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Abstract—Homomorphic encryption (HE) is in the spotlight
as a solution for privacy-related issues in various real-world
scenarios. However, the limited types of operations supported by
each HE scheme have been a major drawback in applications.
While HE schemes based on learning-with-error (LWE) problem
provide efficient lookup table (LUT) evaluation in terms of
latency, they have downsides in arithmetic operations and low
throughput compared to HE schemes based on ring LWE
(RLWE) problem. The use of HE on circuits containing LUT
has been partly limited if they contain arithmetic operations or
their computational width is large.

In this paper, we propose homomorphic algorithms for batched
queries on LUTs by using RLWE-based HE schemes. To look up
encrypted LUTs of size n on encrypted queries, our algorithms
use O(logn) homomorphic comparisons and O(n) multipli-
cations. For unencrypted LUTs, our algorithms use O(logn)
comparisons, O(

√
n) ciphertext multiplications, and O(n) scalar

multiplications.
We provide a proof-of-concept implementation based on CKKS

scheme (Asiacrypt 2017). The amortized running time for an
encrypted (Resp. unencrypted) LUT of size 512 is 0.041 (Resp.
0.025) seconds. Our implementation reported roughly 2.4-6.0x
higher throughput than the current implementation of LWE-
based schemes, with more flexibility on the structure of the LUTs.

Index Terms—Homomorphic Encryption, Homomorphic Op-
erations, Lookup Table

I. INTRODUCTION

Homomorphic encryption (HE) is a cryptographic encryp-
tion that supports homomorphic operations between cipher-
texts without a decryption process. One of the interesting
applications of HE is securing machine learning (ML) al-
gorithms. In the scenario of machine-learning-as-a-service
(MLaaS), the clients send private queries to the untrusted
computing server and receive the results of ML algorithms.
The clients can privatize their private queries by utilizing HE
as following general framework: (a) the client sends homo-
morphically encrypted queries (and public key if needed),
(b) the server computes homomorphic ML algorithms on the
encrypted queries, and (c) the client receives and decrypts the
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encrypted result of the homomorphic computation to obtain
the result.

The efficiency of the above framework highly depends on
the feature of the homomorphic ML algorithm and underlying
HE scheme. In particular, the appropriate choice of HE scheme
and a decent interpretation of the target ML algorithm for the
HE scheme is important. The mainstream fully HE (FHE)
schemes rely on lattice problems and have ciphertexts of
either learning-with-errors (LWE) [1], [2] or ring learning-
with-errors (RLWE) format [3], [4], [5]. LWE-based schemes
are usually preferable for non-arithmetic circuits with small
computational widths, while RLWE-based schemes are mostly
advantageous for arithmetic circuits with large computational
widths. An inappropriate choice of (F)HE scheme can induce
the overhead while compiling the ML algorithms with under-
lying HE operations.

However, some HE applications require the strengths of
both HE formats; in particular, a circuit might consist of LWE-
friendly operational types but with a large computational width
(in which RLWE is preferable). As various ML algorithms
with complicated non-arithmetic functions are devised, and
ML evaluations are often being batched for enhancing effi-
ciency, such requirements are becoming more in demand. As
a specific example, a company might want to send clients’
private ID numbers to the server of a government agent, asking
for the result of ML algorithms on the information (e.g., height
and credit information) corresponding to each ID number. This
requires the server to look up a lookup table on a number of
ID cards, which requires non-arithmetic operation and a large
computational width.

The appropriate HE scheme was unclear for the mixed
cases. Bleach [6] partly addressed these mixed cases by
showing that the RLWE-based CKKS scheme provides higher
throughput than the LWE-based TFHE scheme for binary
operations. However, it was still unclear how to choose an
appropriate HE format for the case of LWE-friendly operations
other than binary operations when computational widths are
large.

In this work, we introduce secure lookup table evaluation
algorithms based on RLWE FHE schemes. With our algo-
rithms, a client can utilize RLWE FHE scheme to delegate
evaluations of circuits (e.g., ML models) that contain lookup
table evaluations. Also, we point out that all discrete non-
arithmetic functions can be represented as a lookup table. This
implies that we can evaluate general non-arithmetic functions,
which is generally difficult for RLWE FHE schemes. This
is beneficial to securely evaluate ML algorithms, as many
ML models require evaluating complicated functions such
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as activation functions or loss functions as in [7]. As our
algorithm uses RLWE FHE schemes, it is evident that the
target circuits are well-suited to contain (RLWE-friendly)
arithmetic operations.

A. Contribution

Secure evaluation of public lookup table. We suggest RLWE-
based algorithms for secure batch evaluation of public lookup
tables. Our best algorithm for the public lookup table utilizes
a baby-step / giant-step approach to reduce the number of
homomorphic multiplications between ciphertexts, which is a
costly operation for HE. To evaluate a public lookup table
of size n, our algorithm requires log n homomorphic com-
parisons, 3

√
n − log n + O(1) homomorphic multiplications

between ciphertexts, and 2n+O(1) homomorphic multiplica-
tions between a plaintext and a ciphertext. We implemented
a proof-of-concept implementation of our algorithms with the
CKKS scheme. It takes 70 milliseconds per query for the batch
evaluation of public real-valued LUT of size 8192.

Secure evaluation of private lookup table. We also intro-
duce RLWE-based algorithms for secure batch evaluation of
private sorted lookup tables.1 Our best algorithm requires
log n homomorphic comparison and 2n+O(1) homomorphic
multiplications to evaluate encrypted lookup table of size n. In
our proof-of-concept implementation, it takes 41 milliseconds
per query for the batch evaluation of public real-valued LUT
of size 512. To the best of our knowledge, this is the first
attempt to address encrypted lookup tables. 2

Choice of HE schemes. In this work, we show that for batch
lookup table evaluation, which has been believed to be an
LWE-friendly operation, the RLWE-based CKKS scheme is
able to provide higher throughput than LWE-based solutions.
We remark that our method with RLWE HE schemes reports
2.4-6.0x higher throughput than the current implementation
of LWE-based solutions. This might imply that the choice of
FHE scheme for each application should be mostly determined
by the computational width rather than its operational type.

B. Technical Overview

1) Motivation and high-level description: The basic idea is
to perform a binary search in encrypted states. Suppose we are
given sorted and encrypted table keys, and an encrypted query
among the table keys. We split the table keys into two half
blocks. By comparing the query to the median of given table
keys, we can determine which half block the query belongs.
We keep searching the query on the half block it belongs,
and once find the exact position of the query, we can get the
corresponding table value.

