9, we show that multiple derivations of a same secret
going through a hash function raise a vulnerability. Moreover, in the special case of Kyber,
we see that increasing the security level directly enhances the potential for an attacker to
mount attacks that support a higher level of noise. Consequently, possible countermeasure
paths could be headed towards implementing derivations from a secret that are harder to
exploit from an attacker’s perspective. Finally, as seen in Subsection 6.2, placing SHA-256
HMAC’s secret key at the end of the input buffer makes harder its recovery with SASCA.

20 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

Masking. All attacks presented in this paper rely on the ability for an attacker to
craft a template attack on several intermediate variables within the targeted hashing
functions. Appropriate masked implementations of Keccak have already been presented
in the literature [GSM17,ABP+18]. Moreover, hardware implementations of the SHA-2
HMAC scheme with a masked compression function have been proposed [HWZ18]. We
showed that the first rounds of SHA-256 compression function must be protected in priority
because secret data is mixed with known data. An adaptive masking (e.g., masking only
the n first compression rounds) could be considered to thwart our proposed attack with
limited impact.

Shuffling. Randomizing the processing order of compression intermediate variables in
SHA-256, or shuffling Keccak-f inputs represents a promising countermeasure. Nevertheless,
there exist data dependencies (e.g., for SHA-256 message expansion) that limit the capacity
to shuffle the operations.

Hiding. All attacks presented in this paper are valid until a certain level of noise. Artificial
extra noise and jitter can be foreseen as a countermeasure for the attacks we propose here.
Hence, classical measures that tend to limit the power consumption variations or that
insert dummy cycles during the sensitive code execution can be beneficial. Indeed, these
measures would complicate the template construction phase of the attack, and thus lower
the SASCA accuracy.

11 Conclusion and Further Work

Table 2: Supported noise levels where the average recovery ratio is over 0.9

.

Scenario #S σ
SHA-256 (Default IV) 512 0.95
SHA-256 (Unknown IV) 768 0.85
Keccak[r=1600, c=0] 1600 0.55

Keccak[r=1344, c=256] 1344 0.60
Keccak[r=1152, c=448] 1152 0.65
Keccak[r=1088, c=512] 1088 0.65
Keccak[r=832, c=768] 832 0.70
Keccak[r=576, c=1024] 576 0.80
SHA-256 (ARM priors) 512 1.0
SHA-256 (RISCV priors) 512 1.0

SHA-256 (HMAC) 128 1.1
SHA-256 (HMAC double graph) 128 1.4

Kyber’s encrypt SHAKE-256 (Ntot = 1) 256 1.1
Kyber’s encrypt SHAKE-256 (Ntot = 5) 256 2.2
Kyber’s encrypt SHAKE-256 (Ntot = 7) 256 2.55
Kyber’s encrypt SHAKE-256 (Ntot = 9) 256 2.95

In this paper, we investigated the security of SHA-256 and SHA-3 hashing functions
against soft analytical side-channel attacks that aim at retrieving a secret input under
a bit-level leakage model. In particular, we showed that SHA-3 is more resistant to
SASCA than SHA-256. This is partially due to the compressive structure of SHA-256
that generates a bias during the first compression rounds by mixing known and unknown
data. Such bias allows SASCA to recover more efficiently the first 32-bit words of the
input. Then, through a boot image integrity check use-case, we experimentally showed

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 21

that the underlying structure of hashed inputs (assembly instructions in this example) can
be exploited in order to enhance SASCA accuracy. Next, we mounted new attacks that
exploit multiple calls to a hashing function that process data derived from the same secret.
This approach was evaluated on SHA-256 based HMAC and Kyber’s encryption function,
that is based on SHAKE-256. This type of construction leads to additional vulnerabilities
when considering an attacker with SASCA potential. In Table 2, we summarize the
maximum noise levels that lead to 90% input recovery ratio through SASCA for all attacks
presented in this paper. Particularly, it shows that attacks based on multiple hash function
invocations really push forward the acceptable noise level from an attacker’s perspective.
In cases where side-channel attacks represent a threat, such vulnerability must be taken
into account when designing new schemes that use hashing function to manipulate secret
data, particularly by examining appropriate countermeasures. For instance, post-quantum
schemes such as SPHINCS, that are mostly based on hash functions, should be scrutinized
in this regard.

