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Abstract

Number theoretic transform (NTT) has been a very useful tool in computations for number the-
ory, algebra and cryptography. Its performance affects some post-quantum cryptosystems. In this
paper, we discuss the butterfly operation of NTT. This basic module of NTT requires heavy modular
arithmetics. Montgomery reduction is commonly used in this setting. Recently several variants of
Montgomery have been proposed for the purpose of speeding up NTT. We observe that the Chinese
remainder theorem (CRT) can be involved in this type of algorithms in nature and transparent ways.
In this paper, a framework of using CRT to model Montgomery type algorithms is described. The
derivation of these algorithms as well as their correctness are all treated in the CRT framework.
Under our approach, some problems of a modular reduction algorithm ((published in IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, doi:10.46586/tches.v2022.i4.614-636 ) are
identified, and a counterexample is generated to show that the algorithm is incorrect.

Key words: Number theoretic transform, Butterfly operation, Modular algorithm, Chinese re-
mainder theorem.

1 Introduction

The Fourier transform is a deep mathematical theory with a wide range of applications and reflects a

perfect duality in mathematics. Its early motivation can be traced to solving wave equation and heat

equation. We remark that the Fourier transform can be derived from the Chinese remainder theorem

[13]. In fact, a finite Fourier transform is indeed a special case of the ring theoretic version of the Chinese

remainder theorem, see [12]. In the modern information age, the finite Fourier transform is getting so

important and becoming a basic mathematical tool for many fields. In theory, the Fourier transform

mapping a problem from time domain to frequency domain, so a problem may be solved more easily in

another framework. However, one needs to perform the Fourier transform back and forth between the

frameworks and the computation of the transform itself is required to be efficient. This makes the fast

computation of a Fourier transform a topic of great significance. The nice symmetry of the nth root of

unity provides the possibility of such a fast calculation. In 1965, Cooley and Tukey [1] (re)discovered a

general algorithm for fast Fourier transform (since Gauss had some idea of fast Fourier transform in his
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unpublished note of 1805, as mentioned in the literature). For the parameter n, fast Fourier transform

(FFT) takes time of O(n log n) compared to that of O(n2) by a näıve method. Fast Fourier transform is

regarded as one of the ten most important algorithms on 20th century. Obviously, it is still an extremely

important algorithm today.

In traditional fast Fourier transform, complex nth roots of unity involve in the computation. As

they are mostly irrational numbers with no exact values can be stored in computer, one has to use

a good approximations which is time consuming. The efforts for reducing such a side effect includes

the Nussbaumer’s trick[6], an idea of constructing a quotient ring of a polynomial ring, so the (coset of)

indeterminant for the polynomial can be treated as a root of unity to reduce or eliminate the computation

of multiplication. Another way of avoiding complex nth roots of unity is to perform Fourier transform

over finite fields (or certain finite rings) using integer modular operation. In such a case, nth roots of

unity are integers. This is what we now called the Number Theoretic Transform (NTT).

In many cryptographic applications, NTT has become a common operation so that it affects the

performance of the corresponding crypto systems. As we shall see, a basic module of FFT (or NTT) is

the butterfly operation. This module consists of integer addition, subtraction, multiplication, as well as

modular operation for the case of NTT. It is noted that the NTT has been an important computation

tool for many post-quantum algorithms and homomorphism encryptions, optimization of the butterfly

operation and modular operation is getting greater recent attention.

Montgomery’s seminal paper [4] of 1985 cleverly uses a power of 2 to the modular operation with

odd modulus as multiplication, division and modular operation with a power of 2 take much less time.

Recently, many variants of Montgomery’s reduction algorithm has been proposed and applied in speed

up the butterfly operation in NTT, for examples, [10, 7, 5].

In the literature, Montgomery reduction algorithm is regarded as a generalization of Hensel method

for computing an inverse of 2-adic number.

