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Abstract. A tweakable wide blockcipher is a construction which be-
haves in the same way as a tweakable blockcipher, with the difference
that the actual block size is flexible. Due to this feature, a tweakable
wide blockcipher can be directly used as a strong encryption scheme
that provides full diffusion when encrypting plaintexts to ciphertexts and
vice versa. Furthermore, it can be the basis of authenticated encryption
schemes fulfilling the strongest security notions. In this paper, we present
two instantiations of the docked double decker tweakable wide blockci-
pher: ddd-AES and bbb-ddd-AES . Both instances exclusively use similar
building blocks as AES-GCM (AES and finite field multiplication), are
designed for maximal parallelism, and hence, can make efficient use of
existing hardware accelerators. Moreover, bbb-ddd-AES builds upon a
novel beyond birthday bound secure pseudorandom function, a tweak-
able variant of the XOR of permutations, facilitating in the need to
include a tweak in the AES evaluations without sacrificing flexibility in
docked double decker.

Keywords: symmetric cryptography, tweakable wide blockcipher, docked
double decker, tweakable XOR of permutations.

1 Introduction

1.1 Motivation

With modern Internet- and cloud-scale data creation and processing volumes
being routinely measured in exabytes and approaching zettabytes, many existing
ciphers become a bottleneck and sometimes even a security risk, because they
were not designed to be used at such scale. As indicated in some cloud service
provider (CSP) comments [15,17,27], the limitations of block size, nonce size and
its uniqueness requirements, and corresponding birthday bounds, lead to many
standardized mainstream ciphers and modes becoming too brittle when used for
such large data sets. To protect that data while complying with cipher key/nonce



pair uniqueness requirements and data processing volume limitations, CSPs are
forced to either employ inefficient techniques like frequent rekeying (every week
or two, down to potentially mere seconds), or use tricks like having a static nonce
and rekeying for every message.

A more efficient avenue is the development of a new cipher capable of dealing
with larger data and constraints. Based on the CSP feedback [15,17,27], the fol-
lowing preferences can be formulated for encryption or authenticated encryption
schemes intended to handle modern data volumes:

1. Processing more than 264 blocks (e.g., blocks of 16 bytes in case of AES) while
maintaining security. This means, for example, the need for a blockcipher
operating on 256-bit block size, or using blockciphers with 128-bit block size
in constructions enabling beyond birthday bound security. This allows us to
overcome current data size limitations, which are the main problem;

2. Performance, obviously, as for such data volumes every percent matters;
3. An authenticated encryption scheme that can use large nonces to facilitate

random generation with a negligible risk of reuse;
4. IV/nonce misuse resistance in case a counter cannot be maintained, or reli-

able random generation is hard or unavailable;
5. The ability to shorten authentication tags for some use cases, while keeping

good enough security bounds (compared to the go-to AES-GCM [18,30]).

The US NIST (National Institute of Standards and Technology) has stan-
dardized a number of pure confidentiality modes of operation, like ECB, CBC,
CFB, OFB, and CTR in NIST SP 800-38A [8], and XTS-AES in NIST SP 800-
38E [9]. Although these modes see a wide-spread use in applications, they come
with their own limitations. Most notably, none of the above-mentioned encryp-
tion methods provides full diffusion for encryption as well as decryption if the
data to be encrypted exceeds a few blocks. This stands in sharp contrast with
the fact that for modes that just provide confidentiality, full diffusion behavior
is often a practical security benefit, since it limits the ability of an attacker to
target specific fractions of the encrypted data [1].

1.2 Tweakable Wide Blockciphers

A very suitable solution, or building block for a solution to many of the afore-
mentioned preferences, are tweakable wide blockciphers. Not surprisingly, in the
recent third NIST workshop on blockcipher modes of operation in 2023, the or-
ganizers stated that “NIST is particularly interested in discussing the possibility
of standardizing a tweakable wide block encryption technique that could support
a large range of input lengths.” [21].

Indeed, a tweakable wide blockcipher extends the definition of a tweakable
blockcipher [16] to arbitrarily large input and output size, this way allowing for
flexibility in the block size and accommodating for the primary requirements
above. Note that such a tweakable wide blockcipher also, unlike existing modes
such as ECB, CBC, CFB, OFB, CTR, and XTS-AES, allows for full diffusion.
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This way, it serves as viable drop-in replacement of these modes in many appli-
cations.

Furthermore, it can serve as the basis of an authenticated encryption scheme,
or directly as authenticated encryption scheme, by either appending the nonce
to the plaintext or putting the nonce in the tweak and appending zeros to the
plaintext to strengthen authenticity [12]. The resulting construction essentially
allows for flexibly sized tags and nonces, and has the potential to be misuse
resistant and context committing.

The remaining boxes to be ticked are performance and beyond birthday
bound security, and this brings us to our contribution.

1.3 Our Contributions

We present two tweakable wide blockciphers, ddd -AES and bbb-ddd -AES . Both
are based on the same components as used in many NIST standardized schemes.
Notably, both are based on the AES blockcipher [5, 6], as well as on operations
in binary extension fields as used by GHash in AES-GCM [18,30].

Both schemes are based on the docked double decker mode of Gunsing et
al. [11] (see Figure 1). Docked double decker operates on top of a universal
hash function H and a pseudorandom function F , and has the feature that it
allows to provide beyond birthday bound security assuming it is not too often
used with the same tweak. Both our instances ddd -AES and bbb-ddd -AES take
Polyval [10] as universal hash function. The choice of pseudorandom function is
different for the two constructions:

– In ddd -AES , the pseudorandom function is based on an XE -style [28] tweak-
able blockcipher, itself built on top of AES, evaluated in counter mode (see
Section 4.2). The resulting construction achieves birthday bound security;

– In bbb-ddd -AES , to accommodate for the tweak, we wished to instantiate
the pseudorandom function with a slightly compressing construction on top
of AES that achieves beyond birthday bound security. To this end, we took
the XORP construction as used in CENC [13], and extended it to include

a tweak. In detail, this construction X̃ORP extends XORP by including

the tweak in an XE -style [28] manner (Section 4.3). We prove that X̃ORP
achieves around 2n/3-bit security. We remark that this result — the in-

troduction and security analysis of X̃ORP as a “tweakable PRF” — is of
independent interest.