In this paper, we deliberately eluded the practical difficulties of performing a template
attack on hashing functions. Hence, future works could investigate such practical aspects,
and the impact of considering within SASCA likelihoods coming from models that profile
variables with different leakage models. This could lead to the application of advanced
profiling, for example based on deep neural networks, allowing to investigate the interface
between machine learning and probabilistic graphical models within a SASCA framework.

References
[AA+14] Alia Arshad, Arshad Aziz, et al. Compact implementation of SHA3-512 on

FPGA. In 2014 Conference on Information Assurance and Cyber Security
(CIACS), pages 29–33. IEEE, 2014.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber algorithm specifications and supporting documentation.
NIST PQC Round, 2(4):1–43, 2019.

[ABP+18] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and Vincent
Rijmen. Rhythmic Keccak: SCA security and low latency in HW. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 269–
290, 2018.

[BBD+13] Sonia Belaïd, Luk Bettale, Emmanuelle Dottax, Laurie Genelle, and Franck
Rondepierre. Differential power analysis of HMAC SHA-2 in the Hamming
weight model. In 2013 International Conference on Security and Cryptography
(SECRYPT), pages 1–12, July 2013.

[BDT+21] Yaacov Belenky, Ira Dushar, Valery Teper, Hennadii Chernyshchyk, Leonid
Azriel, and Yury Kreimer. First full-fledged side channel attack on HMAC-
SHA-2. In International Workshop on Constructive Side-Channel Analysis
and Secure Design, pages 31–52. Springer, 2021.

[CDSU23] Gaëtan Cassiers, Henri Devillez, François-Xavier Standaert, and Balazs Ud-
varhelyi. Efficient Regression-Based Linear Discriminant Analysis for Side-
Channel Security Evaluations: Towards Analytical Attacks against 32-bit
Implementations. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, pages 270–293, 2023.

[CKSV06] Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa, and Stamatis Vassiliadis.
Improving SHA-2 hardware implementations. In Cryptographic Hardware

22 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

and Embedded Systems-CHES 2006: 8th International Workshop, Yokohama,
Japan, October 10-13, 2006. Proceedings 8, pages 298–310. Springer, 2006.

[CL20] Yimeng Chen and Shuguo Li. A high-throughput hardware implementation
of SHA-256 algorithm. In 2020 IEEE international symposium on circuits
and systems (ISCAS), pages 1–4. IEEE, 2020.

[Dwo15] Morris J Dworkin. SHA-3 standard: Permutation-based hash and extendable-
output functions. 2015.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual international cryptology conference,
pages 537–554. Springer, 1999.

[Gro19] Vincent Grosso. Scalable key rank estimation (and key enumeration) algorithm
for large keys. In Smart Card Research and Advanced Applications: 17th
International Conference, CARDIS 2018, Montpellier, France, November
12–14, 2018, Revised Selected Papers 17, pages 80–94. Springer, 2019.

[GS15] Vincent Grosso and François-Xavier Standaert. ASCA, SASCA and DPA
with enumeration: which one beats the other and when? In Advances in
Cryptology–ASIACRYPT 2015: 21st International Conference on the Theory
and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29–December 3, 2015, Proceedings, Part II 21, pages
291–312. Springer, 2015.

[GSM17] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-order side-
channel protected implementations of keccak. In 2017 Euromicro Conference
on Digital System Design (DSD), pages 205–212. IEEE, 2017.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked cca2 secure kyber.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
88–113, 2021.

[HSST23] Julius Hermelink, Silvan Streit, Emanuele Strieder, and Katharina Thieme.
Adapting belief propagation to counter shuffling of NTTs. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 60–88, 2023.

[HWZ18] Zhenhao He, Liji Wu, and Xiangmin Zhang. High-speed pipeline design for
hmac of sha-256 with masking scheme. In 2018 12th IEEE International
Conference on Anti-counterfeiting, Security, and Identification (ASID), pages
174–178. IEEE, 2018.

[KFL01] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs
and the sum-product algorithm. IEEE Transactions on information theory,
47(2):498–519, 2001.

