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Abstract. Recently, researchers have proposed many LWE estimators,
such as lattice-estimator (Albrecht et al, Asiacrypt 2017) and leaky-
LWE-Estimator (Dachman-Soled et al, Crypto 2020), while the latter
has already been used in estimating the security level of Kyber and
Dilithium using only BKZ. However, we prove in this paper that solving
LWE by combining a lattice reduction step (by LLL or BKZ) and a
target vector searching step (by enumeration or sieving), which we call
a Two-step mode, is more efficient than using only BKZ.
Moreover, we give a refined LWE estimator in Two-step mode by ana-
lyzing the relationship between the probability distribution of the target
vector and the solving success rate in a Two-step mode LWE solving
algorithm. While the latest Two-step estimator for LWE, which is the
“primal-bdd” mode in lattice-estimator1, does not take into account
some up-to-date results and lacks a thorough theoretical analysis. Un-
der the same gate-count model, our estimation for NIST PQC standards
drops by 2.1∼3.4 bits (2.2∼4.6 bits while considering more flexible block-
size and jump strategy) compared with leaky-LWE-Estimator.
Furthermore, we also give a conservative estimation for LWE from the
Two-step solving algorithm. Compared with the Core-SVP model, which
is used in previous conservative estimations, our estimation relies on
weaker assumptions and outputs higher evaluation results than the Core-
SVP model. For NIST PQC standards, our conservative estimation is
4.17∼8.11 bits higher than the Core-SVP estimation. Hence our estima-
tor can give a closer estimation for both upper bound and lower bound
of LWE hardness.
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1 Introduction

As an important branch in post-quantum cryptography, lattice-based cryptog-
raphy has shown its potential in several cryptographic primitives, such as key
establishment [1], digital signature [2, 3], hash function [4] and other more ad-
vanced cryptography constructions like identity-based encryption [5], attribute-
based encryption [6], functional encryption [7], and homomorphic encryption [8].

One of the advantages of lattice-based cryptography is that the security of
lattice-based cryptography schemes is guaranteed by the hardness of lattice prob-
lems with worst-case to average-case reduction, such as the Learning with Errors
problem (LWE). It has been proved that solving the LWE problem is at least
as hard as some worst-case lattice problem like the Shortest Independent Vector
problem (SIVP) or the Bound Distance Decoding (BDD) problem. In the post-
quantum standardization process held by the National Institute of Standards
and technique (NIST), many lattice-based cryptographic schemes (e.g. [1–3])
are selected as standards to resist the threat of quantum computer. One of the
most important problems in standardization is the parameter selection. To se-
lect more compact but still safe security parameters for lattice-based schemes,
it is necessary to give a concrete hardness estimation for lattice-based problems.
In this paper, we focus on LWE, which is the most widely used lattice-based
problem.

There are various methods for solving LWE, such as BDD attack [9], Arora–Ge
attack [10], BKW attack [11], primal attack [12,13], dual attack [14] and hybrid
attacks [15] based on lattice reduction algorithm. Among them, the primal at-
tack [12, 13] is most practical in breaking actual LWE-based schemes, and the
concrete hardness of LWE is often estimated by calculating the cost of the primal
attack. A primal attack translates LWE to a unique Shortest Vector Problem
(uSVP) by constructing a special lattice basis with Kannan’s embedding tech-
nique [16].

In particular, a long series of works, e.g. [12, 13, 17–20] have proposed the
evaluation of the hardness of LWE under the primal attack. In 2015, the work
of Albrecht et al. [17] gives concrete estimations for various families of LWE
instances. Later, a simple yet conservative estimation method was given by [12]
named the Core-SVP model. It proposed a success condition in solving LWE by
BKZ with fixed blocksize β and estimated its cost as a single call to the SVP
oracle, which is a lattice sieve with dimension β. Since the Core-SVP model
ignores both the number of calls to the SVP oracle in one BKZ tour and the
number of BKZ tours, the evaluation result by the Core-SVP model is often
considered to be conservative enough. In 2017, Albrecht et al. [18] verified the
attack success condition proposed in [12] by experiments.

However, the experiment results shown in [18] and [21] both illustrate that
when the blocksize of BKZ is smaller than the estimation given in [12], it still
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has a non-negligible probability in solving the LWE instance. This phenomenon
is mainly caused by the randomness of the target vector which actually fol-
lows the discrete Gaussian distribution rather than a fixed expected value. To
solve this problem, Dachman-Soled et al. [20] proposed the first estimator which
describes the relationship between the probability of successfully solving LWE
and the blocksize β of BKZ used in solving LWE, which is called “leaky-LWE-
Estimator”. According to the experiment results of [22], the estimator proposed
in [20] and their simplified version [22] can well predict the behavior of BKZ
solving LWE with smaller blocksize β. In fact, the leaky-LWE-Estimator has
been used for estimating the concrete security strength of the lattice-based post-
quantum cryptography (PQC) standardization [1, 2] selected by NIST [23] in
2022.

Specifically, the leaky-LWE-Estimator first uses the technique in [20] to cal-
culate the expected value of BKZ blocksize of solving LWE and calculate the
total number of logic circuit gates needed to solve LWE by calling the gate-count
algorithm proposed in [24]. It is noticeable that the leaky-LWE-Estimator also
considers the influence of dimension-for-free (d4f) technique [25], which leads to
a decrease in the estimation result. Moreover, it is worth pointing out that the
Core-SVP model did not consider the influence brought by d4f, which threatens
the conservativeness of the Core-SVP model.

However, the main problem in the leaky-LWE-Estimator and Core-SVP model
is that they only use the BKZ algorithm as the underlying LWE solver, instead
of combining BKZ reduction with a final search step (we call it a Two-step mode
for solving LWE). In this work, we prove that the Two-step LWE-solving strat-
egy is more efficient than the underlying LWE solver in earlier LWE estimators
(such as leaky-LWE-Estimator [20]) which only uses BKZ, thus the BKZ-only
estimators may output an over-optimistic estimation.

A Two-step LWE-solving strategy is divided into a lattice reduction step (by
LLL or BKZ) and a target vector searching step (by enumeration or sieving).
Although the Two-step mode is often considered a folklore approach to solving
LWE, only few works bring it into practice. The first Two-step LWE-solving
attack was proposed in [9], where they reduce LWE into a BDD problem, and call
an enumeration for finding the closest vector in the last searching step. In [26],
the authors show that an additional post-processing step using enumeration can
increase the success rate in solving γ-SVP with γ = 1.05, but it is not known
whether the post-processing step has same acceleration when applied to LWE.
For solving LWE with sieving instead of enumeration, the G6K framework [27]
presented a solving algorithm that is also a combination of BKZ and conditional
sieving. However, it is different from the Two-step strategy in previous works,
and its efficiency has not been theoretically analyzed.

In the context of LWE estimation, Albrecht et al use the “primal_bdd” func-
tion in lattice-estimator [28] to estimate the hardness of LWE through a primal
attack using one BKZ reduction and a sieve in the searching step. However,
in estimating the dimension of the last sieving, “primal_bdd” estimation only
considers the expected norm of the target vector rather than analyzing the rela-
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tionship between the probability distribution of the target vector and the solving
success rate of Two-step mode. So it is necessary to give a more refined Two-step
LWE estimator that considers the success probability of the last sieve algorithm
and provides extensive experimental evidence of its accuracy. Besides, the Two-
step attack proposed in [29] can also improve the efficiency of the Two-step
attack in “primal_bdd” by applying the improved progressive BKZ reduction
and allowing PnjBKZ with jump value > 1.

Furthermore, there is an open question proposed in Section 5.3 (Q7) of Ky-
ber’s document that a security estimation error interval exists in NIST lattice-
based standardization. This security estimation error interval is caused by using
different reduction strategies to evaluate the security. Particularly, the reduction
strategy considered by leaky-LWE-Estimator [20] is a trivial progressive BKZ,
and in [12, 17–19] they consider a fixed blocksize BKZ algorithm to solve LWE.
The paper [30] mentioned that a large dimension of sieve in the final process
costs less than a BKZ. The trivial reduction strategies above can be further im-
proved by a more efficient reduction strategy like the optimized blocksize and
jump selection strategy proposed in [29] which has already shown its efficiency
in solving LWE instances 2. To ensure the security and narrow the security esti-
mation error interval of lattice-based NIST standard schemes, it is necessary to
evaluate the impact of the combination of the Two-step solving strategy and the
optimized blocksize and jump selection strategy on the security of NIST selected
lattice-based schemes.

Contributions. In this paper, we improve the estimation of LWE hardness
from the following aspects:

- We formally prove that the Two-step mode is more efficient in solving uSVP
than the BKZ-only mode under Geometric Series Assumption, and extend the
result to solving LWE which considers the distribution of LWE error term.

- We construct an LWE hardness estimator which underlying LWE solver is
the Two-step LWE solving algorithm, and we calculate the success probability
for solving LWE at each step. In the reduction phase, we give a heuristic as-
sumption that each BKZ tour totally randomizes the lattice basis, which is also
implicitly implied by the leaky-LWE-estimator [20], so that the success proba-
bility of different BKZ tours can be considered independent. In the searching
phase, however, the success probability is accumulated after each step. By cal-
culation of the success rate, we show that the expected cost for solving LWE by
Two-step mode is much lower than by BKZ-only mode as in [20].

- To verify the accuracy of our estimation, we did extensive experiments
of solving LWE by different sieving dimensions in the searching phase. The
results of these experiments are consistent with our estimation, which means
the expected time cost of solving LWE by our estimator is accurate. Moreover,
we re-evaluate the security bit of NIST PQC schemes by our Two-step LWE
2 See latest TU Darmstadt LWE challenge records (n, α) ∈ {(40, 0.035), (90, 0.005),
(50, 0.025), (55, 0.020), (40, 0.040)} in https://www.latticechallenge.org/lwe_
challenge/challenge.php.

https://www.latticechallenge.org/lwe_challenge/challenge.php
https://www.latticechallenge.org/lwe_challenge/challenge.php
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hardness estimator. When using the same trivial reduction strategy in leaky-
LWE-Estimator [20], the security bit drops by 2.1∼3.4 bits. Besides, when using
the optimized blocksize and jump selection strategy proposed in paper [29], the
security bit drops by 2.2∼4.6 bits.

