Starlit: Privacy-Preserving Federated Learning to Enhance
Financial Fraud Detection*

Aydin Abadi**' Bradley Doyle? Francesco Gini? Kieron Guinamard? Sasi Kumar Murakonda* * *2

Jack Liddell> Paul Mellor? Steven J. Murdochf! Mohammad Naseri*® Hector Page?
George Theodorakopoulos?? Suzanne Weller 12

! University College London
2 Privitar
3 Flower Labs
4 Cardiff University

Abstract. Federated Learning (FL) is a data-minimization approach enabling collaborative model
training across diverse clients with local data, avoiding direct data exchange. However, state-of-the-art
FL solutions to identify fraudulent financial transactions exhibit a subset of the following limitations.
They (1) lack a formal security definition and proof, (2) assume prior freezing of suspicious customers’
accounts by financial institutions (limiting the solutions’ adoption), (3) scale poorly, involving either
O(n®) computationally expensive modular exponentiation (where n is the total number of financial
institutions) or highly inefficient fully homomorphic encryption, (4) assume the parties have already
completed the identity alignment phase, hence excluding it from the implementation, performance
evaluation, and security analysis, and (5) struggle to resist clients’ dropouts. This work introduces
Starlit, a novel scalable privacy-preserving FL. mechanism that overcomes these limitations. It has
various applications, such as enhancing financial fraud detection, mitigating terrorism, and enhancing
digital health. We implemented Starlit and conducted a thorough performance analysis using synthetic
data from a key player in global financial transactions. The evaluation indicates Starlit’s scalability,
efficiency, and accuracy.

1 Introduction

Sharing data is crucial in dealing with crime. Collaborative data analysis among law enforcement agencies
and relevant stakeholders can significantly enhance crime prevention, investigation, and overall public safety.
For instance, in the United Kingdom, Cifas, a non-profit fraud database, and fraud prevention organization
that promotes data sharing among its members, reported that its members detected and reported over
350,000 cases of fraud in 2019. This collective effort prevented fraudulent activities amounting to £1.5 billion
[66]. The National Data Sharing Guidance, developed by the UK Home Office and Ministry of Justice in
2023, further underscores the importance of data sharing in dealing with crime [63].

Typically, inputs for collaborative data analysis come from different parties, each of which may have
concerns about the privacy of their data. Federated Learning (FL) [73] and secure Multi-party Computation
(MPC) [75], along with their combination, are examples of mechanisms that allow parties to collaboratively
analyze shared data while maintaining the privacy of their input data.

FL is a machine learning framework where multiple parties collaboratively build machine learning models
without revealing their sensitive input to their counterparts [73,42]. Vertical Federated Learning (VFL) is a

* Our solution, Starlit, has been awarded the joint first prize of UK-US Privacy-Enhancing Technologies Challenge
Prize [58]. Starlit has been acknowledged by both the White House and UK Government websites [60,59].
aydin.abadi@ucl.ac.uk
sasi.murakonda@privitar.com

* %

* K Kk

t s.murdoch@ucl.ac.uk
¥ mohammad@flower.dev
§ theodorakopoulosg@cardiff.ac.uk

¥ suzanne.weller@privitar.com

vital variant of FL, with various applications, e.g., in dealing with crime [5] and healthcare [44]. VFL refers
to the FL setting where datasets distributed among different parties (e.g., banks) have some intersection
concerning users (e.g., have certain customers’ names in common) while holding different features, e.g.,
customers’ names, addresses, and how they are perceived by a financial institution. Horizontal Federated
Learning (HFL) is another important variant of FL where participants share the same feature space while
holding different users, e.g., customers’ attributes are the same, but different banks may have different
customers.

Advanced privacy-preserving FL-based solutions aiming to detect anomalies and deal with financial fraud
may face a new challenge. In this setting, datasets for financial transactions might be partitioned both
vertically and horizontally. For instance, a third-party Financial Service Provider (FSP) may have details of
financial transactions including customers’ names, and involved banks, while each FSP’s partner bank may
have some details/features of a subset of these customers. Thus, existing solutions for VFL or HFL cannot
be directly applied to deal with this challenge.

1.1 Our Contributions

In this work, we introduce Starlit, a pioneering scalable privacy-preserving federated learning mechanism that
can help enhance financial fraud detection. By devising and utilizing Starlit in the context of financial fraud,
we address all limitations of the state-of-the-art FL-based mechanisms, proposed in [5,46,32]. Specifically,
we (1) formally define and prove Starlit’s security (in the simulation-based paradigm), (2) do not place
any assumption on how suspicious accounts of customers are treated by their financial institutions, (3)
make Starlit scale linearly with the number of participants (i.e., its overhead is O(n)) while refraining from
using fully homomorphic encryption, (4) include all phases of Starlit in the implementation, performance
evaluation, and security analysis, and (5) make Starlit resilient against dropouts of clients.

Starlit offers two compelling properties not found in existing VFL schemes. These include the ability to
securely:

— Identify discrepancies among the values of shared features in common users between distinct clients’
datasets. For instance, in the context of banking, FSP and a bank can detect if a certain customer
provides a different home address to each.

— Aggregate common features in shared users among different clients’ datasets, even when these features
have varying values. For instance, this feature will enhance FSP’s data by reflecting whether FSP and
multiple banks consider a certain customer suspicious, according to the value of a flag independently
allocated by each bank to that customer’s account.

We have implemented Starlit and evaluated its performance using synthetic data which comprises about
four million rows. This synthetic data was provided by a major organization globally handling financial
transactions. Starlit stands out as the first solution that simultaneously provides the features mentioned
above. We identify several potential applications for Starlit, including mitigating terrorism, enhancing digital
health, and aiding in the detection of benefit fraud (see Section 12).

To develop Starlit, we use a combination of several tools and techniques, such as SecureBoost (for VFL),
Private Set intersection (for identity alignment and finding discrepancies among different entities’ informa-
tion), and Differential Privacy to preserve the privacy of accounts’ flags (that indicate whether an account
is deemed suspicious). Moreover, based on our observation that each dataset’s sample (or row), such as a
financial transaction, can be accompanied by a random identifier, we allow a third-party feature collector to
efficiently aggregate clients’ flags without being able to associate the flags values with a specific feature, e.g.,
customer’s name.

Summary of our Contributions. In this work, we:

e Introduce Starlit, a novel scalable privacy-preserving federated learning mechanism, with various real-
world applications.

e Formally define and prove Starlit’s security using the simulation-based paradigm.

e Implement Starlit and conduct a comprehensive evaluation of its performance.

1.2 Primary Goals and Setting

This paper focuses on a real-world scenario in which a server, denoted by Srv, wants to train a machine-
learning model to detect anomalies using its data, and complementary data held by different clients C' =
{C,,...,C,,}. For instance, Srv can be a Financial Service Provider (FSP) such as SWIFT?, Visa®, PayPal”,
CHIPS?®, and SEPA®—facilitating financial transactions and payments between various clients in set C, such
as banks, eBay, and Amazon—that aims to detect anomalous transactions.