We observe that, in the construction of Montgomery type algorithms there are two coprime moduli

naturally involve in. One is a power of 2, the other is an odd modulus. What are processed in the

algorithms are the remainders with respect to these two moduli. That means that the Chinese remainder

theorem (CRT) might be involved in certain manner. In this paper, we establish a framework of using

CRT to model Montgomery type algorithms, and to explain how these algorithms are derived as well

as how their correctness are proved. Detailed treatments for Montgomery reduction algorithm [4] and

signed-Montgomery reduction algorithm [10] are described. Under our approach, problems of the modular

reduction algorithm in [5] are identified, and a counterexample is generated to show that the algorithm

is incorrect.
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The rest of the paper is arranged as follows. The preparation materials are given in sections 2. Our

main results are presented in section 3. We conclude the paper in section 4.

2 Preparation and Literature Review

In this section, we introduce some related materials. Some discussions and commentations for certain

topics are given. Some expressions and derivations presented in this section might be of independent

interest.

2.1 Fast Fourier Transform

We shall give a brief introduction of FFT by setting the case to be n = 2m. In our discussion of finite

Fourier transform, an object to be transformed is usually a polynomial of degree less than n. If we

identify an polynomial with its coefficients, the finite Fourier transform is also applies to n-dimensional

vector. Among these two equivalent approaches, we choose to use polynomials. Given an nth primitive

root ω, the Fourier transform of a polynomial f with deg(f) < n is the following vector

f̂ = (f(1), f(ω), f(ω2), · · · , f(ωn−1)).

An efficient way of computing f̂ is to use divide and conquer and to turn the operations on polynomials

f with deg(f) < n to the operations on polynomials g with deg(g) < n
2 .

We list two ways of making such a reduction to polynomials of lower degrees.

Let f(x) =
∑n−1
j=0 ajx

j . This polynomial can be rewritten as f(x)f(x) = fe(x) + xfo(x) where

fe(x) =

n
2−1∑
j=0

a2jx
2j , fo(x) =

n
2−1∑
j=0

a2j+1x
2j .

If we set y = x2, then fo, fe are polynomials of degree less than n
2 − 1 in y. Thus the evaluations of f at

1, ω, · · · , ωn−1 can be accomplished by evaluating polynomials with degree less than n
2 − 1, so a reclusive

divide and conquer procedure applies:

f(1) = fe(1) + 1 · fo(1), f(ω) = fe(ω
2) + ωfo(ω

2),
f(ω2) = fe(ω

4) + ω2 · fo(1ω4), f(ω3) = fe(ω
6) + ω3fo(ω

6),
· · ·
f(ωn−2) = fe(ω

2(n−2)) + ωn−2fo(ω
2(n−2)), f(ωn−1) = fe(ω

2(n−1)) + ωn−1fo(ω
2(n−1)).

(1)

Now let us examine another decomposition of evaluation of f(x) =
∑n−1
j=0 ajx

j . Let

fp(x) =

n
2−1∑
j=0

(aj + aj+n
2

)xj , fm(x) =

n
2−1∑
j=0

(aj − aj+n
2

)ωjxj ,

3



then we can check that evaluation of f can be achieved by evaluation of two polynomials of degree less

than
f(1) = fp(1), f(ω) = fm(1),
f(ω2) = fp(ω

2), f(ω3) = fm(ω2),
· · ·
f(ωn−2) = fp(ω

n−2), f(ωn−1) = fm(ωn−2).

(2)

Corresponding(1)and (2)we get two fast Fourier transforms respectively.

Algorithm 2.1 Fast Fourier Transform-(1)

Require: Positive integern = 2mnth roots of unity ω, · · · , ωn−1, polynomial f with deg(f) < n
Ensure: Vector (f(1), f(ω), · · · , f(ωn−1)).
1: function FFT1(f, ω, n)
2: if n = 1 then
3: return (f(1))
4: end if
5: (fe(1), fe(ω

2), · · · , fe(ωn−2)) ← FFT1(fe, ω
2, n

2
)

6: (fo(1), fo(ω
2), · · · , fo(ωn−2)) ← FFT1(fo, ω

2, n
2

)
7: for j = 0 to n

2
− 1 do

8: f(ωj) ← fe(ω
2j) + ωjfo(ω

2j)
9: f(ωj+

n
2 ) ← fe(ω

2j)− ωjfo(ω2j)
10: end for
11: return (f(1), f(ω), · · · , f(ωn−1))
12: end function