1.4 Outline

We first discuss some preliminaries in Section 2. The docked double decker con-
struction of Gunsing et al. [11] is recalled in Section 3. We specify ddd -AES
and bbb-ddd -AES in Section 4, with the description of Polyval (as used in both
ddd -AES and bbb-ddd -AES ) in Section 4.1, the description of the pseudorandom
function used in ddd -AES in Section 4.2, and the description of the pseudoran-
dom function used in bbb-ddd -AES in Section 4.3. The security of ddd -AES and
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bbb-ddd -AES is analyzed in Section 5, with the security proof of X̃ORP , which
is of independent interest, in Section 6. We conclude in Section 7.

2 Preliminaries

For n ∈ N, {0, 1}n denotes the set of bit strings of length n, and {0, 1}∗ =
∪∞n=0{0, 1}n denotes the set of bit strings of arbitrary length. For a finite set S,
we denote by s

$←− S the uniform random selection of s from S. For n, p ∈ N, we
denote by (n)p = n(n− 1) · · · (n− p+ 1) the falling factorial.

2.1 Tweakable Wide Blockciphers

Our tweakable wide blockciphers will be parameterized by a value n ∈ N. This
will also be called the block size. They will require plaintexts of size at least
2n bits. Our tweakable wide blockciphers will also be parameterized by a key
size κ ∈ N and a tweak size w ∈ N. Finally, to formally argue security, we also
limit the maximum size of an input plaintext or output ciphertext to some value
ℓmax ∈ N such that ℓmax ≥ 2n. We define the plaintext and ciphertext space to

S :=

ℓmax⋃
i=2n

{0, 1}i . (1)

A tweakable wide blockcipher TWBC : {0, 1}κ × {0, 1}w ×S → S is a family of
permutations on S indexed by key K ∈ {0, 1}κ and tweak W ∈ {0, 1}w. In other
words, TWBC satisfies the property that for fixed K ∈ {0, 1}κ and W ∈ {0, 1}w,

TWBCK,W (·) := TWBC (K,W, ·)

is a length-preserving bijection. Its inverse for fixed K and W is denoted by
TWBC−1

K,W .
Define by perm(w, 2n : ℓmax) the family of all length-preserving bijections

on S of (1). The security of a tweakable wide blockcipher TWBC is defined
by how hard it is for an adversary A to distinguish TWBC for a random and

secret key K
$←− {0, 1}κ from a tweakable wide random permutation TWRP

$←−
perm(w, 2n : ℓmax):

Advtwprp
TWBC (A) = Pr

(
ATWBCK = 1

)
−Pr

(
ATWRP = 1

)
, (2)

where the probabilities are taken over K
$←− {0, 1}κ, TWRP

$←− perm(w, 2n :
ℓmax), and the random coins of A. The adversary is typically bounded by a
certain number of queries q, and a total data complexity σ that counts the total
amount of output data bits. Here, we remark that the amount of input data bits
equals the amount of output data bits plus the tweak, the latter of which is of
fixed size for each of the q queries. The adversary is also bounded by a certain
amount of time in which it can make offline evaluations, but this time is not
explicitly included.
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2.2 Pseudorandom Permutations

A blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n is a family of permutations on
{0, 1}n indexed by key K ∈ {0, 1}κ. We denote EK(·) = E (K, ·), and its inverse
for fixed K is denoted by E−1

K .
Define by perm(n) the family of all bijections on {0, 1}n. The security of a

blockcipher E is defined by how hard it is for an adversary A to distinguish E

for a random and secret key K
$←− {0, 1}κ from a random permutation RP

$←−
perm(n):

Advprp
E (A) = Pr

(
AEK = 1

)
−Pr

(
ARP = 1

)
, (3)

where the probabilities are taken over K
$←− {0, 1}κ, RP $←− perm(n), and the

random coins of A. The adversary is typically bounded by a certain number of
queries q. Note that each query is of fixed size n bits.

2.3 Pseudorandom Functions

Let a, b ∈ N ∪ {∗}. A pseudorandom function F : {0, 1}κ × {0, 1}a → {0, 1}b
is a family of functions from {0, 1}a to {0, 1}b indexed by key K ∈ {0, 1}κ. We
denote FK(·) = F (K, ·).

Define by func(a, b) the family of all functions from {0, 1}a to {0, 1}b. The
security of a pseudorandom function F is defined by how hard it is for an ad-

versary A to distinguish F for a random and secret key K
$←− {0, 1}κ from a

random function RF
$←− func(a, b):

Advprf
F (A) = Pr

(
AFK = 1

)
−Pr

(
ARF = 1

)
, (4)

where the probabilities are taken over K
$←− {0, 1}κ, RF $←− func(a, b) (lazily-

sampled), and the random coins of A. The adversary is typically bounded by a
certain number of queries q, and a total output data complexity σ that counts
the total amount of output data bits. Here, we remark that we will always use
F on fixed input size and on varying output size.

In our case, the input to the function F may consist of a comma-separated
list of multiple inputs. To be precise, we will use a function F that operates on a
κ-bit key K, an n-bit input I, a domain separator nibble B, and a w-bit tweak
that produces a variable length output O:

F (K, I,B,W ) = O .

The function F internally concatenates I, B, and W .

2.4 Universal Hash Functions

Let a, b ∈ N ∪ {∗}. Consider a family of hash functions H : {0, 1}κ × {0, 1}a →
{0, 1}b. It is called ε-XOR-universal if for any two distinct X,X ′ ∈ {0, 1}a and
any Y ∈ {0, 1}b,

Pr (H (K,X)⊕H (K,X ′) = Y ) ≤ ε ,

where the probability is taken over K
$←− {0, 1}κ.
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3 Docked Double Decker

Let κ,w, n, ℓmax,mmax ∈ N such that 2n ≤ ℓmax and mmax = ⌈ℓmax/n⌉. In this
paper, we propose instantiations of the docked double decker (ddd) of Gunsing et
al. [11]. The scheme is depicted in Figure 1. It gets as input two keysK ∈ {0, 1}κ,
and L ∈ {0, 1}n, a tweak W ∈ {0, 1}w, and a plaintext P ∈ S of size at least 2n
bits and at most ℓmax bits (see (1)). The plaintext P is parsed as P = T∥U∥V ,
where T and V are both n-bit long. Then, a four-round structure based on two
independent instances of a pseudorandom function FK : {0, 1}n+4+w → {0, 1}∗
and two instances of a universal hash functionHL : {0, 1}∗ → {0, 1}n is evaluated
to obtain the ciphertext C = X∥Y ∥Z, where X and Z are n-bit long and Y
matches the size of U . We denote this as

dddF,H
K,L(W,T∥U∥V ) = X∥Y ∥Z . (5)

HL

FK

HL

∗

∗

n

nn

n

T U V

X Y Z

W

W

0001

0010

FK

Fig. 1: The docked double decker construction.