In this setting, Srv may maintain a database of samples/rows between interacting clients, but it does
not possess all the details about the users included in each sample. For instance, in the context of financial
transactions, FSP holds a dataset containing samples (i.e., transactions) between the ordering account held
by bank C; and the beneficiary account held by bank C,.

Each sample may contain a customer’s name, the amount sent, home address, and information about C,,
and C;. Each client in C maintains a dataset containing certain customers’ account information, including
customers’ details, their transaction history, and even local assessments of their known financial activities.
However, each C; may not hold all users (e.g., customers) that Srv is interested.

While Srv is capable of training a model to detect anomalous transactions using its data, it could enhance
the analytics by considering the complementary data held by other clients concerning the entities involved
in the transactions. The ultimate goal is to enable Srv to collaborate with other clients to develop a model
that is significantly better than the one developed on Srv’s data alone, e.g., to detect suspicious transactions
and ultimately to deal with financial fraud.

However, a mechanism that offers the above feature must satisfy vital security and system constraints;
namely, (i) the privacy of clients’ data should be preserved from their counterparts, and (ii) the solution
must be efficient for real-world use cases. The aforementioned setting is an example of FL on vertically and
horizontally partitioned data in which each Srv’s transaction is associated with a sender C, (e.g., ordering
bank), and receiver C;, e.g., beneficiary bank. Our solution will enhance Srv’s dataset with two primary
types of features using the datasets of C, and C;:

e Discrepancy Feature: This will enhance Srv’s data by reflecting whether there is a discrepancy between
(i) the (value of the) feature, such as a customer’s name and address, it holds about a certain user U
under investigation and (ii) the feature held by sending client C; and receiving client C; about the same
user. For each user, this feature is represented by a pair of binary values (b, ;,b, ;), where b, ; and b, ;
represents whether the information that Srv holds matches the one held by the sending and receiving
clients respectively.

e Account Flag Feature: This will enhance Srv’s data by reflecting whether Srv and a client have the
same view of a certain user, e.g., a customer is suspicious. This feature is based on a pair of binary
private flags for a certain user, where one flag is held by the sending client and the other one is held by
the receiving client. In the context of banking, banks often allocate flags to each customer’s account for
internal use. The value of this flag is set based on the user’s transaction history and determines whether
the bank considers the account holder suspicious.

To preserve the privacy of the participating parties’ data (e.g., data of non-suspicious customers held by
banks) while aligning Srv’s dataset with the features above, we rely on a set of privacy-enhancing techniques,
such as Private Set Intersection (PSI) and Differential Privacy (DP). Briefly, to enable Srv to find out whether
the data it holds about a certain (suspicious) user matches the one held by a client, we use PSI. Furthermore,
to enhance Srv’s data with the flag feature, each client uses local DP to add noise to their flags and sends
the noisy flags to a third-party flag collector which feeds them to the model training phase.

5 https://wuw.swift.com

5 https://www.visa.co.uk/about-visa.html

" https://www.paypal . com/uk/home

8 https://www.theclearinghouse.org/payment-systems/chips

% https://finance.ec.europa.eu/consumer-finance-and-payments/payment-services/single-euro-
payments-area-sepa_en

https://www.swift.com
https://www.visa.co.uk/about-visa.html
https://www.paypal.com/uk/home
https://www.theclearinghouse.org/payment-systems/chips
https://finance.ec.europa.eu/consumer-finance-and-payments/payment-services/single-euro-payments-area-sepa_en
https://finance.ec.europa.eu/consumer-finance-and-payments/payment-services/single-euro-payments-area-sepa_en

2 Related Work

In this section, we briefly discuss the privacy-preserving FL-based approaches used to deal with fraudulent
transactions. We refer readers to Appendix A for a survey of related work. Lv et al. [39] introduced an
approach to identify black market fraud accounts before fraudulent transactions occur. It aims to guarantee
the safety of funds when users transfer funds to black market accounts, enabling the financial industry to
utilize multi-party data more efficiently. It involves data provided by financial and social enterprises. The
approach utilizes insecure hash-based PSI for identity alignment.

This scheme differs from Starlit in a couple of ways: (i) Starlit operates in a multi-party setting, where
various clients contribute their data, in contrast to the aforementioned scheme, which has been designed for
only two parties, and (ii) Starlit deals with the data partitioned both horizontally and vertically, whereas
the above scheme focuses only on vertically partitioned data.

Recently, Arora et al. [5] introduced an approach that relies on oblivious transfer, secret sharing, DP,

and multi-layer perception. The authors have implemented the solution and conducted a thorough analysis
of its performance.
Starlit versus the Scheme of Arora et al. The latter assumes that the ordering bank never allows a customer
with a dubious account to initiate transactions but allows the same account to receive money. In simpler
terms, this scheme exclusively addresses frozen accounts, restricting its applicability. This setting will exempt
the ordering bank from participating in MPC, enhancing the efficiency of the solution.

In the real world, users’ accounts might be deemed suspicious (though not frozen), yet they can still
conduct financial transactions within their bank. The bank may handle such accounts more cautiously than
other non-suspicious accounts. In contrast, Starlit (when applied to financial transactions context) does not
place any assumption on how a bank treats a suspicious account.

Furthermore, unlike the scheme proposed in [5], which depends on an ad-hoc approach to preserve data
privacy during training, our solution, Starlit, employs SecureBoost—a well-known scheme extensively utilized
and analyzed in the literature. Thus, compared to the scheme in [5], Starlit considers a more generic scenario
and relies on a more established scheme for VFL.

Recently, another approach has been developed by Qiu et al. [46]. It uses neural networks and shares the

same objective as the one by Arora et al. However, it strives for computational efficiency primarily through
the use of symmetric key primitives. The scheme incorporates the elliptic-curve Diffie-Hellman key exchange
and one-time pads to secure exchanged messages during the model training phase. This scheme has also been
implemented and subjected to performance evaluation.
Starlit versus the Scheme of Qiu et al. The latter scheme requires each client (e.g., bank) to possess knowl-
edge of the public key of every other client and compute a secret key for each through the elliptic-curve
Diffie-Hellman key exchange scheme. Consequently, this approach imposes O(n) modular exponentiation on
each client, resulting in the protocol having a complexity of O(n?), where n represents the total number
of clients. In contrast, in Starlit, each client’s complexity is independent of the total number of clients and
each client does not need to know any information about other participating clients. Moreover, the scheme
proposed in [46] assumes the parties have already performed the identity alignment phase, therefore, the
implementation, performance evaluation, and security analysis exclude the identity alignment phase.

Furthermore, the scheme in [46] fails to terminate successfully even if only one of the clients neglects to
transmit its message. In this scheme, each client, utilizing the agreed-upon key with every other client, masks
its outgoing message with a vector of pseudorandom blinding factors. The expectation is that the remaining
clients will mask their outgoing messages with the additive inverses of these blinding factors. These blinding
factors are generated such that, when all outgoing messages are aggregated, the blinding factors cancel each
other out.