Algorithm 2.2 Fast Fourier Transform-(2)

Require: Positive integern = 2mnth roots of unity ω, · · · , ωn−1, polynomial f with deg(f) < n
Ensure: Vector (f(1), f(ω), · · · , f(ωn−1)).
1: function FFT2(f, ω, n)
2: if n = 1 then
3: return (f(1))
4: end if
5: (fp(1), fp(ω

2), · · · , fp(ωn−2)) ← FFT2(fp, ω
2, n

2
)

6: (fm(1), fm(ω2), · · · , fm(ωn−2)) ← FFT2(fm, ω
2, n

2
)

7: return (fp(1), fm(1), fp(ω
2), fm(ω2), · · · , fp(ωn−2), fm(ωn−2))

8: end function

We remark that the operations in lines 8 and 9 of the Fast Fourier Transform-(1) are like X+WY,X−

WY . While the functions fp, fm used in the Fast Fourier Transform-(2) need the basic operations

(aj +aj+n
2

) and (aj−aj+n
2

)ωj , they are like X+Y, (X−Y )W . These two structures are called butterfly

structure. We shall pay attention to the latter.

2.2 Modular Operation

In this subsection, we describe several known algorithms for computing modular reduction that are used

in NTT.
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2.2.1 Classical Montgomery Reduction Algorithm

The Montgomery reduction algorithm is probably the most successful modular reduction methods that

are useful in cryptography. It is based the Montgomery representation. Given an odd number p > 1, we

select an R = 2n > p. It is well known that (mod R) is extremely straightforward and can be neglected.

The idea of using such convenient R to help computation of modulo p appeared in a paper of 1985

by Montgomery [4], where a clever method of representing elements in Zp = Z/pZ is described. Under

such a representation, arithmetic operations, especially multiplication, achieve greater efficiency. Let

a ∈ [0, p − 1] be an integer, we call ǎ = aR (mod p) the Montgomery representation of a. For integer

T ∈ [0, Rp − 1], its Montgomery reduction is the number Redc(T ) = TR−1 (mod n). The importance

of the Montgomery reduction is that the reduction of the product of two Montgomery representations is

still a Montgomery representation.

Let us first (pre-)compute k = R − p−1 (mod R). The following algorithm as well as its proof of

correctness is described in [4].

Algorithm 2.3 Montgomery Reduction

Require: Positive integers T < p2

Ensure: TR−1 (mod p).
1: function Redc(T )
2: m ← (T (mod R))k (mod R)
3: t ← T+mp

R

4: if (t > p) then
5: t ← t− p
6: end if
7: return t
8: end function

Division operation is eliminated in Montgomery algorithm. The Montgomery performs especially well

for modulus being fixed. Montgomery algorithm and its variants are used in the butterfly operations we

mentioned in the next subsection.

In processing an integer consisting of many words, Montgomery develops a modular multiplication

method which alternating subtraction and multiplication. In this so called Montgomery alternating

algorithm, R is taken to be R = βm with β = 2n being a word. The method replaces modulo and

division by R with that by β, reduces number of registers used and is suitable for parallelization. see [4]

for more details.

2.2.2 Signed-Montgomery Reduction

Recently, Seiler proposed a variation Montgomery reduction. The modulus is restricted in the size of

a word and negative residue is allowed. The odd modulus p satisfies 2p < β. The input is a product
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WT of two Montgomery representations. We do not use T < p2 to denote input because in the latter

we shall consider butterfly operation and hand terms like WX,W (X − Y ). We shall also use signed

modular operation (mod ±N) to denote that a residue should be in [−N2 ,
N
2 ). The description of the

Seiler algorithm is next.

Algorithm 2.4 Signed-Montgomery Reduction

Require: Integer Product − pβ
2
< WT = a1β + a0 <

pβ
2
, 0 ≤ a0 < β

Ensure: r1 = (WT )β−1 (mod p), −p < r1 < p.
1: function SigRedc(WT )
2: m ← a0p

−1 (mod ±β)

3: t ←
⌊
mp
β

⌋
4: t ← a1 − t
5: return t
6: end function

2.2.3 Plantard Reduction Algorithm

In 2021, Plantard designed a new modular reduction algorithm [7]. The method utilizes the special

property of doing modular operation with in a word size. It exhibits better performance for several

cryptographic schemes. To be more precise, let φ = 1+
√
5

2 β = 2n with n being the word size If the

modulusp satisfies p < 2n

φ then the following algorithm works.

