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Abstract. A tweakable wide blockcipher is a construction which be-
haves in the same way as a tweakable blockcipher, with the difference
that the actual block size is flexible. Due to this feature, a tweakable
wide blockcipher can be directly used as a strong encryption scheme
that provides full diffusion when encrypting plaintexts to ciphertexts and
vice versa. Furthermore, it can be the basis of authenticated encryption
schemes fulfilling the strongest security notions. In this paper, we present
two instantiations of the docked double decker tweakable wide blockci-
pher: ddd-AES and bbb-ddd-AES. Both instances exclusively use similar
building blocks as AES-GCM (AES and finite field multiplication), are
designed for maximal parallelism, and hence, can make efficient use of
existing hardware accelerators. Moreover, bbb-ddd-AES builds upon a
novel conditionally beyond birthday bound secure pseudorandom func-
tion, a tweakable variant of the XOR of permutations, facilitating in
the need to include a tweak in the AES evaluations without sacrificing
flexibility in docked double decker. We furthermore introduce an authen-
ticated encryption mode aaa specifically tailored to be instantiated with
ddd-AES and bbb-ddd-AES, where special attentions is given to how the
nonce and associated data can be processed. We prove that this mode
is secure in the nonce-respecting setting, in the nonce-misuse setting, as
well as in the setting where random nonces are used.

Keywords: symmetric cryptography, tweakable wide blockcipher, docked
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1 Introduction

1.1 Motivation

The US NIST (National Institute of Standards and Technology) has standardized
a number of pure confidentiality modes of operation, like ECB, CBC, CFB, OFB,



and CTR in NIST SP 800-38A [11], and XTS-AES in NIST SP 800-38E [12].
Although these modes see a wide-spread use in applications, they come with
their own limitations. Most notably, none of the above-mentioned encryption
methods provides full diffusion for encryption as well as decryption if the data
to be encrypted exceeds a few blocks. This stands in sharp contrast with the fact
that for modes that just provide confidentiality, full diffusion behavior is often
a practical security benefit, since it limits the ability of an attacker to target
specific fractions of the encrypted data [3].

In addition, modern Internet- and cloud-scale data creation and process-
ing volumes being routinely measured in exabytes and approaching zettabytes,
many existing ciphers become a bottleneck and sometimes even a security risk,
because they were not designed to be used at such scale. As indicated in some
cloud service provider (CSP) comments [19,21,31], the limitations of block size
and corresponding birthday bounds, lead to many standardized mainstream ci-
phers and modes becoming too brittle when used for such large data sets. To
protect that data while complying with cipher key/nonce pair uniqueness re-
quirements and data processing volume limitations, CSPs are forced to either
employ inefficient techniques like frequent rekeying (every week or two, down to
potentially mere seconds), or use tricks like having a static nonce and rekeying
for every message.

1.2 Tweakable Wide Blockciphers

A very suitable solution, or building block for a solution to the aforementioned
problems, are tweakable wide blockciphers with beyond birthday security (e.g.
more than 264 blocks in case AES is used as a building block). Not surprisingly,
in the recent third NIST workshop on blockcipher modes of operation in 2023,
the organizers stated that “NIST is particularly interested in discussing the pos-
sibility of standardizing a tweakable wide block encryption technique that could
support a large range of input lengths.” [25].

Indeed, a tweakable wide blockcipher extends the definition of a tweakable
blockcipher [20] to arbitrarily large input and output size, this way allowing for
flexibility in the block size. Note that such a tweakable wide blockcipher also,
unlike existing modes such as ECB, CBC, CFB, OFB, CTR, and XTS-AES,
allows for full diffusion. This way, it serves as viable drop-in replacement of
these modes in many applications.

Furthermore, it can serve as the basis of an authenticated encryption scheme,
or directly as authenticated encryption scheme, by either appending the nonce
to the plaintext or putting the nonce in the tweak and appending zeros to the
plaintext to strengthen authenticity [16]. The resulting construction essentially
allows for flexibly sized tags and nonces, and has the potential to be misuse
resistant and context committing.

The remaining boxes to be ticked are performance and beyond birthday
bound security, and this brings us to our contribution.



1.3 Owur Contributions

We present two tweakable wide blockciphers, ddd-AFES and bbb-ddd-AES. Both
are based on the same components as used in many NIST standardized schemes.
Notably, both are based on the AES blockcipher [8,9], as well as on operations
in binary extension fields as used by GHash in AES-GCM [22, 34].

Both schemes are based on the docked double decker mode of Gunsing et
al. [14] (see Figure 1). Docked double decker operates on top of a universal
hash function H and a pseudorandom function F', and has the feature that it
allows to provide beyond birthday bound security assuming it is not used with
the same tweak too often. Both our instances ddd-AES and bbb-ddd-AES take
Polyval [13] as universal hash function. The choice of pseudorandom function is
different for the two constructions:

— In ddd-AES, the pseudorandom function is based on an XE-style [32] tweak-
able blockcipher, itself built on top of AES, evaluated in counter mode (see
Section 4.2). The resulting construction achieves birthday bound security;

— In bbb-ddd-AES, to accommodate for the tweak, we wished to instantiate
the pseudorandom function with a slightly compressing construction on top
of AES that achieves beyond birthday bound security. To this end, we took
the XORP construction as used in CENC [17], and extended it to include
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a tweak. In detail, this construction XORP extends XORP by /Eliluding
the tweak in an XE-style [32] manner (Section 4.3). Although XORP also
achieves birthday bound security in the general case, it achieves beyond
birthday bound 2n/3-bit security assuming it is, just like ddd, not used with
the same tweak too often. We remark that this result — the introduction
and security analysis of XORP as a “tweakable PRF” — is of independent
interest.

On top of this, we also introduce an authenticated encryption mode aaa
that is specifically designed to work well when instantiated with ddd-AFES and
bbb-ddd-AES (see Section 7). The design is inspired by the idea [16] to concate-
nate 7 zeros to the plaintext before encrypting, but we significantly extended this
idea to (i) capture associated data and (ii) to accommodate for nonces that could
be larger than the limited tweak size of ddd-AES and bbb-ddd-AES. We prove
that the aaa mode is secure in the nonce-respecting setting, in the nonce-misuse
setting, as well as in the setting where random nonces are used.

1.4 Outline

We first discuss some preliminaries in Section 2. The docked double decker con-
struction of Gunsing et al. [14] is recalled in Section 3. We specify ddd-AES
and bbb-ddd-AES in Section 4, with the description of Polyval (as used in both
ddd-AES and bbb-ddd-AES) in Section 4.1, the description of the pseudorandom
function used in ddd-AES in Section 4.2, and the description of the pseudoran-
dom function used in bbb-ddd-AES in Section 4.3. The security of ddd-AES and



bbb-ddd-AES is analyzed in Section 5, with the security proof of XORP, which
is of independent interest, in Section 6. We present the application of our scheme
to authenticated encryption in Section 7. We conclude in Section 8.

2 Preliminaries

For n € N, {0,1}" denotes the set of bit strings of length n, and {0,1}* =

& 5{0,1}™ denotes the set of bit strings of arbitrary length. For a bit string
X € {0,1}" and for m € N such that m < n, we denote by left,, (X) the leftmost
m bits of X and by right,, (X) the rightmost m bits of X. For a finite set S, we
denote by s <~ S the uniform random selection of s from S. For n,p € N, we
denote by (n), =n(n—1)---(n — p+ 1) the falling factorial.