- We also give a more accurate lower bound estimation which is a conserva-
tive Two-step solving mode estimation for LWE. Compared with the commonly
used Core-SVP model, our conservative estimation relies on weaker assump-
tions. Meantime, our conservative estimation has higher estimation results than
the Core-SVP model (while d4f not considered). For NIST PQC standards, our
conservative estimation is 4.17∼8.11 bits higher than the Core-SVP estimation.
Therefore, we give more accurate estimations on both the upper bound and lower
bound of the hardness of LWE.

All detailed codes of our Two-step LWE Estimator with different reduction
strategies are already open-sourced3.

Organization In Section 2 we give the preliminaries, notations, and the basic
knowledge of lattice problems. In Section 3 we prove that the Two-step solving
mode is more efficient in solving uSVP than the BKZ-only mode. In Section 4
we construct a refined Two-step security estimator for solving LWE. The experi-
ments results in Section 5 verify the accuracy of our Two-step security estimator
and the efficiency of the Two-step solving mode. In Section 6 we give a con-
servative estimation for LWE from a Two-step solving algorithm. Based on our
Two-step security estimator and lower bound estimation estimator we give more
accurate both upper bound and lower bound estimation of LWE in NIST PQC
schemes in Section 7.

2 Preliminaries

2.1 Notations and Basic Definitions

In this paper, all vectors are denoted by bold lowercase letters and are to be
read as column vectors. We write a matrix B as B = (b0, · · · ,bd−1) where
bi is the (i + 1)-th column vector of B. The Euclidean norm of a vector v is
denoted by ‖v‖. A lattice L generated by the basis B is denoted by L(B) =
{Bx|x ∈ Zd}. Here lattice basis matrix B ∈ Rd×d needs to be full rank d. We
denote B∗ = (b∗

0, · · · ,b∗
d−1) as the Gram-Schmidt orthogonalization of B, in

which b∗
i = bi −

∑i−1
j=0 µi,jb

∗
j , µi,j = 〈bi,b

∗
j 〉/‖b∗

j‖2. We denote the orthogonal
projection to the span of (b0, · · · ,bi−1) by πi, for i ∈ {0, · · · , d − 1}, i.e. ∀v,
πi(v) = v−

∑i−1
j=0 ωjb

∗
j , in which ωj = 〈v,b∗

j 〉/‖b∗
j‖2. For i, j ∈ Zd and 0 ≤ i <

j ≤ d−1, given an arbitrary d-dimensional vector v = (v0, · · · , vd−1), define v[i:j]

as (vi, · · · , vj−1) with size j− i. For a lattice basis B, let B[i:j] ← (bi, · · · ,bj−1).
Moreover, we denote Bπ[i:j] as the local projected block (πi(bi), · · · , πi(bj−1)),
3 Batch “refined-lwe-estimator” in https://github.com/Summwer/lwe-estimator-

with-pnjbkz.git

https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
https://github.com/Summwer/lwe-estimator-with-pnjbkz.git
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and call Lπ[i:j] the lattice generated by Bπ[i:j]. We use Bπ[i] and Lπ[i] as short-
hands for Bπ[i:d] and Lπ[i:d]. An important invariant value of the lattice L(B)

is its volume Vol(L(B)) =
∏d−1

i=0 ‖b∗
i ‖. The length of the shortest non-zero vec-

tor of a lattice L(B) can be denoted by λ1(L(B)). We use the abbreviations
Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

Notations for algorithms description. Let BKZ-β/PnjBKZ-(β, J) be an
abbreviation of a one-tour BKZ/PnjBKZ with blocksize β and jump value J ,
and J is omitted when J = 1. Assume B = (b0, · · · ,bd−1), its Gram-Schmidt
basis is B∗ = (b∗

0, · · · ,b∗
d−1). Let rr(B) = (‖b∗

0‖, · · · , ‖b∗
d−1‖), abbreviate to rr.

rr[i:j] = (‖b∗
i−1‖, · · · , ‖b∗

j−1‖). Let rr[i] be the (i+ 1)-th element of rr.
Denote BKZSim as the BKZ simulator proposed in [31]. The simulation for

PnjBKZ is denoted as PnjBKZSim(rr(B), β, J, t) which simulates a PnjBKZ-(β, J)
with t tours on lattice L(B) and return the new lengths, where the PnjBKZ
simulator was proposed in [29]. Moreover, if we have a blocksize and jump
strategy S that stores a series of (βi, Ji), then PnjBKZSim(rr,S) means it-
eratively calling a tour of PnjBKZ-(βi, Ji) simulator on rr, where (βi, Ji) ∈
S. Let BKZ-β reduced basis be the lattice basis after calling sufficient tours
of BKZ-β. For simplification, we use β to imply the quality of a BKZ-β re-
duced basis. Let ]tours(BKZ-β)/]tours(PnjBKZ-(β, J)) be the minimum tours
for BKZ-β/PnjBKZ-(β, J) to reach a BKZ-β/PnjBKZ-(β, J) reduced basis, ab-
breviated as ]tours. Denote t as the number of tours for implementing BKZ/Pn-
jBKZ with a fixed blocksize (and jump) β/(β, J).

Let TBKZ(β)/TpnjBKZ(β, J) be the time cost of one BKZ/PnjBKZ tour with
blocksize β and jump value J . For a specific blocksize and jump strategy S =
[(β0, J0), · · · , (βn−1, Jn−1)], we let TBKZs(S)/TpnjBKZs(S) be total time cost for a
series of BKZ/PnjBKZ reduction with strategy S, abbreviate it as TBKZs/TpnjBKZs.

In the searching step, we will consider a high dimension sieve and we denote
Tsieve(dsvp) as the time cost of sieve dimension dsvp, abbreviate it as Tsieve. Let
PSC be the expected sieve cost to find the target vector.

Definition 1. (The Gaussian Distribution [22]) Let σ, u ∈ R be the standard de-
viation and the mean value respectively, a continuous Gaussian Distribution de-
noted as N(u, σ2). Its probabilistic density function ρN(u,σ2) = e−

(x−u)2

2σ2
/
σ
√
2π.

Definition 2. (Chi-Squared Distribution [22]) Given n random variables Xi ∼
N(0, 1), the random variables X2

0 + · · · + X2
n−1 follows a chi-squared distribu-

tion χ2
n over R∗ of mean n and variance 2n with probabilistic density function

ρχ2
n
(x) = x

n
2 −1e−

x
2 /2

n
2 Γ (n/2). Given n random variables Yi ∼ N(0, σ2), the

random variables Y 2
0 + · · ·+Y 2

n−1 follows a scaled chi-squared distribution σ2 ·χ2
n

over R∗ of mean nσ2 and variance 2nσ2.

Heuristic 1 (Gaussian Heuristic [25]) The expected first minimum of a lattice L
(denoted as λ1(L(B))) according to the Gaussian Heuristic denoted by GH(L) is
given by λ1(L(B)) ≈ GH(L) =

(
Γ (d2 + 1) ·Vol(L)

) 1
d
/√

π ≈
√
d/(2πe) ·Vol(L) 1

d

We also write GH(B) = GH(L(B)) and GH(rr[i:j]) = GH(Bπ[i:j]).
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Definition 3. (HKZ reduction and BKZ reduction [25]) The basis B of a lattice
L is HKZ reduced if b∗

i = λ1(L(Bπ[i:d])), for all i < d. L is BKZ-β reduced if
b∗
i = λ1(L(Bπ[i:min{i+β,d}])), for all i < d.

Definition 4. (Root Hermite Factor [32]) For a basis B of d-dimensional lattice,
the root Hermite factor is defined as δ =

(
‖b0‖/Vol(B)1/d

)1/d
, for estimating

the equality of the output vector of BKZ. For larger blocksize, it follows the
asymptotic formula δ(β)2(β−1) = β

2πe (βπ)
1/β .

Heuristic 2 (Geometric Series Assumption (GSA) [27]) Let B be a lattice basis
after lattice reduction, then Geometric Series Assumption states that ‖b∗

i ‖ ≈
α · ‖b∗

i−1‖, 0 < α < 1. Combine the GSA with root-Hermite factor (Definition
4) and V ol(L(B)) =

∏d−1
i=0 ‖b∗

i ‖, it infers that α = δ−
2d

d−1 ≈ δ−2.

2.2 Lattice Hard Problems

Definition 5. (unique Shortest Vector Problem(uSVPγ) [33]) Given an arbi-
trary basis B on lattice L = L(B), L satisfies the condition γλ1(B) < λ2(B)
(γ > 1, λ2(B) is norm of the second shortest vector which is linearly independent
to the shortest vector), find the shortest non-zero vector v s.t. ‖v‖ = λ1(B).

Definition 6. (LWEm,n,q,Dσ
Distribution [34–36]) Given some samples m ∈ Z,

a secret vector length n ∈ Z, a modulo q ∈ Z , a probability distribution Dσ.
Uniformly sample a matrix A ∈ Zm×n

q and sample a secret vector s ∈ Zn
q from a

specific distribution, randomly sample a relatively small noise vector e ∈ Zm
q from

Gaussian distribution Dσ whose standard deviation is σ. The LWE distribution
Ψ is constructed by the pair (A,b = As+ e) ∈ (Zm×n

q ,Zm
q ) sampled as above.

Definition 7. (Search LWEm,n,q,Dσ
problem [34–36]) Given a pair (A,b) sam-

pled from LWE distribution Ψ compute the pair (s, e).