Algorithm 2.5 Plantard Reduction Algorithm

Require: p < 2n

φ
, 0 ≤W,T ≤ p µ = p−1 (mod 22n)

Ensure: r ≡WT (−2−2n) (mod p), 0 ≤ r < p.
1: function PRedc(W,T, p, µ)

2: r ←

⌊(⌊
WTµ (mod 22n)

2n

⌋
+1

)
p

2n

⌋
3: if (r = p) then
4: return 0
5: end if
6: return r
7: end function

2.2.4 Signed Plantard Reduction Algorithm

To ease the situation in each level of NTT one has to do reduction on the coefficients of a polynomial

and enlarge the allowed range of the input while reduce the range of output, Huang et al introduced an

algorithm that processes signed integer [5]. In the algorithm, the odd modulus p satisfies p < 2n−α−1,

where n is the size of a word and α ≥ 0 is an integer parameter. The description of the algorithm is as

follows.

According to [5], this algorithm improves Plantard reduction algorithm, and is more reflexible.
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Algorithm 2.6 Signed Plantard Reduction Algorithm

Require: α ≥ 0, p < 2n−α−1,−p2α ≤W,T ≤ p2α, µ = p−1 (mod ±22n)
Ensure: r ≡WT (−2−2n) (mod ±p),− p

2
< r < p

2
.

1: function SPRedc(W,T, p, µ, α)

2: r ←

⌊(⌊
WTµ (mod ±22n)

2n

⌋
+2α

)
p

2n

⌋
3: return r
4: end function

However, we find that Algorithm 2.6 does not always produce the required result WT (−2−2n)

(mod ±p) and hence is incorrect. In its proof of correctness (see [5], Theorem 1), the meaning of⌊
WTµ (mod ±22n)

2n

⌋
is mistakenly modified. In our unified approach of Montgomery algorithm and it-

s variants by using the Chinese remainder theorem in next section, differences between WT (−2−2n)

(mod ±p) and

(⌊
WTµ (mod ±22n)

2n

⌋
+2α

)
p

2n

 shall be revealed and counter examples shall be generated. We

also remark that the proof of Theorem 1 of [5] is erroneous in checking r to be in the right range, due to

a misuse of floor and ceiling functions.

2.3 Butterfly Structure and Its Optimization in NTT

2.3.1 Butterfly Operation in NTL

The C++ library NTL developed by Shoup [11] provides powerful methods and tools for number theoretic

and algebraic computations, also for cryptographic computations. In the butterfly operation for NTT,

uses pre-estimation to calculate quotient to get efficiency. Let β = 2n with n being word size, the following

method computes the map (X,Y )→ (X + Y,W (X − Y )).

2.3.2 Harvey Butterfly Operation

Recently in [3], Harvey discussed the NTL implementation of butterfly module and provides its proof

of correctness. Harvey also designed an improved butterfly algorithm. Two strategies are used to in

enhancing efficiency. The first one is to perform pre-estimation of quotient, and the second is to reduce

the number of if clauses through lazy reduction. More precisely, the its improvement of modular reduction,

signed Montgomery reduction that is similar to [10] is used. Combining the butterfly operation, W ′ =

bWβ
p c is replaced by W ′ = Wβ mod p which is the Montgomery representation of W . The optimized

Algorithm 2.8 is
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Algorithm 2.7 Butterfly Structure in NTL

Require: p < β
2
, 0 < W < p,W ′ = bWβ

p
c, 0 < W ′ < β, 0 ≤ X < p, 0 ≤ Y < p

Ensure: X ′ = X + Y (mod p), 0 ≤ X ′ < p, Y ′ = W (X − Y ) (mod p), 0 ≤ Y ′ < p.
1: function NTL-butterfly(X,Y,W,W ′, p)
2: X ′ ← X + Y
3: if (X ′ ≥ p) then
4: X ′ ← X ′ − p
5: end if
6: T ← X − Y
7: if (T < 0) then
8: T ← T + p
9: end if