Nevertheless, if one client fails to send its masked message, the aggregated messages of the other clients
will still contain blinding factors, hindering the training on correct inputs. In contrast, Starlit does not
encounter this limitation. This is because the message sent by each client is independent of the messages
transmitted by the other clients.

Kadhe et al. [32] proposed an anomaly detection scheme, that uses fully homomorphic encryption (com-
putationally expensive), DP, and secure multi-party computation. The authors have also implemented their
solution and analyzed its performance.

Starlit versus the Scheme of Kadhe et al. The latter heavily relies on fully homomorphic encryption. In this
scheme, all parties need to perform fully homomorphic operations. This will ultimately affect both the
scalability and efficiency of this scheme. In contrast, Starlit does not use any fully homomorphic scheme.

All of the above solutions share another shortcoming, they lack formal security definitions and proofs of
the proposed systems.

3 Informal Threat Model

Starlit involves three types of parties:

e Server (Srv). It wants to train a model to detect anomalies using its data, and complementary data held by
different clients. The data Srv maintains is partitioned vertically and horizontally across different clients.
Each sample in the data includes various features, e.g., a user’s name, sender client, and receiver client.

e Clients (Cy,...,C,). They are different clients (e.g., nodes, devices, or organizations) that contribute to
FL by providing local complementary data to the training process.

e Flag Collector (FC). It is a third-party helper that aggregates some of the features held by different
clients. FC is involved in Starlit to enhance the system’s scalability.

We assume that all the participants are honest but curious (a.k.a. passive adversaries), as it is formally
defined in [24]. Hence, they follow the protocol’s description. But, they try to learn other parties’ private
information. We consider it a privacy violation if the information about one party is learned by its counterpart
during the model training (including pre-processing). We assume that parties communicate with each other
through secure channels.

4 Preliminaries

4.1 Notations and assumptions

Table 1 summarizes the notations used in this paper. Let G be a multi-output function, G(inp) — (outp,, ..., outp,,).
Then, by G, (inp) we refer to the i-th output of G(inp), i.e., outp,.

4.2 Private Set Intersection (PSI)

PSI is a cryptographic protocol that enables mutually distrustful parties to compute the intersection of their
private datasets without revealing anything about the datasets beyond the intersection.

The fundamental functionality computed by any n-party PSI can be defined as G which takes as input
sets S, ..., S, each of which belongs to a party and returns the intersection S, of the sets to a party. More
formally, the functionality is defined as: G(S4, ..., S,) = (Sn, L, ..., L), where S, =5, NS,,...,N S,. In this

n—1

work, we denote the concrete PSI protocol with PSZ.

4.3 Local Differential Privacy

Local Differential Privacy (LDP) entails that the necessary noise addition for achieving differential privacy
is executed locally by each individual. Each individual employs a random perturbation algorithm, denoted
as M, and transmits the outcomes to the central entity. The perturbed results are designed to ensure the
protection of individual data in accordance with the specified e value. This concept has been formally stated
in [20]. Below, we restate it.

Table 1: Notation table.

Symbol Description
Srv Server
FSp Financial Service Provider
FC Feature Collector
C; A client or bank
Parameter that quantifies the privacy guarantee
€ provided by a differentially private mechanism.
PSI Private Set Intersection
DP Differential Privacy
ML Machine Learning
FL Federated Learning
VFL Vertical Federated Learning
RR Randomized Response
AUPRC Area Under the Precision-Recall Curve
GOSSs Gradient-based One Side Sampling
H Hour
Pr Probability
S; A private set
v Set of flag values
w(v),v €V Prior probability of value v (FSP’s prior knowledge)
dp(0,v): VXV >R Privacy metric (attacker’s error when estimating v as o)
f'v): VXV —aec{01} Privacy mechanism
|| Concatenation
L Leakage function of Celestial and Starlit
L1 FSP —side leakage in Starlit
Lo FC -side leakage in Starlit
Liyo C;—side leakage in Starlit
w Leakage function in (V)ML
F Functionality of Celestial
prm; Input parameter of a party to (V)FL
|:S] Size of set or database S

Definition 1 Let X be a set of possible values and Y the set of noisy values. M is e-locally differentially
private (e-LDP) if for oll x,2" € X and for ally € Y:

Pr[M(z) = y] < - Pr[M(&') = 4| (1)

For a binary attribute, i.e., X = {0, 1}, this protection means that an adversary who observes y cannot
be sure whether the true value was 0 or 1.

As proposed by Wang et al. [65], we consider two generalized mechanisms on binary attributes for
achieving LDP. The first one uses the Randomized Response (RR) and the second one relies on adding Laplace
noise with post-processing (applying a threshold of 0.5) for binarizing the values. For either mechanism, each
individual employs a 2 x 2 transformation matrix P = [p,;] to perturb their true value, where the element
at position (i,7) represents the probability of responding with value j if the true value is i. To satisfy the
definition of DP at privacy level €, we need to have po,/pe; < €.

Randomized Response. In addition to the requirement of satisfying e-LDP, Wang et al. [65] propose
selecting the matrix parameters to maximize the probability of retaining the true value, i.e., to maximize
Doo + p11- This yields the following transformation matrix:

e 1

€ €
Q=T T 2)

Ttef Tes

Laplace Noise with Post-Processing. The Laplace mechanism is a DP mechanism proposed by the
original DP paper [21]. To achieve e-DP, this mechanism adds noise drawn from the Laplace distribution
with parameter % to the true value. This creates continuous values, instead of binary ones. Consequently, we
need to make the output binary. It is demonstrated in [65] that using a threshold of 0.5 maximizes pyo + P11,
i.e., if the continuous value is above 0.5, we set the final value to 1; otherwise, we set it to 0. This leads to
the following transformation matrix:

1 € 1 e
2¢ 2 3¢ *®
) ®)

Note that although we list the matrices only for binary attributes here, both mechanisms generalize to
the case of categorical variables with more than two values.

Mechanisms for Optimal Inference Privacy. Any randomization mechanism for obfuscating the flags
while sharing can offer certain protection against inference attacks by Srv. Given a value of €, there can be
many mechanisms that satisfy the constraint of DP, of which two can be found using Equation 2 (for RR)
and Equation 3 (for Laplace).

These mechanisms assign an equal probability of converting a 0 to 1 and 1 to 0. They need not be the
optimal transformation matrices that provide maximum inference privacy, i.e., maximum protection against
Srv’s ability to infer the flag values.

As one of the key contributions of this work, we developed a framework to explore the entire space
of transformation matrices and find optimal mechanisms that maximize inference privacy, under the given
constraints on utility and local differential privacy.

The main advantage of formulating the construction of a privacy mechanism as an optimization problem
is that we can automatically explore a large solution space to discover optimal mechanisms that are not
expressible in closed form (such as the Laplace or Gaussian mechanism). Section 7 presents further details
about the game construction and solution.