2.3 Primal Attack

Albrecht et al [37] firstly presented the primal attack for the LWE problem, which
reduced Standard Form LWE problem to an uSVPγ by Kannan’s embedding
technique [16]. (A,b) are LWE instances and the form of the embedding lattice

basis is as BA′,b =

(
A′ b
0T 1

)
,A′ = P−1

(
qIm−n Ā
O In

)
, here P ∈ Zm×m is a

permutation matrix such that P·A =
(
ĀT , In

)T . Then there is a unusually short
lattice vector v=(e,1) in this embedding lattice BA′,b whose norm ‖v‖ ≈ σ

√
m

is shorter than λ2(L). Thus LWE is reduced to a uSVP on the embedding lattice.

2.4 Core-SVP model [12]

Core-SVP model [12] only considers using the BKZ algorithm with a fixed block-
size β to perform Primal Attack and evaluate the time cost. [12] and [18] give
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a success condition of such attack: For the minimal blocksize β in the BKZ
algorithm (or its variant) to ensure that the following inequality is satisfied
‖v‖

√
β/d ≤ δ2β−dVol(L(B))1/d, the unique shortest vector v will be found by

BKZ in time T (β) which is an exponential function of β. This success con-
dition based on GSA (Heuristic 2) is a brief justification for the estimation
given in [12]. Here δ is the root of the Hermit factor of lattice basis. [38]
gives the following relation between the blocksize and the root Hermite factor
δ(β) ≈

(
((πβ)1/ββ)/(2πe)

)1/(2(β−1)).
Core-SVP model considers neither the number of calls to β-dimension SVP

Oracle during one tour of the BKZ algorithm with blocksize β, nor the number
of BKZ tours needed to satisfy the success condition. Therefore, the Core-SVP
model [12] is considered a conservative LWE security evaluation model. The
accurate upper bound number of BKZ tours needed to reach BKZ-β reduced
basis is still unknown [39], but [31] suggests that a polynomial number of BKZ-β
tours seems sufficient to obtain a lattice basis with Hermite factor near δ(β).
When the SVP Oracle used by the BKZ algorithm is BDGL sieving [40], the
time cost of solving LWE under Core-SVP model is T (β) ≈ O(20.292β).

2.5 PnjBKZ

PnjBKZ is a BKZ-type reduction algorithm that uses Pump as its SVP oracle.
Unlike classical BKZ, PnjBKZ performs the SVP oracle with an adjustable jump
no less than 1. Specifically, runing a PnjBKZ with blocksize β and jump=J , after
executing the SVP oracle on a certain block B[i:i+β], the next SVP oracle will be
executed on the B[i+J:i+β+J] block with a jump count J rather than B[i+1:i+β+1].

2.6 Dimension for Free (d4f) Technique

D4f technique [25] can bring sub-exponential time speedup and memory decrease
for sieve algorithms. In this paper, we consider the theoretical d4f estimation
given in [25] as d4f(β) = β ln(4/3)/ ln(β/2πe), which means that solving β-
dimension SVP needs only β − d4f(β) dimensional sieving.

2.7 Leaky-LWE-Estimator

The leaky-LWE-Estimator [20] proposed a probabilistic method in LWE estima-
tion as opposed to the GSA-intersect, which relates the solving probability of
LWE instance to BKZ blocksizes. The estimator was later applied to the NIST
PQC standards such as Kyber and Dilithium along with the estimation in [40],
which gives an accurate estimation for LWE rather than a conservative lower
bound like Core-SVP model [12]. The leaky-LWE-Estimator [20] computes an
expected value β̄ of the blocksize needed to solve an LWE instance by simulating
how the quality of the lattice basis changes during lattice reduction, and esti-
mating the success probability in finding the target vector at each block of the
progressive BKZ. Then it substitutes β̄ into the gate count and memory cost by
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the list decoding estimation in [24] and obtains a cost estimation for LWE with
specific input parameters. Besides, to simplify the calculation process in Leaky-
LWE-Estimator, [22] presented a simpler version that has the same estimation
results as [20].

One main difference between leaky-LWE-Estimator and Core-SVP model is
that leaky-LWE-Estimator uses the BKZ 2.0 simulator [31] denoted as BKZSim
to simulate how the lattice basis changed during the reduction of progressive
BKZ, which can be used to estimate the number of calls to SVP Oracle with
different dimensions and the quality of the lattice basis reduced by a series of
BKZ. Another difference is that the leaky-LWE-Estimator considers the length
of the target vector as a random variable that follows the chi-square distribution
rather than some fixed value. In addition, the leaky-LWE-Estimator uses the gate
count method proposed in [24] instead of computational complexity to estimate
the hardness of LWE. The detail of the leaky-LWE-Estimator is given in Alg. 1.
Here χ2

β in Alg. 1 is the chi-squared distribution with degree β of freedom.

input: d, t;
output: β̄;

1 Function LeakyLWEEstimator(d, t):
2 ptot ← 0, β̄ ← 0
3 rr← GSA profile of an LLL reduced, rank d, LWE instance
4 for β ← 3 to d do
5 rr← BKZSim(rr, β);
6 plift ← Pr[t recovered in bd/βc rounds | πd−β+1(t) recovered this

round]
7 prec ← Pr[x← χ2

β : x ≤ (rr[d− β])2]
8 pnew ← (1− ptot) · prec · plift
9 β̄ ← β̄ + pnew · β

10 if p ≥ 0.999 then
11 break

12 return β̄

Algorithm 1: leaky LWE Estimator proposed in [20]. [22] shows that plift is
always close to 1 and could be deleted in the computation.

After calling Alg. 1 to obtain the expected value of BKZ blocksize β̄ for
solving LWE, leaky-LWE-Estimator will call the Gate-cout algorithm in [24] to
calculate the number of gates (time cost): ppgate(β̄) = C2 · agps20gates(β̄ −
d4f(β̄)) and memory cost: bit(β̄) = 8(β̄−d4f(β̄)) ·agps20vectors(β̄−d4f(β̄))
for solving the LWE respectively. Here the Gate-count algorithm [24] can analyze
the cost of sieving with a classical and quantum circuit and C = 1

1−2−0.292 is a
constant used to simulate the time cost of progressive sieving when BDGL16
sieving [40] is used and progressive BKZ blocksize. More detail about functions
agps20gates(·) can be seen in [41].
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2.8 PnjBKZ Simulator

The first step in the two-step solving mode is using a series of well-chosen BKZ
tours to reduce the lattice basis. Compared with classical BKZ algorithm, the
PnjBKZ algorithm (see Sec. 2.5 and Alg. 3 for more detail) is a more efficient
lattice reduction algorithm which allows more flexible choice of blocks to be
processed in BKZ which uses a sieving algorithm Pump as its SVP oracle.

The PnjBKZ simulator is a polynomial time algorithm to simulate how the
quality of the lattice basis changes during the reduction by using the optimized
reduction strategy of PnjBKZ-(β, J) with J > 1 in [29] without actually running
the time-consuming (exponential time cost according to blocksize) PnjBKZ al-
gorithm. The PnjBKZ simulator uses the Gaussian Heuristic and the property
of HKZ reduction to estimate how the logarithms of the Gram-Schmidt norms
of lattice basis changed after one tour of PnjBKZ-(β, J). For convenience, we
declare the notation of PnjBKZ simulation in Sec. 2.

3 Efficiency of Two-step solving mode

In this section, we will show that the Two-step solving mode is more efficient
in solving uSVPγ compared with the BKZ-only mode. We use Theorem 1 to
illustrate this claim and give the corresponding proof under GSA.

Theorem 1. Assume Gaussian Heuristic (Heuristic 1), GSA(Heuristic 2) and
Heuristic 4 in [29] hold. Let d be the dimension of lattice, d ≥ 100, we assume that
the uSVPγ instance can be solved by BKZ-only mode through a BKZ-β reduced
basis with d+16

9 ≤ β ≤ d
2 , and let the time cost for sieving on d-dimensional

lattice be 2c·d+c0 where c ≤ 0.35. Then there exists a parameter choice for the
Two-step mode which solves the uSVPγ instance in less time than the BKZ-only
mode.

Proof. Let L be the lattice, B be its basis and d be the dimension of L, suppose
the unique shortest vector is v. Without loss of generality, we set Vol(L) =
1, let M = ‖v‖ be the length of its unique shortest vector. Assume all the
orthogonal projections of v onto the k-dimensional projection sub-lattice Lπ[d−k]

have expected norm
√

k
d ·M . Let δ(β) be the root Hermite factor of a BKZ-β

reduced basis. Assuming GSA holds, the length of the basis can be estimated by
(δ(β)d, δ(β)d·

d−3
d−1 , ..., δ(β)−d).

Since the projection πd−β(v) is expected to be the shortest non-zero vector
of Lπ[d−β], i.e. ‖πd−β(v)‖ ≤ λ1(Lπ[d−β]) ≈ GH(Lπ[d−β]), then√

β

2πe
· δ(β)−

d(d−β)
d−1 ≥

√
β

d
·M

Next, suppose that the same instance is solved by a Two-step mode on a
BKZ-β′ reduced basis with a dsvp dimensional sieving, where β′ < β < dsvp.
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Then: √
dsvp
2πe

· δ(β′)−
d(d−dsvp)

d−1 ≥
√

dsvp
2πe

· δ(β)−
d(d−β)
d−1 ≥

√
dsvp
d
·M

We find a condition such that the inequality above holds. Since dsvp > β, we
only need to ensure that δ(β′)−

d(d−dsvp)

d−1 ≥ δ(β)−
d(d−β)
d−1 . Take logarithm on both

sides, and consider that δ(β) = ( β
2πe · (βπ)

1
β )

1
2(β−1) , we need to ensure that:

d− β

d− dsvp
≥

1
2(β′−1) · (log

β′

2πe + 1
β′ log(β

′π))

1
2(β−1) · (log

β
2πe + 1

β log(βπ))

Since 0 < β′ < β, it infers that β′ log β′

2πe + log(β′π) < β log β
2πe + log(βπ)

always holds. We only need to ensure that:

d− β

d− dsvp
≥ β(β − 1)

β′(β′ − 1)

Here we consider a special case where β′ = β − 1, since if the condition
is satisfied under this case, then it is surely satisfied for the optimal choice of
β′, dsvp. We write dgap = dsvp−β. We choose dgap to satisfy the condition above,
which means that:

1 +
dgap

d− β − dgap
≥ 1 +

2

β − 2

Let T be the time to generate a BKZ-(β−1) reduced basis, under the heuristic
assumption that generating a BKZ-β reduced basis requires at least one BKZ-β
tour, the time of BKZ-only mode TBKZ−only ≥ T+TBKZ(β), and the time of Two-
step mode TTwo−step = T + Tsieve(β + dgap), so we only need to show that for a
choice of dgap satisfies the condition above, Tsieve(β+dgap) ≤ (d−β+1)Tsieve(β) ≤
TBKZ(β). Let Tsieve(d) = 2c·d+c0 be the sieve cost model, then we only need to
show that 2c·dgap ≤ d− β + 1.