We remark that we have slightly deviated from the specification of Gunsing
et al. [11] in the sense that we do not use two different keys for F but rather
use domain separation. However, their analysis directly carries over. In detail,
Gunsing et al. [11] proved security under the assumption that the function F is a
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pseudorandom function (PRF) and H a blinded keyed hash function. An XOR-
universal hash function is a specific type of blinded keyed hash function, and we
will adopt a simplification of their result to XOR-universal hash functions.

Theorem 1 (Gunsing et al. [11, Theorem 1]). Consider the docked dou-
ble decker construction ddd on top of a pseudorandom function F : {0, 1}κ ×
{0, 1}n+4+w → {0, 1}∗ and a universal hash function family H : {0, 1}n ×
{0, 1}∗ → {0, 1}n. For any adversary A making at most q queries, each of size
at least 2n and at most ℓmax bits, and in total of size at most σ bits, we have

Advtwprp
ddd (A) ≤ Advprf

F (A′) +
∑

W∈{0,1}w

(
qW
2

)
·
(
2ε+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = 2q and a total data
complexity σ′ = σ bits, and where qW is the number of queries made for tweak
W ∈ {0, 1}w.
We remark that A′ in fact makes q queries whose output is of size n bits, and q
queries whose output is of arbitrary size but that add up to σ − qn bits.

4 Specification of ddd-AES and bbb-ddd-AES

We will describe how we suggest to instantiate ddd using AES to obtain a birth-
day bound secure ddd -AES and a beyond birthday bound secure bbb-ddd -AES .
For both of them, we suggest the same instantiation of H , as described in Sec-
tion 4.1. The main bottleneck, however, will be the design of F , which gets an
input of size n+ 4+w bits and should operate on top of AES with a block size
of n = 128 bits. We will assume that 4 + w ≤ n. The instantiation of F for
ddd -AES , including rationale, is given in Section 4.2. The instantiation of F for
bbb-ddd -AES , again including rationale, is given in Section 4.3.

4.1 Instantiation of H

Due to the addition of carry-less multiplication instructions on modern CPUs,
instances for HL based on polynomial evaluation are a viable option. Hence, we
decided to instantiate HL using Polyval [10]. On input of a key L and a list of
s field elements Ii, all elements of F2128 [x]/(x

128 + x127 + x126 + x121 + 1), it is
defined as

PolyvalL(I1, I2, . . . , Is) =

s∑
i=1

(
Ls−i+1 · Ii · x−128·(s−i+1)

)
, (6)

We will use it for arbitrary-length bit strings, always of length at most ℓmax−n
bits. To process such string using PolyvalL, it is first 0-padded to the first multi-
ple of n bits. Then, an n-bit string encoding the bit length of I is appended. The
resulting bit string then represents I1∥I2∥ . . . ∥Is, noting that we can uniquely
map elements from this field to bit strings in {0, 1}128. Particularly, in our case,
s ≤ mmax, and for this case, Polyval is an ϵ-XOR-universal hash function with
ϵ = mmax/2

n [10, Lemma 3].
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4.2 Instantiation of F for ddd-AES

We realize F by turning the AES-128 blockcipher EK into an XE -style [28]
tweakable blockcipher, where B and W function as tweak, and plugging this
tweakable blockcipher into counter mode to obtain a keystream of arbitrary
length. Note that the XE -style is sufficient as opposed to the XEX -style, as the
primitive is never evaluated in inverse direction.

In detail, we define FK : {0, 1}n+4+w → {0, 1}∗ as

FK(I,B,W ) =
⌊
EK(I ⊕ 20S)∥EK(I ⊕ 21S)∥ . . . ∥EK(I ⊕ 2mmax−1S)

⌋
ℓmax

,

(7)

where S = EK(B∥W ) serves as tweak-dependent subkey. In this case, we can
support a tweak with a length of w = 124 bits. The keylength κ depends on the
actual instance chosen for AES [5,6].

4.3 Instantiation of F for bbb-ddd-AES

To realize a function F that achieves beyond birthday bound security, we extend
the XORP [v] [14] that underlies CENC [13] to include a tweak.

Our tweak inclusion will be similar to the XE -style approach, albeit with
counter included in the subkey. In detail, we assume F to have two keys instead
of one, K = K1∥K2 ∈ {0, 1}2κ, and we consider the following approach for the
subkey computation:

Sj = EK2
(B∥W∥c∥j) , (8)

where j will function as “inner counter” in the evaluation of F and c as “outer
counter” for the mode employing F .

We subsequently define X̃ORP [v] for v ∈ N on top of a blockcipher E :
{0, 1}κ × {0, 1}n → {0, 1}n as

X̃ORP [v]EK(I,B,W, c) =
(
EK1

(I ⊕ S0)⊕ EK1
(I ⊕ S1)

)
∥ . . .

. . . ∥
(
EK1

(I ⊕ S0)⊕ EK1
(I ⊕ Sv)

)
. (9)

This construction is depicted in Figure 2. This approach leaves us with n − 4
bits that can be distributed between the outer counter c, the inner counter j,
and the tweak W . In case of AES, where n = 128, we suggest to use 28 bits split
between the counters c and j, where j occupies ⌈log2(v + 1)⌉ ≤ 28 bits and c
gets 28− ⌈log2(v+ 1)⌉ bits of space. This leaves room for a (w = 96)-bit tweak.

We finally define FK : {0, 1}n+4+w → {0, 1}∗ as counter mode on top of

X̃ORP [v] truncated to the required length:

FK(I,B,W ) =
⌊
X̃ORP [v]EK(I,B,W, 0)∥ . . . ∥X̃ORP [v]EK(I,B,W, ⌈mmax/v⌉)

⌋
ℓmax

.

(10)
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S0

EK1

S1

I

Z1

EK1

S0

EK1

Sv

I

Zv

R0 R1 R0 Rv

Fig. 2: The X̃ORP [v] construction. Here, Sj = EK2(B∥W∥c∥j) of (8). The pa-
rameters Rj will be used of the proof of Theorem 2 in Section 6.

5 Security of ddd-AES and bbb-ddd-AES

We will discuss the security of ddd -AES and bbb-ddd -AES in the security model
of Section 2.1. Both security analyses have in common that they rely on the
XOR-universality of H, which is already briefly stated in Section 4.1, but which
we formally repeat here for convenience.

Lemma 1 (Gueron et al. [10, Lemma 3]). The universal hash function
Polyval of (6) is ϵ-XOR-universal with ϵ = mmax/2

n.