2.1 Tweakable Wide Blockciphers

Our tweakable wide blockciphers will be parameterized by a value n € N. This
will also be called the block size. They will require plaintexts of size at least
2n bits. Our tweakable wide blockciphers will also be parameterized by a key
size k € N and a tweak size w € N. Finally, to formally argue security, we also
limit the maximum size of an input plaintext or output ciphertext to some value
lmax € N such that £, > 2n. We define the plaintext and ciphertext space to

linax

S:=J{o,1}". (1)

i=2n

A tweakable wide blockcipher TWBC : {0,1}" x {0,1}* x § — § is a family of
permutations on S indexed by key K € {0,1}" and tweak W € {0,1}". In other
words, TWBC satisfies the property that for fixed K € {0,1}" and W € {0,1}%,

TWBC k.w(-) :== TWBC(K, W, ")

is a length-preserving bijection. Its inverse for fixed K and W is denoted by
TWBC 'y

Define by perm(w,2n : £yax) the family of all length-preserving bijections
on S of (1). The security of a tweakable wide blockcipher TWBC' is defined by
how hard it is for an adversary A to distinguish TWBC g for a random and
secret key K < {0,1}" from a tweakable wide random permutation TWRP &
perm(w, 2n : iyax):

AdviE(A) = |Pr (ATVECK = 1) — Pr (ATVRP = 1)] | (2)

where the probabilities are taken over K < {0,1}*, TWRP & perm(w, 2n :
lmax), and the random coins of A. The adversary is typically bounded by a
certain number of queries ¢, and a total data complexity o that counts the total
amount of output data bits. Here, we remark that the amount of input data bits



equals the amount of output data bits plus the tweak, the latter of which is of
fixed size for each of the ¢ queries. The adversary is also bounded by a certain
amount of time in which it can make offline evaluations, but this time is not
explicitly included.

2.2 Pseudorandom Permutations

A blockcipher E : {0,1}" x {0,1}" — {0,1}" is a family of permutations on
{0,1}" indexed by key K € {0,1}". We denote Ex(-) = E(K,-), and its inverse
for fixed K is denoted by E'}zl.

Define by perm(n) the family of all bijections on {0,1}"™. The security of a
blockcipher F is defined by how hard it is for an adversary A to distinguish
Ex for a random and secret key K < {0,1}* from a random permutation

RP & perm(n):
AdvhP(A) = [Pr (AP =1) - Pr (A" =1)] , (3)

where the probabilities are taken over K < {0,1}", RP < perm(n), and the
random coins of 4. The adversary is typically bounded by a certain number of
queries ¢g. Note that each query is of fixed size n bits.

2.3 Pseudorandom Functions

Let a,b € NU {*}. A pseudorandom function F : {0,1}* x {0,1}* — {0,1}®
is a family of functions from {0,1}* to {0, 1}’ indexed by key K € {0,1}*. We
denote Fg(-) = F(K,-).

Define by func(a,b) the family of all functions from {0,1}% to {0,1}*. The
security of a pseudorandom function F' is defined by how hard it is for an ad-
versary A to distinguish Fx for a random and secret key K & {0,1}" from a

random function RF < func(a, b):
AdvR(A) = [Pr (ATF = 1) — Pr (A"F =1)], (4)

where the probabilities are taken over K < {0,1}*, RF < func(a,b) (lazily-
sampled), and the random coins of A. The adversary is typically bounded by a
certain number of queries ¢, and a total output data complexity o that counts
the total amount of output data bits. Here, we remark that we will always use
F on fixed input size and on varying output size.

In our case, the input to the function F' may consist of a comma-separated
list of multiple inputs. To be precise, we will use a function F' that operates on a
k-bit key K, an n-bit input I, a domain separator nibble B, and a w-bit tweak
that produces a variable length output O:

F(K,I,B,W)=0.

The function F internally concatenates I, B, and W.



2.4 Universal Hash Functions

Let a,b € NU {x}. A family of hash functions H : {0,1}* x {0,1}* — {0,1}"
is called e-XOR-universal if for any two distinct X, X’ € {0,1}% and any Y €
{0,1},

Pr(HK,X)®HK,X')=Y) <k,

where the probability is taken over K <~ {0,1}*. It is called e-universal if this
condition holds for ¥ = (0°.

3 Docked Double Decker

Let &, w,n, bmax, Mmax € N such that 2n < £y and Mpax = [lmax/n]. In this
paper, we propose instantiations of the docked double decker (ddd) of Gunsing et
al. [14]. The scheme is depicted in Figure 1. It gets as input two keys K € {0, 1},
and L € {0,1}", a tweak W € {0,1}", and a plaintext P € S of size at least 2n
bits and at most £y« bits (see (1)). The plaintext P is parsed as P = T||U||V,
where T and V are both n-bit long. Then, a four-round structure based on two
independent instances of a pseudorandom function Fy : {0, 1}"F4+w — {0, 1}*
and two instances of a universal hash function Hy, : {0,1}* — {0,1}" is evaluated
to obtain the ciphertext C' = X||Y||Z, where X and Z are n-bit long and Y
matches the size of U. We denote this as

dddie T (W, TI|U||V) = X|[Y | Z. ()

We remark that we have slightly deviated from the specification of Gunsing
et al. [14] in the sense that we do not use two different keys for F' but rather
use domain separation. However, their analysis directly carries over. In detail,
Gunsing et al. [14] proved security under the assumption that the function F is a
pseudorandom function (PRF) and H a blinded keyed hash function. An XOR-
universal hash function is a specific type of blinded keyed hash function, and we
will adopt a simplification of their result to XOR-universal hash functions.

Theorem 1 (Gunsing et al. [14, Theorem 1]). Consider the docked dou-
ble decker construction ddd on top of a pseudorandom function F : {0,1}" x
{0,1}+4+w — 10,1}* and an e-XOR-universal hash function family H : {0,1}"x
{0,1}* — {0,1}"™. For any adversary A making at most q queries, each of size
at least 2n and at most L.y bits, and in total of size at most o bits, and where
qw s the number of queries made for tweak W € {0,1}", we have

Wpr T q 1
AdvTPP(A) < AdvET(A') + Z < ;V) . (26 + 22n> ,
we{0,1}w

for some adversary A with a total query complexity ¢ = 2q and a total data
complexity o' = o bits.
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Fig. 1: The docked double decker construction.

We remark that A’ in fact makes g queries whose output is of size n bits, and
q queries whose output is of arbitrary size but that add up to o — qn bits.
We furthermore highlight the fact that the result of Gunsing et al. guarantees
beyond birthday bound security in case (i) the number of reuses per tweak is
limited, and (ii) F' achieves beyond birthday bound security at least as long as
the number of reuses per tweak is limited.

4 Specification of ddd-AES and bbb-ddd-AES

We will describe how we suggest to instantiate ddd using AES to obtain a birth-
day bound secure ddd-AES and a beyond birthday bound secure bbb-ddd-AES
(if the number of tweak reuses is limited). For both of them, we suggest the same
instantiation of H, as described in Section 4.1. The main bottleneck, however,
will be the design of F', which gets an input of size n + 4 4+ w bits and should
operate on top of AES with a block size of n = 128 bits. We will assume that
4 4+ w < n. The instantiation of F' for ddd-AFES, including rationale, is given in
Section 4.2. The instantiation of F' for bbb-ddd-AES, again including rationale,
is given in Section 4.3.



4.1 Instantiation of H

Due to the addition of carry-less multiplication instructions on modern CPUs,
instances for Hy, based on polynomial evaluation are a viable option. Hence, we
decided to instantiate Hj, using Polyval [13]. On input of a key L and a list of
s field elements I;, all elements of Foas[z] /(228 4+ 2127 4+ 2126 4 2121 1 1), it is
defined as

Polyval (I, Iz, ..., 1) = Z (Ls—i+1 ;- x—lzs.(s_iﬂ)) ’ (6)

i=1

We will use it for arbitrary-length bit strings, always of length at most ¢y,,x — 7
bits. To process such string using Polyval; , it is first 0-padded to the first multi-
ple of n bits. Then, an n-bit string encoding the bit length of I is appended. The
resulting bit string then represents I|| Iz - - - || Is, noting that we can uniquely
map elements from this field to bit strings in {0, 1}2%. Particularly, in our case,
s < Mmax, and for this case, Polyval is an e-XOR-~universal hash function with
€ = Mmax/2" [13, Lemma 3].

4.2 Instantiation of F' for ddd-AES

We realize F by turning the AES-128 blockcipher Ex into an XE-style [32]
tweakable blockcipher, where B and W function as tweak, and plugging this
tweakable blockcipher into counter mode to obtain a keystream of arbitrary
length. Note that the XE-style is sufficient as opposed to the XEX-style, as the
primitive is never evaluated in inverse direction.