Now we choose dgap= 2(d−β+1)
β−2 which satisfies the condition. By our assump-

tion, d ≤ 9β− 16, so we have that dgap ≤ 16. For c ≤ 0.35, 2c·dgap ≤ 49, since we
assume that d ≥ 100 and d ≥ 2β, d− β ≥ 50, thus the condition is satisfied. ut

All current LWE estimators only consider the security strength of LWE un-
der the BKZ-only solving mode. However, according to Theorem 1, we know
that a Two-step mode is more efficient in solving uSVPγ and we should analyze
the impact of Two-step mode on the hardness of LWE which can be reduced
to uSVPγ under primal attack. So in the following section, we propose a re-
fined Two-step LWE Estimator to evaluate the concrete hardness of LWE by
considering Two-step solving mode.
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4 A refined Two-step security estimator for solving LWE

In this section, we give the details of our refined Two-step security estimator for
solving LWE. The detail of our Two-step LWE Estimator is shown in Section 4.1.
Then the verification experiments of our Two-step LWE Estimator are shown in
Section 5. In addition, we re-estimate the hardness of LWE instances in NIST
PQC schemes by our Two-step LWE Estimator under a trivial reduction strategy
and an optimized reduction strategy [29] respectively in Section 7.1.

In this section, we build our estimator mainly based on leaky-LWE estimator
[20]. In fact, constructing our Two-step LWE Estimator based on other security
evaluators (such as the LWE-estimator by Albrecht et al. [17]) can also obtain
similar conclusions that the Two-step mode of solving LWE will result in a
decrease of the estimated security bit. More analysis and estimation results can
be seen in Appendix A.

4.1 Two-step LWE Estimator with Trivial Strategy

In this part, we give the detail about our Two-step LWE Estimator(Alg. 2)3.

input : n,m, q, χ, S;
output: GBmin;

1 Function TwoStepLWEEsimator(n,m, q, χ, S):
2 GBmin ← (+∞,+∞); GB← (0, 0); GBpre ← (0, 0); ptot ← 0;
3 rr← expected length of GS-basis of an LLL reduced LWEn,m,q,χ instance;
4 for β ∈ S or (β, J) ∈ S do
5 rr← BKZSim(rr, β); // PnjBKZSim(rr, β, J) if J > 1;

6 P (β) ← Pr

[
x← χ2

β

∣∣∣∣x ≤ (rr[d− β])2
]
;

7 GBcum ← (
∑β

b=β0
pbgate(b− d4f(b)), bit(β − d4f(β)));

8 GBpre ← GBpre + GBcum · (1− ptot) · P (β);
9 ptot ← ptot + (1− ptot) · P (β); GBcsieve ← (0, 0); P (dstart − 1)← 0;

10 for dsvp ← dstart to d do

11 P (dsvp) ← Pr

[
x← χ2

dsvp

∣∣∣∣x ≤ (GH(rr[d−dsvp:d]))
2

]
;

12 GBcum[0]← GBcum[0] + pgate(dsvp − d4f(dsvp));
13 GBcum[1]← max{GBcum[1], bit(dsvp − d4f(dsvp))};
14 GBcsieve ← GBcsieve + GBcum · (1− ptot) · (P (dsvp)− P (dsvp − 1));
15 if ptot + (1− ptot) · P (dsvp) ≥ 0.999 then
16 break;

17 GB← GBpre + GBcsieve;
18 if GB[0] < GBmin[0] then
19 GBmin ← GB;

20 return GBmin;
Algorithm 2: Two-step LWE Estimator
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Before we give details of our Two-step LWE Estimator, let us briefly review
the leaky-LWE-Estimator which we mainly focus on. Leaky-LWE-Estimator is
used by NIST selected PQC schemes [1, 2] to evaluate the security strength of
LWE, and is more refined than previous LWE estimators as it considers the
randomness of target vector rather than fixed expected value and uses BKZ
simulator rather than an estimation from GSA. For BKZ reduction, it used the
trivial progressive strategy where the blocksize β is increased by 1 each tour.

We use similar notations in [22]: W be the event of solving LWE during
running Progressive PnjBKZ or the final high-dimension Pump of Two-step
mode, W(1)

β be the event of solving LWE by using BKZ-β, F(1)
β = ¬W(1)

β and
W

(2)
(dsvp)

as the event that a dsvp-dimension Pump solved LWE. Here Pr[W
(1)
β ] =

Pr

[
x← χ2

β

∣∣∣∣x ≤ (rr[d− β])2
]
, and rr[d− β] is the length of the first Gram-Schmidt

vector of projective sub-lattice Lπ[d−β:d] of current lattice basis which has been
reduced by Progressive BKZ with reduction strategy S = {βi = i + 2 | i =
1, ..., end}. In Two-step mode we partition W as:

Pr[W] =Pr[W
(1)
β1

] + Pr[W
(1)
β2
∧ F

(1)
β1

] + Pr[W
(1)
β3
∧ F

(1)
β2
∧ F

(1)
β1

]

+ · · ·+ Pr

[
W

(1)
βend
∧

end−1∧
j=1

F
(1)
βj

]
+ Pr

[
W

(2)
dsvp
∧

end∧
j=1

F
(1)
βj

]

=

end∑
i=1

Pr

[
W

(1)
βi
∧

i−1∧
i>1,j=1

F
(1)
βj

]
+ Pr

[
W

(2)
dsvp

]
· Pr

[
end∧
j=1

F
(1)
βj

] (1)

Here W
(2)
dsvp

means during the process of the final sieve, dsvp-dimension progres-
sive sieving finds the projection vector of the target vector and F

(2)
dsvp

= ¬W(2)
dsvp

.
Event W

(2)
dsvp

happened means all BKZ-β in the reduction step fail to find the
target vector, other else it will not call the final high-dimension sieve. So event
W

(2)
dsvp

is independent with all events F
(1)
βj

. When evaluating the concrete hard-
ness of a LWE instance, the value of dsvp will be set to solve this LWE with
a probability above 0.999. Set end as the index of the last block in the BKZ
reduced sequence and dstart is the dimension of the initial projection sub-lattice
in the final sieve.

It is worth noticing that leaky-LWE-Estimator is based on a Heuristic as-
sumption that events W(1)

βi
and F

(1)
βj

for i 6= j are independent. See the discussion
in Section 4.1 of [22] or the implementation of leaky-LWE-Estimator: Alg. 1 for
more details. The Heuristic assumption that events W

(1)
βi

and F
(1)
βj

for i 6= j are
independent which leaky-LWE-Estimator based on, is reasonable to some extent
if we assume that the lattice basis will be re-randomized each time it is reduced
by a stronger BKZ reduction. Below we reformulate this assumption formally:

Heuristic 3 The lattice basis is randomized each time by a reduction of BKZ-β
with larger β. Then events W

(1)
βi

and F
(1)
βj

for i 6= j are independent.
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Besides, set event E
(1)
βi

for i ∈ {1, 2, ...} as the event that solving LWE dur-
ing the process of running Progressive BKZ: BKZ-β1, · · · , BKZ-βi. Based on
Heuristic 3, we have Pr

[
W

(1)
βi
∧
∧i−1

i>1,j=1 F
(1)
βj

]
= Pr

[
W

(1)
βi

]
· Pr

[∧i−1
i>1,j=1 F

(1)
βj

]
and

Pr[E
(1)
βi

] = Pr[E
(1)
βi−1

] + Pr[W
(1)
βi

] ·
(
1− Pr[E

(1)
βi−1

]
)
. (2)

We will use Eq. (2) to calculate the cumulative probability of solving LWE during
reduction step, see line 8 of Alg. 2.

However, the same method cannot be used to calculate the probability of
solving LWE during the final sieve. Specifically, we use a progressive sieve algo-
rithm as the final sieve, thus we also need to calculate the probability of solving
LWE during each step of the progressive sieve. Specifically, we use W

(2)
i ,F

(2)
i as

the success rate and failing rate that LWE can be solved using a i-dimensional
progressive sieve (which performs sieving on projected sub-lattices with dimen-
sions from 2 to i). Unlike in a progressive BKZ, the lattice basis will not change
during sieving. Therefore, the similar Heuristic assumption that events W(2)

i and
F
(2)
j for i 6= j are independent cannot be established.

On the contrary, instead of considering that events W
(2)
(i) and F

(2)
(j) for i 6= j

are independent, we consider that there is an inclusive relationship between W
(2)
(i)

and W
(2)
(j) for j ≤ i, i.e W(2)

(i) ⊇W
(2)
(j) . Since the lattice basis will not change during

the progressive sieving of Pump and running an i-dimension progressive sieving,
it will run a j-dimension progressive sieving at first, for j ≤ i.

Setting event E(2)
β as the progressive sieving finds the projection of the target

vector exactly after a β-dimensional sieve. More specifically, during one progres-
sive sieving, all the sieving dimensions smaller than β failed to find the target
vector but succeeded when the sieving dimension equals β. We give the following
Heuristic assumption.