Security of ddd -AES is now treated in Section 5.1 and security of bbb-ddd -AES
in Section 5.2.

5.1 Security of ddd-AES

The ddd -AES scheme is based on the XE construction that operates on a block-
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n:

XEE
K(I,B,W, j) = EK(I ⊕ 2jEK(B∥W )) . (11)

Rogaway [28] proved that this XE construction4 behaves like a random tweakable
permutation as long as the total number of evaluations q satisfies 4.5q2/2n and
as long as E is PRP-secure after at most q queries. However, we will rather use
the XE construction as a PRF, and looking at the proof of [28, Theorem 1],
which can be found in the full version [29, Appendix B], it first proves XE to
be PRF-secure and then as last step makes an RF-to-(T)RP switch at the cost
of 0.5q2/2n. We will require PRF-security of the XE construction, thus allowing
us to use a slightly tighter bound.

4 A small change is in the split of the nonce into B and W , and in the fact that the
subkey EK(B∥W ) is multiplied only by 2j .
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Lemma 2 (Rogaway [28, Theorem 1]). Consider the construction XE of
(11) on top of a pseudorandom permutation E : {0, 1}κ×{0, 1}n → {0, 1}n. For
any adversary A making at most q queries, each of output size n bits, we have

Advprf
XE (A) ≤ Advprp

E (A′) +
4q2

2n
,

for some adversary A′ with a total query complexity q′ = 2q.

The security of ddd -AES is now a direct corollary of Theorem 1, Lemma 1,
and Lemma 2, the only work actually being the data complexity translation
from bits queried in ddd -AES to actual evaluations of the underlying AES . To
be precise, in ddd the underlying F is evaluated 2q times with a total output
data complexity of σ bits. These amount to at most ⌈σ/n⌉ evaluations of XE of
(11).

Corollary 1. Consider ddd-AES, the docked double decker construction ddd on
top of Polyval : {0, 1}κ×{0, 1}∗ → {0, 1}n and AES : {0, 1}κ×{0, 1}n → {0, 1}n
through XE of (11). For any adversary A making at most q queries, each of size
at least 2n and at most ℓmax bits, and in total of size at most σ bits, we have

Advtwprp
ddd-AES (A) ≤ Advprp

E (A′) +
4(⌈σ/n⌉)2

2n

+
∑

W∈{0,1}w

(
qW
2

)
·
(
2mmax

2n
+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = 2⌈σ/n⌉, and where qW
is the number of queries made for tweak W ∈ {0, 1}w.

5.2 Security of bbb-ddd-AES

We will consider the security of the bbb-ddd -AES scheme. However, this analysis
is not as simple as that of ddd -AES of Section 5.1. The reason for this is that

bbb-ddd -AES is based on a new pseudorandom function design, namely X̃ORP [v]

of (9). Thus, we first have to analyze the PRF-security of X̃ORP [v].

Theorem 2. Let v ∈ N. Consider the construction X̃ORP [v] of (9) on top of a
pseudorandom permutation E : {0, 1}κ × {0, 1}n → {0, 1}n. For any adversary
A making at most q queries, each of output size vn bits, we have

Advprf

X̃ORP [v]
(A) ≤ 2Advprp

E (A′) +
(v + 1)4q3

5 · 22n
+

(
v+1
2

)
q

2n
+

2
(
v+1
2

)2
q2

22n
,

for some adversary A′ with a total query complexity q′ = (v + 1)q, where we
assume that n(2v + 1)2 + (2v + 1) ≤ 2n/2 and (2v + 1)2(v + 1)q ≤ 2n/12.
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The proof of Theorem 2 is technically involved, and is given in Section 6.
The security of bbb-ddd -AES is now a direct corollary of Theorem 1, Lemma 1,

and Theorem 2, the only work actually being the data complexity translation
from bits queried in bbb-ddd -AES to actual evaluations of the underlying AES .

Consider a single evaluation of bbb-ddd -AES on input of ℓi bits and mi =
⌈ℓi/n⌉ blocks. One evaluation of F is for 1 n-bit output block: it makes 1 evalu-

ation of X̃ORP [v] that costs 2 calls to each blockcipher. One evaluation of F is

for mi − 1 n-bit output blocks: it makes ⌈(mi − 1)/v⌉ evaluations of X̃ORP [v]
that cost at most (v + 1)⌈(mi − 1)/v⌉ calls to each blockcipher. Summing over
all q queries, bbb-ddd -AES incurs

q∑
i=1

(⌈
mi − 1

v

⌉
+ 1

)
≤ 1

v
⌈σ/n⌉+ v + 1

v
q =: qx (12)

evaluations of X̃ORP [v] with a total amount of at most

q∑
i=1

(
(v + 1)

⌈
mi − 1

v

⌉
+ 2

)
≤ v + 1

v
⌈σ/n⌉+ 3v + 1

v
q =: qe (13)

calls to each blockcipher, where we used that
∑q

i=1 ℓi ≤ σ and thus
∑q

i=1 mi ≤
⌈σ/n⌉+ q.

Corollary 2. Consider bbb-ddd-AES, the docked double decker construction
ddd on top of Polyval : {0, 1}κ×{0, 1}∗ → {0, 1}n and AES : {0, 1}κ×{0, 1}n →
{0, 1}n through X̃ORP of (9). Let v ∈ N and let qx and qe be as in (12) and
(13). For any adversary A making at most q queries, each of size at least 2n and
at most ℓmax bits (equivalent to mmax n-bit blocks), and in total of size at most
σ bits, we have

Advtwprp
bbb-ddd-AES (A) ≤ 2Advprp

E (A′) +
(v + 1)4q3x
5 · 22n

+

(
v+1
2

)
qx

2n
+

2
(
v+1
2

)2
q2x

22n

+
∑

W∈{0,1}w

(
qW
2

)
·
(
2mmax

2n
+

1

22n

)
,

for some adversary A′ with a total query complexity q′ = qe, where we assume
that n(2v+1)2 +(2v+1) ≤ 2n/2 and (2v+1)2(v+1)qx ≤ 2n/12, and where qW
is the number of queries made for tweak W ∈ {0, 1}w.