However, since the table keys and queries are encrypted, it
is not trivial to how to keep searching on appropriate blocks in

1Even when given (encrypted) lookup table is not sorted, we can sort the
table using [8]. We remark that once we sort a lookup table, a client can send
multiple queries on the lookup table without additional sorting.

2We can modify existing works to partly tackle this problem; however, they
still require more computation than our best algorithm.

encrypted states. We first suggest two big approaches: (1) in-
crementally generating one-hot indicator that indicates which
subblock the query belongs to among equally cut subblocks,
and (2) repeatedly halving the lookup table while keeping
the query and target in it. Then, we mix two approaches,
introducing a hybrid one.

First approach: One-hot vector. For the first approach, we
consider the one-hot ciphertext vector, (c1, c2, · · · , cm) such
that ci = 1 if the query belong to i th subblock among equally
cut m subblocks, and ci = 0 otherwise. Then, we can compute
the median value of the subblock query belongs to as follows.

x′ =

m∑
i=1

ci · (Median of i th subblock)

By comparing the query to x′, we can generate one-hot cipher-
text vector (c′1, · · · , c′2m) for the equally cut 2m subblocks.
More precisely,

c′2i = (1− Compare(query, x′)) · ci
c′2i+1 = Compare(query, x′) · ci.

Figure 1 describes our first approach.

Fig. 1. Visualization of the first approach.

This approach is similar to an existing work on the lookup
table with CKKS [6]. However, [6] requires O(n log n) homo-
morphic multiplications for generating one-hot vector, while
ours requires O(n) homomorphic multiplications. If we apply
the idea from [9] for efficiently computing the one-hot vectors
to [6], the cost would be almost the same as our first approach.
We will suggest two different approaches that show better
performances than this first approach.

Second approach: Table folding. For the second approach,
we halve the key table to perform a binary search in encrypted
states. To be more precise, given a query and a key table
that the query belongs to, we split the key table in half, and
compute the halved key table containing the query by using
the following equation. For given bit b and blocks X1 and X2,

(1− b)X1 + bX2 =

{
X1 if b = 0

X2 if b = 1,

Once we let the bit b be the result of the homomorphic
comparison between the query and the median value of current
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table keys, then (1− b)X1 + bX2 is the half block the query
belongs to. Figure 2 visualizes our second approach.

Fig. 2. Visualization of the second approach.

Our second approach requires less computation and memory
than the first approach for both private and public lookup
tables. We refer to Section III-A and III-B for the details.

Third approach: Hybrid. Finally, we combine two ap-
proaches to achieve an algorithm with a better performance.
We observe that the first approach is faster in the earlier rounds
while it is slower in the later rounds. On the other hand,
the second approach is slower in the early rounds, but the
iteration becomes faster as the rounds increase. Thus, our third
approach is to combine the two approaches by starting with the
first approach and ending with the second approach. Figure 3
illustrates the motivation of the third approach.

Fig. 3. Illustration of the motivation of the third approach.

In order to carefully connect the two approaches, we should
perform supplementary operations. However, in some cases
(e.g., when the table key values are public and unencrypted),
we can perform the supplementary operations efficiently, and
our third approach improves the efficiency. We refer to Sec-
tion III-B for the details.

2) Adaptation to approximate computations: We adapt ap-
proximate FHE to apply our algorithms to applications with
real-valued data. In particular, we consider CKKS scheme,
which is a HE scheme that supports addition and multiplication
between real-valued data, and it supports approximate com-
putations. For example, the known homomorphic comparison
methods for CKKS are approximate methods [10], [11], [12].
Real-valued computation, however, means that the computa-
tion is approximate upon certain precision bits. We stress that

the cost of homomorphic comparison methods for approximate
HE depends on its precision. Thus, it is important to analyze
the precision of homomorphic comparison in algorithms.

In Section IV, we analyze the precision of homomorphic
comparison methods that can be used for our algorithms to
achieve correct results. In addition, we suggest a heuristic
optimization to address bad lookup tables that require too
intensive homomorphic comparisons.

C. Related Work

1) FHEW/TFHE based solutions: In the recent approaches
for FHEW and TFHE FHE schemes, the lookup table eval-
uation can be done during the bootstrapping procedures [1],
[13], [14], which is often called programmable bootstrapping
or functional bootstrapping. By using the whole (Resp. the
half of) plaintext space Zt as the keys for the lookup tables,
the plaintext is replaced by the corresponding table value.
The table keys are the integers from 0 to t − 1 (Resp.
t/2 − 1), thus uniform and public. As the plaintext space of
the FHEW/TFHE scheme is a maximum of 8 bits, the lookup
tables of larger sizes or larger precisions cannot be evaluated
via programmable bootstrapping. We note that, even for such a
small size of lookup tables with public keys, our third approach
shows better throughput.

As the restriction on the table size and the precision
is unavoidable for programmable bootstrapping of a single
ciphertext, some tree-based approaches using multiple cipher-
texts have recently been introduced in [15], [16]. Specifically
in [16], with many input ciphertexts and with partly split
tables, it first obtains the ciphertexts, each encrypting a bit
of the query value for the lookup table evaluation. This can
be viewed as a logarithmic number of comparisons between
the query and the table keys, where the table keys are uniform
and dense. After decomposing the bits, one of the split tables is
chosen by using the encrypted bits. We note that this procedure
is similar to our first approach but is evaluated in a very
different way.

In both approaches, however, it is inefficient to deal with
either sparse lookup tables (i.e., of which size is less than
the bit-length of table keys) or private lookup tables. Hence,
TFHE-based solutions are not satisfactory to our problem,
the evaluation of lookup tables with (possibly) dense and
(possibly) private real-valued table keys.

Also, we remark that TFHE/FHEW schemes might have
a disadvantage in arithmetic operations compared to RLWE
FHE schemes. This might be problematic if a client delegates
the lookup table evaluation consecutive to arithmetic circuits.
There have been several works on scheme switching [17], [18],
[19] to address this issue, but they induce a computational
overhead compared to solely RLWE FHE solutions.

2) BGV/BFV based solutions: There have been several
works on table lookup with integer HE schemes [20], [7]
with bit-wise encodings. However, we stress that bit-wise en-
codings induce a computational overhead for (high-precision)
arithmetic operations, as mentioned in [17]. In particular, [20]
exploits bit-wise HE for the real arithmetic and takes 3.8
seconds to add two encrypted 8-bit integers. In contrast, CKKS
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scheme, which supports arithmetic operations on encrypted
real numbers, takes less than a second to add 65536 pairs
of real numbers in our implementation. This is a downside of
bit-wise encodings for real-world applications with real-valued
data.