4.4 Federated Learning

Unlike traditional centralized methods, where data is pooled into a central server, FL allows model training to
occur on individual devices/clients contributing private data. This preserves the privacy of the data to some
extent by avoiding direct access to them. The process involves training a global model through collaborative
learning on local data, and only the model updates, rather than raw data, are transmitted to the central
server.

This decentralized paradigm is particularly advantageous in scenarios where data privacy is paramount,
such as in healthcare or finance, as it enables machine learning advancements without compromising sensitive
information. Algorithm 1 presents the overall workflow of FL.

Algorithm 1 : Federated Learning’s General Procedure

1: Server:

2: Initialize global model 6

3: for each round £ =1,2,3,..., K do

4 Broadcast 0 to all participating devices

5 Clients:

6: for each client i (where 1 <14 < n) in parallel do
7 Receive global model 6

8: Compute local update g¢; using local data

9 Send g; to the server

10: Server:

11: Aggregate local updates: G, = Y ¢;
=1
12: Update global model: 6,, = UpdateModel(0, Gx)

SecureBoost: A Lossless Vertical Federated Learning Framework. SecureBoost, introduced in [18],
stands out as an innovative FL framework designed to facilitate collaborative machine learning model training
among multiple parties while safeguarding the privacy of their individual datasets. It accomplishes this by
leveraging homomorphic encryption to execute computations on encrypted data, ensuring the confidentiality
of sensitive information throughout the training procedure. There are two main technical concepts and phases
involved in SecureBoost:

e Secure Tree Construction: SecureBoost builds boosting trees, a specific type of machine learning model,
by utilizing a non-federated tree boosting mechanism called XGBoost [16] and a partially homomorphic
encryption scheme, such as Paillier encryption [45], allowing various operations such as majority votes and
tree splits to be performed without exposing the underlying plaintext data to the system’s participants.

e Entity Alignment: To enable collaborative training, SecureBoost conducts entity alignment to recognize
corresponding user records across diverse data silos. This process is typically executed through an MPC
(such as PSI), guaranteeing the confidentiality of individual identities.

SecureBoost has been implemented in an open-sourced FL project, called FATE.'? As discussed above,
(V)FL is an interactive process within which parties exchange messages. Thus, there is a possibility of a
leakage to these parties. To formally define the leakage to each party in this process, below we introduce a

leakage function W.
W(prm,,....,prm,) — (ly, ..., 1,) (4)

This function receives the input parameter prm, from each party in (V)FL and returns leakage I, to
the i-th party, representing the information that (V)FL exposes to that specific party. Note that prm, is
a set, containing all (intermediate) results possibly generated over multiple iterations. This leakage will be
considered in Starlit’s formal definition (in Sections 6 and 9) and proof (in Appendix B).

4.5 Flower: A Federated Learning Implementation Platform

We implement Starlit within Flower, which was introduced in [11]. This framework offers several advantages,
including scalability, ease of use, and language and ML framework agnosticism.

Flower comprises three main components: a set of clients, a server, and a strategy. Federated learning
is often viewed as a combination of global and local computations. The server handles global computations
and oversees the learning process coordination among the clients. The clients perform local computations,
utilizing data for training or evaluating model parameters.

The logic for client selection, configuration, parameter update aggregation, and federated or centralized
model evaluation can be articulated through strategy abstraction. The implementation of the strategy rep-
resents a specific FL algorithm. Flower provides reference implementations of popular FL algorithms such
as FedAvg [40], FedOptim [47], or FedProx [37].

4.6 Security Model

In this paper, we consider static adversaries. We use the simulation-based paradigm of secure multi-party
computation [24] to define and discuss the security of the proposed scheme. Since we focus on the static
passive (semi-honest) adversarial model, we will restate the security definition in this adversarial model.

Two-party Computation. A two-party protocol I" problem is captured by specifying a random process
that maps pairs of inputs to pairs of outputs, one for each party. Such process is referred to as a functionality
denoted by F : {0,1}* x {0,1}* — {0,1}" x {0,1}*, where F := (F,, F,). For every input pair (x,y), the
output pair is a random variable (F,(z,y), F.(x,y)), such that the party with input = wishes to obtain
Fi(x,y) while the party with input y wishes to receive F,(z,y). When F is deterministic, then F, = F,.
The above functionality can be easily extended to n > 2 parties.

10 nttps://github. com/FederatedAl/FATE

https://github.com/FederatedAI/FATE

Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. Nonetheless, the adversary obtains the
internal state of the corrupted party, including the transcript of all the messages received, and tries to use
this to learn information that should remain private.

Loosely speaking, a protocol is secure if whatever can be computed by a party in the protocol can be
computed using its input and output only. In the simulation-based model, it is required that a party’s view
in a protocol’s execution can be simulated given only its input and output. This implies that the parties
learn nothing from the protocol’s execution. More formally, party i’s view (during the execution of I') on
input pair (z,y) is denoted by View! (z,y) and equals (w,r’,m!,...,m!), where w € {z,y} is the input of i*"
party, r; is the outcome of this party’s internal random coin tosses, and m’ represents the j** message this
party receives. The output of the i*" party during the execution of I" on (z,y) is denoted by Output; (z,y)
and can be generated from its own view of the execution.

Definition 1. Let F be the deterministic functionality defined above. Protocol I' securely computes F in
the presence of a passive probabilistic polynomial-time (PPT) adversary A, if for every A in the real model,
there exist PPT algorithms (Sim,, Sim,) such that:

{Siml('r’fl(‘r7y))}m,y é {VIEW';‘F(I,y)}TU
{Sim.(y, Fualz,)}, = {ViewS (2, 9)}..,

Definition 1 can be easily extended to n > 2 parties.

5 System Design

Starlit consists of two main phases: (i) feature extraction and (ii) training. During the feature extraction
phase, the two types of features (discussed in Section 1.2) are retrieved in a privacy-preserving manner,
the data is aligned, and then passed onto a third party, called “Feature Collector (FC)”. The use of FC
drastically simplifies the training phase from n-party down to 2-party VFL, which will enable the system to
scale to a large number of banks.

S P —) Identifying discrepancies m———p.eiiiiyeep o
= < : @ =4
594 A
& H 1.2 Extracting certain users’ flags: send random § g &
~ IDs of the samples that include the users =1
Training =
W, E
Extracting discrepancies and : -

certain users’ flags .

Srv (1.3)
PN

Learning & inference

Training

Features
JUOI[D SUIATIINY]

Srv : Server
W, : Client
FC : Flag Collector

Collected
Features

Fig. 1: Outline of parties’ interactions in Starlit.

Figure 1 outlines the interaction between the parties in Starlit. In Phase 1, each client initially engages with
Srv to identify discrepancies in specific user features. Additionally, in the same phase, each client interacts
with Srv to extract flags for certain users. Subsequently, each client combines the results of discrepancy
extraction with the outcomes of flag extraction, sending the pair along with a random ID (known also to
Srv) to FC. Moving on to Phase 2, FC and Srv collaborate to train the VFL model using FC’s collected
features, Srv’s local data, and SecureBoost.