6 Proof of Theorem 2

The XORP [v] construction was introduced by Iwata [13] and proven to achieve
2n/3-bit security. Later, Iwata et al. [14] demonstrated that n− log2(w) security
was achieved using the mirror theory [19, 20, 23, 25, 26], and Bhattacharya and
Nandi [2] proved a similar bound using the χ2 technique [7]. Very recently,

11



a concise proof of the mirror theory (for a very large limit on the maximum
component size) was delivered [4] and the authors also applied it to XORP [v].
In fact, this mirror theory result considers sums of permutations, where each
sum can be defined as an edge in a graph between two vertices, and where it is
required that there is no circle in the graph and no too large tree. For XORP [v]
this is the case: each evaluation of XORP [v] defines v edges over v + 1 vertices
that form a tree, basically even a star, and different evaluations of XORP [v] are
disconnected. Thus, XORP [v] is a fairly simple application of this main mirror
theory result.

It turns out that the exact same mirror theory result can also be used to

argue security of X̃ORP [v], but the application is a bit more subtle. The reason

is that, in our case, again any evaluation of X̃ORP [v] defines a star on v edges
over v + 1 vertices (basically as the masking values Sj of (1) are different for
j = 1, . . . , v) but any two different stars may collide and they may collide in
(v + 1)2 ways. Excluding any such collision would force us into birthday bound
security, but there is no need to exclude such collisions as any such collision
merely implies a maximum tree size up to 2v + 1 elements. In general, as long
as there is no too large tree of stars, the maximum component is still “small
enough” for the mirror theory result of [4] to apply.

This will also be the main proof strategy: in a nutshell, we will demonstrate
that (i) there is no too large tree of stars except with a small probability, (ii)
there is no cycle of stars except with a small probability, and (iii) the mirror
theory of [4] can be applied akin to the example of [4, Section 4.2], with the
maximum component size roughly v times the largest tree of stars.

To do this rigorously, we first need to introduce additional notation in Sec-
tion 6.1. A proof overview is given in Section 6.2, with the definition of bad tran-
scripts in Section 6.3, and probability analyses in Section 6.4 and Section 6.5.
The proof is concluded in Section 6.6.

6.1 Additional Notation

Patarin’s H-Coefficient Technique. Consider any two oracles O and P, and a
deterministic adversary A that has query access to either of these oracles, and
write

Adv(A) = Pr
(
AO = 1

)
−Pr

(
AP = 1

)
. (14)

The adversary can make q queries, and its communication with its oracle is
recorded in a transcript τ . Denote by XO the probability distribution of tran-
scripts in interaction with O, and similarly XP the probability distribution of
transcripts in interaction with P. A transcript τ is called attainable ifPr (XP = τ) >
0, and we denote by T the set of all attainable transcripts.

Patarin’s H-coefficient technique [3, 22,24] states the following:

Theorem 3 (H-coefficient technique). Let δ, ε ∈ [0, 1]. Consider a partition
T = Tbad ∪ Tgood of the set of attainable transcripts such that

12



– Pr (XP ∈ Tbad) ≤ δ,

– for all τ ∈ Tgood,
Pr (XO = τ)

Pr (XP = τ)
≥ 1− ε.

Then, the distinguishing advantage of (14) satisfies Adv(A) ≤ δ + ε.

Mirror Theory. Patarin’s mirror theory [19, 20, 23, 25, 26] can be used to prove
close to optimal security of constructions that can be described as the sum of per-
mutations, or bijections. We adopt the notation and result of Cogliati et al. [4],
be it in their graph representation rather than in their matrix representation.

Let m, p ∈ N. Consider p distinct n-bit unknowns {X1, . . . , Xp}. A system of
m difference equations over these unknowns is defined as

Xa1
⊕Xb1 = λ1 ,

...

Xam
⊕Xbm = λm ,

(15)

where ai, bi ∈ {1, . . . , p} (ai ̸= bi for all i) and λi ∈ {0, 1}n for i = 1, . . . ,m. We
associate a graph G = (V, E) to this system of equations, where the unknowns
are represented by vertices V = {X1, . . . , Xp} and equations by edges E , where
Xa

λ←→ Xb if (a, b, λ) = (ai, bi, λi) for some i ∈ {1, . . . ,m}.
The graph is called p.d.-consistent (pairwise distinct consistent) if there is

no path whose labels λi sum to 0. In addition, the graph is called acyclic if it is
cycle-free. Finally, for a graph G, we define the maximum component size, i.e.,
the size of the largest component, by ξmax vertices. The mirror theory result of
Cogliati et al. [4] states the following:

Theorem 4 (Mirror theory). Consider a graph G = (V, E) that is p.d.-
consistent, acyclic, and whose largest component is at most of size ξmax. As
long as nξ2max + ξmax ≤ 2n/2 and p ≤ 2n/(12ξ2max), the number of solutions for
V such that the equations of E are satisfied is at least

(2n)p
2nm

.

6.2 Proof Overview

Let K = K1∥K2
$←− {0, 1}2κ. We consider an adversary A that makes q queries

to either X̃ORP [v]EK of (9) on top of a pseudorandom permutation E : {0, 1}κ×
{0, 1}n → {0, 1}n, or to a random function RF with the same domain and range

of X̃ORP [v]EK , and it aims to distinguish them:

Advprf

X̃ORP [v]
(A) = Pr

(
AX̃ORP [v]EK = 1

)
−Pr

(
ARF = 1

)
. (16)
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As a first step, we replace the blockcipher evaluations EK1
, EK2

by random per-

mutations π1, π2
$←− perm(n), respectively. These serve as key in the construction,

and we abuse notation and denote it by X̃ORP [v]π for π = (π1, π2). We have

Advprf

X̃ORP [v]
(A) ≤

(
Pr

(
AX̃ORP [v]π = 1

)
−Pr

(
ARF = 1

) )
+ 2Advprp

E (A′) ,

(17)

for some adversary A′ with a total query complexity q′ = (v + 1)q.

Transcripts. The adversaryAmakes q queries to its construction (either X̃ORP [v]π
or RF ) and these are summarized in a transcript

τ = {(Ii, Bi,Wi, ci, Zi,1∥ · · · ∥Zi,v)}qi=1 .

Without loss of generality, we assume that (Ii, Bi,Wi, ci) ̸= (Ii′ , Bi′ ,Wi′ , ci′)
whenever i ̸= i′.

Note that in the real world, there are additional values related to the evalu-

ation of X̃ORP [v]π, namely

Si,j = π2(Bi∥Wi∥ci∥j) (18)

for i ∈ {1, . . . , q} and j ∈ {0, 1, . . . , v}. We extend the transcript by adding those
values:

τext = {(Ii, Bi,Wi, ci, Si,0∥ · · · ∥Si,v, Zi,1∥ · · · ∥Zi,v)}qi=1 . (19)

In the ideal world, the values Si,j will be dummy values sampled uniformly
without replacement whenever the value Bi∥Wi∥ci∥j is different (simply said, in
the ideal world we will also use π2 to draw those values Si,j).

