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Abstract. Federated Learning (FL) is a data-minimization approach enabling collaborative model
training across diverse clients with local data, avoiding direct data exchange. However, state-of-the-art
FL solutions to identify fraudulent financial transactions exhibit a subset of the following limitations.
They (1) lack a formal security definition and proof, (2) assume prior freezing of suspicious customers’
accounts by financial institutions (limiting the solutions’ adoption), (3) scale poorly, involving either
O(n2) computationally expensive modular exponentiation (where n is the total number of financial
institutions) or highly inefficient fully homomorphic encryption, (4) assume the parties have already
completed the identity alignment phase, hence excluding it from the implementation, performance
evaluation, and security analysis, and (5) struggle to resist clients’ dropouts. This work introduces
Starlit, a novel scalable privacy-preserving FL mechanism that overcomes these limitations. It has
various applications, such as enhancing financial fraud detection, mitigating terrorism, and enhancing
digital health. We implemented Starlit and conducted a thorough performance analysis using synthetic
data from a key player in global financial transactions. The evaluation indicates Starlit’s scalability,
efficiency, and accuracy.

1 Introduction

Sharing data is crucial in dealing with crime. Collaborative data analysis among law enforcement agencies
and relevant stakeholders can significantly enhance crime prevention, investigation, and overall public safety.
For instance, in the United Kingdom, Cifas, a non-profit fraud database, and fraud prevention organization
that promotes data sharing among its members, reported that its members detected and reported over
350,000 cases of fraud in 2019. This collective effort prevented fraudulent activities amounting to £1.5 billion
[66]. The National Data Sharing Guidance, developed by the UK Home Office and Ministry of Justice in
2023, further underscores the importance of data sharing in dealing with crime [63].

Typically, inputs for collaborative data analysis come from different parties, each of which may have
concerns about the privacy of their data. Federated Learning (FL) [73] and secure Multi-party Computation
(MPC) [75], along with their combination, are examples of mechanisms that allow parties to collaboratively
analyze shared data while maintaining the privacy of their input data.

FL is a machine learning framework where multiple parties collaboratively build machine learning models
without revealing their sensitive input to their counterparts [73,42]. Vertical Federated Learning (VFL) is a
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vital variant of FL, with various applications, e.g., in dealing with crime [5] and healthcare [44]. VFL refers
to the FL setting where datasets distributed among different parties (e.g., banks) have some intersection
concerning users (e.g., have certain customers’ names in common) while holding different features, e.g.,
customers’ names, addresses, and how they are perceived by a financial institution. Horizontal Federated
Learning (HFL) is another important variant of FL where participants share the same feature space while
holding different users, e.g., customers’ attributes are the same, but different banks may have different
customers.

Advanced privacy-preserving FL-based solutions aiming to detect anomalies and deal with financial fraud
may face a new challenge. In this setting, datasets for financial transactions might be partitioned both
vertically and horizontally. For instance, a third-party Financial Service Provider (FSP) may have details of
financial transactions including customers’ names, and involved banks, while each FSP’s partner bank may
have some details/features of a subset of these customers. Thus, existing solutions for VFL or HFL cannot
be directly applied to deal with this challenge.

1.1 Our Contributions

In this work, we introduce Starlit, a pioneering scalable privacy-preserving federated learning mechanism that
can help enhance financial fraud detection. By devising and utilizing Starlit in the context of financial fraud,
we address all limitations of the state-of-the-art FL-based mechanisms, proposed in [5,46,32]. Specifically,
we (1) formally define and prove Starlit’s security (in the simulation-based paradigm), (2) do not place
any assumption on how suspicious accounts of customers are treated by their financial institutions, (3)
make Starlit scale linearly with the number of participants (i.e., its overhead is O(n)) while refraining from
using fully homomorphic encryption, (4) include all phases of Starlit in the implementation, performance
evaluation, and security analysis, and (5) make Starlit resilient against dropouts of clients.

Starlit offers two compelling properties not found in existing VFL schemes. These include the ability to
securely:

– Identify discrepancies among the values of shared features in common users between distinct clients’
datasets. For instance, in the context of banking, FSP and a bank can detect if a certain customer
provides a different home address to each.

– Aggregate common features in shared users among different clients’ datasets, even when these features
have varying values. For instance, this feature will enhance FSP’s data by reflecting whether FSP and
multiple banks consider a certain customer suspicious, according to the value of a flag independently
allocated by each bank to that customer’s account.

We have implemented Starlit and evaluated its performance using synthetic data which comprises about
four million rows. This synthetic data was provided by a major organization globally handling financial
transactions. Starlit stands out as the first solution that simultaneously provides the features mentioned
above. We identify several potential applications for Starlit, including mitigating terrorism, enhancing digital
health, and aiding in the detection of benefit fraud (see Section 12).

To develop Starlit, we use a combination of several tools and techniques, such as SecureBoost (for VFL),
Private Set intersection (for identity alignment and finding discrepancies among different entities’ informa-
tion), and Differential Privacy to preserve the privacy of accounts’ flags (that indicate whether an account
is deemed suspicious). Moreover, based on our observation that each dataset’s sample (or row), such as a
financial transaction, can be accompanied by a random identifier, we allow a third-party feature collector to
efficiently aggregate clients’ flags without being able to associate the flags values with a specific feature, e.g.,
customer’s name.

Summary of our Contributions. In this work, we:

• Introduce Starlit, a novel scalable privacy-preserving federated learning mechanism, with various real-
world applications.

• Formally define and prove Starlit’s security using the simulation-based paradigm.
• Implement Starlit and conduct a comprehensive evaluation of its performance.
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1.2 Primary Goals and Setting

This paper focuses on a real-world scenario in which a server, denoted by Srv, wants to train a machine-
learning model to detect anomalies using its data, and complementary data held by different clients C =
{C1, ...,Cm}. For instance, Srv can be a Financial Service Provider (FSP) such as SWIFT5, Visa6, PayPal7,
CHIPS8, and SEPA9—facilitating financial transactions and payments between various clients in set C, such
as banks, eBay, and Amazon—that aims to detect anomalous transactions.

In this setting, Srv may maintain a database of samples/rows between interacting clients, but it does
not possess all the details about the users included in each sample. For instance, in the context of financial
transactions, FSP holds a dataset containing samples (i.e., transactions) between the ordering account held
by bank Ci and the beneficiary account held by bank Cj.

Each sample may contain a customer’s name, the amount sent, home address, and information about Ci,
and Cj. Each client in C maintains a dataset containing certain customers’ account information, including
customers’ details, their transaction history, and even local assessments of their known financial activities.
However, each Cj may not hold all users (e.g., customers) that Srv is interested.

While Srv is capable of training a model to detect anomalous transactions using its data, it could enhance
the analytics by considering the complementary data held by other clients concerning the entities involved
in the transactions. The ultimate goal is to enable Srv to collaborate with other clients to develop a model
that is significantly better than the one developed on Srv’s data alone, e.g., to detect suspicious transactions
and ultimately to deal with financial fraud.

However, a mechanism that offers the above feature must satisfy vital security and system constraints;
namely, (i) the privacy of clients’ data should be preserved from their counterparts, and (ii) the solution
must be efficient for real-world use cases. The aforementioned setting is an example of FL on vertically and
horizontally partitioned data in which each Srv’s transaction is associated with a sender Ci (e.g., ordering
bank), and receiver Cj, e.g., beneficiary bank. Our solution will enhance Srv’s dataset with two primary
types of features using the datasets of Ci and Cj:

• Discrepancy Feature: This will enhance Srv’s data by reflecting whether there is a discrepancy between
(i) the (value of the) feature, such as a customer’s name and address, it holds about a certain user U
under investigation and (ii) the feature held by sending client Ci and receiving client Cj about the same
user. For each user, this feature is represented by a pair of binary values (bu,i, bu,j), where bu,i and bu,j
represents whether the information that Srv holds matches the one held by the sending and receiving
clients respectively.

• Account Flag Feature: This will enhance Srv’s data by reflecting whether Srv and a client have the
same view of a certain user, e.g., a customer is suspicious. This feature is based on a pair of binary
private flags for a certain user, where one flag is held by the sending client and the other one is held by
the receiving client. In the context of banking, banks often allocate flags to each customer’s account for
internal use. The value of this flag is set based on the user’s transaction history and determines whether
the bank considers the account holder suspicious.

To preserve the privacy of the participating parties’ data (e.g., data of non-suspicious customers held by
banks) while aligning Srv’s dataset with the features above, we rely on a set of privacy-enhancing techniques,
such as Private Set Intersection (PSI) and Differential Privacy (DP). Briefly, to enable Srv to find out whether
the data it holds about a certain (suspicious) user matches the one held by a client, we use PSI. Furthermore,
to enhance Srv’s data with the flag feature, each client uses local DP to add noise to their flags and sends
the noisy flags to a third-party flag collector which feeds them to the model training phase.