Heuristic 4 For i ∈ {2, ..., dsvp}, W
(2)
i ⊇ W

(2)
i−1 ⊇ W

(2)
i−2 · · · ⊇ W

(2)
2 . Then

E
(2)
i = W

(2)
i −W

(2)
i−1.

Set Pr
[
W

(2)
dstart−1

]
=0, based on Heuristic 4 we calculate Pr

[
E
(2)
dsvp

]
by

Pr
[
E

(2)
dsvp

]
= Pr

[
W

(2)
dsvp

]
− Pr

[
W

(2)
dsvp−1

]
, (3)

which is the key equality to calculate the number of gate in searching step. Then,
the cumulative probability of solving LWE in Two-step LWE estimator can be
expressed by

Pr[W] = Pr[E
(1)
βend

] +
(
1− Pr[E

(1)
βend

]
) dsvp∑

i=dstart

Pr
[
E

(2)
i

]
= Pr[E

(1)
βend

] +
(
1− Pr[E

(1)
βend

]
)
Pr
[
W

(2)
dsvp

]
,

(4)

see the line 15 of of Alg. 2 for more details.
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Gates count of reduction step In this part, we introduce how to count the
number of Gates when we solved LWE in the reduction step. After we calculate
each Pr[E

(1)
βi

] value for i ∈ {1, 2, ...} by using Eq. (2) in the reduction step, we
can calculate the expected value of gate count G1 of reduction step. We evaluate
the expected value of gates counts G1 of reduction step by Eq. (5), see line 7 of
Alg. 2 for more details. Let gate(β) be the gate count of a sieve algorithm with
dimension β, pgate(β) = C · gate(β) be the gate count of a progressive sieve
algorithm with dimension β and let pbgate(β) = pgate(β) · (d − β + 1)be the
gate count of a BKZ-β, then G1 can be expressed as

G1 =
end∑
i=1

Pr[W
(1)
βi

] ·
(
1− Pr[E

(1)
βi−1

]
)
·

[
i∑

l=0

pbgate(βl − d4f(βl))

]
. (5)

Gates count of searching step In this part, we introduce how to calculate the
numbers of Gates when we solved LWE in the searching step. When we solved
uSVP in the searching step, it meant that all the BKZ tours in the reduction step
failed to find the target vector. Thus, based on Eq. (3) to calculate Pr

[
E
(2)
i

]
,

i ∈ {dstart, . . . , dsvp}, we use Eq. (6) to calculate the expected value of gates of
the searching step, see line 14 of Alg. 2 for more details.

G2 =

dsvp∑
i=dstart

Pr
[
E

(2)
i

]
·
(
1− Pr[E

(1)
βend

]
)
·

[(
end∑
l=0

pbgate (βl − d4f(βl))

)
+ pgate (i− d4f(i))

] (6)

When considering the cost of solving LWE during the searching step, it means
that all BKZ tours in the reduction step failed to find the target vector. We
calculate the Pr

[∧end
j=1 F

(1)
βj

]
in Eq. (6) to represent the probability of all BKZ

tours in the reduction step failed to find the target vector. Besides, before starting
the large dimensional sieve in the searching step, the total time cost of solving the
uSVP in the searching step already contains the full-time cost of all BKZ tours
in the reduction step. Therefore, the total gate count of the reduction step is∑end

l=0 pbgate(βl−d4f(βl)) and when the dimension of SVP Oracle we considered
equals to dsvp, the gate count of searching step is pgate(dsvp−d4f(dsvp)). Here,
the d4f(j) is calculated by Sec. 2.6.

Finally, the total gate count for the Two-step mode of solving LWE G :=
G1 +G2.

Memory count of Two-step LWE concrete estimator The memory count
of the Two-step LWE concrete estimator is similar to gate count, just replace
the function gate(β) with the memory cost function bit(β) which declares the
memory cost of one sieve algorithm with dimension β. Since the memory cost of
the final sieve and (progressive) BKZ with the same dimension is equal to the
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memory cost of one sieve algorithm with the same dimension, the memory count
of the reduction process in our Two-step LWE Estimator is

B1 =

end∑
i=1

[
Pr[W

(1)
βi

] ·
(
1− Pr[E

(1)
βi−1

]
)]
· bit(βl − d4f(βl)), (7)

and the memory count of searching step is

B2 =

dsvp∑
i=dstart

Pr
[
E

(2)
i

]
·
(
1− Pr[E

(1)

(βend)
]
)
·max{bit (βend − d4f(βend)) , bit (i− d4f(i))}.

(8)
The total memory count for Two-step mode of solving LWE B := B1 +B2.

4.2 Two-step LWE Estimator with Refined Strategy

In this section, we adapt the Two-step LWE-estimator to Improved Progressive
PnjBKZ [29], which calls a series of PnjBKZ to reduce the basis first and finds a
good timing to use a Pump algorithm to search the unique shortest vector. The
concrete process is as Alg. 3.

input : B, F (?,D);
output: The approximate shortest vector v;

1 Function ProPnjBKZ(B, F (?,D)):
2 B = LLL(B);
3 Generate Strategy S using EnumBS or BSSA [29];
4 for (β, J, ]tours) ∈ S do
5 for t from 1 to ]tours do
6 B← PnjBKZ(B, β, J, ]tours);

7 dsvp, _ ← ProSieveDimEst(rr(B), F (?,D)); f ← d4f(dsvp);
8 B ← Pump(B,d− dsvp, dsvp, f);
9 return v← b0;

Algorithm 3: Improved Progressive PnjBKZ

We point out the main differences between the estimator with improved
progressive PnjBKZ and the estimator in Section 4.1. First, the use of PnjBKZ
allows us to adjust the reduction strategy more freely. Instead of the trivial
reduction strategy S = {(βi = i + 2, Ji = 1) | i = 1, · · · } used in leaky-LWE-
Estimator and Section 4.1, we can choose a more efficient reduction strategy
given by the blocksize and jump strategy enumeration algorithm (EnumBS)
in [29].

Secondly, we use the PnjBKZ simulator [29] instead of the original BKZ sim-
ulator to simulate how the quality of lattice basis changes during the reduction
by a series of PnjBKZ with J > 1. The simulator is purely based on the Gaussian
Heuristic, which avoids the problem that GSA (Heuristic 2) is not strictly held
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during the reduction of PnjBKZ. Also, the gate count of a PnjBKZ-(β, J) tour
is calculated as pbgate(β, J) = pgate(β) · (d− β + 1)/J .

The gate count and memory count can be calculated similarly, we only need
to replace the events W

(1)
βi

,F
(1)
βi

by W
(1)
(βi,Ji)

,F
(1)
(βi,Ji)

which allow J > 1 when
calculating the probability. We omit further details here.

5 Experiments on verifying the accuracy of Two-step
LWE Estimator

In Section 5.1, we mainly focus on the success probabilities of solving LWE by
Two-step mode, especially the success probabilities of the last sieve with different
sieving dimensions. We give the detail of our verification experiments to verify
Heuristic 4 and the accuracy of Eq. (3) and Eq. (4) which are the key equations
to calculate the gate number of the searching step. Then we give an experiment
to verify the efficiency of the Two-step mode compared with the BKZ-only mode
in Section 5.2. Finally in Section 5.3 we compare the Two-step LWE Estimator
using different reduction strategies with the leaky-LWE-Estimator.

5.1 Verification Experiments for Success Probability

In particular, we use different parameters of the LWE instances4 to test the
success probabilities of the final sieve when using different progressive sieving
dimensions shown in Fig. 1.5 We choose four different LWE parameters (n=40,
α=0.005, q=1601, m=1600), (n=40,α=0.015, q=1601, m=1600), (n = 60, α =
0.005, q = 3607), (n=45, α=0.010, q=2027, m=2025) for our experiments. For
each LWE parameter, we initialize 100 random LWE instances to construct 100
different lattice bases. Each lattice basis corresponds to an uSVP instance with a
different target vector. Then we use BKZ/PnjBKZ to do pre-processing by some
trivial reduction strategy S. Using LWE parameter (n=40, α=0.005, q=1601,
m=1600) for example, we set S = {β1 = 10, ..., βend = 17}. Here, 100 different
LWE instances under the same parameter are used to fit the distribution of the
error vector.

After pre-processing, we set the key parameter κ ∈ {0, ..., d−1} to determine
the size of the final sieve in the searching phase. In [12], it is assumed that one can
solve an LWE by solving a d−κ dimension SVP on Lπ[κ:d] as long as σ

√
d− κ <

GH(Lπ[κ,d]). Here σ
√
d− κ is the expected norm of the projected target vector.

However, since we consider the square sum of the length of the projected target
vector as a chi-squared distribution with d− κ degrees of freedom, we calculate
the cumulative probability of solving LWE when using a high-dimension Pump
in Section 4 by Eq. (4), and the line 15 of Algorithm 2. To verify the Heuristic

4 https://www.latticechallenge.org/lwe_challenge/challenge.php
5 We’ve uploaded our verification experiment in the file “lwe_prob_test.py ” in the

website https://github.com/Summwer/test-for-refined-lwe-estimator.

https://www.latticechallenge.org/lwe_challenge/challenge.php
https://github.com/Summwer/test-for-refined-lwe-estimator
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4 and the accuracy of Eq. (4), we test the actual success rate of solving LWE
under different lattice sieving with different κ value.

More precisely, we set dsvp = d−κ in lattice sieving from 30 to d by adjusting
the value of κ and use each sieve with different dsvp value to try to find the
solution of LWE on 100 different lattice basis after pre-processing. Meantime,
we record the actual success rate of each sieve with different dsvp values on 100
different lattice bases. Finally, we compare the actual success rate of each sieve
with different dsvp with our estimation success rate of solving LWE by the final
sieve in Eq. (4), and the line 15 of Algorithm 2. See Fig. 1 for more detail.