Finally, we write for i ∈ {1, . . . , q} and j ∈ {0, 1, . . . , w}:

Ri,j = Ii ⊕ Si,j . (20)

These values are implicit in the extended transcript τext.

Meaning of Transcripts. In the real world, each transcript tuple (Ii, Bi,Wi, ci,
Si,0∥ · · · ∥Si,v, Zi,1∥ · · · ∥Zi,v) ∈ τext basically consists of two portions.

Firstly, there are the v + 1 distinct evaluations of π2 of the form (18):
π2(Bi∥Wi∥ci∥0) = Si,0 ,
...

π2(Bi∥Wi∥ci∥v) = Si,v .

(21)

If two queries i, i′ ∈ {1, . . . , q} are made for the same tweak Bi∥Wi∥ci =
Bi′∥Wi′∥ci′ , these v + 1 evaluations coincide; otherwise they are all distinct.
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Secondly, there is the relation between the values Ri,j (implicitly defined by
the transcript as (20)) and the values Zi,j , which corresponds to v equations
over v+ 1 unknowns (note, here, the outputs of the function π1 are regarded as
unknowns): 

π1(Ri,0)⊕ π1(Ri,1) = Zi,1 ,
...

π1(Ri,0)⊕ π1(Ri,v) = Zi,v .

(22)

In graph-speak, these form a star with v edges, as Ri,j ̸= Ri,j′ whenever j ̸= j′.

As a matter of fact, if we were not considering X̃ORP [v] but rather XORP [v],
the q tuples in τext together form a forest of q stars with v edges. In the case

of X̃ORP [v], however, cross-star collisions may occur, turning two or more stars
into a tree or even a cycle. See also the explanation in Figure 3. We will thus
define a neat ensemble of bad events to avoid cycles and too large trees.

R1,0

R1,1R1,2

R1,v

R2,2 R2,1

R2,0

R2,v

R3,0

R3,1

R3,2 R3,3

R3,v

R2,3

Fig. 3: Graph structure representing the evaluations of X̃ORP [v]. Here, each

evaluation of X̃ORP [v] defines a star (solid edges), but these stars may be con-
nected to each other in case, e.g., R1,0 = R2,3 and R2,v = R3,2 (dashed circle
around them, meaning that they represent a single vertex).

6.3 Bad Transcripts

We will define bad events that would make the mirror theory inapplicable. Intu-
itively, we have to assure that (i) within stars, the system of difference equations
is p.d.-consistent and acyclic, and (ii) among stars, the system of difference equa-
tions is p.d.-consistent and acyclic too. In addition, (iii) we require that there
is no too large tree of stars, the reason being that any tree of µ stars basically
results in a component in the graph of size exactly µ(v + 1) − µ + 1 = µv + 1
vertices (assuming no cycles, of course).

In detail, for the case of problems within isolated stars, case (i) of above
paragraph, the mirror theory is inapplicable if a transcript in τext satisfies one
of the following events:
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BAD⋆
pdinc There exist i ∈ {1, . . . , q} and j ∈ {1, . . . , v}, such that Zi,j = 0n, or

i ∈ {1, . . . , q} and distinct j, j′ ∈ {1, . . . , v}, such that Zi,j = Zi,j′ ;
BAD⋆

cycle There exist i ∈ {1, . . . , q} and distinct j, j′ ∈ {0, . . . , v}, such that
Ri,j = Ri,j′ .

We note that the index sets for j, j′ are not a typo: for Zi,j , j, j
′ run from 1 to

v, whereas for Ri,j , j, j
′ run from 0 to v. Note that any star contains paths of

length 1 and length 2 only, and BAD⋆
pdinc covers p.d.-inconsistencies over any of

those paths. Event BAD⋆
cycle will be used to excludes cycles, both of length 1 (if

j or j′ equals 0) and of length 2 (if both j and j′ are unequal to 0).
For the case of problems among stars, case (ii) of above paragraph, these two

events generalize as follows:

BAD⋆⋆
pdinc There exist ℓ ≥ 2, distinct i1, . . . , iℓ ∈ {1, . . . , q}, and distinct jα, kα ∈

{0, . . . , v} for each α ∈ {1, . . . , ℓ}, such that

∀ℓ−1
α=1 : Riα,jα = Riα+1,kα+1

,

and

ℓ∑
α=1

(
Ziα,jα ⊕ Ziα,kα

)
= 0 ,

where Zi,0 = 0n for all i by definition;
BAD⋆⋆

cycle There exist ℓ ≥ 2, distinct i1, . . . , iℓ ∈ {1, . . . , q}, and distinct jα, kα ∈
{0, . . . , v} for each α ∈ {1, . . . , ℓ}, such that

∀ℓα=1 : Riα,jα = Riα+1,kα+1
,

where (iℓ+1, kℓ+1) = (i1, k1) by definition.

Event BAD⋆⋆
pdinc considers the case that there is a path of ℓ distinct stars and

considers all vertex paths that are included within this path of stars. Note that
for any such path, for any individual inner star (so α = 2, . . . , ℓ− 1) the vertex
path cannot traverse freely but has to traverse from Riα,jα to Riα,kα

, adding
exactly Ziα,jα ⊕Ziα,kα

to the checksum, noting that Zi,0 = 0n by definition. For
the outer stars, so α = 1, ℓ, it may or may not traverse further to any Ri1,k1

or Riα,jα respectively, again adding exactly Ziα,jα ⊕ Ziα,kα to the checksum.
Likewise, event BAD⋆⋆

cycle considers the case that there is a cycle over ℓ distinct
stars. Note that for both events, the condition that jα ̸= kα is reasonable to
make: in case of equality, there would have been a shorter path or cycle without
equality at the αth indices; in case of equality for all indices, both bad events
would become meaningless.

Finally, there is the case of a too large tree of stars, case (iii) of above para-
graph. Basically, we have to define any threshold µ ∈ N and state the event that
there is a tree that connects µ+1 stars. This is quite cumbersome to define. On
the other hand, looking ahead, we will only be able to bound the probability of
this event to occur for µ = 2. In this case, the event is more straightforward to
define (as a tree of 3 stars is necessarily a path of 3 stars):
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BAD⋆⋆
tree There exist distinct i1, i2, i3 ∈ {1, . . . , q} and j1, j2, k2, k3 ∈ {0, . . . , v}
(with no further distinctness condition), such that

Ri1,j1 = Ri2,k2
,

Ri2,j2 = Ri3,k3
.