5 https://www.swift.com
6 https://www.visa.co.uk/about-visa.html
7 https://www.paypal.com/uk/home
8 https://www.theclearinghouse.org/payment-systems/chips
9 https://finance.ec.europa.eu/consumer-finance-and-payments/payment-services/single-euro-

payments-area-sepa_en
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2 Related Work

In this section, we briefly discuss the privacy-preserving FL-based approaches used to deal with fraudulent
transactions. We refer readers to Appendix A for a survey of related work. Lv et al . [39] introduced an
approach to identify black market fraud accounts before fraudulent transactions occur. It aims to guarantee
the safety of funds when users transfer funds to black market accounts, enabling the financial industry to
utilize multi-party data more efficiently. It involves data provided by financial and social enterprises. The
approach utilizes insecure hash-based PSI for identity alignment.

This scheme differs from Starlit in a couple of ways: (i) Starlit operates in a multi-party setting, where
various clients contribute their data, in contrast to the aforementioned scheme, which has been designed for
only two parties, and (ii) Starlit deals with the data partitioned both horizontally and vertically, whereas
the above scheme focuses only on vertically partitioned data.

Recently, Arora et al . [5] introduced an approach that relies on oblivious transfer, secret sharing, DP,
and multi-layer perception. The authors have implemented the solution and conducted a thorough analysis
of its performance.
Starlit versus the Scheme of Arora et al. The latter assumes that the ordering bank never allows a customer
with a dubious account to initiate transactions but allows the same account to receive money. In simpler
terms, this scheme exclusively addresses frozen accounts, restricting its applicability. This setting will exempt
the ordering bank from participating in MPC, enhancing the efficiency of the solution.

In the real world, users’ accounts might be deemed suspicious (though not frozen), yet they can still
conduct financial transactions within their bank. The bank may handle such accounts more cautiously than
other non-suspicious accounts. In contrast, Starlit (when applied to financial transactions context) does not
place any assumption on how a bank treats a suspicious account.

Furthermore, unlike the scheme proposed in [5], which depends on an ad-hoc approach to preserve data
privacy during training, our solution, Starlit, employs SecureBoost—a well-known scheme extensively utilized
and analyzed in the literature. Thus, compared to the scheme in [5], Starlit considers a more generic scenario
and relies on a more established scheme for VFL.

Recently, another approach has been developed by Qiu et al . [46]. It uses neural networks and shares the
same objective as the one by Arora et al . However, it strives for computational efficiency primarily through
the use of symmetric key primitives. The scheme incorporates the elliptic-curve Diffie-Hellman key exchange
and one-time pads to secure exchanged messages during the model training phase. This scheme has also been
implemented and subjected to performance evaluation.
Starlit versus the Scheme of Qiu et al. The latter scheme requires each client (e.g., bank) to possess knowl-
edge of the public key of every other client and compute a secret key for each through the elliptic-curve
Diffie-Hellman key exchange scheme. Consequently, this approach imposes O(n) modular exponentiation on
each client, resulting in the protocol having a complexity of O(n2), where n represents the total number
of clients. In contrast, in Starlit, each client’s complexity is independent of the total number of clients and
each client does not need to know any information about other participating clients. Moreover, the scheme
proposed in [46] assumes the parties have already performed the identity alignment phase, therefore, the
implementation, performance evaluation, and security analysis exclude the identity alignment phase.

Furthermore, the scheme in [46] fails to terminate successfully even if only one of the clients neglects to
transmit its message. In this scheme, each client, utilizing the agreed-upon key with every other client, masks
its outgoing message with a vector of pseudorandom blinding factors. The expectation is that the remaining
clients will mask their outgoing messages with the additive inverses of these blinding factors. These blinding
factors are generated such that, when all outgoing messages are aggregated, the blinding factors cancel each
other out.

Nevertheless, if one client fails to send its masked message, the aggregated messages of the other clients
will still contain blinding factors, hindering the training on correct inputs. In contrast, Starlit does not
encounter this limitation. This is because the message sent by each client is independent of the messages
transmitted by the other clients.
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Kadhe et al . [32] proposed an anomaly detection scheme, that uses fully homomorphic encryption (com-
putationally expensive), DP, and secure multi-party computation. The authors have also implemented their
solution and analyzed its performance.
Starlit versus the Scheme of Kadhe et al. The latter heavily relies on fully homomorphic encryption. In this
scheme, all parties need to perform fully homomorphic operations. This will ultimately affect both the
scalability and efficiency of this scheme. In contrast, Starlit does not use any fully homomorphic scheme.

All of the above solutions share another shortcoming, they lack formal security definitions and proofs of
the proposed systems.

3 Informal Threat Model

Starlit involves three types of parties:

• Server (Srv). It wants to train a model to detect anomalies using its data, and complementary data held by
different clients. The data Srv maintains is partitioned vertically and horizontally across different clients.
Each sample in the data includes various features, e.g., a user’s name, sender client, and receiver client.

• Clients (C1, ...,Cn). They are different clients (e.g., nodes, devices, or organizations) that contribute to
FL by providing local complementary data to the training process.

• Flag Collector (FC). It is a third-party helper that aggregates some of the features held by different
clients. FC is involved in Starlit to enhance the system’s scalability.

We assume that all the participants are honest but curious (a.k.a. passive adversaries), as it is formally
defined in [24]. Hence, they follow the protocol’s description. But, they try to learn other parties’ private
information. We consider it a privacy violation if the information about one party is learned by its counterpart
during the model training (including pre-processing). We assume that parties communicate with each other
through secure channels.

4 Preliminaries

4.1 Notations and assumptions

Table 1 summarizes the notations used in this paper. Let G be a multi-output function, G(inp)→ (outp1, ..., outpn).
Then, by Gi(inp) we refer to the i-th output of G(inp), i.e., outpi.

4.2 Private Set Intersection (PSI)

PSI is a cryptographic protocol that enables mutually distrustful parties to compute the intersection of their
private datasets without revealing anything about the datasets beyond the intersection.

The fundamental functionality computed by any n-party PSI can be defined as G which takes as input
sets S1, ..., Sn each of which belongs to a party and returns the intersection S∩ of the sets to a party. More
formally, the functionality is defined as: G(S1, ..., Sn) → (S∩,⊥, ...,⊥︸ ︷︷ ︸

n−1

), where S∩ = S1 ∩ S2, ...,∩ Sn. In this

work, we denote the concrete PSI protocol with PSI.

4.3 Local Differential Privacy

Local Differential Privacy (LDP) entails that the necessary noise addition for achieving differential privacy
is executed locally by each individual. Each individual employs a random perturbation algorithm, denoted
as M , and transmits the outcomes to the central entity. The perturbed results are designed to ensure the
protection of individual data in accordance with the specified ε value. This concept has been formally stated
in [20]. Below, we restate it.
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Table 1: Notation table.
Symbol Description

Srv Server

FSP Financial Service Provider

FC Feature Collector

Ci A client or bank

Parameter that quantifies the privacy guarantee
ε

provided by a differentially private mechanism.

PSI Private Set Intersection

DP Differential Privacy

ML Machine Learning

FL Federated Learning

VFL Vertical Federated Learning

RR Randomized Response

AUPRC Area Under the Precision-Recall Curve

GOSS Gradient-based One Side Sampling

H Hour

Pr Probability

Si A private set

V Set of flag values

π(v), v ∈ V Prior probability of value v (FSP’s prior knowledge)

dp(v̂, v) : V × V → R Privacy metric (attacker’s error when estimating v as v̂)

f(v′|v) : V × V → a ∈ {0, 1} Privacy mechanism

|| Concatenation

L Leakage function of Celestial and Starlit

L1 FSP –side leakage in Starlit

L2 FC –side leakage in Starlit

Li+2 Ci–side leakage in Starlit

W Leakage function in (V)ML

F Functionality of Celestial

prmi Input parameter of a party to (V)FL

|S| Size of set or database S

Definition 1 Let X be a set of possible values and Y the set of noisy values. M is ε-locally differentially
private (ε-LDP) if for all x, x′ ∈ X and for all y ∈ Y :

Pr[M(x) = y] ≤ eε · Pr[M(x′) = y] (1)

For a binary attribute, i.e., X = {0, 1}, this protection means that an adversary who observes y cannot
be sure whether the true value was 0 or 1.

As proposed by Wang et al . [65], we consider two generalized mechanisms on binary attributes for
achieving LDP. The first one uses the Randomized Response (RR) and the second one relies on adding Laplace
noise with post-processing (applying a threshold of 0.5) for binarizing the values. For either mechanism, each
individual employs a 2 × 2 transformation matrix P = [pij] to perturb their true value, where the element
at position (i, j) represents the probability of responding with value j if the true value is i. To satisfy the
definition of DP at privacy level ε, we need to have p00/p01 ≤ ε.