10: Q ←
⌊
W ′T
β

⌋
11: Y ′ ← (WT −Qp) (mod β)
12: if (Y ′ ≥ p) then
13: Y ′ ← Y ′ − p
14: end if
15: return X ′, Y ′

16: end function

Algorithm 2.8 Harvey Butterfly Algorithm

Require: p < β
4
, 0 < W < p,W ′ = Wβ (mod p), 0 < W ′ < p, µ = p−1 (mod β), 0 ≤ X < 2p, 0 ≤ Y < 2p

Ensure: X ′ = X + Y (mod p), 0 ≤ X ′ < 2p, Y ′ = W (X − Y ) (mod p), 0 ≤ Y ′ < 2p.
1: function Harvey-butterfly(X,Y,W ′, µ, p)
2: X ′ ← X + Y
3: if (X ′ ≥ 2p) then
4: X ′ ← X ′ − 2p
5: end if
6: T ← X − Y + 2p
7: R1β +R0 ← W ′T
8: Q ← µR0 (mod β)
9: H ← bQp

β
c

10: Y ′ ← R1 −H + p
11: return X ′, Y ′

12: end function

2.3.3 Scott Butterfly Operation

In 2017, Scott[8] pointed out that in the current descriptions and improvements of NTT, side channel

attacks were not considered. To deal with the threat of side channel attacks, Scott proposed an improved

butterfly structure. The following algorithm of Scott uses lazy reduction and enlarges redundance, and

extra reduction step is introduced at a suitable position.

3 Our Results

In this section, we described a unified framework to treat Montgomery reduction algorithm and its vari-

ants. The famous Montgomery algorithm is usually thought as a generalization of Hensel computation
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Algorithm 2.9 Scott Butterfly Algorithm

Require: p < βL
4N
, 0 < W < p, µ = −p−1 (mod β), 0 ≤ X < N

L
p, 0 ≤ Y < N

L
p

Ensure: X ′ = X + Y (mod p), 0 ≤ X ′ < N
L
p, Y ′ = W (X − Y ) (mod p), 0 ≤ Y ′ < 2p.

1: function Scott-butterfly(X,Y,W, µ, p)
2: if (m < L and j < k + L

2m
) then

3: X ← X (mod p)
4: Y ← Y (mod p)
5: end if
6: X ′ ← X + Y
7: T ← X − Y + N

L
p

8: Q ← µ(WT (mod β)) (mod β)
9: Y ′ ← WT+Qp

β

10: return X ′, Y ′

11: end function

of the inverse of a 2-adic number. We observed that the expressions of Montgomery reduction algorithm

and a solution to the Chinese remainder theorem are identical in some sense, so they have a natural

relation. Further more, the latter variants of Montgomery reduction algorithm also have Chinese remain-

der theorem interpretation. So the Chinese remainder theorem approach provides a unified, natural and

transparent treatment to this family of algorithms.

The CRT is a well know method for solving a system of modular equation. It is also called Sun Tzu

Theorem as it was described in a very ancient Chinese book “Sun Tzu Suan Jing”. In his “Mathematical

Treatise in Nine Sections” of 1247 [9], Qin described the Chinese remainder theorem with great detail

and generality.

In [9], Qin discussed the concept of ‘positive use’, it can be summarized into the following equality

(3) for the case of two moduli. We remark that although its proof is straightforward, the fact that Qin

paid special attention to this expression in his derivation of CRT is very interesting.

Proposition 3.1. Let p,R > 1 be two coprime integers. Denote p−1 = p−1 (mod R), R−1 = R−1

(mod p). Then

p−1p+R−1R = 1 + pR. (3)

Proof. By definition there exists positive integer ` such that

p−1p = 1 + `R.

Since 1 ≤ p−1 < R, we see that ` < p. Furthermore `R ≡ −1 (mod p), so p− ` = R−1. Therefore,

p−1p+R−1R = p−1p+ (p− `)R = 1 + pR.
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For the case of two moduli, we follow an approach in [2]. Using the solution x0 of the system of modular

equations

{
x ≡ r1 (mod p)
x ≡ r2 (mod R)

to multiply both sides of (3)we get x0p
−1p + x0R

−1R = x0 + x0pR.