In detail, we define Fg : {0, 1} 4% — {0,1}* as

Fx(I,B,W) = |Ex(I®2°S)|Ex(I®2'S)]...

|Ex (I @®2mm"19)]

‘gxnax ’

(7)

where S = Ex(B|W) serves as tweak-dependent subkey. In this case, we can
support a tweak with a length of w = 124 bits. The keylength x depends on the
actual instance chosen for AES [8,9].

4.3 Instantiation of F' for bbb-ddd-AES

To realize a function F that achieves beyond birthday bound security (in case of
limited tweak reuse, cf., comment below Theorem 1), we extend the XORP[v] [18]
that underlies CENC [17] to include a tweak.

Our tweak inclusion will be similar to the XE-style approach, albeit with
counter included in the subkey. In detail, we assume F' to have two keys instead
of one, K = K;||Ky € {0,1}?%, and we consider the following approach for the
subkey computation:

Sj = Ere, (B|[Wlie[lj) (8)



where j will function as “inner counter” in the evaluation of F' and ¢ as “outer
counter” for the mode employing F'.

We subsequently define XORP[v] for v € N on top of a blockcipher E :
{0,1}* x {0,1}" — {0,1}" as

XORP[]E(I, B,W,c) =(Ex,(I® So) @ Ex, (I ® S1))] ...
o (Br,(I ® S0) ® Ex,(I ®5Sy))- (9)

This construction is depicted in Figure 2. This approach leaves us with n — 4

S+ S+ SovD S,

Ex, Eg, | Ey, Ey,
v v
Z1 Zv

Fig.2: The X/O\]_%/P[v] construction. Here, S; = Eg, (B||W||c||j) of (8). The pa-
rameters R; will be used of the proof of Theorem 2 in Section 6.

bits that can be distributed between the outer counter ¢, the inner counter j,
and the tweak W. In case of AES, where n = 128, we suggest to use 28 bits split
between the counters ¢ and j, where j occupies [log,(v + 1)] < 28 bits and ¢
gets 28 — [log, (v + 1)] bits of space. This leaves room for a (w = 96)-bit tweak.

We finally define Fg : {0,1}"™*+% — {0,1}* as counter mode on top of

XORP [v] truncated to the required length:

5 Security of ddd-AES and bbb-ddd-AES

We will discuss the security of ddd-AFES and bbb-ddd-AES in the security model
of Section 2.1. Both security analyses have in common that they rely on the
XOR-universality of H, which is already briefly stated in Section 4.1, but which
we formally repeat here for convenience.



Lemma 1 (Gueron et al. [13, Lemma 3]). The universal hash function
Polyval of (6) is e-XOR-universal with € = Myax /2.

Security of ddd-AES is now treated in Section 5.1 and security of bbb-ddd-AES
in Section 5.2.

5.1 Security of ddd-AES

The ddd-AES scheme is based on the XE construction that operates on a block-
cipher F : {0,1}" x {0,1}" — {0, 1}™

XER(I,B,W,j) = Ex(I ® 2 Ex(B|W)). (11)

Rogaway [32] proved that this XE construction* behaves like a random tweakable
permutation as long as the total number of evaluations g satisfies 4.5¢%/2" and
as long as E is PRP-secure after at most ¢ queries. However, we will rather use
the XE construction as a PRF, and looking at the proof of [32, Theorem 1],
which can be found in the full version [33, Appendix B|, it first proves XF to
be PRF-secure and then as last step makes an RF-to-(T)RP switch at the cost
of 0.5¢2/2™. We will require PRF-security of the XFE construction, thus allowing
us to use a slightly tighter bound.

Lemma 2 (Rogaway [32, Theorem 1]). Consider the construction XE of
(11) on top of a pseudorandom permutation E : {0,1}* x {0,1}™ — {0,1}". For
any adversary A making at most q queries, each of output size n bits, we have
prf prp/ g/ 4(]2
AdVXE(A) S AdVE (A ) + 27 5
for some adversary A" with a total query complexity ¢ = 2q.

The security of ddd-AES is now a direct corollary of Theorem 1, Lemma 1,

and Lemma 2, the only work actually being the data complexity translation
from bits queried in ddd-AES to actual evaluations of the underlying AES. To
be precise, in ddd the underlying F' is evaluated 2q times with a total output
data complexity of o bits. These amount to at most [o/n] evaluations of XE of
(11).
Corollary 1. Consider ddd-AES, the docked double decker construction ddd on
top of Polyval : {0,1}" x {0,1}* — {0,1}"™ and AES : {0,1}"x{0,1}" — {0,1}"
through XE of (11). For any adversary A making at most q queries, each of size
at least 2n and at most £yax bits, and in total of size at most o bits, we have

2
AdvTPP - (A) < AdVRP(A) + 74(%2/;11)

qw 27nmax 1
+ Z (2)< n +22n>’

we{o,1}w

for some adversary A" with a total query complexity ¢’ = 2[o/n], and where qw
is the number of queries made for tweak W € {0,1}™.

4 A small change is in the split of the nonce into B and W, and in the fact that the
subkey Ex (B||W) is multiplied only by 27.

10



5.2 Security of bbb-ddd-AES

We will consider the security of the bbb-ddd-AES scheme. However, this analysis
is not as simple as that of ddd-AES of Section 5.1. The reason for this is that

bbb-ddd-AES is based on a new pseudorandom function design, namely m[v]
of (9). Thus, we first have to analyze the PRF-security of XORP[v].

Theorem 2. Let v € N. Consider the construction )m[v] of (9) on top of a
pseudorandom permutation E : {0,1}* x {0,1}"* — {0,1}". For any adversary
A making at most q queries, each of output size vn bits, and where qgw. is the
number of queries made for tweak B||W||c € {0, 1}~ Mo82(v+D1 e have

prf prp /
Adv)@f}?[v] (A) < 2AdvP(A")

2("3") ¢
on 5. 22n + on + 22n !

v+1
s <q32m> 20+ 1) (w+ Dt (")
BWe

for some adversary A’ with a total query complexity ¢ = (v + 1)q, where we
assume that n(2v 4+ 1) + (20 4+ 1) < 2"/2 and (2v +1)?(v + 1)g < 2"/12.

The proof of Theorem 2 is technically involved, and is given in Section 6.

The security of bbb-ddd-AES is now a direct corollary of Theorem 1, Lemma 1,
and Theorem 2, the only work actually being the data complexity translation
from bits queried in bbb-ddd-AES to actual evaluations of the underlying AES.

Consider a single evaluation of bbb-ddd-AES on input of ¢; bits and m; =
[¢;/n] blocks. One evaluation of F is for 1 n-bit output block: it makes 1 evalu-

ation of XORP[v] that costs 2 calls to each blockcipher. One evaluation of F is

for m; — 1 n-bit output blocks: it makes [(m; — 1)/v] evaluations of XORP [v]
that cost at most (v + 1)[(m; — 1)/v] calls to each blockcipher. Summing over
all g queries, bbb-ddd-AES incurs

i({miv_ﬂ+1> S%fd/n1+v+lq=:qz (12)

v
i=1

evaluations of XORP[v] with a total amount of at most

S (w+n [t 2] < o+ 2 — )

i=1

calls to each blockcipher, where we used that Zle {; < o and thus Z?zl m; <

[o/n] +q.
Finally, we remark that

3 <qB2Wc> <2 ¥ <q;v>’

BWe Wwe{o,1}w

and we will use this observation to slightly simplify the bound further.

11



Corollary 2. Consider bbb-ddd-AES, the docked double decker construction
ddd on top of Polyval : {0,1}*x{0,1}* — {0,1}" and AES : {0,1}" x{0,1}" —
{0,1}™ through XORP of (9). Let v € N and let q, and q. be as in (12) and
(13). For any adversary A making at most q queries, each of size at least 2n and
at most Lyax bits (equivalent to muyax n-bit blocks), and in total of size at most
o bits, and where qw is the number of queries made for tweak W € {0,1}", we
have

) 2
wor . + 1 4.3 v+1 - ) v+1 g
AdviyPh s (A) < 2AdVEP(A) + (r1rg (73 )a + (5 ) a
5. 2271 on 22n
qw 4(v+1)%  2Mmpax 1
s () (A Ry ),

we{o,1}w

for some adversary A" with a total query complexity ¢ = q., where we assume
that n(2v +1)2 + (2v + 1) < 2"/2 and (2v 4+ 1)?(v + 1)g, < 27/12.