Bad event BAD⋆⋆
tree differs from BAD⋆⋆

pdinc and BAD⋆⋆
cycle in that there is no dis-

tinctness condition on the values jα, kα. After all, BAD⋆⋆
tree is meant to capture,

basically to upper bound, the size of the largest component in the graph. To de-
rive this bound, all that matters is to figure out the maximum number of stars
that are connected, and it is irrelevant how they are connected.

We write

BAD = BAD⋆
pdinc ∨ BAD⋆

cycle ∨ BAD⋆⋆
pdinc ∨ BAD⋆⋆

cycle ∨ BAD⋆⋆
tree . (23)

6.4 Probability of Bad Transcripts

Following Theorem 3, we have to upper bound the probability that a bad tran-
script occurs in the ideal world, i.e., for RF . By basic probability theory,

Pr (XRF ∈ Tbad) ≤ Pr
(
BAD⋆

pdinc

)
+Pr

(
BAD⋆

cycle

)
+Pr (BAD⋆⋆

tree)

+Pr
(
BAD⋆⋆

pdinc | ¬BAD
⋆⋆
tree

)
+Pr

(
BAD⋆⋆

cycle | ¬BAD
⋆⋆
tree

)
.

(24)

We investigate the probabilities separately.

Pr
(
BAD⋆

pdinc

)
. The event is set whenever Zi,j = 0 for some i, j (vq choices) or

whenever Zi,j = Zi,j′ for some i, j, j′ with j ̸= j′ (
(
v
2

)
q choices). As the values

Zi,j are uniformly randomly generated, this bad event happens with probability
at most

(v +
(
v
2

)
)q

2n
=

(
v+1
2

)
q

2n
.

(As a matter of fact, the derivation and bound are identical to that of [4, Section
4.2] with the difference that they bound

(
v
2

)
to v2/2.)

Pr
(
BAD⋆

cycle

)
. The event is set whenever Ri,j = Ri,j′ for some i, j, j′ with j ̸= j′.

However, from (20), we see that this happens whenever

Ii ⊕ Si,j = Ii ⊕ Si,j′ ,

i.e., whenever Si,j = Si,j′ . As in the ideal world, the dummy values Si,j and Si,j′

are drawn randomly without replacement, the event happens with probability 0.
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Pr (BAD⋆⋆
tree). Recall that we will perform the analysis for µ = 2. Consider any

of the
(
q
3

)
choices for i1, i2, i3 and any of the (v + 1)4 choices for j1, j2, k2, k3.

The event is set if

Si1,j1 ⊕ Si2,k2
= Ii1 ⊕ Ii2 ,

Si2,j2 ⊕ Si3,k3
= Ii2 ⊕ Ii3 .

As the three queries are distinct, and the adversary never repeats queries, we
necessarily have (Ii1 , Bi1 ,Wi1 , ci1) ̸= (Ii2 , Bi2 ,Wi2 , ci2), which implies that the
first equation can only be satisfied if Bi1∥Wi1∥ci1∥j1 ̸= Bi2∥Wi2∥ci2∥k2. This
means that, necessarily, Si1,j1 ̸= Si2,k2 and the two sources of randomness in
the first equation do not cancel each other out. Likewise, the second equation
can only be satisfied if Bi2∥Wi2∥ci2∥j2 ̸= Bi3∥Wi3∥ci3∥k3, and the two sources
of randomness Si2,j2 and Si3,k3

do not cancel each other out.
Finally, we have to argue that both equations are sufficiently independent,

i.e., that neither

– Si1,j1 = Si2,j2 and Si2,k2
= Si3,k3

, nor
– Si1,j1 = Si3,k3

and Si2,k2
= Si2,j2 .

However, to the contrary, suppose one of these two conditions hold. The con-
dition particularly implies that (Bi1 ,Wi1 , ci1) = (Bi3 ,Wi3 , ci3). The condition
also implies, by addition of the two equations of the events, that Ii1 = Ii3 . This
contradicts with the condition that the queries are distinct.

Thus, there are at least three sources of randomness in the two equations
(note that, if j2 = k2, Si2,k2

= Si2,j2). The values Si,j are drawn uniformly
randomly from a set of size at least 2n − (v + 1)q elements, and thus, the two

equations are satisfied with probability at most
(

1
2n−(v+1)q

)2

.

In conclusion, the bad event is set with probability at most(
q

3

)
(v + 1)4

(
1

2n − (v + 1)q

)2

≤ (v + 1)4q3

5 · 22n
,

using that (v + 1)q ≤ 2n−6 for the inequality. (We remark that this condition is
more stringent than the “usual” ≤ 2n−1, but this more stringent condition is in
fact implied by a condition that we will need for the application of the mirror
theory anyway.)

Pr
(
BAD⋆⋆

pdinc | ¬BAD
⋆⋆
tree

)
. We have to consider any ℓ ≥ 2, but w.l.o.g., ℓ ≤ µ = 2

by negation of BAD⋆⋆
tree. Consider any of the

(
q
2

)
choices for i1, i2 and any of the(

v+1
2

)2
choices for jα, kα for α = 1, 2. The event is set if

Si1,j1 ⊕ Si2,k2 = Ii1 ⊕ Ii2 ,

Zi1,j1 ⊕ Zi1,k1 ⊕ Zi2,j2 ⊕ Zi2,k2 = 0 ,

where we recall that Zi,0 = 0n for all i by definition.
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As in the case of BAD⋆⋆
tree above, the two sources of randomness Si1,j1 and

Si2,k2
in the first equation do not cancel each other out, as the adversary never re-

peats queries. Thus, this equation is satisfied with probability at most 1
2n−(v+1)q .

For the second equation, which is independent of the first one, note that at least
one of the values j1, k1, j2, k2 is non-zero, meaning that for this index, we can
rely on the random drawing of the Z-value. The equation is set with probability
at most 1/2n.

In conclusion, the bad event is set with probability at most(
q

2

)(
v + 1

2

)2
1

2n − (v + 1)q

1

2n
≤

(
v+1
2

)2
q2

22n
,

using that (v + 1)q ≤ 2n−1 for the inequality.

Pr
(
BAD⋆⋆

cycle | ¬BAD
⋆⋆
tree

)
. We have to consider any ℓ ≥ 2, but w.l.o.g., ℓ ≤ µ = 2

by negation of BAD⋆⋆
tree. Consider any of the

(
q
2

)
choices for i1, i2 and any of the(

v+1
2

)2
choices for jα, kα for α = 1, 2. The event is set if

Si1,j1 ⊕ Si2,k2 = Ii1 ⊕ Ii2 ,

Si2,j2 ⊕ Si1,k1 = Ii1 ⊕ Ii2 .