Repalcing x0 by r2, r1 respective on the left hand side, we see the formula of the Chinese remainder

theorem:

r2p
−1p+ r1R

−1R ≡ x0 (mod pR). (4)

3.1 CRT Interpretation of Montgomery algorithm

Let us recall Montgomery reduction algorithm. Let odd number p > 1 and R = 2n > pWe need to

compute TR−1 (mod p) for positive integer T < p2.

Denote TR = T (mod R), Tp = T (mod p). The method of Montgomery reduction is: first pre-

compute k = R − p−1 (mod R); then compute t = T+(TRk (mod R))p
R . The number t satisfies t ≡ TR−1

(mod p) and is in (0, 2p) thus t or t− p is desired.

The following discussion indicates that a natural motivation of the Montgomery reduction algorithm

is CRT.

Denote TR = T (mod R), Tp = T (mod p), then the solution of{
x ≡ TR (mod R),
x ≡ Tp (mod p)

is X = T .

Now T is given, TR can be easily computed. For the present case, (4) becomes

TRp
−1p+ TpR

−1R ≡ T (mod pR).

We hope to get TR−1 (mod p) through the above formula to investigate Tp = T (mod p). A key

observation is that TR−1R (mod p) is a term in the formula!

Now we use CRT to give another proof of the correctness of Algorithm 2.3.

Proposition 3.2. Algorithm2.3 is correct.

Proof. In order to get the same expression as in Montgomery reduction algorithm, we use (3). We get

Tp−1p+ TR−1R = T + TpR.

Manipulating the terms above, and combining terms with Rp, then there is an integer a such that

TR−1R = T + Tkn = T + TRkp+ (T − TR)kp

= T + (TRk (mod R)) p+ aRp
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From this, we see that
(
T + (TRk (mod R))p

)
is divisible by R, so the result in Montgomery reduction

algorithm is obtained.

TR−1 ≡ T + (TRk (mod R)) p

R
mod p.

We shall not discuss the verification of t < 2p as it is a routine checking. We would like to point out

that the discussion above also suggests how the Montgomery reduction algorithm is derived.

3.2 CRT Interpretation of Signed Montgomery algorithm

Next we present the derivation of Algorithm 2.4, together with a proof of its correctness. In this algorithm,

numbers proceeded are supposed to be within a word is of length n. Set β = 2n and assume the odd

modulus p < β
2 . We use A to denote the input WT , thus A ∈ (−pβ2 ,

pβ
2 ) and A = a1β + a0 with

0 ≤ a0 < β. We need to find an integer r′ ∈ (−p, p) such that r′ ≡ Aβ−1 (mod p).

From Proposition3.1, we have

β−1β + p−1p = 1 + βp.

Note that here β−1, p−1 are all positive as in the setup by Qin [?]. So

A = Aβ−1β +Ap−1p−Aβp

Note that in Algorithm 2.4, m = a0p
−1 (mod ±β), so

A = Aβ−1β +Ap−1p−Aβp = Aβ−1β + (a0 + a1β)p−1p−Aβp ≡ Aβ−1β +mp (mod βp)

This means that A−mp is divisible by β. Using A = a1β + a0, we have

a0 + a1β −mp
β

≡ Aβ−1 (mod p).

As a0+a1β−mp
β = a1 − bmpβ c+

(
a0
β −

mp
β + bmpβ c

)
and 0 ≤ a0

β < 1, −1 < −mpβ + bmpβ c ≤ 0, we get

a0+a1β−mp
β = a1 − bmpβ c,

a0
β −

mp
β + bmpβ c = 0.

So

Aβ−1 (mod p) = a1 − b
mp

β
c.

Letting r′ = a1−bmpβ c, we need to check that r′ ∈ (−p, p). This is an easy argument since r′ = a0+a1β−mp
β

and
−βp2 ≤ mp <

βp
2 ,

−βp2 < A = a0 + a1β <
βp
2 .

So we have proved
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Proposition 3.3. Algorithm2.4 is correct.