This procedure may still leave the chance of an inference attack during model training/deployment. To
address this issue, we use LDP, where any flag values that leave the client are obfuscated via a randomization
strategy. Note that this protection is an additional layer on top of what is already offered by the SecureBoost
protocol, which only shares encrypted (aggregated) gradient information.

6 Formal Security Definition

In this section, we introduce a generic formal definition, that we call Celestial. It establishes the primary
security requirements of privacy-preserving (V)FL schemes such as Starlit. Celestial involves three types of
parties, (i) a service provider Srv, (ii) a feature collector FC, and (iii) a set of clients {C,, ..., C,. } contributing
their private inputs. Informally, Celestial allows Srv to generate a (global) model given its initial model and
the inputs of C,,...,C,. To achieve a high level of computational efficiency and scalability, in Celestial, we
involve a third-party FC that assists Srv with computing the model (by interacting with C.s and retrieving
the features they hold). The functionality F that Celestial computes takes an input initial model 8 from Srv,
a set S; from every C,, and no input from FC. It returns to Srv an updated model ’. It returns nothing to
the rest of the parties.!! Hence, F can be formally defined as follows.

F(0,8,,....,8,L)—= (0,1, .., 1L, 1) (5)
———

n

Since (i) FC interacts with C,,...,C, and collects some features from them and (ii) Srv generates the
model in collaboration with C,,...,C, and FC, there is a possibility of leakage to the participating parties.
Depending on the protocol that realizes F this leakage could contain different types of information. For
instance, it could contain (a) each C,’s local model outputs and corresponding gradients (a.k.a. intermediate
results) when using gradient descent [64] in VFL, (b) the output of entity aligning procedure, (c¢) information
about features, or (d) nothing at all. We define this leakage as an output of a leakage function defined as
follows:

‘C(an) - (113123"'aln+2) (6)

L(inp) takes all parties (encoded) inputs, denoted as inp. It returns leakage [, to Srv, I, to FC, and
leakage [; to C,_,, for all 4, where 3 < ¢ <n + 2.

We assert that a protocol securely realizes F if (1) it reveals nothing beyond a predefined leakage to
a certain party and (2) whatever can be computed by a party in the protocol can be obtained from its
input and output only. This is formalized by the simulation paradigm. We require a party’s view during the
execution of the protocol to be simulatable given its input, output, and the leakage that has been defined
for that party.

Definition 2 (Security of Celestial). Let F be the functionality presented in Relation 5. Also, let L be
the above leakage function, presented in Relation 6. We assert that protocol I' securely realizes F, in the
presence of a static semi-honest adversary, if for every non-uniform PPT adversary A for the real model,
there exists a non-uniform PPT adversary (or simulator)

Sim for the ideal model, such that for every party P, where P € {Srv, Cy, ..., C,, FC}, the following holds:

{Sim7.% (6,6}, = {Views, (inp)}n, (7)
{Sim7:2 (L, L)}iny = {Viewys" (inp) }.oy (8)
{SIm?,“ 2 (S, L) Yo, = {Views " (inp) o, (9)

where 1 <1 <n.

' For the sake of simplicity, we have restricted the learning of the global model to only Srv. This approach can be
easily generalized to allow each C; to learn the model as well, by mandating Srv to transmit the global model to
every C;.

10

7 Flag Protection

In this section, we initially present a game for flag protection. Then, we explain how to construct a concrete
optimization problem to realize the game.

7.1 The Game

The problem of finding a Privacy Mechanism (PM) that offers optimal flag privacy to a client given the
knowledge of the adversary (e.g., Srv or FC), is an instance of a Bayesian Stackelberg game. In a Stackelberg
game the leader, in our case the client, plays first by choosing a PM (a transformation matrix), and commits
to that by running it on the actual values of the flags; and the follower, in our case Srv, plays next estimating
the flag value, knowing the PM that the client has committed to. It is a Bayesian game because Srv has
incomplete information about the true flag values and plays according to its prior information about these
values. Inspired by similar work in location privacy protection games [52,51], we now proceed to define the
game for a single flag value, but the transformation matrix computed will be used for each value:

e Step 0. Nature selects a flag value v € V for the client according to a probability distribution = (.), the flag
profile. That is, flag value v is selected with probability m(v). This encodes the relative proportions of the
flag values in the dataset.

e Step 1. Given v, the client runs the PM f(v'|v) to select a replacement value v' € V.

e Step 2. Having observed v, Srv selects an estimated flag value © ~ g(4|v’), 9 € V. Srv knows the probability
distribution f(v'|v) used by the PM, and the client’s flag profile 7(.), but not the true flag value v.

e Step 3. The game outcome is the number d,(?,v), which is the client’s privacy for this iteration of the
game. This number represents Srv’s error in estimating the true value of the flag.

Fig. 2: Bayesian game for a single flag value.

The above description is common knowledge to Srv and the client. Srv tries to minimize the expected
game outcome (the error in the estimation of the flag value) via its choice of g, while the client tries to
maximize it via its choice of transformation matrix f. As changing the flag values distorts the data for
training the ML algorithm, we impose upper bounds p™®*(v’,v) on the probabilities f(v|v). Finally, and
independently of the above considerations, we want the PM to be e-differentially private.

7.2 Optimization Problem

We now explain how to build a concrete optimization problem that encodes the above description and that
we can solve to obtain the optimal PM f(), given (), dp,, p™**(v’, v), and €. Srv knows f(v'|v) implemented by
PM. Thus, it can form a posterior distribution Pr(v|v’) on the true flag value, conditional on the observation
v’. Then, Srv chooses © to minimize the conditional expected privacy, where the expectation is taken under
the posterior distribution:

Choose ¥ that satisfies argmin Z Pr(v|v")dy (0, v). (10)

v

Recall that variables v,v’, and © take values in V, the set of flag values, so the range of any minimization
or summation involving any of these variables will be the set V. If there are multiple minimizing values of
0, then Srv may randomize among them. This randomization is expressed through g(9|v’), and in this case
(10) would be rewritten as) _ Pr(v|v")g(d[v")d, (0, v).

11

It is important to note that the value of this equation would be the same as the value computed in
Relation (10) for any minimizing value of ¢. As 7(v) and f(v|v’) are known to Srv, it holds that:

clole) = FE@Y) - ffo)m(v)
P (‘) PI‘(U/) Z,Uf(’t)/hj)ﬂ'(v)

Thus, for a given v/, the client’s conditional privacy is given by Relation (10). The probability that v’ is
reported is Pr(v’). Hence, the unconditional expected privacy of the client is:

> Pr(v) min > Pr(w))dy(b,0) = mﬂinz 7 (0) f (V' [v)dp (D, v) (12)

(11)

To facilitate computations, we define:
Ty mjnZw(v)f(v’W)dp(ﬁ,v). (13)

Incorporating x,. into Relation (12), the unconditional expected privacy of the client can be rewritten as
> (14)

which the client aims to maximize by choosing f(v’|v). The minimum operator makes the problem non-linear,
undesirable, but Relation (13) can be transformed into a series of linear constraints:

T, < Z?T(v)f(v’|v)dp(ﬁ,v),Vﬁ (15)

Maximizing the result in Relation (14) under Relation (13) is equivalent to maximizing Relation (14)
under Relation (15). For every v, there must be some ¢ for which Relation (15) holds as strict equality;
Otherwise, we could increase one of the z,/, so the value of Relation (14) would increase. From Relations
(14) and (15), the linear program for the client is constructed by choosing f(v'|v),z,/, Vv, v" to solve the
following linear programming problem.