Randomized Response. In addition to the requirement of satisfying ε-LDP, Wang et al . [65] propose
selecting the matrix parameters to maximize the probability of retaining the true value, i.e., to maximize
p00 + p11. This yields the following transformation matrix:

Q :=

(
eε

1+eε
1

1+eε
1

1+eε
eε

1+eε

)
(2)

Laplace Noise with Post-Processing. The Laplace mechanism is a DP mechanism proposed by the
original DP paper [21]. To achieve ε-DP, this mechanism adds noise drawn from the Laplace distribution
with parameter 1

ε to the true value. This creates continuous values, instead of binary ones. Consequently, we
need to make the output binary. It is demonstrated in [65] that using a threshold of 0.5 maximizes p00 + p11,
i.e., if the continuous value is above 0.5, we set the final value to 1; otherwise, we set it to 0. This leads to
the following transformation matrix:

Q′ :=

(
1− 1

2e
− ε

2
1
2e
− ε

2

1
2e
− ε

2 1− 1
2e
− ε

2

)
(3)
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Note that although we list the matrices only for binary attributes here, both mechanisms generalize to
the case of categorical variables with more than two values.

Mechanisms for Optimal Inference Privacy. Any randomization mechanism for obfuscating the flags
while sharing can offer certain protection against inference attacks by Srv. Given a value of ε, there can be
many mechanisms that satisfy the constraint of DP, of which two can be found using Equation 2 (for RR)
and Equation 3 (for Laplace).

These mechanisms assign an equal probability of converting a 0 to 1 and 1 to 0. They need not be the
optimal transformation matrices that provide maximum inference privacy, i.e., maximum protection against
Srv’s ability to infer the flag values.

As one of the key contributions of this work, we developed a framework to explore the entire space
of transformation matrices and find optimal mechanisms that maximize inference privacy, under the given
constraints on utility and local differential privacy.

The main advantage of formulating the construction of a privacy mechanism as an optimization problem
is that we can automatically explore a large solution space to discover optimal mechanisms that are not
expressible in closed form (such as the Laplace or Gaussian mechanism). Section 7 presents further details
about the game construction and solution.

4.4 Federated Learning

Unlike traditional centralized methods, where data is pooled into a central server, FL allows model training to
occur on individual devices/clients contributing private data. This preserves the privacy of the data to some
extent by avoiding direct access to them. The process involves training a global model through collaborative
learning on local data, and only the model updates, rather than raw data, are transmitted to the central
server.

This decentralized paradigm is particularly advantageous in scenarios where data privacy is paramount,
such as in healthcare or finance, as it enables machine learning advancements without compromising sensitive
information. Algorithm 1 presents the overall workflow of FL.

Algorithm 1 : Federated Learning’s General Procedure

1: Server:
2: Initialize global model θ
3: for each round k = 1, 2, 3, ...,K do
4: Broadcast θ to all participating devices
5: Clients:
6: for each client i (where 1 ≤ i ≤ n) in parallel do
7: Receive global model θ
8: Compute local update gi using local data
9: Send gi to the server

10: Server:

11: Aggregate local updates: Gk =
n∑
i=1

gi

12: Update global model: θk+1 = UpdateModel(θk, Gk)

SecureBoost: A Lossless Vertical Federated Learning Framework. SecureBoost, introduced in [18],
stands out as an innovative FL framework designed to facilitate collaborative machine learning model training
among multiple parties while safeguarding the privacy of their individual datasets. It accomplishes this by
leveraging homomorphic encryption to execute computations on encrypted data, ensuring the confidentiality
of sensitive information throughout the training procedure. There are two main technical concepts and phases
involved in SecureBoost:

7



• Secure Tree Construction: SecureBoost builds boosting trees, a specific type of machine learning model,
by utilizing a non-federated tree boosting mechanism called XGBoost [16] and a partially homomorphic
encryption scheme, such as Paillier encryption [45], allowing various operations such as majority votes and
tree splits to be performed without exposing the underlying plaintext data to the system’s participants.

• Entity Alignment: To enable collaborative training, SecureBoost conducts entity alignment to recognize
corresponding user records across diverse data silos. This process is typically executed through an MPC
(such as PSI), guaranteeing the confidentiality of individual identities.

SecureBoost has been implemented in an open-sourced FL project, called FATE.10 As discussed above,
(V)FL is an interactive process within which parties exchange messages. Thus, there is a possibility of a
leakage to these parties. To formally define the leakage to each party in this process, below we introduce a
leakage function W.

W(prm1, ..., prmn)→ (l1, ..., ln) (4)

This function receives the input parameter prmi from each party in (V)FL and returns leakage li to
the i-th party, representing the information that (V)FL exposes to that specific party. Note that prmi is
a set, containing all (intermediate) results possibly generated over multiple iterations. This leakage will be
considered in Starlit’s formal definition (in Sections 6 and 9) and proof (in Appendix B).

4.5 Flower: A Federated Learning Implementation Platform

We implement Starlit within Flower, which was introduced in [11]. This framework offers several advantages,
including scalability, ease of use, and language and ML framework agnosticism.

Flower comprises three main components: a set of clients, a server, and a strategy. Federated learning
is often viewed as a combination of global and local computations. The server handles global computations
and oversees the learning process coordination among the clients. The clients perform local computations,
utilizing data for training or evaluating model parameters.

The logic for client selection, configuration, parameter update aggregation, and federated or centralized
model evaluation can be articulated through strategy abstraction. The implementation of the strategy rep-
resents a specific FL algorithm. Flower provides reference implementations of popular FL algorithms such
as FedAvg [40], FedOptim [47], or FedProx [37].

4.6 Security Model

In this paper, we consider static adversaries. We use the simulation-based paradigm of secure multi-party
computation [24] to define and discuss the security of the proposed scheme. Since we focus on the static
passive (semi-honest) adversarial model, we will restate the security definition in this adversarial model.

Two-party Computation. A two-party protocol Γ problem is captured by specifying a random process
that maps pairs of inputs to pairs of outputs, one for each party. Such process is referred to as a functionality
denoted by F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where F := (F1,F2). For every input pair (x, y), the
output pair is a random variable (F1(x, y),F2(x, y)), such that the party with input x wishes to obtain
F1(x, y) while the party with input y wishes to receive F2(x, y). When F is deterministic, then F1 = F2.
The above functionality can be easily extended to n > 2 parties.

10 https://github.com/FederatedAI/FATE
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Security in the Presence of Passive Adversaries. In the passive adversarial model, the party corrupted
by such an adversary correctly follows the protocol specification. Nonetheless, the adversary obtains the
internal state of the corrupted party, including the transcript of all the messages received, and tries to use
this to learn information that should remain private.

Loosely speaking, a protocol is secure if whatever can be computed by a party in the protocol can be
computed using its input and output only. In the simulation-based model, it is required that a party’s view
in a protocol’s execution can be simulated given only its input and output. This implies that the parties
learn nothing from the protocol’s execution. More formally, party i’s view (during the execution of Γ ) on
input pair (x, y) is denoted by ViewΓi (x, y) and equals (w, ri,mi

1, ...,m
i
t), where w ∈ {x, y} is the input of ith

party, ri is the outcome of this party’s internal random coin tosses, and mi
j represents the jth message this

party receives. The output of the ith party during the execution of Γ on (x, y) is denoted by OutputΓi (x, y)
and can be generated from its own view of the execution.

Definition 1. Let F be the deterministic functionality defined above. Protocol Γ securely computes F in
the presence of a passive probabilistic polynomial-time (PPT) adversary A, if for every A in the real model,
there exist PPT algorithms (Sim1,Sim2) such that:

{Sim1(x,F1(x, y))}x,y
c≡ {ViewA,Γ1 (x, y)}x,y

{Sim2(y,F2(x, y))}x,y
c≡ {ViewA,Γ2 (x, y)}x,y

Definition 1 can be easily extended to n > 2 parties.

5 System Design

Starlit consists of two main phases: (i) feature extraction and (ii) training. During the feature extraction
phase, the two types of features (discussed in Section 1.2) are retrieved in a privacy-preserving manner,
the data is aligned, and then passed onto a third party, called “Feature Collector (FC)”. The use of FC
drastically simplifies the training phase from n-party down to 2-party VFL, which will enable the system to
scale to a large number of banks.

(1.1)

.


.


.

.


.


.

.


.


.