Also, we point out that, as in TFHE/FHEW solutions, bit-
wise HE solutions are bounded by lookup tables of which the
size is equal to the bit-length of table keys. Once evaluating
a lookup table smaller than the bit-length of its table keys,
bit-wise HE schemes are not preferable.

3) CKKS based solutions: Bleach [6] also suggested a
homomorphic evaluation method of a (public) lookup table.
For a given query, it first extracts the (encrypted) binary
representation of the query. Then, it generates a one-hot vector
using the bits and completes the evaluation of the lookup table
by inner product.

Their approach is similar to our first approach, Algorithm 2
in Section III-B. However, it requires n log n homomorphic
multiplications to generate the one-hot vector, in which n
is the size of the lookup table. In contrast, ours uses Ω(n)
homomorphic multiplications to generate the one-hot vector.
Also, as in TFHE/FHEW and BGV/BFV solutions, we remark
that Bleach considers only the dense lookup tables (i.e., the
size of the lookup table equals the bit-length of each query),
while our interest includes more general lookup tables, e.g.,
sparse lookup tables and encrypted lookup tables. Bleach also
focuses on public lookup tables, while we address both private
and public lookup tables in this work.

Recently, [9] suggests an advanced way to generate a one-
hot map. Applying it to Bleach turns out to be a similar
method with Algorithm 2. Nevertheless, it still is bounded by
dense and unencrypted lookup tables. Also, we remark that
Algorithm 3 shows a better performance for public lookup
tables than Algorithm 2, and Algorithm 1 is better than
Algorithm 2 for private lookup tables.

4) Private information retrieval: Private information re-
trieval (PIR) is a problem in which a user aims to retrieve
an item from a server while hiding which item is retrieved.
Our methods also give instant solutions for PIR. However, we
stress that our setting is different from PIR. The distinction
between our method and PIR is that (1) we search the lookup
table by the key query rather than the index query, (2) we
expect both the input and output of the algorithm to be
HE ciphertexts with the same format, to easily utilize our
LUT algorithm inside larger homomorphic circuits, and (3)
our homomorphic algorithm is non-interactive; that is, our
algorithm does not require any interaction except the initial
query of the user and the final response of the server. Our
problem and algorithms are more specific than general PIR
and are more likely to be adopted for HE applications.

II. PRELIMINARIES

A. Notations

Throughout this paper, we denote the encryption of a
message m as m. Also, for ease of discussion, we assume
that we are given a lookup table consisting of n = 2k pairs
of input and output values: {x(i), y(i) = f(x(i))}n−1

i=0 where

n is a power of 2. We call x(i) as key data and y(i) as value
data of the lookup table.

For the bits b1, b2, · · · , bk, the binary representation of i,
i.e., i =

∑k
j=1 bj2

k−1−j , we abuse the notation as:

x(i) = x(⃗i) = x(b1, · · · , bk)
y(i) = y(⃗i) = y(b1, · · · , bk).

A query is a ciphertext of an input value xt =
x(β1, · · · , βk) where 0 ≤ t < n, and we aim to find its
corresponding table value, yt = y(β1, · · · , βk).

B. Homomorphic Encryption

We consider word-wise homomorphic encryption schemes
that support arithmetic operations (i.e., addition and multi-
plication) in encrypted states. The plaintext space of word-
wise HE is CN/2 (in CKKS scheme [5], [21]) or Zq in
which q is either a prime or a power of prime (in BGV and
BFV schemes [3], [4]). A homomorphic encryption scheme
commonly supports the following operations.

• cAdd(m1,m2): for given ciphertext m1 of m1 and a
plaintext m2, returns a ciphertext of m1 + m2.

• Add(m1,m2): for given ciphertext m1 and m2 of m1 and
m2, returns a ciphertext of m1 + m2.

• cMult(m1,m2): for given ciphertext m1 of m1 and a
plaintext m2, returns a ciphertext of m1 ⊙ m2, where ⊙
is multiplication between two plaintexts. For example, in
the case of CKKS, ⊙ is a componentwise multiplication.

• Mult(m1,m2): for given ciphertext m1 and m2 of m1

and m2, returns a ciphertext of m1 ⊙m2.

Here, cAdd and cMult are abbreviations of constant-
addition and constant-multiplication, which regard a plaintext
as a constant.

C. Homomorphic Comparison

In this work, we exploit the homomorphic comparison
method for two HE ciphertexts, i.e., Compare(·, ·) that satis-
fies the following.

Compare(m1,m2) =


0 if m1 < m2

0.5 if m1 = m2

1 if m1 > m2

There have been several works of homomorphic comparison
for each category of schemes.

For CKKS scheme, [11] proposed an efficient comparison
operation. The key idea of [11] is to construct a homomorphic
comparison algorithm that uses less number of homomorphic
multiplications. The homomorphic comparison alogorithm
in [11] requires Θ(log(1/ϵ))+Θ(log log(1/α)) computational
complexity to obtain an approximate comparison result of
a, b ∈ [0, 1] satisfying |a − b| ≥ ϵ within α error. We mainly
used [11] in Section IV. For BFV/BGV scheme, recently [22]
suggested less-than function for homomorphic comparison
operation on BFV/BGV ciphertexts.
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D. Straw Man Solutions

1) Lagrange Interpolation: One of the most trivial ap-
proaches to implementing the evaluation of TLU with HE is
to use polynomial interpolation, i.e., Lagrange interpolation.
For given LUT, {(xi, yi)}ni=1, Lagrange interpolation is the
polynomial p(·) of degree n such that p(xi) = yi for each
i = 1, 2, · · · , n as follows.

p(x) :=

n∑
i=1

∏
j ̸=i

x− xj

xi − xj

 yi =

n−1∑
i=0

cix
i

Since homomorphic multiplication is much slower than the
other operations, it is prevalent to exploit the Paterson-
Stockmeyer algorithm to evaluate higher degree polynomials
on HE ciphertexts with less number of multiplications [23]. To
utilize the Paterson-Stockmeyer algorithm, we should compute
the coefficients ci of the polynomial before the evaluation.
However, the size of the coefficients of Lagrange interpolations
becomes exponentially big when we consider the large LUTs,
and it is infeasible to use the Paterson-Stockmeyer algorithm
for the evaluation of large LUTs.

To stably evaluate the Lagrange interpolate, to the best
of our knowledge, we should use the formula p(x) =∑n

i=1

(∏
j ̸=i(x− xj)/(xi − xj)

)
yi. However, it requires a

number of homomorphic divisions, which makes it infeasible
to be evaluated by HE. Even for the unencrypted LUTs, it
requires O(n2) homomorphic multiplications. This is imprac-
tical for LUTs of large sizes, e.g., n > 28.