Maximize Z T, (16)
subject to U
2, — > w(w)f(V'[)dy(D,v) < 0,0, (17)
F@') < p™>(v',v), Vv, v’ (18)
Zf(v'|v) =1,Yv (19)
f2v’|v) >0, Vv, (20)
JJZEZGJ};% < exp(e), Vo', vy, v2 (21)

Constraints (19) and (20) reflect that f(v’|v) is a probability distribution function for each v, while (21)
enforces e-differential privacy.

Alternative Quality-Privacy Tradeoffs. The above formulation encodes the privacy-accuracy tradeoff
in one particular way — maximize inference privacy, subject to a differential privacy constraint and an
accuracy-related constraint on the probabilities f(v’|v). The general framework is flexible to accommodate
other tradeoffs.

12

For example, instead of introducing constraints p™>*(v’,v) on f(v’|v), we can introduce an Accuracy Loss
(AL) matrix with entries AL,/ that quantify the loss in accuracy when replacing value v with v’. Then,
instead of Relation (18), we can upper bound the total expected accuracy loss that is caused by a given
transformation matrix f with the following constraint:

AL(f) = Y 7(0) Y F(0'[0) ALy, < AL™™.

Alternatively, in a more radical departure from the original formulation, rather than aiming to maximize
the client’s privacy (inference privacy) subject to AL constraints, we could instead aim to minimize the
accuracy loss AL(f) subject to a lower bound on inference privacy, i.e.,) , x,, > PR™™.

In general, the main benefit of formulating the construction of the transformation matrix as an opti-
mization problem is that we can automatically explore a large solution space to discover optimal probability
distributions f(v'|v) that are not expressible in closed form (such as the Laplace or Gaussian mechanism),
so human intuition would not be able to find them.

8 Starlit’s Phases in Detail

8.1 Privacy-Preserving Feature Extraction

In this section, we elaborate on the two primary privacy-preserving mechanisms that we designed to extract
features.

Finding Features’ Discrepancies. Let T' = {t, 1, ..., t.... } be a subset of features that Srv holds for a user
U. Consider the scenario where Srv wants to check with a pair of clients (C;, C;) if there is a discrepancy
between some of the features in 7' that Srv, C,, and C; hold, without revealing and being able to learn
anything else. This approach could provide information about anomalous transactions.

In the domain of financial transactions, we analyzed synthetic data provided to us and identified key
features possessed by FSP for each transaction (with FSP acting as Srv). These features include: (i)
customer,,,me, (i) countryCity.,coq., and (iii) street,,,.. for both the ordering and beneficiary banks. Each
bank, per user, maintains various features such as customer,,.,.., countryCity.. .oq., and street,,.,. (with
an associated flag).

Diverse parties may hold varying perspectives on the value of these features. Discrepancies can arise
from various factors. For instance, a user may have supplied divergent information to different parties. In
the given scenario, a customer might hold accounts with both the ordering and beneficiary banks but could
have provided inconsistent details, such as their address, to these banks. Additionally, there is a possibility
that the values maintained by Srv have been tampered with, potentially by external entities [10,67]. Thus,
incorporating a feature that signals disparities between a client’s data and Srv’s data can enhance the
accuracy of models.

To detect discrepancies while preserving privacy we use PSI, a method that safeguards the privacy of
non-suspicious users’ data maintained by the involved parties. The PSI outcomes serve as additional features
in the FL model. Specifically, Srv and each client C, participate in an instance of PSI, receiving a set of
strings from Srv and the client. The PSI returns the intersection to C,. For each user, C,; adds a binary feature
b to its dataset (if not already present). If a user’s details are in the intersection, b is set to 1; otherwise, it
is set to 0. Figure 3 presents this procedure in detail. Hence, we not only employ PSI (as a subroutine in
SecureBoost) for entity alignment, but we also leverage it to enhance the accuracy of the final model. Note
that the outcome of the protocol in Figure 3 will be transmitted to FC in the second phase (collecting flags
of suspicious users), presented below.

Collecting Flags of Users. Each user’s sample may be accompanied by a flag whose value is independently
computed and allocated by a client. For instance, in the context of financial transactions, for each user’s

13

e Parties: Srv and C;.

e Input:
© Srv’s input, for each user U, is a set Tg,, of strings (taken from a dataset DSs,,), where each string has
the form ¢, 1||tu,2||...||tu,n and ., is a user’s unique ID.

o C;’s input, for each user U, is a set Tc, of strings (from its dataset DSc, of all users), where each string
has the form ¢, 1||tu 2||--||tu,m-
e Output: Updated dataset DSc,.

Srv and C; invoke an stance of PSI protocol: PSZ(Ts.v, Tc,) — Th.
Given T, C; parses each element of Ti, as tu.,1|[tu.2||..-|[tu.m-
If binary feature b is not in DSc,, then C; adds b to each user’s feature.
C; sets b as follows. For every t, ; € DSc;:

e Sets b=1, when t, ; € Sn.

e Sets b = 0, otherwise.
5. C; returns DSc;,.

0=

Fig. 3: PSI-based method to identify discrepancies.

account that a bank holds, there is a flag indicating whether the bank considers the account suspicious.
This flag type offers extra information crucial for anomaly detection. Nevertheless, these flags are treated as
private information and cannot be directly shared with Srv.

To align the flags with the Srv’s dataset without revealing them, we rely on the following observation
and idea. The key observation is that each user’s sample, which is held by Srv and includes both sender
and receiver clients, can be assigned an ID selected uniformly at random from a sufficiently large domain.
In certain cases, such as financial transactions, each sample (representing a transaction) already comes with
a random ID. As a random string, this ID divulges no specific information about a user’s features. For each
user’s sample, Srv can generate this ID and share this ID (along with a unique feature in the sample) with
the clients involved in that sample. Accordingly, if each client groups each ID with a set of binary flags and
sends them to FC, FC cannot glean significant information about the user’s features linked to those IDs.
Based on this observation, we rely on the following idea to extract the flags.

For each user’s sample, Srv sends the random ID and a unique feature of the user (e.g., their name or
account number) to the related clients. The clients then use their sample information to group each ID with
the correct user’s flags. It sends this group to FC. When sending a flag for a user to FC, each client also
sends to FC the flag b that it generated in Figure 3 (to detect discrepancies). Consequently, FC uses a set
(that includes an ID and flags for each user) to create a dataset of flags. This dataset will then be used as
the input data for the ML model.