(1.2)

<latexit sha1_base64="PJd/Dy/nAqoJfvF19qUenUMeoQg=">AAACInicbZDLSsNAFIYnXmu9Vd3pZrAKrkpS8LIU3bisYC/QhjCZnurgZBJmToQQCj6MuNXncCeuBF/CN3DaZqGtB2b4+f9zOJwvTKQw6Lqfztz8wuLScmmlvLq2vrFZ2dpumTjVHJo8lrHuhMyAFAqaKFBCJ9HAolBCO7y/HOXtB9BGxOoGswT8iN0qMRCcobWCyu5BO8h7hmuRYPFjJoF6w4OgUnVr7rjorPAKUSVFNYLKd68f8zQChVwyY7qem6CfM42CSxiWD6fiWIsH4H4upeJmWO6lBhLG79ktdK1ULALj5+MTh/TQOn06iLV9CunY/T2Rs8iYLAptZ8TwzkxnI/O/rJvi4MzPhUpSBMUniwappBjTES/aFxo4yswKZvnYUyi/Y5pxtFTLlpE3TWRWtOo176R2fF2vnl8UtEpkj+yTI+KRU3JOrkiDNAknj+SZvJBX58l5c96dj0nrnFPM7JA/5Xz9AIL+pMM=</latexit>

W1

<latexit sha1_base64="9tALOd5DPM/hMc1/Bgqhb1JTfqg=">AAACInicbZDLSsNAFIYnXmu9Vd3pZrAKrkpS8LIU3bisYC/QhjCZnurgZBJmToQQCj6MuNXncCeuBF/CN3DaZqGtB2b4+f9zOJwvTKQw6Lqfztz8wuLScmmlvLq2vrFZ2dpumTjVHJo8lrHuhMyAFAqaKFBCJ9HAolBCO7y/HOXtB9BGxOoGswT8iN0qMRCcobWCyu5BO8h7hmuRYPFjJoGq4UFQqbo1d1x0VniFqJKiGkHlu9ePeRqBQi6ZMV3PTdDPmUbBJQzLh1NxrMUDcD+XUnEzLPdSAwnj9+wWulYqFoHx8/GJQ3ponT4dxNo+hXTs/p7IWWRMFoW2M2J4Z6azkflf1k1xcObnQiUpguKTRYNUUozpiBftCw0cZWYFs3zsKZTfMc04Wqply8ibJjIrWvWad1I7vq5Xzy8KWiWyR/bJEfHIKTknV6RBmoSTR/JMXsir8+S8Oe/Ox6R1zilmdsifcr5+AOdPpQA=</latexit>

Wn

<latexit sha1_base64="hTT4xX07m/K4giFAJyi4GXJ0/qA=">AAACInicbZDLSsNAFIYnXmu9Vd3pZrAKrkpS8LIU3bisYC/QhjCZnurgZBJmToQQCj6MuNXncCeuBF/CN3DaZqGtB2b4+f9zOJwvTKQw6Lqfztz8wuLScmmlvLq2vrFZ2dpumTjVHJo8lrHuhMyAFAqaKFBCJ9HAolBCO7y/HOXtB9BGxOoGswT8iN0qMRCcobWCyu5BO8h7hmuRYPFjJoGK4UFQqbo1d1x0VniFqJKiGkHlu9ePeRqBQi6ZMV3PTdDPmUbBJQzLh1NxrMUDcD+XUnEzLPdSAwnj9+wWulYqFoHx8/GJQ3ponT4dxNo+hXTs/p7IWWRMFoW2M2J4Z6azkflf1k1xcObnQiUpguKTRYNUUozpiBftCw0cZWYFs3zsKZTfMc04Wqply8ibJjIrWvWad1I7vq5Xzy8KWiWyR/bJEfHIKTknV6RBmoSTR/JMXsir8+S8Oe/Ox6R1zilmdsifcr5+AN8WpPs=</latexit>

Wi

<latexit sha1_base64="tk6i4EwhIQ6/xLju+WOc5tUecsk=">AAACDnicbVDLSgMxFL1TX7W+qi7dBEvBVZkp+MBVsRuXFewD2qFk0kwbmkmGJFMoQ/9B3Op3uBO3/oKf4R+YtrPQ1gMXDufcw+WeIOZMG9f9cnIbm1vbO/ndwt7+weFR8fikpWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2M63O/PaFKMykezTSmfoSHgoWMYGOlzi2qc0aF6RdLbsVdAK0TLyMlyNDoF797A0mSyGYJx1p3PTc2foqVYYTTWaG8YkvFJpT4KeeC6Fmhl2gaYzLGQ9q1VOCIaj9dvDNDZasMUCiVHWHQQv2dSHGk9TQK7GaEzUivenPxP6+bmPDGT5mIE0MFWR4KE46MRPNu0IApSgyfWoKJYvYVREZYYWJsgwXbkbfayDppVSveVeXyoVqq3WVt5eEMzuECPLiGGtxDA5pAgMMzvMCr8+S8Oe/Ox3I152SZU/gD5/MHCy2cmQ==</latexit>

: Client

<latexit sha1_base64="QfGASsvT7205BmpuQf8WxJmKSMQ=">AAACDnicbZDLSgMxFIbPeK3jrerSTbAUXJWZgpdl0Y3LCr1BO5RMmmlDM8mQZApl6DuIW30Od+LWV/AxfAPTdhba+kPg4//PIZw/TDjTxvO+nI3Nre2d3cKeu39weHRcPDltaZkqQptEcqk6IdaUM0GbhhlOO4miOA45bYfj+3nenlClmRQNM01oEOOhYBEj2Fir01CYCSaG/WLJq3gLoXXwcyhBrnq/+N0bSJLGVBjCsdZd30tMkGFlGOF05pZXYqnYhJIg41wQPXN7qaYJJmM8pF2LAsdUB9ninBkqW2eAIqnsEwYt3N8bGY61nsahnYyxGenVbG7+l3VTE90GGRNJaqggy4+ilCMj0bwbNGCKEsOnFjBRzJ6CyAgrTIxt0LUd+auNrEOrWvGvK1eP1VLtLm+rAOdwAZfgww3U4AHq0AQCHJ7hBV6dJ+fNeXc+lqMbTr5zBn/kfP4A5NmdHA==</latexit>

Training

<latexit sha1_base64="x7zvHRbmJ5XtNbEDhCDLZJP7qV8=">AAACDnicbZDNSgMxFIUz9a+Of1WXboKl4KrMFPxZFgVxWcHWQjuUTHqnDc0kQ5IplKHvIG71OdyJW1/Bx/ANTNtZaOuBwMc59xLuCRPOtPG8L6ewtr6xuVXcdnd29/YPSodHLS1TRaFJJZeqHRINnAloGmY4tBMFJA45PIajm1n+OAalmRQPZpJAEJOBYBGjxFirfQvEpAp0r1T2qt5ceBX8HMooV6NX+u72JU1jEIZyonXH9xITZEQZRjlM3cpSLBUbAw0yzgXVU7ebakgIHZEBdCwKEoMOsvk5U1yxTh9HUtknDJ67vzcyEms9iUM7GRMz1MvZzPwv66QmugoyJpLUgKCLj6KUYyPxrBvcZwqo4RMLhCpmT8F0SBShxjbo2o785UZWoVWr+hfV8/tauX6dt1VEJ+gUnSEfXaI6ukMN1EQUcfSMXtCr8+S8Oe/Ox2K04OQ7x+iPnM8f6VydHw==</latexit> F
ea

tu
re

s
<latexit sha1_base64="Bag/7BBmSLf2m+zr/xoaFlgg5gc=">AAACCHicbZDLSgMxFIbP1Futt6pLN8FScVVmCl6WRTcuq9gLtEPJpJk2NJMMSaZQhr6AuNXncCdufQsfwzcwbWehrT8EPv7/HML5g5gzbVz3y8mtrW9sbuW3Czu7e/sHxcOjppaJIrRBJJeqHWBNORO0YZjhtB0riqOA01Ywup3lrTFVmknxaCYx9SM8ECxkBBtrPXTPesWSW3HnQqvgZVCCTPVe8bvblySJqDCEY607nhsbP8XKMMLptFBeiqViY0r8lHNB9LTQTTSNMRnhAe1YFDii2k/nh0xR2Tp9FEplnzBo7v7eSHGk9SQK7GSEzVAvZzPzv6yTmPDaT5mIE0MFWXwUJhwZiWatoD5TlBg+sYCJYvYURIZYYWJsdwXbkbfcyCo0qxXvsnJxXy3VbrK28nACp3AOHlxBDe6gDg0gEMIzvMCr8+S8Oe/Ox2I052Q7x/BHzucPhTWaJg==</latexit> &

<latexit sha1_base64="KFOy9QCryQSoJrMbOtnN+vgFnlY=">AAACDHicbZDLSgMxFIYz9VbrrerSTbAUXJWZgpdl0Y0LFxXsBdqhZNIzbWwmGZJMoQx9BXGrz+FO3PoOPoZvYNrOQlt/CHz8/zmE8wcxZ9q47peTW1vf2NzKbxd2dvf2D4qHR00tE0WhQSWXqh0QDZwJaBhmOLRjBSQKOLSC0c0sb41BaSbFg5nE4EdkIFjIKDHWat6RALjuFUtuxZ0Lr4KXQQllqveK392+pEkEwlBOtO54bmz8lCjDKIdpobwUS8XGQP2Uc0H1tNBNNMSEjsgAOhYFiUD76fyYKS5bp49DqewTBs/d3xspibSeRIGdjIgZ6uVsZv6XdRITXvkpE3FiQNDFR2HCsZF41gzuMwXU8IkFQhWzp2A6JIpQY/sr2I685UZWoVmteBeV8/tqqXadtZVHJ+gUnSEPXaIaukV11EAUPaJn9IJenSfnzXl3PhajOSfbOUZ/5Hz+ABeknB8=</latexit> L
ab

el
s

<latexit sha1_base64="QcKaN2tMSWmT8x54cmX86ammw6o=">AAACIXicbZDLSsNAFIYnXmu9RV2Jm2ApuCpJF9Vl0Y3uKtgLtKFMTk/aoZNJmJkUSig+jLjV53An7sSn8A2cXhbaemDg5//PmcP5goQzpV3301pb39jc2s7t5Hf39g8O7aPjhopTCViHmMeyFVCFnAmsa6Y5thKJNAo4NoPhzTRvjlAqFosHPU7Qj2hfsJAB1cbq2qd3PRSahWMm+k6PKZCYUAEMVdcuuCV3Vs6q8BaiQBZV69rfnV4MaWT+A06Vantuov2MSs2A4yRfXIpjyUYIfsa5ADXJd1JlVsOQ9rFtpKARKj+bXThxisbpOWEszRPambm/JzIaKTWOAtMZUT1Qy9nU/C9rpzq88jMmklSjgPmiMOWOjp0pLoNEImg+NoKCZOYUBwZUUtAGat4w8paJrIpGueRVSpX7cqF6vaCVI2fknFwQj1ySKrklNVInQB7JM3khr9aT9Wa9Wx/z1jVrMXNC/pT19QNI56Sz</latexit>