From Fig. 1 we can see that the predication of the success rate of solving
LWE given by Eq. (4) is consistent with the experimental results, which means
our analysis and estimation in Section 4.1 is accurate.

(a) n = 40, α = 0.005, q = 1601 (b) n = 40, α = 0.015, q = 1601

(c) n = 60, α = 0.005, q = 3607 (d) n = 45, α = 0.010, q = 2027

Fig. 1. Verification experiments of the fitness of the theoretical total success probability
P (dsvp) = Eq. (4) (the dashed line) to the actual success probability. Test 100 trials
and count the success rate for each dsvp.
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5.2 Verification Experiments for Efficiency of Two-step Mode

In this part, we give an experiment to verify the efficiency of the Two-step mode.
In the experiment, we test the public keys of Kyber512, Kyber1024, Dilithium-
II, and Dilithium-V as the input LWE instances, then call a Two-step Estimator
with S[β] = {βi|3 ≤ βi ≤ β}. The estimator stops at β = βend such that the
accumulated probability of S[βend] is no less than 0.999, i.e.

∑end
i=1

[
Pr[W

(1)
βi

]·(
1− Pr[E

(1)
i−1]

) ]
≥ 0.999, which is also the condition in leaky-LWE-Estimator.

The Fig. 2 shows the gate count [24] of Two-step mode under different reduc-
tion strategy S[β], where β ∈ {3, . . . , βend} and estimated the number of gates
given by the leaky-LWE-Estimator. The x-axis of Fig. 2 is the final blocksize
β in reduction strategy S[β]. Fig. 2 reflects that in solving LWE, the Two-step
mode is more efficient than that of using BKZ reduction only and the security
estimation given by the leaky-LWE-Estimator [20] is indeed an over-optimistic
estimation. Besides, there is optimal timing βop for ending the reduction and
entering the searching step as the quality of the lattice basis improved gradually
by progressive BKZ.

(a) Kyber512 (b) Kyber1024

(c) Dilithium-II (d) Dilithium-V

Fig. 2. Two-step efficiency verification Experiment.
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5.3 The comparison of different estimation modes

In this part, we compare our Two-step mode estimator using different reduction
strategies and different gate count models with the leaky-LWE-Estimator.

(a) n, α = 40, 0.025 (b) n, α = 80, 0.005

(c) Kyber512 (d) Kyber1024

Fig. 3. The relation among the growth of cumulated cost and the success prob-
ability. Comparison between the output of cumulated Cost Version of [22](Algo-
rithm 1) and Two-step mode(Algorithm 2, this work) for lwe challenge (n, α) ∈
{(40, 0.025), (80, 0.005)} and on Kyber 512 and Kyber 1024 [1]. “Two-step(S0)” uses a
trial progressive BKZ+Pump in Two-step mode to estimate security. “Two-step(Sop)”
uses a progressive BKZ+Pump with the optimized strategy selected by EnumBS [29]
in Two-step mode to estimate security. We set ∆ log2 G as the gate count difference
between our estimator and the leaky-LWE-estimator both using the same gate count6.

We draw Fig. 3 to describe the relationship between the success rate of solving
LWE estimated by different estimators and the corresponding number of gates.
The blue line in Fig. 3 is the relationship between the expected gates count
and the accumulation success probability of solving LWE by pure progressive
BKZ with trivial reduction strategy S0. These Two-step lines in Fig. 3 are the
relationship between the expected gates count and the accumulation success
probability of solving LWE by Two-step mode whose reduction step also used
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a trivial reduction strategy S1 : S1 $ S0 (In Two-step mode the reduction step
will end earlier than in BKZ-only mode). These Enumbs lines in Fig. 3 are also
the relationship between the expected gates count and the accumulation success
probability of solving LWE by Two-step mode while the reduction strategy is
the optimized blocksize and jump selection strategy. 6

From Fig. 3 we can see that in both the LWE challenge instances and the
LWE instances in NIST standard algorithms, the accumulation success proba-
bility of solving LWE by Two-step mode approaches 1 is much faster than that
of the leaky-LWE-Estimator. In addition, the expected number of gates in the
Two-step solving mode is smaller than that of the leaky-LWE-Estimator when
the accumulation success probability of solving LWE approaches 1. Therefore,
the evaluation result shows that the leaky-LWE-Estimator gives an optimistic
estimation. Besides, both the optimized blocksize and jump selection strategy
and the improved list-decoding technique proposed in [42], which fixed the es-
timate done in [24] of the list decoding technique proposed in [40], can further
decrease the estimated security strength by replacing the trivial reduction strat-
egy or gate-count model in Two-step mode. See Fig. 3 for more details about
the difference between different estimation models.

6 Improved Conservative Estimation for LWE

Above we consider the LWE estimation by practical solving algorithms. However,
since lattice solving algorithms have been developing fast in recent years, such
estimation can hardly be considered stable. Many researchers in the field prefer
using a theoretical and conservative estimation to estimate the security level of
a lattice-based algorithm. In literature, the most used theoretical estimation for
LWE-based cryptosystems is the Core-SVP model, first given in NewHope [12].
Many lattice-based algorithms including Kyber and Dilithium use the estimation
result of the Core-SVP model to match the security level requirements proposed
by NIST.

However, the Core-SVP model can hardly be called accurate. First, the Core-
SVP model ignores many coefficients in the estimation, which lowers the esti-
mation result from one aspect. Second, the dimension for free technique has not
been taken into account, which causes the estimation result to be higher than
expected from another aspect. Despite these two weaknesses of Core-SVP model,
there is another main problem in the Core-SVP model, as the underlying solving
algorithm in the Core-SVP model is of BKZ-only mode. So for the Core-SVP
estimation to hold, it must implicitly assume that a BKZ-only mode lattice solv-
ing algorithm is optimal, while such assumption is overthrown by our discussion
in Section 3 that a Two-step mode is more efficient than a BKZ-only mode.

In this section, we give a new theoretical lower-bound security estimation
for LWE hardness, based on the Two-step solving mode, which relies on weaker
6 We use the gate-count model which adopts the improved list-decoding technique

proposed in [42]. It fixed the estimate done in [24] of the list-decoding technique
proposed in [40].
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assumption than the Core-SVP model. By our estimation result (see Section
7.2), our estimation is higher than the Core-SVP model without considering
d4f. While taking d4f into consideration, our estimation turns out to be lower
than the Core-SVP estimation, which shows that the original Core-SVP model
is in fact not conservative enough without d4f.

6.1 Theoretical lower-bound security estimation of LWE hardness

The idea is simple: we use the time cost of the last lattice sieving in a Two-step
mode to estimate the hardness of solving uSVPγ or LWE. Considering that Two-
step mode is currently the most efficient way in solving uSVPγ and we omit the
time cost of the BKZ reduction step, our estimation is conservative enough.

The main problem in constructing such a lower-bound estimation is to de-
termine the lattice basis quality as the input of lattice sieving step, since we
are impossible to give the optimal strategy for BKZ reduction step. So we take
an alternative approach: we find the exact basis length rr, such that the best
strategy for solving uSVPγ from a basis with length rr is by performing sieving
algorithm on a dsvp dimensional sublattice rather than performing more BKZ
tours before the final lattice sieving.

For simplicity reason, we also assume geometric series assumption (GSA,
see Heuristic 2) as in Core-SVP model, so rr can be uniquely determined by
the lattice volume V and the root Hermite factor (RHF) δ of the basis. Let
rhf(δ, β) be the new RHF of the basis after current basis with RHF δ reduced
by a BKZ-β tour, and dsvp = md(δ,M) be the minimum dimension such that a
dsvp dimension sieving on Lπ[d−dsvp:d] can recover the unique shortest vector of
length M from a lattice basis with RHF δ.

Moreover, we can take dimension for free into account, and let the time cost
of sieving on a dsvp dimensional lattice be Tsieve(dsvp) = 2c(dsvp−d4f(dsvp)), and
TBKZ(β) = (d−β+1)·2c(β−d4f(β)). Then the condition above can be expressed as
the following inequality: ∀β, Tsieve(md(δ,M)) ≤ TBKZ(β)+Tsieve(md(rhf(δ, β),M)).

It is not hard to show that if δ satisfies this condition, then any δ′ < δ
also satisfies this condition. We only need to find the maximum δ satisfying this
condition, and we use Tsieve(md(δ,M)) for the estimation. Next, we explain how
to calculate the value rhf(δ, β) and md(δ,M).

Let δ(β) be the RHF of a BKZ-β reduced basis. Then if δ > δ(β), using
Gaussian Heuristic, the length of b1 in the lattice basis after a BKZ-β tour can be
estimated as: GH(rr[0:β] = (δdV 1/d, αδdV 1/d, ..., αβ−1δdV 1/d)), where α = δ−

d−1
2d

and d is the dimension of lattice basis. Then the RHF of the basis after a BKZ-β
tour can be calculated by: rhf(δ, β) ≈ (

√
β

2πe · δ
d·(d−β)

d−1 )
1
d = δ

d−β
d−1 · (

√
β

2πe )
1
d and

for δ ≤ δ(β), we simply let rhf(δ, β) = δ.
Next, we estimate the expected dimension of the last lattice sieving. Let M

be the expected length of the unique shortest vector, and Mdsvp = M ·
√
dsvp/d

be the expected length of the projection of M on a dsvp dimensional sublattice.
We should have that Mdsvp

< GH(rr[d−dsvp:d] = (δ−d · V 1/d · α−dsvp+1, ..., δ−d ·
V 1/d · α−1, δ−d · V 1/d)). Thus we have:
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M ·
√
dsvp/d < V 1/d ·

√
dsvp
2πe

· δ
d·(dsvp−d)

d−1

and the minimum dsvp can be recovered by solving the inequation above.
Combining all the things above, we get a lower bound estimation for solving

LWE using the Two-step mode. We also explicitly write out the algorithm for
lower bound estimation by Alg. 4.

input : M , V ← Vol(L);
output: T ;

1 Function LowerBoundEst(M , V ← Vol(L)):
2 for β ← β0 to d do
3 con← true;
4 dsvp ← md(δ(β),M);
5 for β′ ← β + 1 to d do
6 δ′ ← rhf(δ(β), β′);
7 if Tsieve(dsvp) > TBKZ(β

′) + Tsieve(md(δ′,M)) then
8 con← false; break;

9 if con then
10 βoptimal ← β;
11 return βoptimal, dsvp, Tsieve(dsvp);

Algorithm 4: Lower Bound Estimation

Note that in Alg. 4, we only perform searching on all BKZ-β reduced basis to
ensure that the estimation can be done in a reasonable time. This may decrease
the estimated time by a small amount, so the estimation only becomes more
conservative.