The above private information retrieval mechanism is highly computationally efficient. This approach still
may reveal certain information to the involved parties. Specifically (a) each client gains knowledge of some
of their users that are in Srv’s dataset, and (b) FC acquires information about which IDs originate from
certain clients, enabling the calculation of the number of transactions between each pair of clients.

However, the privacy of sensitive information is preserved, as (i) each client remains unaware of details
about other participating clients or users’ features held at other clients and (ii) FC cannot identify the user
involved in a sample. FC only has IDs and a set of flags for each ID. Consequently, FC cannot glean any
information about a specific account.

As evident during the feature extraction, each client independently computes its message and sends it
to FC without the need to coordinate with other clients. Hence, even if some clients choose not to send
their messages, this phase is completed. This is in contrast to the solution proposed in [46] which cannot
withstand clients’ dropouts.

Extension. There is an alternative method for collecting flags, which involves employing an efficient threshold
privacy-preserving voting mechanism introduced by Abadi and Murdoch [1]. This voting scheme enables
the result recipient (e.g., FC or Srv) to ascertain whether, at the very least, a predefined threshold of the

14

involved parties (e.g., clients) sets a user’s flag to 1. Importantly, this process does not disclose any additional
information, such as individual votes or the count of 1s or 0s, beyond the result to the result recipient. This
scheme operates with high efficiency, as it avoids the need for public key cryptography. Integrating this
scheme in Starlit has the potential to enhance the accuracy of the global model, as there is no longer a
requirement to safeguard the flags with DP. A more in-depth analysis is needed to ensure that the system
using this voting scheme can withstand potential client dropouts.

For the sake of simplicity, we have presented a solution focused on a single flag per sample. This solution
can be readily generalized to situations where multiple flags are linked to a single sample. In this scenario
involving multiple flags, when a client receives a sample’s ID and the unique user’s feature, it retrieves a
vector of flags associated with that particular sample. Following applying either DP or the voting-based
mechanism to the flags, the client then transmits the resultant outcome to FC.

8.2 Model Training and Inference

Following the feature extraction phase, Srv and FC jointly possess all the necessary data for training the
anomaly detection model. Srv retains a dataset of samples, while FC possesses certain features of samples,
i.e., discrepancies and flags (protected by DP).

This represents the VFL setting, where only Srv holds the labels to predict. This configuration allows for
the utilization of various off-the-shelf protocols suitable for training an ML model, such as those presented
in [15,18,22,27,38,49,55,62,70,72,76]. We use the SecureBoost algorithm (discussed in Section 4.4), which
involves the exchange of encrypted (aggregate) gradients between Srv and FC during the training phase. Srv
can decrypt the gradients to determine the best feature to split on. Once the model is trained, each party
owns the part of the tree that uses the features it holds. Hence, when using the distributed inference protocol
n [18], Srv coordinates with the FC to determine the split condition to be used.

9 Security of Starlit

In this section, we initially present formal definitions of the leakage that each party attains during the
execution of Starlit. Subsequently, we formally state the security guarantee of Starlit.

Definition 3 (Srv—Side Leakage). Let L be the leakage function defined in Relation 6 and inp be the
input of all parties (as outlined in Section 6). Let DS, be a dataset of users held by each C;, and v, be each
dataset’s size, i.e., v; = |DS.,|, where 1 < i < n. Moreover, let W(prm,,prm.,) — (l,,1.) be SecureBoost’s
leakage function (defined in Relation 4), where prm, is provided by Srv and prm, is given by FC. W returns

I, to Srv and l, to FC. Then, leakage to Srv is defined as: L, (inp) := (vl, vy Uy Wl(prml,prm2)> .

Definition 4 (FC—-Side Leakage). Let L be the leakage function defined in Relation 6 and inp be the
input of all parties. Also, let s, = |S.,|, where S, is a set of triples each of which has the form (ID,b,w),
where ID represents a random ID of a sample, b is a binary flag for a feature’s inconsistency (as described
in Figure 3), w is another binary flag of the same sample (as described in Section 8.1). Moreover, let
W(prmy, prm,) — (I1,1,) be SecureBoost’s leakage function (defined in Relation /), where prm, is provided
by Srv and prm, is given by FC. W returns I, to Srv and l, to FC. Then, leakage to FC is defined as:

L,(inp) := (sl, ...,sn,Wz(prml,prm2)).

Definition 5 (C,—Side Leakage). Let L be the leakage function defined in Relation 6 and inp be the
input of all parties. Moreover, let DS, be Srv’s dataset while DS, be C;’s dataset. Also, let S, be a set
of pairs each of which has the form (ID, feat,), where ID represents a random ID of a sample and feat,
refers to user U’s unique feature, held by both Srv and C;). Then, leakage to C; is defined as: L, ,(inp) :=

((DSS,.,U N DSe,), |DSs.l, s)

15

Theorem 1. Let F be the functionality defined in Relation 5. Moreover, let L,(inp), L,(inp), and L, ,(inp)
be the leakages defined in Definitions 3, 4, and 5 respectively. If PM is e-differentially private and provides
optimal flag privacy (w.r.t. Game presented in Figure 2), the SecureBoost and PSZ are secure, then Starlit
securely realizes F, w.r.t. Definition 2.

We prove the above theorem in Appendix B.

10 Implementation of Starlit

We carry out comprehensive evaluations to study Starlit’s performance from various aspects, including
privacy-utility trade-off, efficiency, scalability, and choice of parameters. In the remainder of this section,
we elaborate on the analysis.

10.1 The Experiment’s Environment

We implement Starlit within an FL framework, called Flower (discussed in Section 4.5). We use Python
programming language to implement Starlit. Experiments were run using AWS ECS cloud with docker con-
tainers with 56GB RAM and 8 Virtual CPUs. The FATE SecureBoost implementation uses multiprocessing
to operate on table-like objects. We set the partitions setting to 5, which means operations on tables are
performed with a parallelism of 5.

We adjusted and used the Python-based implementation of the efficient PSI introduced in [36]. We have
run experiments to evaluate the performance of this PSI.

We conducted the experiments when each party’s set’s cardinality is in the range [2°,2'°]. Briefly, our
evaluation indicates that the PSI’s runtime increases from 0.84 to 367.93 seconds when the number of
elements increases from 2° to 2'°. Appendix C presents further details on the outcome of the evaluation.
Each instance of the PSI, for each account, takes as input string: account,,,....|| customer,,,...||street, ..
[|countryCity.;peoq.. The output of the PSI is received by the participating bank. To implement Starlit, we
had to overcome a set of challenges, including the use of Flower and FATE. In Appendix F, we discuss these
challenges in detail and explain how we addressed them.

10.2 Dataset
Our experiment involves the utilization of two synthetic datasets:

e Dataset 1: Synthetic dataset that simulates transaction data obtained from the global payment network
of FSP (acting as Srv).

e Dataset 2: Synthetic dataset related to customers (or users), inclusive of their account information and
flags, derived from the partner banks (or clients) of FSP.