2) Exhaustive Comparison: Another straw-man solution for
evaluating LUTs using HE and a homomorphic comparison
algorithm is to compare the given query to all table keys.
This uses Ω(n) homomorphic comparisons to evaluate a LUT
of size n, and O(n) homomorphic multiplications to aggre-
gate the comparison results. Since homomorphic comparison
is time-consuming compared to homomorphic addition and
multiplications, this solution is also impractical for LUTs of
large sizes.

E. Threat Model

Throughout the paper, we mainly consider a client-server
model. For the setting of a private lookup table case, a client
sends a private query (key data) and a private lookup table to
an untrusted computing server, and the server sends back the
(encrypted) value data from the lookup table corresponding to
the query. During the protocol, the server should not learn any
information about the query and the table.

For the public lookup table case, the client sends a private
query to the server, and the server responds with the (en-
crypted) value data that corresponds to the query. The server
should not learn about the query.

Our security relies on the IND-CPA security of homomor-
phic encryption. Since the client sends the public key and the
homomorphically encrypted query (and table) to the server
without auxiliary information, the server cannot learn any
information due to the security of relying HE scheme.

III. PROPOSED ALGORITHMS

In this section, we suggest algorithms for the evaluation of
the lookup table on encrypted queries. We assume that we
are given a word-wise HE scheme that supports homomor-
phic addition and multiplication operations, and comparison.
For example, CKKS scheme supports homomorphic addition
and multiplication, and there have been several works on
homomorphic comparison methods for CKKS ciphertexts [11],
[10], [12]. BGV scheme, which is another example of word-
wise HE scheme, also supports homomorphic addition and
multiplication, and [22] provides a homomorphic comparison
method for BGV.

We point out that Mult (homomorphic multiplication)
is much slower than Add (homomorphic addition), and
Compare (homomorphic comparison) is much slower than
Mult (homomorphic multiplication). Also, we stress that
cMult (homomorphic multiplication between a plaintext and
a ciphertext) can be done much faster than Mult (multi-
plication between two ciphertexts). Taking these points into
account, the number of comparisons should be minimized as
the top priority, and the number of multiplication bewteen
ciphertexts has the second priority. The cost for multiplication
between a plaintext and a ciphertext and the cost for addition
are relatively minor.

In this section, we suggest algorithms for the evaluation
of a lookup table on encrypted queries using homomorphic
addition, multiplication, and comparison operations.

A. Private Encrypted Lookup Tables
We begin with the case of a sorted and encrypted lookup

table and an encrypted query. This means that the lookup table
is encrypted by HE, so it is concealed from the computing
server.

1) Algorithm 1: Folding table: The high-level idea of our
first algorithm is a homomorphic binary search. For a given
query, we compare it to the median of the table keys. If the
query is smaller than the median, we keep searching on the
first half of the table. Otherwise, we keep searching for the
last half.

However, since we are dealing with an encrypted table
and query, we cannot observe the result of the comparison
between the query and the median table key. We exploit a
linear combination to address this issue. Suppose we have
encryption of the bit β that indicates whether the query is
smaller than the median key, i.e., β = 0 if the query is smaller
than the median value, 1 otherwise. If β = 0, we should keep
searching on the first half of the table, and if β = 1, we should
keep searching on the last half.

We utilize the fact that m1+b×(m2 −m1) is m1 if β = 0,
and m2 if β = 1. By using this, we can fold the table in half
so that it keeps containing the query after folding it. More
precisely, for each i = 1, 2 · · · ,m− 1, we let

x̃i := xi + β(xi+m − xi) =

{
xi, if x < xm

xi+m, otherwise
, (1)

ỹi := yi + β(yi+m − yi) =

{
yi, if x < xm

yi+m, otherwise
. (2)
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Then, it immediately comes out that

{x̃1, · · · , x̃m} =

{
{x1, · · · , xm}, if x < xm

{xm+1, · · · , x2m}, otherwise
,

{ỹ1, · · · , ỹm} =

{
{y1, · · · , ym}, if x < xm

{ym+1, · · · , y2m}, otherwise
.

When folding the table keys, we can halve table values
as well. Finally, after log n times of folding, we can finally
find the table values that correspond to the given query.
Algorithm 1 presents our algorithm in detail.

Algorithm 1 Folding table
Input: {0 ≤ x0 < · · · < xn−1 ≤ 1}, {y0, · · · , yn−1} ∈

[0, 1]n

Input: a query x = xt for some 0 ≤ t < n
Output: An encrypted output yt.

1: for i← 0 to n− 1 do
2: x̃i ← xi

3: ỹi ← yi
4: end for
5: m← n
6: while m > 1 do
7: m← m/2
8: β ← Compare

(
x+ x, x̃m−1 + x̃m

)
9: for 0← 1 to m− 1 do

10: x̃i ← x̃i + β · (x̃i+m − x̃i)
11: ỹi ← ỹi + β · (ỹi+m − ỹi)
12: end for
13: end while
14: return ỹ0

Theorem 1. Algorithm 1 is correct.

Proof. For the while-loop in line 6−13, we consider the loop
invariant that

x̃i = xt, ỹi = yt

for some 0 ≤ i ≤ m − 1. Initially, 0 ≤ t ≤ n − 1, so the
loop invariant trivially holds. Suppose the loop invariant holds
at the beginning of a loop iteration. There exists 0 ≤ i < m
such that x̃i = xt and ỹi = yt. If 0 ≤ i < m

2 , then β = 0 and
xt = x̃i = x̃i + β(x̃i+m/2 − x̃i). Otherwise, i.e. m

2 ≤ i < m,
then β = 1, and xt = x̃i = x̃i + (1 − β)(x̃i−m/2 − x̃i) =
x̃i−m/2 + β(x̃i − x̃i−m/2). Similar result holds for ỹi and yt.
Hence, the loop invariant satisfies the maintenance. Finally,
after the loop terminates, from the loop invariant, ỹ0 = yt.

Cost analysis. For each iteration, Algorithm 1 uses 1 homo-
morphic comparison, and 2m homomorphic multiplications.
Thus, for the entire algorithm, log n homomorphic compar-
ison, and n + n/2 + · · · + 2 = 2n − 2 homomorphic
multiplications are needed.

2) Algorithm 2: One-hot indicator: Our second approach is
similar to the first approach, Algorithm 1, but not to fold the
table. Instead, we repeatedly subdivide the one-hot indicator
that indicates which subblock the given query belongs among
uniformly cut subblocks.