Identifying discrepancies

<latexit sha1_base64="68SF7DPfKuzbzw9NtdzuvxWdcUs=">AAACMXicbZDLSgMxFIYz3q23qks3wSLopsy4qC6LutCdgr1AO5RMeqYNzSRDcqZQhj6DDyNu9TnciVtXvoFp7UKrBwIf/39ODuePUiks+v6rt7C4tLyyurZe2Njc2t4p7u7Vrc4MhxrXUptmxCxIoaCGAiU0UwMsiSQ0osHlxG8MwVih1T2OUggT1lMiFpyhkzrFk5srS3VMsQ/UsiSVYB0zpEJxmXVhamTW/dAplvyyPy36F4IZlMisbjvFz3ZX8ywBhVwya1uBn2KYM4OCSxgXjuZsbcQQeJhLqbgdF9pua8r4gPWg5VCxBGyYTy8e0yOndGmsjXsK6VT9OZGzxNpRErnOhGHfznsT8T+vlWF8HuZCpRmC4t+L4kxS1HQSH+0KAxzlyAHjRrhTKO8zwzi6iAouo2A+kb9QPy0HlXLl7rRUvZiltUYOyCE5JgE5I1VyTW5JjXDyQJ7IM3nxHr1X7817/25d8GYz++RXeR9fcqaqTw==</latexit>

IDs of the samples that include the users

<latexit sha1_base64="Q+Nvy8NzylgR/m+WBBH2+odhC1M="></latexit>

Extracting certain users’ flags: send random

<latexit sha1_base64="gVirusoSXMEdveYlhlj1jxsPse0="></latexit>

Extracting discrepancies and certain users’ flags
<latexit sha1_base64="gVirusoSXMEdveYlhlj1jxsPse0="></latexit>

Extracting discrepancies and certain users’ flags
(1.3)

<latexit sha1_base64="QfGASsvT7205BmpuQf8WxJmKSMQ=">AAACDnicbZDLSgMxFIbPeK3jrerSTbAUXJWZgpdl0Y3LCr1BO5RMmmlDM8mQZApl6DuIW30Od+LWV/AxfAPTdhba+kPg4//PIZw/TDjTxvO+nI3Nre2d3cKeu39weHRcPDltaZkqQptEcqk6IdaUM0GbhhlOO4miOA45bYfj+3nenlClmRQNM01oEOOhYBEj2Fir01CYCSaG/WLJq3gLoXXwcyhBrnq/+N0bSJLGVBjCsdZd30tMkGFlGOF05pZXYqnYhJIg41wQPXN7qaYJJmM8pF2LAsdUB9ninBkqW2eAIqnsEwYt3N8bGY61nsahnYyxGenVbG7+l3VTE90GGRNJaqggy4+ilCMj0bwbNGCKEsOnFjBRzJ6CyAgrTIxt0LUd+auNrEOrWvGvK1eP1VLtLm+rAOdwAZfgww3U4AHq0AQCHJ7hBV6dJ+fNeXc+lqMbTr5zBn/kfP4A5NmdHA==</latexit>

Training

<latexit sha1_base64="h1fzEb54QrrcMXkzxpJQsrwpLxc=">AAACD3icbZDNSgMxFIUz/tbxr+rSTbAUXJWZLqrLohuXFeyPtEPJZG7b0EwyJJlCGfoQ4lafw5249RF8DN/AtJ2Fth4IHM65l3C/MOFMG8/7cjY2t7Z3dgt77v7B4dFx8eS0pWWqKDSp5FJ1QqKBMwFNwwyHTqKAxCGHdji+nfftCSjNpHgw0wSCmAwFGzBKjI0e7QAHaiDqF0texVsIrxs/NyWUq9EvfvciSdMYhKGcaN31vcQEGVGGUQ4zt7xSS8UmQIOMc0H1zO2lGhJCx2QIXWsFiUEH2eKeGS7bJMIDqewTBi/S3xsZibWexqGdjIkZ6dVuHv7XdVMzuA4yJpLUgKDLjwYpx0biORwcMWVp8Kk1hCpmT8F0RBSxhJR2LSN/lci6aVUrfq1Su6+W6jc5rQI6RxfoEvnoCtXRHWqgJqIoRs/oBb06T86b8+58LEc3nHznDP2R8/kDlOideg==</latexit> C
ol

le
ct

ed
<latexit sha1_base64="WtZsb+cYrEJr14RhYVDXhFgu5lI=">AAACDnicbZDNSgMxFIUz/tbxr+rSTbAUXJWZLqrLoiAuK9gfaIeSSe+0oZlkSDKFMvQdxK0+hztx6yv4GL6BaTsLbT0Q+DjnXsI9YcKZNp735Wxsbm3v7Bb23P2Dw6Pj4slpS8tUUWhSyaXqhEQDZwKahhkOnUQBiUMO7XB8O8/bE1CaSfFopgkEMRkKFjFKjLU6d0BMqkD3iyWv4i2E18HPoYRyNfrF795A0jQGYSgnWnd9LzFBRpRhlMPMLa/EUrEJ0CDjXFA9c3uphoTQMRlC16IgMeggW5wzw2XrDHAklX3C4IX7eyMjsdbTOLSTMTEjvZrNzf+ybmqi6yBjIkkNCLr8KEo5NhLPu8EDpoAaPrVAqGL2FExHRBFqbIOu7chfbWQdWtWKX6vUHqql+k3eVgGdowt0iXx0heroHjVQE1HE0TN6Qa/Ok/PmvDsfy9ENJ985Q3/kfP4A6a6dIA==</latexit> F
ea

tu
re

s

<latexit sha1_base64="uR2/YLftqA7y5t7aOOPgFRT3IFM=">AAACCXicbZDNTgIxFIXv4B+Of6hLN42ExBWZYYEuiW5cYpCfBCakUwo0dNpJ2yEhE57AuNXncGfc+hQ+hm9ggVkoeJImX865N809YcyZNp735eS2tnd29/L77sHh0fFJ4fSspWWiCG0SyaXqhFhTzgRtGmY47cSK4ijktB1O7hZ5e0qVZlI8mllMgwiPBBsygo21Gg017ReKXtlbCm2Cn0ERMtX7he/eQJIkosIQjrXu+l5sghQrwwinc7e0FkvFppQEKeeC6LnbSzSNMZngEe1aFDiiOkiXl8xRyToDNJTKPmHQ0v29keJI61kU2skIm7Fezxbmf1k3McObIGUiTgwVZPXRMOHISLSoBQ2YosTwmQVMFLOnIDLGChNjy3NtR/56I5vQqpT9arn6UCnWbrO28nABl3AFPlxDDe6hDk0gMIJneIFX58l5c96dj9Vozsl2zuGPnM8f2iKa6g==</latexit>

Srv

<latexit sha1_base64="bLQzXKJK/X02ZBwGoga8sZr7hSg=">AAACCHicbZDNSgMxFIXv+FvrX9Wlm2ApuCozXVSXxYK4rGJ/oB1KJs20oZlkSDKFMvQFxK0+hztx61v4GL6BaTsLbT0Q+DjnXsI9QcyZNq775Wxsbm3v7Ob28vsHh0fHhZPTlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywrs/z9oQqzaR4NNOY+hEeChYygo21Hm7r/ULRLbsLoXXwMihCpka/8N0bSJJEVBjCsdZdz42Nn2JlGOF0li+txFKxCSV+yrkgepbvJZrGmIzxkHYtChxR7aeLQ2aoZJ0BCqWyTxi0cH9vpDjSehoFdjLCZqRXs7n5X9ZNTHjtp0zEiaGCLD8KE46MRPNW0IApSgyfWsBEMXsKIiOsMDG2u7ztyFttZB1albJXLVfvK8XaTdZWDs7hAi7BgyuowR00oAkEQniGF3h1npw35935WI5uONnOGfyR8/kDkOaaLg==</latexit>