6 Proof of Theorem 2

The XORP|[v] construction was introduced by Iwata [17] and proven to achieve
2n/3-bit security.® Later, Iwata et al. [18] demonstrated that n—log,(w) security
was achieved using the mirror theory [23,24,27,29,30], and Bhattacharya and
Nandi [5] proved a similar bound using the x? technique [10]. Very recently,
a concise proof of the mirror theory (for a very large limit on the maximum
component size) was delivered [7] and the authors also applied it to XORPv].
In fact, this mirror theory result considers sums of permutations, where each
sum can be defined as an edge in a graph between two vertices, and where it is
required that there is no circle in the graph and no too large tree. For XORP[v]
this is the case: each evaluation of XORP[v] defines v edges over v + 1 vertices
that form a tree, basically even a star, and different evaluations of XORP[v] are
disconnected. Thus, XORP[v] is a fairly simple application of this main mirror
theory result.

It turns out that the exact same mirror theory result can also be used to

argue security of X/O\]_%/P [v], but the application is a bit more subtle. The reason

is that, in our case, again any evaluation of XORP[v] defines a star on v edges
over v + 1 vertices (basically as the masking values S; of (1) are different for
j =1,...,v) but any two different stars may collide and they may collide in
(v + 1)? ways. Excluding any such collision would force us into birthday bound
security, but there is no need to exclude such collisions as any such collision
merely implies a maximum tree size up to 2v + 1 elements. In general, as long
as there is no too large tree of stars, the maximum component is still “small
enough” for the mirror theory result of [7] to apply.

5 A variant of XORP [v] based on a public permutation was introduced and analyzed
by Bhattacharjee et al. [4].
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This will also be the main proof strategy: in a nutshell, we will demonstrate
that (i) there is no too large tree of stars except with a small probability, (ii)
there is no cycle of stars except with a small probability, and (iii) the mirror
theory of [7] can be applied akin to the example of [7, Section 4.2], with the
maximum component size roughly v times the largest tree of stars.

To do this rigorously, we first need to introduce additional notation in Sec-
tion 6.1. A proof overview is given in Section 6.2, with the definition of bad tran-
scripts in Section 6.3, and probability analyses in Section 6.4 and Section 6.5.
The proof is concluded in Section 6.6.

6.1 Additional Notation

Patarin’s H-Coefficient Technique. Consider any two oracles O and P, and a
deterministic adversary A that has query access to either of these oracles, and
write

Adv(A) = |Pr(A° =1) - Pr (4" =1)] . (14)

The adversary can make g queries, and its communication with its oracle is
recorded in a transcript 7. Denote by X the probability distribution of tran-
scripts in interaction with O, and similarly Xp the probability distribution of
transcripts in interaction with P. A transcript 7 is called attainable if Pr (Xp = 7) >
0, and we denote by T the set of all attainable transcripts.

Patarin’s H-coefficient technique [6,26,28] states the following:

Theorem 3 (H-coefficient technique). Let d,¢ € [0,1]. Consider a partition
T = Toad U Tgood Of the set of attainable transcripts such that

- Pr (X'P S %ad) S 5;
Pr(Xo =71)
Pr (Xp = ’7')

Then, the distinguishing advantage of (14) satisfies Adv(A) < § +e.

— for all 7 € Tgood, >1—e.

Mirror Theory. Patarin’s mirror theory [23,24,27,29,30] can be used to prove
close to optimal security of constructions that can be described as the sum of per-
mutations, or bijections. We adopt the notation and result of Cogliati et al. [7],
be it in their graph representation rather than in their matrix representation.

Let m, p € N. Consider p distinct n-bit unknowns {X7,..., X,}. A system of
m difference equations over these unknowns is defined as

Xal @ Xbl - >\1 )
: (15)
X D Xbm = A\ R

am

where a;,b; € {1,...,p} (a; #b; for all i) and \; € {0,1}" for i =1,...,m. We
associate a graph G = (V, &) to this system of equations, where the unknowns
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are represented by vertices V = {X1,...,X,,} and equations by edges £, where
X, <25 Xy, if (a,b,\) = (as, bi, \;) for some i € {1,...,m}.

The graph is called p.d.-consistent (pairwise distinct consistent) if there is
no path whose labels \; sum to 0. In addition, the graph is called acyclic if it is
cycle-free. Finally, for a graph G, we define the maximum component size, i.e.,
the size of the largest component, by &,.x vertices. The mirror theory result of
Cogliati et al. [7] states the following:

Theorem 4 (Mirror theory). Consider a graph G = (V,&) that is p.d.-
consistent, acyclic, and whose largest component is at most of size Eqnax- AS
long as n€2, + Emax < 2% and p < 27 /(12€2,..), the number of solutions for

max max

V such that the equations of £ are satisfied is at least
(2")p

gnm °

6.2 Proof Overview

Let K = KKy < {0,1}2". We consider an adversary A that makes ¢ queries

—_~—

to either XORP[v]E of (9) on top of a pseudorandom permutation E : {0, 1}* x
{0,1}™ — {0,1}™, or to a random function RF with the same domain and range

of XORP[v]%, and it aims to distinguish them:

v ()= )Pr (,atX/O\fﬁ’ME =1) = Pr (A% = 1)‘ . (0)

It makes at most gy, queries per tweak B||W||c € {0, 1}~ egz(v+1)],
As a first step, we replace the blockcipher evaluations Ex,, Ex, by random
permutations 7y, o & perm(n), respectively. These serve as key in the construc-

tion, and we abuse notation and denote it by XORP [v]r for m = (71, m2). We

have
prf XORP]= _ 1) _ RF _ prp A/
AdVIE () <|Pr(4 = 1) = Pr (4™ = 1)| + 24dvjP(A),

(17)

v

for some adversary A’ with a total query complexity ¢’ = (v + 1)g.

—~—

Transcripts. The adversary A makes ¢ queries to its construction (either XORP[v]
or RF) and these are summarized in a transcript

T = {(L’;Bz‘, Wi, ¢, Zz',1|| s ||Zi,v) 321 .

Without loss of generality, we assume that (I;, B;, Wi, ¢;) # (I, By, Wir,cir)
whenever i # i’
Note that in the real world, there are additional values related to the evalu-

ation of XORP [v] %, namely

Sij = ma(BilWilleill7) (18)
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forie {1,...,q} and j € {0,1,...,v}. We extend the transcript by adding those
values:

Text = { (i, Bis Wi, ¢, Sioll -+ - |Si,00 Zin

- 1 Ziw) s - (19)

In the ideal world, the values S;; will be dummy values sampled uniformly
without replacement whenever the value B;||W;||¢;||7 is different (simply said, in
the ideal world we will also use w3 to draw those values S; ;).

Finally, we write for i € {1,...,q} and j € {0,1,...,w}:

Riyj = Iz D Si,j . (20)
These values are implicit in the extended transcript 7Text.

Meaning of Transcripts. In the real world, each transcript tuple (I;, B;, W;, ¢;,
Sioll -+ 1Siws Ziall - - | Ziw) € Text basically consists of two portions.
Firstly, there are the v + 1 distinct evaluations of w3 of the form (18):

m2(Bi[|Willci[|0) = Sio,
(21)
ma(Bil|Willei|lv) = Si.v -

If two queries 4,7’ € {1,...,q} are made for the same tweak B;|W;|c; =
B/ ||Wi||cir, these v+ 1 evaluations coincide; otherwise they are all distinct.