To be more precise, assume that we are given a query
x = xt and a public table 0 ≤ x0 ≤ · · · ≤ xn−1 ≤ 1
and {yi}n−1

i=0 . In the first iteration, we compute B(0) =
Compare(x, xn/2) and B(1) = 1−B(0). Then, (B(0), B(1))
is a one-hot vector that indicates which half-block the query
xt belongs. In the second iteration, we compute β =
Compare

(
x,B(0)xn/4 +B(1)x3n/4

)
and let

B(0, 0) = β B(0), B(0, 1) = (1− β)B(0),

B(1, 0) = β B(1), B(1, 1) = (1− β)B(1).

Then, (B(0, 0), B(0, 1), B(1, 0), B(1, 1)) is the one-hot vector
that indicates which quarter-block the query xt belongs. By
repeating this process, we can extend the one-hot indicator.

Generally, for ease of discussion, let the binary represen-
tation of the index of a given query t be {βi}k−1

i=0 , i.e., t =∑k−1
i=1 βi2

k−1−i. For each r ≥ 1 and (b1, · · · , br) ∈ {0, 1}r,
let

B(b1, · · · , br) =

{
1 if b1 = β1, · · · , br = βr

0 otherwise

be the one-hot indicator that indicates the 1/2r subblock
containing the query. In order to generate a one-hot indicator
for 1/2r+1 subblock, it suffices to compare the query to the
median value of the 1/2r subblock it belongs. We note that
we can compute the median value by the following linear
combination.∑

b⃗∈{0,1}r

B(⃗b) (Media of b th subblock) .

Thus, we can compute βr+1 as follows.

βr+1 = Compare

x, 0.5
∑

b⃗∈{0,1}r

B(⃗b)
(
x(⃗b, 1, 0⃗)

) .

Then, we also can compute B(b1, · · · , br, br+1) as:

B(b1, · · · , br, 1) = B(b1, · · · , br) · βr+1

B(b1, · · · , br, 0) = B(b1, · · · , br) · (1− βr+1)

= B(b1, · · · , br)−B(b1, · · · , br, 1),

which is the one-hot indicator that indicates the 1/2r+1

subblock containing the query.
After log n iterations, we compute B(b1, · · · , bk) for each

(b1, · · · , bk) ∈ {0, 1}k, and we are able to yield the result,
y(β1, · · · , βk) as follows.

y(β1, · · · , βk) =
∑

b⃗∈{0,1}k

B(⃗b) · y(⃗b)

Algorithm 2 describes our detailed algorithm.

Theorem 2. Algorithm 2 is correct.

Proof. Let the binary representation of t be
∑k−1

i=1 βi2
k−1−i.

For the while-loop in line 4−15, we consider the loop invariant
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Algorithm 2 Expanding one-hot indicator
Input: {0 ≤ x0 < · · · < xn−1 ≤ 1}, {y0, · · · , yn−1} ∈

[0, 1]n

Input: a query x = xt for some 0 ≤ t < n
Output: An encrypted output yt.

1: β ← Compare(x+ x, x(0, 1⃗) + x(1, 0⃗))
2: (B(0), B(1))← (1− β, β)
3: m← 1
4: while m < log n do
5: x′ ← 0
6: for b⃗← {0, 1}m do
7: x′ ← x′ +B(⃗b)

(
x(⃗b, 1, 0⃗) + x(⃗b, 0, 1⃗)

)
8: end for
9: β ← Compare(x+ x, x′)

10: for b⃗← {0, 1}m do
11: B(⃗b, 1)← β ·B(⃗b)
12: B(⃗b, 0)← B(⃗b)−B(⃗b, 1)
13: end for
14: m← m+ 1
15: end while
16: y′ ← 0
17: for b⃗← {0, 1}logn do
18: y′ ← y′ +B(⃗b) · y(⃗b)
19: end for
20: return y′

that for each b⃗ ∈ {0, 1}m, B(⃗b) = 1 if bi = βi for all i, and
B(⃗b) = 0 otherwise.

At the initial state of the loop, the loop invariant trivially
holds. Suppose the loop invariant holds at the beginning of
loop iteration. Then, x′ is a weighted sum of the median
values of each 1/2m subblocks of lookup table keys. Thus,
x′ is the median value of the 1/2m subblock of lookup
table keys that the query belongs to. As a consequence,
β = βm+1, and B(β1, · · · , βm, β) = B(β1, · · · , βm) = 1
and B(β1, · · · , βm, 1 − β) = 0. Also, B(⃗b) = B(⃗b, 0) =
B(⃗b, 1) = 0 unless b⃗ = β⃗. Hence, the loop invariant satisfies
the maintenance.

Finally, after once the loop terminates, B(⃗b) = 1 if and only
if b⃗ = β⃗. Thus, y′ = y(β⃗) = yt as desired.

Cost analysis. For each iteration, Algorithm 2 uses 1 ho-
momorphic comparison, 2m+1 additions and 2m+1 multi-
plications. Also, to compute y′ from B, it uses other n
additions and n multiplications. Thus, for the entire algo-
rithm, log n homomorphic comparisons, 3n+O(1) additions
and 3n + O(1) multiplications are used. By using the fact
that

∑
(⃗b)∈{0,1}r B(⃗b) = 1 for each r = 1, 2 · · · , k, we

can reduce the number of additions and multiplications to
3n− log n+O(1).

Remark 1. Algorithm 1 is faster than Algorithm 2 in the most
cases.

Remark 2. We assumed that the table keys were encrypted
and sorted. We note that if the table keys are encrypted but

TABLE I
REQUIRED NUMBER OF OPERATIONS TO PERFORM ALGORITHMS 1 AND 2

ON ENCRYPTED LOOKUP TABLES OF SIZE n.

Compare Mult
Exhaustive comparison O(n) O(n)
Algorithm 1 logn 2n+O(1)
Algorithm 2 logn 3n− logn+O(1)

not sorted, our algorithm should be preceded by homomorphic
sorting algorithms such as [8].

B. Public Unencrypted Lookup Tables

Now we consider the unencrypted lookup table with an
encrypted query. This means that the lookup table is public,
while the query is still concealed.

We note that in this case, we can exploit the fact that cMult
(i.e., multiplication between plaintext and ciphertext) is much
faster than Mult (i.e., homomorphic multiplication between
two ciphertexts).

1) Algorithm 1: Folding table: The analogy of Algorithm 1
properly works for the unencrypted lookup-table {xi}n−1

i=0 and
{yi}n−1

i=0 . Note that x̃ and ỹ’s are unencrypted in the first
iteration. Thus, the algorithm uses log n number of Compare,
n+O(1) number of cMult, and n+O(1) number of Mult.