FC

<latexit sha1_base64="f6GXR2EihoCOOR12YQ63fUfMhFo=">AAACGHicbZDLSgMxFIYz9VbrbdSlm2ApuCozBS+4KgrisoK9QDuUTHrahmaSIckUytAXEbf6HO7ErTsfwzcwbWehrT8Efv7/HML5wpgzbTzvy8mtrW9sbuW3Czu7e/sH7uFRQ8tEUahTyaVqhUQDZwLqhhkOrVgBiUIOzXB0O+ubY1CaSfFoJjEEERkI1meUGBt1Xfca33EywHaSAzVSdd2iV/bmwqvGz0wRZap13e9OT9IkAmEoJ1q3fS82QUqUYZTDtFBaqqViY6BByrmgelroJBpiQkdkAG1rBYlAB+n8sCku2aSH+1LZJwyep783UhJpPYlCOxkRM9TL3Sz8r2snpn8VpEzEiQFBFx/1E46NxDNKuMeUpcEn1hCqmD0F0yFRhBrLsmAZ+ctEVk2jUvYvyucPlWL1JqOVRyfoFJ0hH12iKrpHNVRHFI3RM3pBr86T8+a8Ox+L0ZyT7RyjP3I+fwCE6J/8</latexit>

: Flag Collector
<latexit sha1_base64="bLQzXKJK/X02ZBwGoga8sZr7hSg=">AAACCHicbZDNSgMxFIXv+FvrX9Wlm2ApuCozXVSXxYK4rGJ/oB1KJs20oZlkSDKFMvQFxK0+hztx61v4GL6BaTsLbT0Q+DjnXsI9QcyZNq775Wxsbm3v7Ob28vsHh0fHhZPTlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywrs/z9oQqzaR4NNOY+hEeChYygo21Hm7r/ULRLbsLoXXwMihCpka/8N0bSJJEVBjCsdZdz42Nn2JlGOF0li+txFKxCSV+yrkgepbvJZrGmIzxkHYtChxR7aeLQ2aoZJ0BCqWyTxi0cH9vpDjSehoFdjLCZqRXs7n5X9ZNTHjtp0zEiaGCLD8KE46MRPNW0IApSgyfWsBEMXsKIiOsMDG2u7ztyFttZB1albJXLVfvK8XaTdZWDs7hAi7BgyuowR00oAkEQniGF3h1npw35935WI5uONnOGfyR8/kDkOaaLg==</latexit>

FC

<latexit sha1_base64="Uo3a9xbEECZzmNrLG0aDSTVuZgg=">AAACHXicbVDLSsNAFJ34rPEVFVduBkvFVUm6qC6Lbly4qGAf0IYymd60QyeTMDMplNBvEbf6He7ErfgZ/oHTNgttPXDhcM69XM4JEs6Udt0va219Y3Nru7Bj7+7tHxw6R8dNFaeSQoPGPJbtgCjgTEBDM82hnUggUcChFYxuZ35rDFKxWDzqSQJ+RAaChYwSbaSec3oPRAomBrh7gZkIQYKg0HOKbtmdA68SLydFlKPec767/ZimEQhNOVGq47mJ9jMiNaMcpnZpyY4lGwP1M84FVVO7mypICB2RAXQMFSQC5WfzdFNcMkofh7E0IzSeq78vMhIpNYkCsxkRPVTL3kz8z+ukOrz2MyaSVJvQi0dhyrGO8awq3GcSqOYTQwiVzETBdEgkodoUapuOvOVGVkmzUvaq5epDpVi7ydsqoDN0ji6Rh65QDd2hOmogijL0jF7Qq/VkvVnv1sdidc3Kb07QH1ifP7W0ojU=</latexit>

Learning & inference

(2)

<latexit sha1_base64="hTT4xX07m/K4giFAJyi4GXJ0/qA=">AAACInicbZDLSsNAFIYnXmu9Vd3pZrAKrkpS8LIU3bisYC/QhjCZnurgZBJmToQQCj6MuNXncCeuBF/CN3DaZqGtB2b4+f9zOJwvTKQw6Lqfztz8wuLScmmlvLq2vrFZ2dpumTjVHJo8lrHuhMyAFAqaKFBCJ9HAolBCO7y/HOXtB9BGxOoGswT8iN0qMRCcobWCyu5BO8h7hmuRYPFjJoGK4UFQqbo1d1x0VniFqJKiGkHlu9ePeRqBQi6ZMV3PTdDPmUbBJQzLh1NxrMUDcD+XUnEzLPdSAwnj9+wWulYqFoHx8/GJQ3ponT4dxNo+hXTs/p7IWWRMFoW2M2J4Z6azkflf1k1xcObnQiUpguKTRYNUUozpiBftCw0cZWYFs3zsKZTfMc04Wqply8ibJjIrWvWad1I7vq5Xzy8KWiWyR/bJEfHIKTknV6RBmoSTR/JMXsir8+S8Oe/Ox6R1zilmdsifcr5+AN8WpPs=</latexit>

Wi

<latexit sha1_base64="x7zvHRbmJ5XtNbEDhCDLZJP7qV8=">AAACDnicbZDNSgMxFIUz9a+Of1WXboKl4KrMFPxZFgVxWcHWQjuUTHqnDc0kQ5IplKHvIG71OdyJW1/Bx/ANTNtZaOuBwMc59xLuCRPOtPG8L6ewtr6xuVXcdnd29/YPSodHLS1TRaFJJZeqHRINnAloGmY4tBMFJA45PIajm1n+OAalmRQPZpJAEJOBYBGjxFirfQvEpAp0r1T2qt5ceBX8HMooV6NX+u72JU1jEIZyonXH9xITZEQZRjlM3cpSLBUbAw0yzgXVU7ebakgIHZEBdCwKEoMOsvk5U1yxTh9HUtknDJ67vzcyEms9iUM7GRMz1MvZzPwv66QmugoyJpLUgKCLj6KUYyPxrBvcZwqo4RMLhCpmT8F0SBShxjbo2o785UZWoVWr+hfV8/tauX6dt1VEJ+gUnSEfXaI6ukMN1EQUcfSMXtCr8+S8Oe/Ox2K04OQ7x+iPnM8f6VydHw==</latexit> F
ea

tu
re

s

<latexit sha1_base64="WU1DY5JlwBcAu8kv9EF8VBDnCzE=">AAACDHicbZDNTsJAFIWn+If1D3XpppEQXZGWBbokunGJiQUSaMh0uIWR6UwzMyUhDa9g3OpzuDNufQcfwzdwgC4UPMkkX865N5N7woRRpV33yypsbG5t7xR37b39g8Oj0vFJS4lUEvCJYEJ2QqyAUQ6+pppBJ5GA45BBOxzfzvP2BKSigj/oaQJBjIecRpRgbayWr0x20S+V3aq7kLMOXg5llKvZL333BoKkMXBNGFaq67mJDjIsNSUMZnZlJRaSToAEGWOcqJndSxUkmIzxELoGOY5BBdnimJlTMc7AiYQ0j2tn4f7eyHCs1DQOzWSM9UitZnPzv6yb6ug6yChPUg2cLD+KUuZo4cybcQZUAtFsagATSc0pDhlhiYk2HdmmI2+1kXVo1apevVq/r5UbN3lbRXSGztEl8tAVaqA71EQ+IugRPaMX9Go9WW/Wu/WxHC1Y+c4p+iPr8wft+JwG</latexit> U
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Fig. 1: Outline of parties’ interactions in Starlit.

Figure 1 outlines the interaction between the parties in Starlit. In Phase 1, each client initially engages with
Srv to identify discrepancies in specific user features. Additionally, in the same phase, each client interacts
with Srv to extract flags for certain users. Subsequently, each client combines the results of discrepancy
extraction with the outcomes of flag extraction, sending the pair along with a random ID (known also to
Srv) to FC. Moving on to Phase 2, FC and Srv collaborate to train the VFL model using FC’s collected
features, Srv’s local data, and SecureBoost.
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This procedure may still leave the chance of an inference attack during model training/deployment. To
address this issue, we use LDP, where any flag values that leave the client are obfuscated via a randomization
strategy. Note that this protection is an additional layer on top of what is already offered by the SecureBoost
protocol, which only shares encrypted (aggregated) gradient information.

6 Formal Security Definition

In this section, we introduce a generic formal definition, that we call Celestial . It establishes the primary
security requirements of privacy-preserving (V)FL schemes such as Starlit. Celestial involves three types of
parties, (i) a service provider Srv, (ii) a feature collector FC, and (iii) a set of clients {C1, ...,Cn} contributing
their private inputs. Informally, Celestial allows Srv to generate a (global) model given its initial model and
the inputs of C1, ...,Cn. To achieve a high level of computational efficiency and scalability, in Celestial , we
involve a third-party FC that assists Srv with computing the model (by interacting with Cis and retrieving
the features they hold). The functionality F that Celestial computes takes an input initial model θ from Srv,
a set Si from every Ci, and no input from FC. It returns to Srv an updated model θ′. It returns nothing to
the rest of the parties.11 Hence, F can be formally defined as follows.