[KGB+18] Matthias J Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer, and
Johannes Buchmann. Differential power analysis of XMSS and SPHINCS.
In Constructive Side-Channel Analysis and Secure Design: 9th International
Workshop, COSADE 2018, Singapore, April 23–24, 2018, Proceedings 9, pages
168–188. Springer, 2018.

[KPP20] Matthias J Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on keccak. Cryptology ePrint Archive, 2020.

Julien Maillard1,2, Thomas Hiscock1, Maxime Lecomte1 and Christophe Clavier2 23

[MDA17] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques for trail
bounds and application to differential trails in Keccak. IACR Transactions
on Symmetric Cryptology, pages 329–357, March 2017.

[MIV15] Harris E Michail, Lenos Ioannou, and Artemios G Voyiatzis. Pipelined
SHA-3 implementations on FPGA: Architecture and performance analysis.
In Proceedings of the Second Workshop on Cryptography and Security in
Computing Systems, pages 13–18, 2015.

[MTMM07] Robert McEvoy, Michael Tunstall, Colin C Murphy, and William P Marnane.
Differential power analysis of HMAC based on SHA-2, and countermeasures.
In Information Security Applications: 8th International Workshop, WISA
2007, Jeju Island, Korea, August 27-29, 2007, Revised Selected Papers 8,
pages 317–332. Springer, 2007.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Progress in Cryptology–LATINCRYPT 2019:
6th International Conference on Cryptology and Information Security in Latin
America, Santiago de Chile, Chile, October 2–4, 2019, Proceedings 6, pages
130–149. Springer, 2019.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Cryptographic Hardware
and Embedded Systems–CHES 2017: 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 513–533. Springer, 2017.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso. Simple
key enumeration (and rank estimation) using histograms: An integrated
approach. In Cryptographic Hardware and Embedded Systems–CHES 2016:
18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings 18, pages 61–81. Springer, 2016.

[SC17] Magnus Sundal and Ricardo Chaves. Efficient FPGA implementation of the
SHA-3 hash function. In 2017 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 86–91. IEEE, 2017.

[VCGRS13] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In Selected Areas in Cryptography: 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised
Selected Papers 19, pages 390–406. Springer, 2013.

[VCGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Advances in Cryptology–ASIACRYPT 2014:
20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014.
Proceedings, Part I 20, pages 282–296. Springer, 2014.

[YK21] Shih-Chun You and Markus G Kuhn. Single-trace fragment template attack
on a 32-bit implementation of keccak. In International Conference on Smart
Card Research and Advanced Applications, pages 3–23. Springer, 2021.

24 A Study of Soft Analytical Side-Channel Attacks on Secure Hash Algorithms

A Kyber encrypt attack soundness
By looking backwards at Algorithm 2, we see that c2 can be recovered from c, which is a
simple concatenation of c1 and c2. Then, an attacker can compute v′ as follows:

v′ = decompressq(decodedv
(c2), dv) (7)

We know from Kyber’s specification that the loss of information induced by this
computation is:

δerr = |v − v′mod±q| ≤
⌈

q

2dv+1

⌋
(8)

with dxc being the rounding operation. The value of δerr corresponding to each security
level of Kyber is depicted in Table 3.

By setting mdec = decompressq(decode1(m), 1), from Algorithm 2 we have:

v = NTT−1(t̂T ◦ r̂) + e2 +mdec (9)

By making the hypothesis that an attacker is able to recover r, they can then obtain
NTT−1(t̂T ◦ r̂) + e2. Then, the attacker can compute the following:

m′dec = v′ −
(
NTT−1(t̂T ◦ r̂) + e2

)
(10)

This operation guarantees that |mdec −m′decmod±q| = δerr. Then we have:

compressq(m′dec, 1) =
⌈

2
q
·mdec

⌋
mod+2 (11)

For all Kyber security levels, the relation δerr <
q
4 is guaranteed. This allows the

attacker to compute the shared key m with:

m = encode1(compressq(m′dec, 1)) (12)

Table 3: Kyber parameters values.
Version q k Ntot dv δerr
Kyber512 3329 2 5 4 104
Kyber768 3329 3 7 4 104
Kyber1024 3329 4 9 5 52