2) Algorithm 2: One-hot indicator: The analogy of Algo-
rithm 2 properly works for the unencrypted lookup tables. Note
that computing x′ and y′ can be done with cMult instead of
Mult. Thus, the algorithm uses log n number of Compare,
2n+O(1) number of cMult, and n− log n+O(1) number
of Mult.

3) Algorithm 3: Hybrid: Algorithm 1 diligently folds the
table and Algorithm 2 do not fold the table. We now mix
and match both algorithms to get an algorithm with a better
performance.

The key observation is that Algorithm 1 uses about
n/2, n/4, · · · , 2, 1 multiplications in each loop iteration, while
Algorithm 2 uses about 1, 2, 4, · · · , n/2 multiplications in
each loop iteration. This is due to the fact that folding in
Algorithm 1 is costly at the beginning, but becomes faster
as the table keeps being halved; on the other hand, expanding
the one-hot indicator in Algorithm 2 is fast at the beginning,
but becomes heavier as the size of the one-hot indicator grows.

We delay the folding; we begin with Algorithm 2, and
end with Algorithm 1. In particular, we extend the one-hot
indicator for log n/2 times, fold the lookup table into a smaller
table of size

√
n by using the one-hot indicator, and run

Algorithm 1 on it.

Algorithm description. The algorithm consists of baby-step,
lazy folding, and giant-step:

1) Baby-step: For a given encrypted query, similar to
Algorithm 2, we first find the one-hot indicator that
indicates which

√
n sub-block the query belongs among√

n number of
√
n sub-blocks.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

2) Lazy folding: Then, by inner product the one-hot indica-
tor with the given table, we get a table of size

√
n that

contains the query. We shall call this lazy folding.
3) Giant-step: Finally, analogous to Algorithm 1, we are fi-

nally able to get the encrypted table value corresponding
to the given encrypted key query.

Our detailed algorithm is presented in Algorithm 3.

Cost analysis. Algorithm 3 consists of three steps: (1) Baby-
step: finding the one-hot indicator of size

√
n, (2) Lazy

folding, and (3) Giant-step: repeating the table folding.
Finding the

√
n subblock that the query belongs to (as an

analogy of Algorithm 2) uses log n/2 number of Compare,
(2
√
n+O(1)) number of cMult, and (

√
n− log n+O(1))

number of Mult, as it is the analogy of Algorithm 2.
Lazy folding, connecting the analogies of Algorithm 1

and 2, uses 2n homomorphic multiplications. However, since
the table is unencrypted, it suffices to perform cMult instead
of Mult. We stress out that cMult is much faster than Mult;
thus, the cost for lazy folding is not very significant. Also, we
remark that by utilizing the fact that

∑√
n−1

j=0 B(⃗j) = 1, we
can reduce the number of multiplications to 2n− 2

√
n.

At last, we repeating the table folding as in Algorithm 1.
Note that after lazy folding, all table keys and values are
encrypted. It uses log n/2 number of Compare, and (2

√
n+

O(1)) number of Mult.
To put it all together, Algorithm 3 uses log n number of

Compare, (2n+O(1)) number of cMult, and (3
√
n−log n+

O(1)) number of Mult.
We also point out that while Algorithm 1 and 2 require Ω(n)

additional memory space, Algorithm 3 uses O(
√
n) additional

memory space.

TABLE II
REQUIRED NUMBER OF OPERATIONS TO PERFORM ALGORITHMS 1, 2 AND

3 ON UNENCRYPTED LOOKUP TABLES OF SIZE n.

Compare Mult cMult
Lagrange Interpolate O(1) O(n2) O(n2)
Exhaustive Comparison O(n) O(1) O(n)
Algorithm 1 logn n+O(1) n+O(1)
Algorithm 2 logn n− logn+O(1) 2n+O(1)
Algorithm 3 logn 3

√
n− logn+O(1) 2n+O(1)

Remark 3. In this section, we imitated binary search; that is,
we halves the table by using one homomorphic comparison
operation. In a point of fact, we can fold the table to make a
smaller table of size 1/(c + 1), by comparing the query to c
table keys. When we are able to perform homomorphic com-
parison in a SIMD manner, we can simultaneously compare c
ciphertexts at once, and this generalization might reduce the
practical runtime.

IV. APPROXIMATE CASE: CKKS ADAPTATION

In this section, we suggest some practical adaptations and
optimizations for the application of our algorithm to approxi-
mate HE, e.g., CKKS scheme.

We stress that we are mainly focusing on applications of HE
to real-valued data for real-world applications. A real-valued

Algorithm 3 Baby-step / giant-step
Input: {0 ≤ x0 < · · · < xn−1 ≤ 1}, {y0, · · · , yn−1} ∈

[0, 1]n

Input: a query x = xt for some 0 ≤ t < n
Output: An encrypted output yt.

1: β ← Compare(x+ x, x(0, 1⃗) + x(1, 0⃗))
2: (B(0), B(1))← (1− β, β)
3: for m← 1 to log n/2− 1 do
4: x′ ← 0
5: for b⃗← {0, 1}m do
6: x′ ← x′ +B(⃗b)

(
x(⃗b, 1, 0⃗) + x(⃗b, 0, 1⃗)

)
7: end for
8: β ← Compare(x+ x, x′)
9: for b⃗← {0, 1}m do

10: B(⃗b, 1)← β ·B(⃗b)
11: B(⃗b, 0)← B(⃗b)−B(⃗b, 1)
12: end for
13: end for
14: for i← 0 to

√
n− 1 do

15: x̃i, ỹi ← 0
16: for j ← 0 to

√
n− 1 do

17: x̃i ← x̃i +B(j)x(j, i)
18: ỹi ← ỹi +B(j)y(j, i)
19: end for
20: end for
21: m←

√
n

22: while m > 1 do
23: m← m/2
24: β ← Compare

(
x+ x, x̃m−1 + x̃m

)
25: for i← 0 to m− 1 do
26: x̃i ← x̃i + β · (x̃i+m − x̃i)
27: ỹi ← ỹi + β · (ỹi+m − ỹi)
28: end for
29: end while
30: return ỹ0

computation means the approximate computation with some
precision bits. As a point of real-valued computation, CKKS,
for example, serves approximate computation rather than exact
computations, and it has a great advantage in being applied to
real-world applications.

With this manner of approximate computation, homomor-
phic comparison methods for CKKS, [11], output approximate
results of the comparison. Since we exploit homomorphic
comparison repeatedly, we should carefully manage the error
accompanied by the homomorphic comparison methods. We
remark that the cost for the homomorphic comparison method
in [11] depends on the precision of input and output cipher-
texts. The homomorphic comparison algoirhtm in [11] requires
Θ(log(1/ϵ)) + Θ(log log(1/α)) computational cost to obtain
an approximate comparison result of a, b ∈ [0, 1] satisfying
|a− b| ≥ ϵ within α error.