As in the case of BAD⋆⋆
tree above, the two sources of randomness Si1,j1 and

Si2,k2
in the first equation do not cancel each other out, as the adversary never

repeats queries. The same holds for Si2,j2 and Si1,k1
in the second equation.

Finally, we have to argue that both equations are sufficiently independent,
i.e., that neither

– Si1,j1 = Si2,j2 and Si2,k2
= Si1,k1

, nor
– Si1,j1 = Si1,k1

and Si2,k2
= Si2,j2 .

The second case does not hold as j1 ̸= k1 and j2 ̸= k2. The first case would,
again contradict with the fact that the two queries are distinct.

Thus, there are four sources of randomness in the two equations. The values
Si,j are drawn uniformly randomly from a set of size at least 2n − (v + 1)q
elements, and thus, the two equations are satisfied with probability at most(

1
2n−(v+1)q

)2

.

In conclusion, the bad event is set with probability at most(
q

2

)(
v + 1

2

)2 (
1

2n − (v + 1)q

)2

≤
(
v+1
2

)2
q2

22n
,

using that (v + 1)q ≤ 2n−2 for the inequality.

Conclusion. We obtain from (24) and the individual bounds that

Pr (XRF ∈ Tbad) ≤
(v + 1)4q3

5 · 22n
+

(
v+1
2

)
q

2n
+

2
(
v+1
2

)2
q2

22n
, (25)

provided (v + 1)q ≤ 2n−6. We set δ equal to this value.
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6.5 Probability Ratio for Good Transcripts

Consider any good transcript τext. Following Theorem 3, we have to compute a

lower bound on the fraction
Pr

(
X

X̃ORP[v]π
=τext

)
Pr(XRF=τext)

. We will actually derive a lower

bound on the probability in the numerator and the actual value for the proba-
bility in the denominator, and then combine them.

For the derivation of each of the two probabilities, below, consider any
good transcript τext = {(Ii, Bi,Wi, ci, Si,0∥ · · · ∥Si,v, Zi,1∥ · · · ∥Zi,v)}qi=1. For any
B∥W∥c ∈ {0, 1}n−⌈log2(v+1)⌉, let qBWc denote the number of tuples in τext such
that Bi∥Wi∥ci = B∥W∥c. Let q′ denote the number of strings B∥W∥c for which
qBWc > 0 (i.e., q′ denotes the number of different domain separator and tweak
combinations).

Pr
(
X

X̃ORP [v]π
= τext

)
. For the computation of this probability, we have to

compute the probability that π = (π1, π2)
$←− perm(n)2 could have resulted in

the transcript. The transcript consists of two portions, namely

τ2ext = {(Bi,Wi, ci, Si,0∥ · · · ∥Si,v)}qi=1

corresponding to the evaluation of π2, and

τ1ext = {(Ri,0∥ · · · ∥Ri,v, Zi,1∥ · · · ∥Zi,v)}qi=1

corresponding to the evaluation of π1, where we recall that Ri,j of (20) is implicit
in the transcript. As for τ2ext, this sub-transcript defines exactly vq′ input-output
tuples for π2, namely (21) for all q′ different domain separator and tweak combi-
nations that occur in the transcript. There are exactly (2n − vq′)! permutations
π2 that could have yielded this sub-transcript. As for τ1ext, as the transcript is
good, this sub-transcript defines a graph on m := vq equations and p ≤ (v+1)q
unknowns (we do not need an exact value of p) that is p.d.-consistent, acyclic,
and whose largest component is of size ξmax := µv+1 = 2v+1. We can thus apply
Theorem 4 and obtain that, provided nξ2max+ξmax ≤ 2n/2 and p ≤ 2n/(12ξ2max),
there are at least

(2n)p
2nvq

solutions to the p unknowns. For any of these solutions, we have exactly (2n−p)!
permutations π1 that could have yielded any of these solutions.

We obtain that

Pr
(
X

X̃ORP [v]π
= τext

)
≥

(2n)p
2nvq (2

n − vq′)!(2n − p)!

2n!2n!
=

1

(2n)vq′(2n)vq
.

Pr (XRF = τext). For the computation of this probability, we can likewise split
the transcript into the two portions τ2ext and τ1ext, with the difference that, now,
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τ2ext is generated by randomly selecting dummy variables Si,j and τ1ext is gen-
erated through RF . The probability that the random world yields τ2ext equals
(2n)vq′ by definition of how the dummy values Si,j are generated, and the prob-
ability that RF yields τ1ext equals 1/(2

n)vq.
We obtain that

Pr (XRF = τext) =
1

(2n)vq′(2n)vq
.

Conclusion. We obtain from the individual bounds that

Pr
(
X

X̃ORP [v]π
= τext

)
Pr (XRF = τext)

≥
1

(2n)vq′ (2
n)vq

1
(2n)vq′ (2

n)vq

= 1 . (26)

We set ε = 0.

6.6 Conclusion

From the H-coefficient technique of Theorem 3, the initial steps (16) and (17)
of the proof, and from the values δ obtained in (25) and ε obtained in (26), we
obtain

Advprf

X̃ORP [v]
(A) ≤ (v + 1)4q3

5 · 22n
+

(
v+1
2

)
q

2n
+

2
(
v+1
2

)2
q2

22n
+ 2Advprp

E (A′) ,

assuming that (v + 1)q ≤ 2n−6, and nξ2max + ξmax ≤ 2n/2 and (v + 1)q ≤
2n/(12ξ2max) for ξmax := 2v + 1. These three conditions simplify to n(2v + 1)2 +
(2v + 1) ≤ 2n/2 and (2v + 1)2(v + 1)q ≤ 2n/12.

7 Conclusion

In this paper, we explored instances of the docked double decker construction
that can make efficient use of already existing hardware that speeds up the
execution of AES and GHash. We did this, so that the resulting tweakable wide
blockcipher is essentially just a mode of operation for the AES blockcipher.
In the process of designing the beyond birthday bound secure tweakable wide
blockcipher bbb-ddd -AES , we also designed an efficient beyond birthday bound

secure blockcipher based PRF called X̃ORP , which is able to process up to 2n-
bit inputs. We proved that this construction achieves around 2n/3-bit security.

Since we do not have an attack matching the bound of X̃ORP , it remains future
work to see if such an attack can be found, or if the bound can be improved.

Furthermore, we think that it is also possible to show that X̃ORP is secure
when the blockcipher call generating the masks is replaced with a finite field
multiplication of input and a key, or more generally a universal hash function.
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