We prove that the new estimation is conservative enough under GSA and two
simple heuristic assumptions. We show that our assumptions are strictly weaker
than the implicit assumptions in the Core-SVP model, so our estimation is in
fact more solid than the Core-SVP estimation.

Heuristic 5 BKZ is the optimal algorithm for lattice reduction, i.e. generating
a lattice basis satisfying GSA.

Since the Core-SVP model only uses BKZ to estimate the hardness of LWE
and also assumes GSA on BKZ-β reduce basis, our assumption is obviously
weaker than the implicit assumption in the Core-SVP model.

Heuristic 6 The best way of solving uSVPγ or LWE is by performing lattice
sieving on a projected sublattice on a reduced lattice basis satisfying GSA.

We note that in the underlying solving algorithm of the Core-SVP model,
the unique shortest vector is recovered by sieving on the last β-size block in the
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lattice, which is only a special case of our assumption. So our assumption is also
strictly weaker than the implicit assumption in Core-SVP model.

Theorem 2. Assume that Gaussian Heuristic (Heuristic 1), GSA(Heuristic
2), Heuristic 5, 6, and Heuristic 4 in [29] hold, then the estimated cost of our
lower bound estimation is strictly lower than the actual cost for solving uSVPγ

in almost all lattices.

Proof. Let δ, dsvp be the intermediate result in our lower bound estimation,
i.e. the unique shortest vector is found by performing dsvp-dimensional lattice
sieving on a lattice basis satisfying GSA which RHF is δ.

Let A be the optimal algorithm in solving uSVPγ . By Heuristic 6, we assume
that A solves uSVPγ by performing d′svp-dimensional lattice sieving on a lattice
basis satisfying GSA which RHF is δ′. Furthermore, since in Heuristic 5, we
assume that a lattice basis satisfying GSA should be found by BKZ, let β′ be
the blocksize of the last BKZ tour before the final sieving, and δ′′ be the RHF
of lattice basis before this BKZ-β′ tour. We consider the following cases.

(1) δ′ ≥ δ, so d′svp ≥ dsvp, thus the running time of A is larger than
Tsieve(dsvp).

(2) δ′′ ≤ δ, by the definition of δ, we can see that TBKZ(β
′) + Tsieve(d

′
svp) >

Tsieve(md(δ′′,M)), so by replacing the final BKZ-β′ tour and lattice sieving with
a single lattice sieving, the running time of A decreases, which contradicts with
the optimality of A.

(3) δ′ < δ < δ′′. Then rhf(δ, β′) < δ′, so TBKZ(β
′)+Tsieve(d

′
svp) > TBKZ(β

′)+
Tsieve(md(rhf(δ, β′),M)) ≥ Tsieve(dsvp).

Thus we have the result. ut

7 Two-step Security Estimation of LWE in NIST Schemes

In this section based on our refined Two-step security estimator, we give a more
accurate upper bound estimation of LWE in NIST PQC schemes in Section 7.1.
Next, based on our conservative estimation for LWE in Section 6, we give the
lower bound estimation of LWE in NIST PQC schemes in Section 7.2.

7.1 Security Upper bound estimation of LWE in NIST PQC
schemes

Two-step Security estimation of LWE of NIST PQC schemes. In this
part, we will estimate the security strength of LWE instances of NIST PQC
schemes by our Two-step LWE hardness estimator in Section 4.1. Besides we
use the same blocksize and jump selection strategy: trivial S0 = [β0 = 3, β1 =
4, ..., βend] strategy in the reduction step of Two-step mode and the only differ-
ence between with leaky-LWE-Estimator is that we consider a Two-step LWE
solving mode.

The evaluation results show that even without further optimizing the block-
size and jump selection, the Two-step mode strategy can effectively reduce the
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Table 1. Security Upper bound Estimation results of different estimators for NIST
schemes with different blocksize and jump solving strategies.\

log2 G/log2(gates) log2 B/log2(bit)
∆ log2 G

Previous Two-step Previous Two-step
S0 Sop S0 Sop S0 Sop

Kyber512 146 142.6 141.4 93.97 99.1 98.1 3.4 4.6
Kyber768 208.9 205.5 204.4 138.73 144.0 143.2 3.4 4.5
Kyber1024 281.07 277.7 276.9 189.78 195.4 194.6 3.3 4.2

Dilithium-II 152.85 150.8 150.6 97.95 104.3 104.4 2.1 2.3
Dilithium-III 210.23 207.9 207.9 138.8 145.3 145.3 2.3 2.3
Dilithium-V 279.17 277.0 277.0 187.52 194.1 194.1 2.2 2.2

\ The column “Previous” is the security estimation in the statement of Kyber and Dilithium.
Strategy “S0” uses a trial progressive BKZ+Pump in Two-step mode to estimate security.
Strategy “Sop” uses a progressive BKZ+Pump with the optimized strategy selected by EnumBS
[29] in Two-step mode to estimate security. ∆ log2 G is the difference between “Previous” and
“Two-step” under the RAM model in strategy S0 and Sop in the logarithm of gate count with
base 2. The gate count of all estimations in this Table uses the same improved list-decoding
technique proposed by MATZOV [42]. 6

estimated security bit of LWE instances in NIST PQC schemes. In particular,
under the RAM model, i.e, it assumes that access into even exponentially large
memory is free, the estimated security bit of LWE in NIST schemes [23] can be
reduced by 2.1∼3.4 bits. See Table 1 for details. Here G and B in Table 1 respec-
tively represent the total log number of logic circuits for event W happened and
the maximum memory needed for event W happened, that both are calculated
by Gate-count algorithm [24].

Optimized blocksize and jump selection strategy and Two-step mode.
In this part, we quantitatively analyze the impact of the combination of the Two-
step LWE solving mode and optimized blocksize and jump selection strategy
proposed in [29] on NIST PQC schemes. We change the reduction strategy in
the reduction step of Two-step mode from trivial S0 to the optimized blocksize
and jump selection strategy Sop proposed in [29]. In other words, we still use
Eq. (1), but the reduction strategy used in Eq. (1) is replaced by the optimized
blocksize and jump selection strategy proposed in [29].

The evaluation results show that the combination of the optimized blocksize
and jump selection and the Two-step mode strategy can indeed effectively reduce
the estimated security bit of LWE. Specifically, under the RAM model, the
estimated security bit of LWE in NIST schemes [23] can be reduced by 2.2∼4.6
bits. See Table 1 for details. Here G and B in Table 1 respectively represent
the total log number of logic circuits for event W happened and the maximum
memory needed for event W happened, that both are calculated by Gate-count
algorithm [24] under the optimized blocksize and jump selection.
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In practice, without considering the RAM model, a large Pump dimension in
Two-step mode will indeed lead to an extra cost while accessing exponentially
large memory, which will somewhat partially offset the above-claimed decrease of
security hardness. However, it is unclear what the practical influence of increasing
memory cost is on the total time cost. In fact, it is still an open question, see
Q5 in Section 5.3 of [1]. Besides, although [43] gave an experimental analysis
of an idealized model for the sieve algorithm, its theoretical analysis of hidden
probabilistic overhead in near-neighbors search still remains an open problem.
So our analysis in this section does not address these two parts.

7.2 Lower bound estimation of LWE in NIST PQC schemes

In this part, we will calculate the lower-bound security estimation of NIST
lattice-based standardization. As the dimension of the embedding lattice basis
d = m + n + 1 can be further optimized by appropriately choosing the num-
ber of LWE samples m ∈ {1, ...,mmax}. We numerically optimize the number
of LWE samples m to minimize the lower-bound security estimation by Alg. 5.
See Table 2 for more detail. Table 2 illustrates that by optimizing the number of
LWE samples m, compared with the conservative estimation given by the Core-
SVP model, the lower-bound security estimation of NIST lattice-based stan-
dardization calculated by Alg. 5 increased by 4.17 ∼ 8.11 bits. However, when
considering d4f technique, compared with the conservative estimation given by
the Core-SVP model, the security bit of NIST lattice-based standardization will
decrease by 3.42 ∼ 14.76 bits under our new lower-bound security estimation.
It indicates that the Core-SVP model is not conservative enough to offset the
influence of the d4f technique.

Furthermore, Table 2 also shows that there indeed exist a βoptimal s.t dsvp =
md(δ(βoptimal),M), for any β′ ∈ {βoptimal + 1, ..., d}, δ′ = rhf(δ(β), β′) satisfied
Tsieve(dsvp) < TBKZ(β

′)+Tsieve (md(δ′,M)) under the parameter of NIST lattice-
based standardization [1, 2]. See Table 2 for more detail.

8 Conclusion

In this paper, we construct a Two-step LWE hardness estimator which estimates
the hardness of LWE under primal attack using a combination of BKZ and siev-
ing. To verify the accuracy of our Two-step LWE hardness estimator, we did
extensive experiments, and the experiment results are consistent with our esti-
mation. Besides, we also propose a conservative estimation for LWE considering
the attack in Two-step mode. Compared with the most conservative Core-SVP
model, our conservative estimation relies on weaker assumptions.