Secondly, there is the relation between the values R; ; (implicitly defined by
the transcript as (20)) and the values Z; ;, which corresponds to v equations
over v + 1 unknowns (note, here, the outputs of the function m; are regarded as
unknowns):

m1(Rio) ®mi(Ri1) = Zia,
: (22)
m1(Rio) ® m1(Riw) = Ziy -

In graph-speak, these form a star with v edges, as R; ; # R; j» whenever j # j'.
As a matter of fact, if we were not considering XORP[v] but rather XORP|v],
the g tuples in 7oyt together form a forest of ¢ stars with v edges. In the case

of XORPv], however, cross-star collisions may occur, turning two or more stars
into a tree or even a cycle. See also the explanation in Figure 3. We will thus
define a neat ensemble of bad events to avoid cycles and too large trees.

6.3 Bad Transcripts

We will define bad events that would make the mirror theory inapplicable. Intu-
itively, we have to assure that (i) within stars, the system of difference equations
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Fig.3: Graph structure representing the evaluations of )?5}53[@] Here, each

evaluation of XORP[v] defines a star (solid edges), but these stars may be con-
nected to each other in case, e.g., R19 = Rz 3 and Ry, = R32 (dashed circle
around them, meaning that they represent a single vertex).

is p.d.-consistent and acyclic, and (ii) among stars, the system of difference equa-
tions is p.d.-consistent and acyclic too. In addition, (iii) we require that there
is no too large tree of stars, the reason being that any tree of u stars basically
results in a component in the graph of size exactly p(v+1) —p+1=pv+1
vertices (assuming no cycles, of course).

In detail, for the case of problems within isolated stars, case (i) of above
paragraph, the mirror theory is inapplicable if a transcript in 7.y satisfies one
of the following events:

BAD, yin. There exist i € {1,...,¢} and j € {1,...,v}, such that Z; ; = 0", or
i€ {l,...,q} and distinct j,j" € {1,...,v}, such that Z; ; = Z; j/;

BAD{,. There exist i € {1,...,q} and distinct j,j" € {0,...,v}, such that

Rij = Rij.

We note that the index sets for j, j' are not a typo: for Z; ;, j,7’ run from 1 to
v, whereas for R; ;, j,j’ run from 0 to v. Note that any star contains paths of
length 1 and length 2 only, and BAD;dinc covers p.d.-inconsistencies over any of
those paths. Event BADY . will be used to excludes cycles, both of length 1 (if

cycle

j or j’ equals 0) and of length 2 (if both j and j' are unequal to 0).
For the case of problems among stars, case (ii) of above paragraph, these two
events generalize as follows:

BAD’F::jinc There exist £ > 2, distinct i1, ...,i¢ € {1,..., ¢}, and distinct j,, ko €
{0,...,v} for each « € {1,..., £}, such that

=1 _
Vooi @ Ri . =R

Tat+1,Kat1 )

and

¢
> (Zia,ja ® Zz'mka) =0,
a=1

where Z; o = 0" for all ¢ by definition;
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BAD{ . There exist £ > 2, distinct i1, ...,i¢ € {1,...,q}, and distinct jo, ko €
{0,...,v} for each @ € {1,..., ¢}, such that
Vo1 : Rinju =R

Tat1Kat1
where (ig41, ker1) = (i1, k1) by definition.

Event BAD;;”C considers the case that there is a path of ¢ distinct stars and
considers all vertex paths that are included within this path of stars. Note that
for any such path, for any individual inner star (so « = 2,...,¢ — 1) the vertex
path cannot traverse freely but has to traverse from R;_ ;. to R;_ 1., adding
exactly Z;_ ;. ® Z;, k., to the checksum, noting that Z; o = 0™ by definition. For
the outer stars, so @ = 1,¢, it may or may not traverse further to any R;, &,
or R;, ;. respectively, again adding exactly Z;, ;, ® Z;, k., to the checksum.
Likewise, event BADZ. considers the case that there is a cycle over ¢ distinct
stars. Note that for both events, the condition that j, # k. is reasonable to
make: in case of equality, there would have been a shorter path or cycle without
equality at the ath indices; in case of equality for all indices, both bad events
would become meaningless.

Finally, there is the case of a too large tree of stars, case (iii) of above para-
graph. Basically, we have to define any threshold p € N and state the event that
there is a tree that connects p+ 1 stars. This is quite cumbersome to define. On
the other hand, looking ahead, we will only be able to bound the probability of
this event to occur for p = 2. In this case, the event is more straightforward to

define (as a tree of 3 stars is necessarily a path of 3 stars):

BAD; . There exist distinct 41,142,435 € {1,...,q} and ji, jo, ko, k3 € {0,...,v}

(with no further distinctness condition), such that
Ri, jy = Ris ks s
Ri2,j2 = Ri37k3 :

Bad event BAD, differs from BAD.j,,. and BADZ . in that there is no dis-

tree
tinctness condition on the values j,, ko. After all, BAD; %, is meant to capture,
basically to upper bound, the size of the largest component in the graph. To de-
rive this bound, all that matters is to figure out the maximum number of stars
that are connected, and it is irrelevant how they are connected.

We write

BAD = BAD’ g, VV BADZ,¢c V BAD? . V BADY ., V BAD %, . (23)

6.4 Probability of Bad Transcripts

Following Theorem 3, we have to upper bound the probability that a bad tran-
script occurs in the ideal world, i.e., for RF. By basic probability theory,

Pr (Xpr € Toad) < Pr (BAD} ) + Pr (BADS ) + Pr (BAD}%.)

pdinc cycle

+Pr (BAD}c | “BAD%,) + Pr (BAD/., | ~BAD;~.) -

tree cycle tree

(24)
We investigate the probabilities separately.
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Pr (BAD?i,.). The event is set whenever Z; ; = 0 for some i, j (vq choices) or
whenever Z; ; = Z; j» for some 4, j, j' with j # j' ((3)q choices). As the values
Z;,; are uniformly randomly generated, this bad event happens with probability

at most

2n 2

(g _ (5

(As a matter of fact, the derivation and bound are identical to that of [7, Section
4.2] with the difference that they bound (3) to v?/2.)

Pr (BAD* ) The event is set whenever R; ; = R; j/ for some 4, j, j' with j # j'.

cycle
However, from (20), we see that this happens whenever

Li®Si;=1;® S,

i.e., whenever S; ; = 5; j. As in the ideal world, the dummy values S; ; and .S; j
are drawn randomly without replacement, the event happens with probability 0.
Pr (BAD;:.). Recall that we will perform the analysis for u = 2. Consider any
of the (g) choices for iy,is,43 and any of the (v + 1)* choices for ji, jo, k2, k3.
The event is set if

Sir gy ® Sigky = Liy © Ly,
Siz,jz D Sia,kz = Iiz 2] Iig .

As the three queries are distinct, and the adversary never repeats queries, we
necessarily have (I;,, Bi,, Wi,,¢i,) # (Li,, Biy, Wiy, ¢i,), which implies that the
first equation can only be satisfied if B;, ||W, ||ci, [l71 # Biy||Wi, || iy || k2. This
means that, necessarily, S, j, # Si, .k, and the two sources of randomness in
the first equation do not cancel each other out. Likewise, the second equation
can only be satisfied if By, ||[Wi,llci, |72 # Bis |Wisllcis ||ks, and the two sources
of randomness S;, j, and S;, r, do not cancel each other out.

Finally, we have to argue that both equations are sufficiently independent,
i.e., that neither

- Silajl = Si27j2 and Simkz = Sis,ksv nor
- Siujl - Si37k3 and Simkz - Simjz'

Suppose, to the contrary, that one of these two conditions holds. The condi-
tion particularly implies that (B;,, Wi, ¢i,) = (Big, Wis, iy )- The condition also
implies, by addition of the two equations of the event, that I;, = I;,. This
contradicts with the condition that the queries are distinct.

Thus, there are at least three sources of randomness in the two equations
(note that, if jo = ko, Si, ks = Si,,j,). The values S; ; are drawn uniformly
randomly from a set of size at least 2™ — (v + 1)g elements, and thus, the two

equations are satisfied with probability at most (m) .
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In conclusion, the bad event is set with probability at most

@) ey (2” - (i + 1)(1)2 = (U5+. ;giqg ’

using that (v + 1)g < 2"~ for the inequality. (We remark that this condition is
more stringent than the “usual” < 2"~!, but this more stringent condition is in
fact implied by a condition that we will need for the application of the mirror
theory anyway.)