In this section, we analyze the error accompanied by ap-
proximate homomorphic comparison, and suggest an optimiza-
tion for it.
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A. Approximate Homomorphic Comparison

We let Compare(a, b; ϵ, α) be the approximate comparison
that outputs the comparison of a, b ∈ [0, 2] satisfying |a −
b| ≥ ϵ within α error. As mentioned in [11], the cost for
Compare(a, b; ϵ, α) is Θ(log (1/ϵ)) +Θ(log log(1/α)). This
means that we require more computations to achieve better
precision.

Suppose we are given a lookup table {xi, yi}ni=1 such that
0 ≤ x1 < x2 < · · · < xn ≤ 1, and 0 ≤ yi ≤ 1. Let ∆ be the
minimum difference of table keys, i.e., ∆ := min ∥xi+1 − xi∥.
Then, ∆ determines the precision of table keys, and the cost
for homomorphic comparison depends on ∆. In particular,
suppose we want to evaluate the lookup table on the encrypted
query as in Section III within error A. For ease of discussion,
we further assume that A < ∆/2.

Theorem 3. In Algorithm 1, 2, and 3 with approximate
comparison, Compare(·, ·; ∆/2, ((1 + 2A)1/ logn − 1)/2)),
gives correct result within the error A.

Proof. Here, we prove the correctness of Algorithm 3. Let
α := ((1 + 2A)1/ logn − 1)/2. Also, for given query xt,
let the binary representation of t be {βi}ki=1, i.e., t =∑k

i=1 βi2
k−1−i.

We begin with the for-loop in line 3-13. We consider the
loop invariant that for each c⃗ ∈ {0, 1}k−m,∑

b⃗∈{0,1}m

B(⃗b)x(⃗b, c⃗) = x(β1, · · · , βm, c⃗)

within the error ((2α+1)m−1)/2. Initially, the loop invariant
trivially holds since B(0) = 1−β1 and B(1) = β1 within error
α. Suppose the loop invariant holds at the beginning of a loop
iteration. We note that for each b⃗ ∈ {0, 1}m and a bit e,

B(⃗b, e) = (1− e)B(⃗b) + eB(⃗b).

Also, x′ = x(β1, · · · , βm, 1, 0⃗) + x(β1, · · · , βm, 0, 1⃗) within
error (1 + 2α)m − 1 = (1 + 2A)m/ logn − 1 < 2A < ∆, so
β = βm+1 within error α. For each c⃗ ∈ {0, 1}k−m−1,∣∣∣∣∣

 ∑
b⃗∈{0,1}m+1

B(⃗b)x(⃗b, c⃗)

− x(β1, · · · , βm+1, c⃗)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
b⃗∈{0,1}m

((1− β)B(⃗b)x(⃗b, 0, c⃗) + βB(⃗b)x(⃗b, 1, c⃗))

− x(β1, · · · , βm+1, c⃗)

∣∣∣∣∣
≤

∣∣∣∣∣(1− β)

 ∑
b⃗∈{0,1}m

B(⃗b)x(⃗b, 0, c⃗)− x(β1, · · · , βm, 0, c⃗)

∣∣∣∣∣
+

∣∣∣∣∣β
 ∑

b⃗∈{0,1}m

B(⃗b)x(⃗b, 1, c⃗)− x(β1, · · · , βm, 1, c⃗)

∣∣∣∣∣
+

∣∣∣(βm+1 − β) (x(β1, · · · , βm, 0, c⃗)− x(β1, · · · , βm, 1, c⃗))
∣∣∣

≤ (|1− β|+ |β|) (2α+ 1)m − 1

2
+ α =

(2α+ 1)m+1 − 1

2
.

Thus, the loop invariant satisfies the maintenance. After
the loop terminates, we yield the fact that for each i =
0, 1 · · · ,

√
n,

x̃i = x(β1, · · · , βk/2, i⃗)

in line 20. The same result holds for ỹ′ as well.
Now, for the while-loop in line 22-29, we consider the loop

invariant that for each i = 0, 1, · · · ,m− 1,

x̃′
i = x(β1, · · · , βk−logm, i⃗)

and
ỹ′i = y(β1, · · · , βk−logm, i⃗)

within error ((2α + 1)logn−logm − 1)/2. At the initial state
of the loop, the loop invariant trivially holds. Suppose the
loop invariant holds at the beginning of a loop iteration; then
x′ = x(β1, · · · , βm, 1, 0⃗) + x(β1, · · · , βm, 0, 1⃗) within error
(1 + 2α)m − 1 = (1 + 2A)m/ logn − 1 < 2A < ∆, so β =
βm+1 within error α. Thus, with the same argument above,
this loop invariant also has a maintenance. Finally, once the
loop terminates, ỹ0 is y(β1, · · · , βk) = yt within error ((1 +
2α)logn − 1)/2 = A.

We roughly approximate ((1 + 2A)1/ logn − 1)/2 ≈
A/ log n by using that α is small. Then, the computational
cost of each homomorphic comparison in our algorithms is:
Θ(log(1/∆)) +Θ(log log((log n)/A)). The overall computa-
tional cost for homomorphic comparison is Θ(log n log 1

∆ ))+

Θ(log n log log( logn
A )).

B. Reducing 1/∆

As we describe above, the computational cost for the homo-
morphic comparison algorithm depends on ∆, the minimum
difference between table keys. The homomorphic comparison
might be potentially slow if the given lookup table is bad, i.e.,
it has an extremely small ∆. For the unencrypted bad lookup
tables, we suggest a heuristic method to increase ∆ with a
few extra operations.

We first point out that for an uniformly distributed n table
keys in [0, 1], the expected value of ∆ is 1

n2 . Our key idea is to
randomize the keys of a given bad table to yield reasonable ∆,
i.e., ∆ ≈ 1

n2 . We seek for an efficiently evaluatable polynomial
p(·) such that the new table keys {p(x1), · · · , p(xn)} has a
reasonable ∆ = min{p(xi)− p(xi−1)}. Once we have such a
polynomial, for a given encrypted query (xt), we first compute
p(xt), and evaluate lookup table {p(x1), · · · , p(xn)} on the
updated query, p(xt). to get the appropriate yt. We note that
since {p(x1), · · · , p(xn)} has a reasonable ∆, the cost for
homomorphic comparison operation might be reasonable.