F(θ, S1, ..., Sn,⊥)→ (θ′,⊥, ...,⊥︸ ︷︷ ︸
n

,⊥) (5)

Since (i) FC interacts with C1, ...,Cn and collects some features from them and (ii) Srv generates the
model in collaboration with C1, ...,Cn and FC, there is a possibility of leakage to the participating parties.
Depending on the protocol that realizes F this leakage could contain different types of information. For
instance, it could contain (a) each Ci’s local model outputs and corresponding gradients (a.k.a. intermediate
results) when using gradient descent [64] in VFL, (b) the output of entity aligning procedure, (c) information
about features, or (d) nothing at all. We define this leakage as an output of a leakage function defined as
follows:

L(inp)→ (l1, l2, ..., ln+2) (6)

L(inp) takes all parties (encoded) inputs, denoted as inp. It returns leakage l1 to Srv, l2 to FC, and
leakage li to Ci−2, for all i, where 3 ≤ i ≤ n+ 2.

We assert that a protocol securely realizes F if (1) it reveals nothing beyond a predefined leakage to
a certain party and (2) whatever can be computed by a party in the protocol can be obtained from its
input and output only. This is formalized by the simulation paradigm. We require a party’s view during the
execution of the protocol to be simulatable given its input, output, and the leakage that has been defined
for that party.

Definition 2 (Security of Celestial). Let F be the functionality presented in Relation 5. Also, let L be
the above leakage function, presented in Relation 6. We assert that protocol Γ securely realizes F , in the
presence of a static semi-honest adversary, if for every non-uniform PPT adversary A for the real model,
there exists a non-uniform PPT adversary (or simulator)

Sim for the ideal model, such that for every party P , where P ∈ {Srv,C1, ...,Cn,FC}, the following holds:

{SimF,L1
Srv

(θ, θ′)}inp
c≡ {ViewA,ΓSrv (inp)}inp (7)

{SimF,L2FC (⊥,⊥)}inp
c≡ {ViewA,ΓFC (inp)}inp (8)

{SimF,Li+2
Ci

(Si,⊥)}inp
c≡ {ViewA,ΓCi

(inp)}inp (9)

where 1 ≤ i ≤ n.
11 For the sake of simplicity, we have restricted the learning of the global model to only Srv. This approach can be

easily generalized to allow each Ci to learn the model as well, by mandating Srv to transmit the global model to
every Ci.
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7 Flag Protection

In this section, we initially present a game for flag protection. Then, we explain how to construct a concrete
optimization problem to realize the game.

7.1 The Game

The problem of finding a Privacy Mechanism (PM) that offers optimal flag privacy to a client given the
knowledge of the adversary (e.g., Srv or FC), is an instance of a Bayesian Stackelberg game. In a Stackelberg
game the leader, in our case the client, plays first by choosing a PM (a transformation matrix), and commits
to that by running it on the actual values of the flags; and the follower, in our case Srv, plays next estimating
the flag value, knowing the PM that the client has committed to. It is a Bayesian game because Srv has
incomplete information about the true flag values and plays according to its prior information about these
values. Inspired by similar work in location privacy protection games [52,51], we now proceed to define the
game for a single flag value, but the transformation matrix computed will be used for each value:

• Step 0. Nature selects a flag value v ∈ V for the client according to a probability distribution π(.), the flag
profile. That is, flag value v is selected with probability π(v). This encodes the relative proportions of the
flag values in the dataset.

• Step 1. Given v, the client runs the PM f(v′|v) to select a replacement value v′ ∈ V.
• Step 2. Having observed v′, Srv selects an estimated flag value v̂ ∼ g(v̂|v′), v̂ ∈ V. Srv knows the probability

distribution f(v′|v) used by the PM, and the client’s flag profile π(.), but not the true flag value v.
• Step 3. The game outcome is the number dp(v̂, v), which is the client’s privacy for this iteration of the

game. This number represents Srv’s error in estimating the true value of the flag.

Fig. 2: Bayesian game for a single flag value.

The above description is common knowledge to Srv and the client. Srv tries to minimize the expected
game outcome (the error in the estimation of the flag value) via its choice of g, while the client tries to
maximize it via its choice of transformation matrix f . As changing the flag values distorts the data for
training the ML algorithm, we impose upper bounds pmax(v′, v) on the probabilities f(v′|v). Finally, and
independently of the above considerations, we want the PM to be ε-differentially private.

7.2 Optimization Problem

We now explain how to build a concrete optimization problem that encodes the above description and that
we can solve to obtain the optimal PM f(), given π(), dp, p

max(v′, v), and ε. Srv knows f(v′|v) implemented by
PM. Thus, it can form a posterior distribution Pr(v|v′) on the true flag value, conditional on the observation
v′. Then, Srv chooses v̂ to minimize the conditional expected privacy, where the expectation is taken under
the posterior distribution:

Choose v̂ that satisfies arg min
v̂

∑
v

Pr(v|v′)dp(v̂, v). (10)

Recall that variables v, v′, and v̂ take values in V, the set of flag values, so the range of any minimization
or summation involving any of these variables will be the set V. If there are multiple minimizing values of
v̂, then Srv may randomize among them. This randomization is expressed through g(v̂|v′), and in this case
(10) would be rewritten as

∑
v,v̂

Pr(v|v′)g(v̂|v′)dp(v̂, v).
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It is important to note that the value of this equation would be the same as the value computed in
Relation (10) for any minimizing value of v̂. As π(v) and f(v|v′) are known to Srv, it holds that:

Pr(v|v′) =
Pr(v, v′)

Pr(v′)
=

f(v′|v)π(v)∑
v
f(v′|v)π(v)

(11)

Thus, for a given v′, the client’s conditional privacy is given by Relation (10). The probability that v′ is
reported is Pr(v′). Hence, the unconditional expected privacy of the client is:∑

v′

Pr(v′) min
v̂

∑
v

Pr(v|v′)dp(v̂, v) =
∑
v′

min
v̂

∑
v

π(v)f(v′|v)dp(v̂, v) (12)

To facilitate computations, we define:

xv′ min
v̂

∑
v

π(v)f(v′|v)dp(v̂, v). (13)

Incorporating xv′ into Relation (12), the unconditional expected privacy of the client can be rewritten as∑
v′

xv′ (14)

which the client aims to maximize by choosing f(v′|v). The minimum operator makes the problem non-linear,
undesirable, but Relation (13) can be transformed into a series of linear constraints:

xv′ ≤
∑
v

π(v)f(v′|v)dp(v̂, v),∀v̂ (15)

Maximizing the result in Relation (14) under Relation (13) is equivalent to maximizing Relation (14)
under Relation (15). For every v′, there must be some v̂ for which Relation (15) holds as strict equality;
Otherwise, we could increase one of the xv′ , so the value of Relation (14) would increase. From Relations
(14) and (15), the linear program for the client is constructed by choosing f(v′|v), xv′ ,∀v, v′ to solve the
following linear programming problem.

Maximize
∑
v′

xv′ (16)

subject to

xv′ −
∑
v

π(v)f(v′|v)dp(v̂, v) ≤ 0,∀v̂, v′ (17)

f(v′|v) ≤ pmax(v′, v),∀v, v′ (18)∑
v′

f(v′|v) = 1,∀v (19)

f(v′|v) ≥ 0,∀v, v′ (20)

f(v′|v1)

f(v′|v2)
≤ exp(ε),∀v′, v1, v2 (21)

Constraints (19) and (20) reflect that f(v′|v) is a probability distribution function for each v, while (21)
enforces ε-differential privacy.

Alternative Quality-Privacy Tradeoffs. The above formulation encodes the privacy-accuracy tradeoff
in one particular way – maximize inference privacy, subject to a differential privacy constraint and an
accuracy-related constraint on the probabilities f(v′|v). The general framework is flexible to accommodate
other tradeoffs.
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For example, instead of introducing constraints pmax(v′, v) on f(v′|v), we can introduce an Accuracy Loss
(AL) matrix with entries ALv′v that quantify the loss in accuracy when replacing value v with v′. Then,
instead of Relation (18), we can upper bound the total expected accuracy loss that is caused by a given
transformation matrix f with the following constraint:

AL(f) :=
∑
v

π(v)
∑
v′

f(v′|v)ALv′v ≤ ALmax.

Alternatively, in a more radical departure from the original formulation, rather than aiming to maximize
the client’s privacy (inference privacy) subject to AL constraints, we could instead aim to minimize the
accuracy loss AL(f) subject to a lower bound on inference privacy, i.e.,

∑
v′ xv′ ≥ PRmin.

In general, the main benefit of formulating the construction of the transformation matrix as an opti-
mization problem is that we can automatically explore a large solution space to discover optimal probability
distributions f(v′|v) that are not expressible in closed form (such as the Laplace or Gaussian mechanism),
so human intuition would not be able to find them.