Pr (BAD;gmc | jB'A‘D:(:((ee
*x

tree*

). We have to consider any £ > 2, but w.l.o.g., { < u =2

q
2

(”;1)2 choices for ju, ko for a = 1,2. The event is set if

by negation of BAD Consider any of the ( ) choices for 41,49 and any of the

Sihjl S5 Si27k'2 = Ii1 S Iiz y
Zille ® Zil,kl D Zi27j2 D Zi27k2 =0,

where we recall that Z; o = 0" for all ¢ by definition.

As in the case of BAD;, above, the two sources of randomness S;, ;, and
Si, ko in the first equation do not cancel each other out, as the adversary never re-
peats queries. Thus, this equation is satisfied with probability at most m
For the second equation, which is independent of the first one, note that at least
one of the values j1, k1, j2, k2 is non-zero, meaning that for this index, we can
rely on the random drawing of the Z-value. The equation is set with probability
at most 1/2™.

In conclusion, the bad event is set with probability at most

) 2
q\ (v+1)° 1 1 _ ()
2)\ 2 ) 27— (vt l)g2r = 220

using that (v+ 1)g < 277! for the inequality.

Pr (BAD}. | -BAD;;;

cycle tree
*x
tree*

), We have to consider any ¢ > 2, but w.l.o.g., £ < =2

Consider any of the () choices for i1, i and any of the

2
(UJ;) choices for j,, ko for a = 1,2. The event is set if

by negation of BAD

Sirgr ® Sig ks = Liy & Ly,
Siz,jz ©® Sil,kl = Ii1 D Ii2 .

As in the case of BAD;, above, the two sources of randomness S;, j, and S;, ,
in the first equation do not cancel each other out, as the adversary never repeats
queries. The same holds for S;, ;, and S;, , in the second equation.

For the rest, we make a distinction between whether the two queries i1, io
are selected to have the same tweaks (B;,, W;,, ¢;,) = (Bi,, Wiy, ¢i,) Or not.
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— Clearly, if they have the same tweaks, then it is plausible that S;, ;, =
Siy .5, and Si, k, = Si, &, , which means that the two equations of the event
are identical. That equation, w.l.o.g., the first one, still has two sources of
randomness, which are the values S;; that are drawn uniformly randomly
from a set of size at least 2" — (v + 1)q elements. The two equations are
then satisfied with probability at most m. Note that in this case the
choice of j3 and k; is redundant, we just consider any of the (v + 1)? choices
for ji, ko;

— On the other hand, assume that the two queries i1, 45 have distinct tweaks
(Biy, Wiy, ¢iy) # (Biy, Wiy, ¢iy). We have to argue that both equations are
sufficiently independent, i.e., that neither

(] Sily]'l = Si2’j2 and Si2,k2 = Si17k17 nor

d Sihjl = Piy,ka and Siz,kz = Si27j2'
The first condition cannot hold by the condition that the tweaks are distinct.
The second condition cannot hold in the first place as j; # k1 and jo # ko.
Thus, there are four sources of randomness in the two equations. The values
S;,; are drawn uniformly randomly from a set of size at least 2" — (v + 1)g
elements, and thus, the two equations are satisfied with probability at most

2
1
(2"L7(v+1)q> '
In conclusion, the bad event is set with probability at most
2 2 2
Z dBWe (v+1) (¢ v+l 1
s\ 2 27— (v+1)g 2 2 27 — (v+1)g

o5 (T deptt (B

an 22n
BWe

using that (v + 1)g < 2772 for the inequality.

Conclusion. We obtain from (24) and the individual bounds that

2
gewe\ 2w +1)%  (v+1)%3 (U;I)q Q(UJQFI) 'S
Pr(Xgp € Thada) < Z ( > on 5o on + 9o
BWe
(25)

provided (v + 1)g < 2"75. We set § equal to this value.

6.5 Probability Ratio for Good Transcripts

Consider any good transcript 7ex. Following Theorem 3, we have to compute a

. P X oRp) :Text) : .
lower bound on the fraction — . We will actually derive a lower
y
Pr(Xgrr=Text)

bound on the probability in the numerator and the actual value for the proba-
bility in the denominator, and then combine them.
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For the derivation of each of the two probabilities, below, consider any
good transcript Texy = {(Li, Bi, Wi, ¢i, Sioll -+ [1Si0, Ziall -+ - (| Ziw) }i=, - For any
B|[W|jc € {0,1}7Meg2(v+ D1 et gz, denote the number of tuples in Tey; such
that B;||W;||c; = B||W]||c. Let ¢’ denote the number of strings B||W ||¢ for which
qgswe > 0 (ie., ¢’ denotes the number of different domain separator and tweak
combinations).

Pr (X XORPl]. = Text). For the computation of this probability, we have to

compute the probability that = = (71, m2) & perm(n)? could have resulted in
the transcript. The transcript consists of two portions, namely

T = {1(Bis Wiy iy Sioll -+ [1Si0) Yo
corresponding to the evaluation of 7o, and
Texe = L Rioll - | Riws Zinll -+ 1 Z50) Yo

corresponding to the evaluation of 71, where we recall that R; ; of (20) is implicit
in the transcript. As for 72, this sub-transcript defines exactly vq’ input-output
tuples for 7o, namely (21) for all ¢’ different domain separator and tweak combi-
nations that occur in the transcript. There are exactly (2" — vq’)! permutations
7y that could have yielded this sub-transcript. As for 71, as the transcript is
good, this sub-transcript defines a graph on m := vq equations and p < (v+1)g
unknowns (we do not need an exact value of p) that is p.d.-consistent, acyclic,
and whose largest component is of size {ax := pv+1 = 2v+1. We can thus apply
Theorem 4 and obtain that, provided né2,,, +&max < 27/2 and p < 27/(12€2,..),

max
there are at least

(2")p
gnvg

solutions to the p unknowns. For any of these solutions, we have exactly (2" —p)!
permutations 7, that could have yielded any of these solutions.

We obtain that
(22 (2n — pg)I(2" — p)! 1

—~— = > 2nvd = .
o = est) 2 an1gn] (2")ug (2) 7

Pr (X

Pr (Xgrp = Text). For the computation of this probability, we can likewise split
the transcript into the two portions 72, and 7., with the difference that, now,
72, is generated by randomly selecting dummy variables S; ; and 72 is gen-
erated through RF. The probability that the random world yields 72, equals
(2™)yq by definition of how the dummy values S, ; are generated, and the prob-
ability that RF yields 7., equals 1/(27)v1.

We obtain that

1

Pr (XRF = Text) = W
vq
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Conclusion. We obtain from the individual bounds that

_ 1
Pr (Xxfo\z-ﬁ?[u],, = Text) (@"),q (27)"1
Pr (XRF = Text) a

ICRERSY (26)
(27) g (27)v

We set ¢ = 0.

6.6 Conclusion

From the H-coefficient technique of Theorem 3, the initial steps (16) and (17)
of the proof, and from the values § obtained in (25) and € obtained in (26), we
obtain

Adv_  (4) <

XORP[v]
2
> N2w+1)2 (w4143 (U 2(vTH) ¢ .
<QB2W> ( oD ) + ( 523nq + ( ;n)q+ (;27)1 q +2Adv%p(¢4’),

BWe

assuming that (v + 1)g < 2779 and né2,, + Emax < 2™2 and (v + 1)

max

q <
27 /(12€2,.) for Emax = 20 + 1. These three conditions simplify to n(2v + 1)% +

max

(20+1) < 2% and (2v + 1)%(v + 1)g < 2"/12.