To figure out the influence of the Two-step mode on security estimation
of NIST PQC schemes, We re-evaluate the concrete hardness of schemes by
our Two-step LWE hardness estimator with a trivial reduction strategy and
optimized blocksize and jump selection strategy. Evaluation results show that
the the upper bound security estimation given by the leaky-LWE-Estimator [20]
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Table 2. The security lower bound estimation of NIST lattice-based standardization†.

Kyber512 Kyber768 Kyber1024 DilithiumII DilithiumIII DilithiumV
Lattice Dim d 1003 1424 1885 2049 2561 3582

BKZ β 406 625 877 423 624 863
CoreSVP 118 182 256 123 182 252

Lattice Dim d 1025 1477 1954 2039 2672 3461
βoptimal 392 608 857 415 614 853
dsvp 423 641 891 449 649 889
LBE 123.52 187.17 260.17 131.11 189.51 259.59

LBE (d4f) 112.44 172.32 241.24 119.57 174.52 240.69
∆Hardness 5.52 5.17 4.17 8.11 7.51 7.59

∆Hardness (d4f) -5.56 -9.68 -14.76 -3.43 -7.48 -11.31

† Here the row of “LBE” is the lower bound estimation evaluated by Algorithm 5, the row
of “LBE (d4f)” is the lower bound estimation by considering d4f technique, and the row of
“CoreSVP” represents the security strength evaluated by the CoreSVP model. “Lattice Dim d”
is the dimension for constructing the embedding lattice in primal attack.

is an over-optimistic estimation and the security bit drops by 2.1 ∼ 3.4 bits
under trivial reduction strategy and drops by 2.2 ∼ 4.6 bits under optimized
blocksize and jump selection strategy. For the lower bound security bit of NIST
PQC schemes, our conservative estimation is 4.17 ∼ 8.11 bits higher than the
Core-SVP estimation. Therefore, we give more accurate estimations on both the
upper bound and lower bound of the hardness of LWE.

input : mmax, n, σ, q;
output: βoptimal, dsvp, Tsieve(dsvp);

1 Function LowerBoundEstWithOptimalM(mmax, n, σ, q):
2 d∗svp ← mmax + n+ 1; moptimal ← mmax; βoptimal ← mmax + n+ 1;
3 for m← mmax to 1 do
4 d← n+m+ 1; M ← σ ·

√
d; V ← qm;

5 βcurrent, dsvp, Tsieve(dsvp)← LowerBoundEst(M,V );
6 if d∗svp > dsvp then
7 d∗svp ← dsvp; moptimal ← m; βoptimal ← βcurrent;

8 doptimal ← moptimal + n+ 1;
9 return doptimal, βoptimal, d∗svp, Tsieve(d

∗
svp);

Algorithm 5: Lower Bound Estimation with Optimal m
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A Appendix. Two-step LWE estimator based on classicial
LWE estimator.

In this Appendix A, we will show that based on other lwe estimators for instance
the lwe estimator proposed by Albrecht et al in [34], to consturct Two-step LWE
estimator. The evaluation results show that Two-step mode also is more efficient
in solving LWE than using BKZ algorithm only.

In particular, same as the LWE estimation proposed in [34], we also based on
GSA to give a time cost model of the Two-step solving mode. Then we show that
there is an optimal timing for ending the reduction and entering the searching
step as the quality of lattice basis improved gradually by progressive BKZ.

Two-step LWE solving mode The Two-step mode we considered here will
call progressive BKZ first for lattice reduction and call a Pump algorithm to find
the target vector on the well-reduced lattice basis at the searching step. We set
T1(β) as the time cost of obtaining a BKZ-β reduced basis in the reduction step.
Then we set T2(β) as the time cost of calling Pump to find the target vector on
BKZ-β reduced basis in the searching step. Then the total cost of such a special
Two-step LWE solving mode control by reduction parameter β is T1(β)+T2(β).

In the following parts, we will consider that Two-step mode is more efficient
than bkz-only mode in the evaluation model of lattice-estimator [17].

Simple time cost model of reduction step Let ]tours be the minimum
number of tours that each BKZ-β during progressive BKZ reduction needed to
obtain the BKZ-β reduced basis. First of all, we set T1(β) = ]tours ·

∑β
i=2(d −

i+1) · 2c·i ≤ ]tours ·C(d− β+1) · 2cβ be the time cost of progressive BKZ from
BKZ-2 to BKZ-β. Here c is the coefficients related to the sieving algorithm. For
example, when using BDGL sieving c = 0.292 by using the classical computer
and c = 0.265 by using the quantum computer. And C = 1/(1 − 2−c) ≈5.46
as the limit of ratio between

∑
i≤β 2

ci+o(i) and 2cβ+o(β) when β grows. When
using the heuristic used in lattice-estimator [17] ]tours=1, which assumed that
after reduction of the progressive BKZ-β for each blocksize running once only,
one can obtain the BKZ-β reduced basis. Thus, we get the time cost T1(β) of
the reduction step which can obtain a BKZ-β reduced basis.

Simple time cost model of search step Secondly, to evaluate the time cost
of the search step, we need to describe the relationship between the quality of
the lattice basis and the time cost of a final pump in the search step of the
Two-step mode. We choose the estimation in [44] which is based on GSA and
uses the information of the current lattice basis to give a more refined upper
bound of d4f value when solving LWE compared to the asymptotically upper
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bound of the d4f value proposed in [25]. The asymptotically upper bound of
d4f value given in [25] holds if and only if that lattice L needs to be BKZ-d/2
reduced. Here d is the dimension of the lattice basis. Since we use a progressive
reduction to gradually improve the quality of the lattice basis, at the beginning
of reduction, the quality of the initial lattice basis is far away from BKZ-d/2
reduced. Therefore the asymptotically upper bound of d4f value given in [25] is
inaccurate until proper reduction is done to achieve that lattice L is BKZ-d/2
reduced.

Here we directly use the result of [44] that for the embedding lattice, L in
prime attack with dimension d and the root hermit factor of this lattice ba-
sis is δ(β), to find the target vector t = (e, 1) in this lattice L by final sieve.
Here e is the error vector of the LWE instance. Based on GSA, λ1

(
L[f :d]

)
=√

d−f
2πe

|det(L)|
1
d

δ(β)f
and Substituting it into the optimistic condition GH

(
L[f :d]

)
√
4/3 ≥ πf (λ1 (L)) ≈

√
d−f
d σ
√
d from [25], we get the sieving dimension of

the last sieve in searching step dsieving(δ(β)):

dsieving(δ(β)) ≥ d− logδ(β)
|det (L)|

1
d
√
2

σ
√
3πe

(9)

where the optimistic condition GH
(
L[f :d]

)
·
√
4/3 ≥ πf (λ1 (L)) given in [25]

by accounting the fact that the d − f dimensional sieving algorithm on L[f :d]

heuristically finds all vectors up to norm GH
(
L[f :d]

)
·
√
4/3 and σ is the stan-

dard deviation of LWE instances. In standard form LWE the expected length of
the target vector in the embedding lattice is σ

√
d6. Here δ(β) is the root Her-

mit factor of the current lattice basis which is one of the lattice basis quality
measurement values controlled by β.

Then we set T2(β) = 2c·dsieving(δ(β)) as the simple time cost evaluation of the
searching step which calls a pump on a BKZ-β reduced lattice basis with sieving
dimension dsieving(δ(β)). Here minimum dsieving(δ(β)) is calculated by Eq. (9)
which describes the relationship between the current quality of lattice basis and
the sieving dimension of the last pump in searching step. It shows that a better
BKZ-β reduced basis (smaller δ value) can decrease the time cost of T2(β) since
a more reduced lattice basis can obtain a bigger dimension for free value when
we use the high dimension pump to search the projected of target vector.

Simple time cost model of Two-step mode Finally, we give a simple time
cost model T (β) of a special Two-step mode that ends BKZ reduction when the
lattice basis is BKZ-β reduced and use the Pump to find the target vector by
considering the length of the target vector as fixed expected value. We calculate
T (β) by Eq. (10):

T (β) = T1(β) + T2(β) = ]tours · C(d− β + 1) · 2cβ + 2c·dsieving(δ(β)) (10)
6 Note that we consider the length of the target vector by its expected value the same

as what lattice-estimator did.
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Comparison between Two-step Mode and BKZ-only Mode We set
Tbkz−only = ]tours ·C(d− βadps16 +1) · 2cβadps16 . Here βadps16 is the blocksize es-
timated from [12] which is minimual βadps16 s.t σ

√
βadps16 ≈ ‖πd−βadps16

(t)‖ ≤
GH(Bπ[d−βadps16]) holds. This βadps16 is minimal blocksize to make BKZ-only
mode successful. In the calculation of both T1(β) and Tbkz−only, we use the same
heuristic that after one tour reduction of the progressive BKZ-β that blocksize
β gradually increased from 2 to β, one can obtain the BKZ-β reduced basis. Fi-
nally, we choose the parameters of Kyber-1024 and Dilithum-V as an example,
we set c = 0.292 and respectively calculate T (β) under different lattice reduction
qualities and Tbkz−only. See Fig. 4 for more detail.

(a) Kyber-1024 (b) Dilithium-V

Fig. 4. T (β) by Eq. (10) with different reduction quality.

From Fig. 4 we can see that as the quality of the lattice basis increased (the x-
axis reflects that the current lattice basis is BKZ-β reduced), the total time cost
T (β) of solving LWE by using Two-step mode under our simple time cost model
will decrease first then increase. So there is an optimal timing of entry in the
searching step to make the T (β) minimum, which we use the red line to indicate
this location. Besides the minimum total cost of solving LWE by using Two-step
mode T (β) is smaller than that of Tbkz−only which only uses progressive BKZ to
solve LWE. In fact all blue points in Fig. 4 have a smaller time cost compared
with Tbkz−only. Therefore, we observed that in solving LWE, the Two-step mode
is more efficient than that of using BKZ reduction only based on the model of
Albrecht et al. to construct the Two-step estimator.
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