The randomizing polynomial p(·) should be able to be
evaluated with less number of multiplications and should
have a great capability to diffuse the key values. We suggest
utilizing Chebyshev polynomial basis, which is obtained from
the recurrence relation:

T0(x) = 1

T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x).
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Since T2k(x) = 2T 2
k (x) − 1 for each k = 1, 2, · · · , we can

evaluate Chebyshev polynomials of high degree with relatively
less number of multiplications.

We randomly search for an appropriate randomizing poly-
nomial as follows. For small d ≈ log n, we randomly pick
r0, r1, · · · , rd from [−1, 1], and let

q(x) :=

d∑
i=0

riT2i(x)

p(x) :=
q(x)−min{q(xi)}

max{q(xi)} −min{q(xi)}
.

Note that p(xi) ∈ [0, 1] by definition. Heuristically, under the
assumption that p(·) randomizes the table keys, {xi}n−1

i=0 , into
a uniformlly distributed keys in [0, 1], the expected value of
∆(p) (:= min{p(xi) − p(xj)}) is 1/n2. Thus, after several
choices of ri’s, we heuristically find a good randomizing
polynomial.

Algorithm 4 Searching a good randomizing polynomial
Input: {x0, · · · , xn−1} ∈ [0, 1]n, a threshold T
Output: A good randomization p(·).

1: for d← 0 to log n do
2: ctr ← 0
3: for i← 0 to d do
4: ri ←$ [−1, 1]
5: end for
6: q(x) :=

∑d
i=0 riT2i(x)

7: m← min(q(xj))
8: M ← max(q(xj)−m)
9: p(x)← (q(x)−m)/M

10: Sort {p(xj)}n−1
j=0 and update the index.

11: ∆← min(p(xj)− p(xj−1))
12: if ∆ > 1/n2 then
13: return p(·)
14: else
15: ctr ← ctr + 1
16: if ctr > T then
17: break
18: end if
19: end if
20: end for
21: return Null

Even though Algorithm 4 uses Ω(n log2 n) operations,
Algorithm 4 is performed on unencrypted data, so the time
cost is negligible compared to the computations on encrypted
data. Also, we can reuse the randomizing polynomial when
we evaluate the same lookup table after.

Remark 4. If we store the coefficients of the randomizing
polynomial together with the encrypted lookup table, Algo-
rithm 4 can be exploited for the case of an encrypted lookup
table as well.

Remark 5. In our proof-of-concept implementation in Sec-
tion V, we did not include Algrotihm 4 since we focused on
the lookup tables with uniformly distributed key values.

Fig. 4. The amortized running time of Algorithm 1 and 2 for various sizes
of encrypted LUTs. Time is in seconds (sec).

V. EXPERIMENTS

In this section, we implement our algorithms in Section III
by using the CKKS scheme as we described in Section IV.
We implemented Algorithm 1 and 2 for the encrypted lookup
tables, and Algorithm 1, 2 and 3 for the unencrypted lookup
tables.

Experimental Environment. All experiments were per-
formed on an Intel Xeon Silver 4114 CPU at 2.20GHz
processor. We used a single thread for the experiments.

Parameter. For the CKKS implementation, we used the
quotient polynomial ring ZQ[X]/(XN+1) with the dimension
log2 N = 17. The size of the maximum modulus, log2 PQ
is 2070. We sampled the ternary secret key with a hamming
weight of 64. We note that our parameter is about 128-bit
secure, i.e., ≈ 2128 operations are needed to recover plaintext
with the current best attacks [24].

A. Private Encrypted Table

For the encrypted LUTs, we implement Algorithm 1 and 2
by using the CKKS scheme. We perform our algorithm for
each LUT of size 2k where 2 ≤ k ≤ 9. We select the table
keys uniformly on [0, 1], and the table value randomly on [0, 1].

We report the amortized running time in Table III, and
present the graph in Figure 4. We remark that we fully
used SIMD property of CKKS, so evaluate 65536 queries
simultaneously. We also note that for the smaller size of LUTs,
the cost from the homomorphic comparison is dominant, while
for the larger size of LUTs, the cost from homomorphic
multiplications is dominant.

B. Public Unencrypted Table

For the unencrypted LUTs, we implement Algorithm 1
and 3 by using CKKS scheme. We perform Algorithm 1 for
each LUT of size 2k where 2 ≤ k ≤ 12, and Algorithm 3
for each LUT of size 2k where 2 ≤ k ≤ 13, We select the
table keys uniformly on [0, 1], and the table value randomly
on [0, 1].
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TABLE III
THE AMORTIZED RUNNING TIME OF ALGORITHM 1 AND 2 FOR VARIOUS SIZES OF ENCRYPTED LUTS. TIME IS IN MILLISECONDS (MS).

4 8 16 32 64 128 256 512
Algorithm 1 3.01 5.80 8.67 13.21 16.81 21.78 27.55 41.18
Algorithm 2 3.78 5.98 8.86 13.90 17.61 22.76 29.58 42.02

TABLE IV
THE AMORTIZED RUNNING TIME OF ALGORITHM 1 AND 3 FOR VARIOUS SIZES OF UNENCRYPTED LUTS. TIME IS IN MILLISECONDS (MS).

4 8 16 32 64 128 256 512 1024 2048 4096 8192
Algorithm 1 2.98 5.72 8.75 12.95 15.93 20.06 24.65 31.74 43.72 71.18 113.54 -
Algorithm 3 2.97 5.71 8.40 12.66 15.25 18.46 21.46 25.17 29.70 43.54 51.28 70.26

Fig. 5. The amortized running time of Algorithm 1 and 3 for various sizes
of unencrypted LUTs. Time is in seconds (sec).

We report the amortized running time in Table IV, and
present the graph in Figure 5. We remark that we fully
used the SIMD property of CKKS, so evaluate 65536 queries
simultaneously. We also note that for smaller LUTs, the cost
from Compare is dominant, while for larger LUTs, the costs
from Mult and cMult are dominant. The difference in
running time between Algorithm 1 and 3 is substantial; thus,
the efficiency of Algorithm 3 we suggested in Section III-B3
has been proved.

VI. CONCLUSION

In this work, we suggested HE-based algorithms for the
evaluation of lookup tables on encrypted queries. For the
encrypted lookup tables, we introduced two algorithms that
use O(log n) homomorphic comparisons and O(n) homomor-
phic multiplications. For the unencrypted lookup tables, we
proposed a better algorithm that uses O(log n) homomorphic
comparisons, O(

√
n) homomorphic multiplications between

ciphertexts, and O(n) homomorphic multiplications between
a ciphertext and a plaintext.
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