7 Application to Authenticated Encryption

The ddd-AES and bbb-ddd-AES tweakable wide blockciphers are in essence
“just” blockciphers. Given that they are wide blockciphers, one can use them
to achieve confidentiality of data. For authenticity, however, some more work
needs to be done. At first sight, the most logical solution would be the approach
described by Hoang et al. [16], where one appends 7 zeros to the plaintext P,
encrypts the entire message using ddd-AES or bbb-ddd-AES, and outputs the re-
sulting (|P| 4+ 7)-bit result as ciphertext-tag combination. Upon decryption, it is
first checked whether the plaintext contains 7 trailing zeros before the plaintext
is released. Although this approach works well, it does not accommodate for the
inclusion of associated data, yet. Also, ddd-AES and bbb-ddd-AFES allow only
for a somewhat small nonce in this case: up to 124 bits in the case of ddd-AES
(see Section 4.2) and up to 96 bits in the case of bbb-ddd-AES (see Section 4.3).
Thus, we will introduce an alternative mode of use for authenticated encryption
with associated data that is specifically tailored to work well on ddd-AES and
bbb-ddd-AES. We dub this mode aaa (advanced authenticated encryption with
associated data).

We first recall the security model for authenticated encryption in Section 7.1.
The aaa mode is specified in Section 7.2. We state security of the aaa mode and
discuss instantiation with ddd-AES or bbb-ddd-AES in Section 7.3. The security
proof is given in Section 7.4.
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7.1 Security Model

An authenticated encryption scheme AF consists of a pair of functions (enc, dec):
the encryption function enc gets as input a key K € {0,1}", a nonce N €
{0,1}¥, associated data A € {0,1}*, and plaintext P € {0,1}*, and it outputs
a ciphertext C' € {0,1}* of the same size as P and a tag T € {0,1}". We
write encg (-,-,+) = enc(K,-,-,-). The decryption function dec gets as input a
key K € {0,1}*, a nonce N € {0,1}", associated data A € {0,1}*, ciphertext
C €{0,1}*, and a tag T € {0,1}7, and it outputs either a plaintext P € {0,1}*
of the same size as C or a dedicated L symbol if verification fails. We write
decg (-, ) = enc(K,-, -, -, ). We require completeness, in the sense that

deck (N, A, encix(N,A,P))=P.

Slightly extending earlier definition, define by func’(v + * + *,% + 7) the
family of all functions from {0, 1}” x {0,1}* x {0,1}* to {0,1}* x{0,1}" that are
restricted to output values whose length equals the size of their third input plus
7. The security of an authenticated encryption scheme AE = (enc, dec) is defined
by how hard it is for an adversary A to distinguish (encg, deck) for a random
and secret key K < {0,1}* from (RF, L), where RF < func’ (v + % + *, % + 7)
and where | is a dedicated function that always returns the 1 symbol:

Advi(A) = ‘Pr (Acmerdees — 1) — Py (,4&L - 1) , (27)

where the probabilities are taken over K < {0,1}*, RF < func' (v + % + %, % +7)
(lazily-sampled), and the random coins of A.

The adversary is not allowed to make a decryption query using the result
of an earlier encryption query. In addition, we call A nonce-respecting if every
encryption query is made for a nonce N that is different from all nonces used
in earlier encryption queries under the same key. We call A nonce-misusing if it
may reuse nonces for encryption queries. We call A nonce-randomizing if every
encryption query is made for a random nonce N. Note that A4 may always freely
choose the nonce in decryption queries. The adversary is typically bounded by
a certain number of encryption queries g, and decryption queries g4, and a total
data complexity o that counts the total amount of associated data bits plus
plaintext/ciphertext bits.

7.2 Specification of aaa

Let x,x,w,n, lmax, v, T € N such that 2n < £, and v > w. Let TWBC :
{0,1}*x{0,1}* xS — S be a tweakable wide blockcipher operating on S of (1).
Let J : {0,1}* x {0,1}* — {0,1}" be a universal hash function family. The aaa
authenticated encryption mode is defined by the following functions (enc, dec).
Encryption enc operates as follows:

encTWECI (N, A, P) = TWBC (leftw(N), Jy, (vight,_, (V)]|A) ||p) (28
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parsed into C||T where |C| = |P| and |T'| = 7. The scheme is depicted in Figure 4.
Decryption dec first computes S|P = TWBC ' (left,, (N), C||T), where |S| = 7
and |P| = |C], and is then defined as

P, if S = Jp (right,_, (N)[|4),

. (29)
L, otherwise.

dece'”"7 (N, A,C,T) = {

right, (V)| 4

Jr,

left,,(N) —~TWBC g

y

c|\T

Fig.4: The advanced authenticated encryption with associated data construc-
tion.

7.3 Security of aaa-ddd-AES and aaa-bbb-ddd-AES

We will prove security of aaa as an authenticated encryption mode, against
nonce-respecting, nonce-misusing, and nonce-randomizing adversaries.

Theorem 5. Consider the advanced authenticated encryption with associated
data construction aaa on top of a tweakable wide blockcipher TWBC : {0,1}* x
{0,1}* xS = S and an e-universal hash function family J : {0,1}% x {0,1}* —
{0,1}". For any adversary A making at most q. encryption queries and at most
qq decryption queries, with ¢ = qq + qe, where each query has a nonce and
associated data of size at most byax bits, and plaintext of size at least 2n— 71 and
at most bmax — T bits, and in total of size at most o bits, we have the following
result:

— If A is nonce-respecting on the first w bits of the v-bit nonce, then

1
Advi (A) < Advtq‘ivvl;,rgc(A’) + gq max {67 271} ;
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— If A is nonce-misusing, then

e Wpr e 1 1

— If A is nonce-randomizing on the entire v-bit nonce, then

Advi;, (A) < AdviEE L (A)
1 1 ge) 1
+ 3¢e €+ 5an ) T gamax ©or — 7 + 8 ) 37w

for some adversary A’ with a total query complezity ¢ = qo + qq, where each
query is of size at least 2n and at most lnax bits, and total data complexity
o' =o0+qr.

The proof of Theorem 5 is given in Section 7.4.

To get a security bound for aaa-ddd-AFES and aaa-bbb-ddd-AES, we simply
have to plug the bounds of Corollary 1 or Corollary 2 respectively into the
AdvEP (A’) term in Theorem 5.

Remark 1. Please note that all needed different keys could be derived from a
single key by using the underlying blockcipher in, e.g., the sum of permuta-
tions [1,2,10] or the summation truncation hybrid [15].

7.4 Proof of Theorem 5

Let K & {0,1}* and L <& {0,1}*. Consider a tweakable wide blockcipher
TWBC : {0,1}" x {0,1}* x § — § and a universal hash function family J :
0,1} x {0,1}* — {0,1}". We consider an adversary A that makes g, queries
to either enc .y 2%’ of (28) or to a random function $ that outputs a random
string of apprdpriate length for each query, and that makes g4 queries to either

decgv‘L/BC’J of (29) or L, and it aims to distinguish them:

Adv?®

aaaq

(A) = [Pr (AR aee k2 0) —pr (A% =1)| L (30)

As a first step, we replace the tweakable wide blockcipher evaluations TWBC g
by tweakable wide random permutation TWRP < perm(w,2n : lypayx). This
serves as key in the construction, and we abuse notation and denote it by
enc%WRP’L and dec‘%WRp’L. We have

Adv?®

aaaq

(.A) < ’PI‘ (Aenc'q{wRP,Lader{WnP,L = ]_) — Pr <A$,J_ — 1)‘ + AdV?V§;§C(A/)’
(31)
for some adversary A’ with a total query complexity ¢’ = g + qq, where each

query is of size at least 2n and at most {5 bits, and total data complexity
o =0 +gqr.
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We will apply the triangle inequality on the remaining difference with inter-
mediate world “enc’y p.1» L7, which gives

Adv?*®

aaa

(A) < ‘PI‘ (AenC%WRP,LvdeC%WRP,L = 1) — Pr (AenC%WRP,L7l = 1)’

n ‘Pr (JateM'%vvmwL - 1) —Pr (A“ - 1)] + AV (A
(32)

The first difference in (32) in fact corresponds to the authenticity of aaa (noting
that A can only distinguish by forging dec‘%WR p.1,), Whereas the second difference
in (32) corresponds to the confidentiality of aaa (noting that the oracle L is
pointless in both worlds). We now make a distinction between nonce-respecting
and nonce-randomizing adversaries. We note that the nonce-misuse setting is
implicit in the analysis of nonce-randomizing adversaries.