It is remark that the above discussion conveys some other information, such as a0
β −

mp
β is an integer.

3.3 Discussion of Algorithm 2.6

This subsection is to discuss the correctness of Algorithm 2.6.

Some steps of proving the correctness of Plantard Reduction Algorithm can be inferred from here, so

we will leave the treatment of Plantard Reduction Algorithm in the framework of the CRT.

As we indicated, the original proof of correctness of Algorithm 2.6 contains misuse of concepts. We

shall perform an analysis using CRT to identify its problem and generate a counter example to show that

it is incorrect.

In Algorithm 2.6, we set R = 22n. The odd modulus p satisfies p < 2n−α−1, where the integer

parameter α satisfies 0 ≤ α < n− 1. The number µ = p−1 (mod ±R) can be pre-computed.

With integer inputs W,T ∈ [−p2α, p2α], the algorithm outputs r ≡WT (−R−1) (mod ±p),−p2 < r <

p
2 . The number r computed by the algorithm is

r =


(⌊

WTµ mod ±22n

2n

⌋
+ 2α

)
p

2n

 .
Let A = WT , then A ∈ [−22αp2, 22αp2]. Multiply both sides of p−1p + R−1R = 1 + pR by A, (here

p−1 is p−1 (mod R) a positive integer), we get a form of the CRT

Ap−1p+AR−1R = A+ApR.

Since µ =

{
p−1 if p−1 < R

2

p−1 −R if p−1 ≥ R
2

, we have

Aµp+AR−1R = A+ δApR,

where δ =

{
1 if p−1 < R

2

0 if p−1 ≥ R
2

. Choose ` ∈ Z such that Aµ−Aµ (mod ±R) = `R, we see that

(
Aµ (mod ±R)

)
p+AR−1R = A+ (δA− `)pR.

This indicates that
(
Aµ (mod ±R)

)
p−A is divisible by R and(

Aµ (mod ±R)
)
p−A

R
= A(−R−1) + (δA− `)p.

Therefore,

A(−R−1) (mod ±p) =

(
Aµ (mod ±R)

)
p−A

R
(mod ±p).
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Denote h = Aµ (mod ±R),K = hp−A
R . Since −R2 ≤ h < R

2 ,−22αp2 ≤ A ≤ 22αp222αp2 < 22n−2 = R
4 ,

we get −
(
p
2 + 1

4

)
< K <

(
p
2 + 1

4

)
. Notice that K is an integer and p is odd, we have the following

−p
2
< K <

p

2
.

If Algorithm 2.6 were correct, the next equality would be true.

K =

⌊(⌊
h
2n

⌋
+ 2α

)
p

2n

⌋
.

It would imply (⌊
h
2n

⌋
+ 2α

)
p

2n
− 1 < K =

hp−A
R

=
h
2n p−

A
2n

2n
≤
(⌊

h
2n

⌋
+ 2α

)
p

2n
.

However, the above relation does not always hold, we construct series of counterexamples based on this.

Here we present a simple example to show that Algorithm 2.6 is incorrect.

Example 3.1. Let n = 6, p = 31, α = 0. So R = 22n = 4096 and p satisfies p < 2n−α−1 = 32.

It is calculated that µ = p−1 (mod ±R) = −1057, R (mod ±p) = 8. Now we take inputs W = 19, T =

−5, then A = −95. So

A(−R−1) (mod ±p) = 760 (mod ±31) = −15.

On the other hand, h = Aµ (mod ±R) = −1985, we see that
⌊
h
2n

⌋
=
⌊−1985

64

⌋
= −32. This gives⌊(⌊

h
2n

⌋
+ 2α

)
p

2n

⌋
=

⌊
(−32 + 1)31

64

⌋
= −16.

which is the output r by the algorithm, and is different from A(−R−1) (mod ±p).

4 Conclusion

In this paper, we setup a CRT framework to treat Montgomery reduction and its variants. Under this

approach, the derivation of these algorithms can be revealed more transparently, their proof of correctness

can be processed naturally. Using this approach, some problems of the modular reduction algorithm in

[5] are identified, a counterexample is generated to show that the algorithm is incorrect.
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