Furthermore, the sizes of the datasets are as follows.

¢ FSP’s training datasets, in total, contain about 4,000,000 rows.
The banks’ dataset includes around 500,000 rows.
o FSP’s test dataset comprises about 700,000 rows.

<&

Outline of Dataset 1. Each row (or sample) in this dataset corresponds to an individual transaction,
signifying a payment from a sending bank to a receiving bank. Each transaction encapsulates details such
as the originators and beneficiaries, sender and receiving banks, and payment corridor. The dataset spans
approximately a month’s worth of transactions and involves fifty institutions.

It contains various fields such as (a) Messageld: a globally unique identifier, (b) Sender: a bank sending the
transaction, (c) Receiver: a bank receiving the transaction, and (d) OrderingAccount: an account identifier
for the originating ordering entity. Appendix D provides detailed explanations of the fields contained in
Dataset 1.

16

Outline of Dataset 2. The dataset comprises databases from various banks, encompassing information
about their customers’ accounts, e.g., the flags associated with each account. Initially, the data was unpar-
titioned, with all the banks’ information consolidated into a single table.

This dataset contains various fields, for instance: (a) Account: an identifier for the account, (b) Name,
name of the account, (c) Street: street address associated with the account, (d) CountryCityZip: remaining
address details associated with the account, and (e) Flags: enumerated data type indicating potential issues
or special features that have been associated with an account. Appendix E elaborates on the fields that
Dataset 2 contains.

11 Empirical Results

Our evaluation of Starlit includes various perspectives (a) privacy-utility trade-off, discussed in Section 11.1,
(b) efficiency and scalability, explored in Section 11.2, and (c¢) the choice of concrete parameters, covered in
Section 11.3.

In this study, our focus does not lie on feature exploration or hyperparameter tuning to enhance model
accuracy. Instead, we employ a straightforward approach, utilizing example features extracted from FSP,
as provided in the data, in conjunction with four binary values derived from the banks’ data. The features
extracted from FSP for model training encompass the following: settlement amount, instructed amount,
hour, sender hour frequency, sender currency frequency, sender currency amount average, and sender-receiver
frequency. Additionally, we incorporate four binary flags, indicating the agreement between FSP and the
banks on sender and receiver address details, as well as whether the sending and receiving accounts share
the same flag for a given account.

11.1 Privacy-Utility Trade-off

Baseline. To analyze the trade-off between utility and privacy, we establish a benchmark using a centralized
model constructed within FSP. In this centralized model, all data from banks is revealed in plaintext. The
same set of features listed above is extracted. We train a standard XGBoost model with 30 trees. We employ
a 5-fold cross-validation with the average precision score as the metric. It is important to note that default
values are utilized for all hyperparameters during the model training process.

Evaluation Procedure. The “Area Under the Precision-Recall Curve” (AUPRC) refers to a metric em-
ployed to evaluate the performance of an ML classification model. The unit of AUPRC is a value in the range
[0, 1], representing the area under the precision-recall curve. It measures the trade-off between precision and
recall and provides a summary of the model’s performance across different threshold values for classification.
A higher AUPRC indicates better model performance, with 1 being the ideal value representing perfect
precision and recall.

Starlit. In the evaluation of Starlit’s implementation, for analyzing AUPRC that can be achieved at a given
level of privacy, we modify the flag values that banks send using DP and construct XGBoost models with
these noisy features.

We use the same parameters as in the baseline model (30 trees and 5-fold cross-validation) and measure
the average precision score for the final model on training and test data, averaging over 5 runs to account
for the randomness of the privacy mechanism and the training process.

SecureBoost does the same computation as XGBoost while constructing the trees albeit on encrypted
gradients. Hence, the additional cost will not be on accuracy but rather on performance (which we discuss
in section 11.2). We also observed this to be the case from our experimental results.

17

2 0875 2 0.875°
! =t
2 0850 2 0850
= =
o 0.825 o 0.825
O 0. O 0.
2 0.800 2 0.800
A& 0.775 A& 0.775
=} =}
< 0.750 < 0.750
[[
2 0.725 2 0.725
Z 0700 sem=i7T Z 0700
0 2 4 6 8 10 0 2 4 6 8 10
Epsilon (¢) Epsilon (¢)
(a) Rand. Response vs Laplace. (b) Rand. Response vs Asym. matrices.

Fig.4: Plot(a) compares the effect on AUPRC of the model when using RR and Laplace mechanism with post-
processing for achieving LDP. Plot(b) compares the effect on AUPRC when using RR and privacy mechanisms at the
same value of € but with the constraint of 10% less probability of converting 0 to 1 (1 to 0) than what is recommended
by RR. In Plot(a), red dotted line: non-private-train, blue dotted line: non-private-test, solid blue line: RR-train, solid
orange line: RR-test, solid green line: Laplace-train, and solid red line: Laplace-test. In Plot(b), red dotted line: non-
private-train, blue dotted line: non-private-test, solid blue line: RR-train, solid orange line: RR-test, solid green line:
10% less 0-;1 than RR-train, solid red line: 10% less 0-;1 than RR-test, solid purple line: 10% less 1-;0 than RR-train,
and solid brown line: 10% less 1-;0 than RR-test.

Key Takeaways. Figure 4 provides a summary of our utility-privacy trade-off analysis. Plot(a) in this
figure compares the effect on AUPRC of the model when using Randomized Response (RR) and Laplace
mechanism with post-processing for achieving LDP. Consistent with the optimality results presented in
[65,33], RR offers a superior utility-privacy trade-off when compared to the Laplace mechanism. Both RR
and the Laplace mechanism yield symmetric transformation matrices, meaning an equal probability for
converting a 0 to 1 and a 1 to 0.

Plot(b) in Figure 4 illustrates the impact on AUPRC when employing RR and privacy mechanisms. This
comparison is conducted at the same e value, with the additional constraint of reducing the probability of
converting 0 to 1 (and 1 to 0) by 10% compared to the recommendations provided by RR. These recom-
mendations are determined using our game framework. The results demonstrate that even a slight increase
in the probability of converting a zero flag to a non-zero value has a significant impact on the model’s per-
formance. This observation aligns with intuition, considering the substantial proportion of zero flag values
in the dataset.

11.2 Efficiency and Scalability

Baseline. SecureBoost’s training was configured with 10 trees, each with a depth of 3, a dataset sampling
rate of 40%, and a “Gradient-based One Side Sampling” (GOSS) sampling of 0.1. Efficiency results for
this baseline are provided in Table 2. This baseline is used to investigate various configurations’ impact on
efficiency.

Table 2: Efficiency metrics of the baseline. H represents time in hours and GB refers to gigabytes.

Efficiency Metric Unit| Tree’s depth| Result

AUPRC — 3 0.4715
The total training time H 3 1.1

The peak training memory usage| GB 3 12.38
The network disk volume usage | GB 3 4.98
The network file volume usage | GB 3 993

18

Starlit. We analyzed Starlit’s efficiency with different SecureBoost configurations. The evaluation’<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>