Nonce-Respecting Setting. In this case, the adversary A takes a unique nonce
left,,(N) for each encryption query (it has free choice of the rest of N, which
thus basically serves as additional associated data).

For the confidentiality of aaa, this means that each evaluation of TWRP
within encZy p,z, 1s made for a different tweak, results in a uniform random
reply, and thus

(Pr (,at‘”“‘%vwm’l - 1) _Pr (AM = 1)‘ —0.

For the authenticity of aaa, consider any forgery attempt (N, A,C,T). The
forgery attempt allows A to distinguish both worlds if

Jp(vight, ., (N)||A) = left, (TWRP ™' (left,,(N),C||T)) . (33)

w
Denote all earlier encryption queries (w.l.o.g., ¢e of them) by {(N;, A;, P;, C;, T;) }< ;.
We distinguish among the following cases:

— For all i € {1,...,qc}, left, (V) # left,,(N;). In this case, the evaluation of
TWRP™! within decyp p,1, is done for a new tweak, and thus it generates
a uniform random string. The condition (33) is set with probability 1/27;

— There exists ¢ € {1,...,q.}, such that left,, (N) = left,,(IV;). As the adver-
sary is nonce-respecting, this value 7 is unique. We make a further distinction:

e |C||T| # |C;||T;|. In this case, the evaluation of TWRP ™" within dec‘éwWRRL
is done for a repeated tweak but on different input size, and thus it gener-
ates a uniform random string. The condition (33) is set with probability
1/27;

o |C|T| = |Ci||T3] but C|T # Ci||T;. In this case, the evaluation of
TWRP™! within dec‘éWRpﬁL is done for a repeated tweak and on iden-
tical input size, and thus it generates a uniform random string with-
out replacement. The condition (33) is set with probability at most

21Cl/2ICHm —1) <1/(27 - 1);
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e C||T = Cy||T;. In this case, the evaluation of TWRP ™! within dec‘%WRRL
is identical to that of the ith encryption query. This case also implies
that, necessarily, right,_,, (N)||A # right,_, (V;)||A:, as otherwise the
forgery would be trivial. The condition (33) is set only if

Jp(vight, _,, (N)[[A) = Ji (right, _,(N:)[ 4s) ,

w

which happens with probability at most € as J is e-universal.

Thus, summing over all g4 forgery attempts,

‘PI‘ (AG”C%WRP,LJEC%WRP,L = 1) — Pr (AEWC%WRP,L’J- = 1) ’ < gg max {e’ 1} .
- 27 -1

Together, we obtain from (32) that in the case of a nonce-respecting adver-
sary,

Adv®,(A) < AdviPE (A') + gg max {e, 271_1} .
Nonce-Randomizing Setting. In this case, the adversary A takes a random v-bit
nonce N for each encryption query.

For the confidentiality of aaa, we can note that different evaluations of
encpyrp., behave independently for different values left,,(N) and different
lengths of | P|. Denote the g. encryption queries by {(N;, A;, P;, C;, T;)}i< ;. For
any W € {0,1}" and ¢ € N such that £ > 2n — 7, let ¢y ¢ denote the number of
encryption queries such that left,,(N;) = W and |P| = £. Let ¢’ denote the num-
ber of strings W and lengths ¢ for which qw,¢ > 0 (i.e., ¢’ denotes the number
of different left parts of the nonces and length, and thus different independent
instances of TWRP that are invoked). Note that Zw,z qwe = Ge-

Clearly, the evaluations of TWRP within ench,p p,r, are independent if the
tweak or the input length differs. We can thus focus on a fixed choice of W €
{0,1}* and ¢ € N, consider the case of the adversary making g, queries with
left,,(N) = W and |P| = ¥, and finally sum over all choices of W and ¢. The
adversary can distinguish enc‘%WR p.r, from $ in two different ways:

— There exist distinct i1,493 € {1,...,¢e}, such that
Jr, (rightl,fw(Nil)HAZ-I)||PZ-1 =J (rightl,fw(Niz)HAiz) | P, -
This necessarily means that right,_,, (N;,)||A:, # right,_, (N, )| A:, and
Ji(right,, _,, (Ni,)[|Aiy) = Jr(right, _, (N, )[|4i,) ,

which happens with probability at most € as J is e-universal. Summing over
all (‘”2”) choices, this happens with probability at most (‘”2”)6;
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— For all distinct 41,42 € {1,...,q.},
Jr (rightu—w(Nh)HAil)||Pi1 7é JL (righty—w(NiQ)HAi2> HPlz :

In this case, the gy evaluations of TWRP within enc‘%WR p,r result in a dif-
ferent (£+7)-bit string without repetition, and the adversary can distinguish
from random with probability at most (%¢) /247 < (7%¢) /227,

Together, we obtain that

peamenic =) -me (s i)le 3205 () ()

we{0,1}w (LeN
£>2n—1

We bound gy later on.

For the authenticity of aaa, as the adversary can choose nonces in decryption
queries, the analysis is identical to that in the nonce-respecting setting, with
the exception that in case “|C||T| = |C;i||T;| but C||T # C;||T;” there may be
up to qwy earlier queries for the same left w bits of the nonce and the same
ciphertext length, leading to the fact that this case sets (33) with probability
at most 2/¢1/(21€1H7 — qyp) < 1/(27 — qw¢). Thus, summing over all g4 forgery
attempts,

o (st 1) (At <1 < g {3
- 2T — qwe

Together, we obtain from (32) that in the case of a nonce-randomizing ad-
versary,

Adv2,(A) < AdvL B (A)

aaa
qwe 1 1
2 () (4 gam) Hamax e

We{o,1}» feN —qwe
L>2n—T1

(34)

We can use ZW,Z qwe = g to obtain a naive bounding

Adv® (A) < AdviEp (A + <q;> (e + 2;) + g4 max {e, 271—%} .
This naive bounding is, in fact, matching the idea of an adversary freely choos-
ing nonces. In other words, this bound applies to the case of nonce-misusing
adversaries.

However, it is very unlikely that all ¢. queries are for the same left w bits of
the nonce. In particular, we can observe that for any W € {0,1}* and ¢ € N,

de 1
P o <
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(here, the length £ is not used in the probability computation as it can be freely
chosen by the adversary), and we can assume that ¢, < v except for this loss.
Concluding, we obtain from (34) that

AdVE,(A) < AdVERE(A)

Qe (Y 1 1 Ge 1
N <2> (€+ 22") +Qdmax{6’ 27—7}+ <7+1) 2mw

In our case, we always assume that the tag size 7 and the tweak size w are large
enough for v = 7 to be sufficient (i.e., no 8-fold collision), and we finally obtain

ae Wpr 1 1 Ge 1
Advaaa(A) S AdV‘ET;I)/EC(A/) + 3q8 (6 + 22”) + gq max {67 9T _ 7} + <8>27w .

8 Conclusion

In this paper, we explored instances of the docked double decker construction
that can make efficient use of already existing hardware that speeds up the
execution of AES and GHash. We did this, so that the resulting tweakable wide
blockcipher is essentially just a mode of operation for the AES blockcipher. We
have also introduced a method to instantiate authenticated encryption with a
tweakable wide blockcipher, called aaa. This method shows good security bounds
even in the case that the nonce is selected randomly. We hope that this will foster
the research of more tweakable wide blockcipher modes of operations.

In the process of designing the beyond birthday bound secure tweakable wide
blockcip/}lgr/ bbb-ddd-AES, we also designed an efficient blockcipher based PRF
called XORP, which is able to process up to 2n-bit inputs. We proved that this
construction achieves around 2n/3-bit security, provided tweaks are not reused
too often. Since we do not have an attack matching the bound of XORP, it
remains future work to see if such an attack can be found, or if/tll_e/ bound can
be improved. Furthermore, we think it is of interest to evaluate XORP when the

blockcipher call generating the masks is replaced with a finite field multiplication
of input and a key, or more generally a universal hash function.
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