8 Starlit’s Phases in Detail

8.1 Privacy-Preserving Feature Extraction

In this section, we elaborate on the two primary privacy-preserving mechanisms that we designed to extract
features.

Finding Features’ Discrepancies. Let T = {tu,1, ..., tu,m} be a subset of features that Srv holds for a user
U. Consider the scenario where Srv wants to check with a pair of clients (Ci,Cj) if there is a discrepancy
between some of the features in T that Srv, Ci, and Cj hold, without revealing and being able to learn
anything else. This approach could provide information about anomalous transactions.

In the domain of financial transactions, we analyzed synthetic data provided to us and identified key
features possessed by FSP for each transaction (with FSP acting as Srv). These features include: (i)
customername, (ii) countryCityzipcode, and (iii) streetname for both the ordering and beneficiary banks. Each
bank, per user, maintains various features such as customername, countryCityzipcode, and streetname (with
an associated flag).

Diverse parties may hold varying perspectives on the value of these features. Discrepancies can arise
from various factors. For instance, a user may have supplied divergent information to different parties. In
the given scenario, a customer might hold accounts with both the ordering and beneficiary banks but could
have provided inconsistent details, such as their address, to these banks. Additionally, there is a possibility
that the values maintained by Srv have been tampered with, potentially by external entities [10,67]. Thus,
incorporating a feature that signals disparities between a client’s data and Srv’s data can enhance the
accuracy of models.

To detect discrepancies while preserving privacy we use PSI, a method that safeguards the privacy of
non-suspicious users’ data maintained by the involved parties. The PSI outcomes serve as additional features
in the FL model. Specifically, Srv and each client Ci participate in an instance of PSI, receiving a set of
strings from Srv and the client. The PSI returns the intersection to Ci. For each user, Ci adds a binary feature
b to its dataset (if not already present). If a user’s details are in the intersection, b is set to 1; otherwise, it
is set to 0. Figure 3 presents this procedure in detail. Hence, we not only employ PSI (as a subroutine in
SecureBoost) for entity alignment, but we also leverage it to enhance the accuracy of the final model. Note
that the outcome of the protocol in Figure 3 will be transmitted to FC in the second phase (collecting flags
of suspicious users), presented below.

Collecting Flags of Users. Each user’s sample may be accompanied by a flag whose value is independently
computed and allocated by a client. For instance, in the context of financial transactions, for each user’s
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• Parties: Srv and Ci.
• Input:
� Srv’s input, for each user U, is a set TSrv of strings (taken from a dataset DSSrv), where each string has

the form tu,1||tu,2||...||tu,m and tu,1 is a user’s unique ID.
� Ci’s input, for each user U, is a set TCi

of strings (from its dataset DSCi
of all users), where each string

has the form tu,1||tu,2||...||tu,m.
• Output: Updated dataset DSCi

.

1. Srv and Ci invoke an stance of PSI protocol: PSI(TSrv, TCi
)→ T∩.

2. Given T∩, Ci parses each element of T∩ as tu,1||tu,2||...||tu,m.
3. If binary feature b is not in DSCi

, then Ci adds b to each user’s feature.
4. Ci sets b as follows. For every tu,j ∈ DSCi

:
• Sets b = 1, when tu,j ∈ S∩.
• Sets b = 0, otherwise.

5. Ci returns DSCi
.

Fig. 3: PSI-based method to identify discrepancies.

account that a bank holds, there is a flag indicating whether the bank considers the account suspicious.
This flag type offers extra information crucial for anomaly detection. Nevertheless, these flags are treated as
private information and cannot be directly shared with Srv.

To align the flags with the Srv’s dataset without revealing them, we rely on the following observation
and idea. The key observation is that each user’s sample, which is held by Srv and includes both sender
and receiver clients, can be assigned an ID selected uniformly at random from a sufficiently large domain.
In certain cases, such as financial transactions, each sample (representing a transaction) already comes with
a random ID. As a random string, this ID divulges no specific information about a user’s features. For each
user’s sample, Srv can generate this ID and share this ID (along with a unique feature in the sample) with
the clients involved in that sample. Accordingly, if each client groups each ID with a set of binary flags and
sends them to FC, FC cannot glean significant information about the user’s features linked to those IDs.
Based on this observation, we rely on the following idea to extract the flags.

For each user’s sample, Srv sends the random ID and a unique feature of the user (e.g., their name or
account number) to the related clients. The clients then use their sample information to group each ID with
the correct user’s flags. It sends this group to FC. When sending a flag for a user to FC, each client also
sends to FC the flag b that it generated in Figure 3 (to detect discrepancies). Consequently, FC uses a set
(that includes an ID and flags for each user) to create a dataset of flags. This dataset will then be used as
the input data for the ML model.

The above private information retrieval mechanism is highly computationally efficient. This approach still
may reveal certain information to the involved parties. Specifically (a) each client gains knowledge of some
of their users that are in Srv’s dataset, and (b) FC acquires information about which IDs originate from
certain clients, enabling the calculation of the number of transactions between each pair of clients.

However, the privacy of sensitive information is preserved, as (i) each client remains unaware of details
about other participating clients or users’ features held at other clients and (ii) FC cannot identify the user
involved in a sample. FC only has IDs and a set of flags for each ID. Consequently, FC cannot glean any
information about a specific account.

As evident during the feature extraction, each client independently computes its message and sends it
to FC without the need to coordinate with other clients. Hence, even if some clients choose not to send
their messages, this phase is completed. This is in contrast to the solution proposed in [46] which cannot
withstand clients’ dropouts.
Extension. There is an alternative method for collecting flags, which involves employing an efficient threshold
privacy-preserving voting mechanism introduced by Abadi and Murdoch [1]. This voting scheme enables
the result recipient (e.g., FC or Srv) to ascertain whether, at the very least, a predefined threshold of the
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involved parties (e.g., clients) sets a user’s flag to 1. Importantly, this process does not disclose any additional
information, such as individual votes or the count of 1s or 0s, beyond the result to the result recipient. This
scheme operates with high efficiency, as it avoids the need for public key cryptography. Integrating this
scheme in Starlit has the potential to enhance the accuracy of the global model, as there is no longer a
requirement to safeguard the flags with DP. A more in-depth analysis is needed to ensure that the system
using this voting scheme can withstand potential client dropouts.

For the sake of simplicity, we have presented a solution focused on a single flag per sample. This solution
can be readily generalized to situations where multiple flags are linked to a single sample. In this scenario
involving multiple flags, when a client receives a sample’s ID and the unique user’s feature, it retrieves a
vector of flags associated with that particular sample. Following applying either DP or the voting-based
mechanism to the flags, the client then transmits the resultant outcome to FC.

8.2 Model Training and Inference

Following the feature extraction phase, Srv and FC jointly possess all the necessary data for training the
anomaly detection model. Srv retains a dataset of samples, while FC possesses certain features of samples,
i.e., discrepancies and flags (protected by DP).

This represents the VFL setting, where only Srv holds the labels to predict. This configuration allows for
the utilization of various off-the-shelf protocols suitable for training an ML model, such as those presented
in [15,18,22,27,38,49,55,62,70,72,76]. We use the SecureBoost algorithm (discussed in Section 4.4), which
involves the exchange of encrypted (aggregate) gradients between Srv and FC during the training phase. Srv
can decrypt the gradients to determine the best feature to split on. Once the model is trained, each party
owns the part of the tree that uses the features it holds. Hence, when using the distributed inference protocol
in [18], Srv coordinates with the FC to determine the split condition to be used.

9 Security of Starlit

In this section, we initially present formal definitions of the leakage that each party attains during the
execution of Starlit. Subsequently, we formally state the security guarantee of Starlit.

Definition 3 (Srv–Side Leakage). Let L be the leakage function defined in Relation 6 and inp be the
input of all parties (as outlined in Section 6). Let DSCi

be a dataset of users held by each Ci, and vi be each
dataset’s size, i.e., vi = |DSCi

|, where 1 ≤ i ≤ n. Moreover, let W(prm1, prm2) → (l1, l2) be SecureBoost’s
leakage function (defined in Relation 4), where prm1 is provided by Srv and prm2 is given by FC. W returns

l1 to Srv and l2 to FC. Then, leakage to Srv is defined as: L1(inp) :=
(
v1, ..., vn,W1(prm1, prm2)

)
.

Definition 4 (FC–Side Leakage). Let L be the leakage function defined in Relation 6 and inp be the
input of all parties. Also, let si = |SCi

|, where SCi
is a set of triples each of which has the form (ID, b, w),

where ID represents a random ID of a sample, b is a binary flag for a feature’s inconsistency (as described
in Figure 3), w is another binary flag of the same sample (as described in Section 8.1). Moreover, let
W(prm1, prm2)→ (l1, l2) be SecureBoost’s leakage function (defined in Relation 4), where prm1 is provided
by Srv and prm2 is given by FC. W returns l1 to Srv and l2 to FC. Then, leakage to FC is defined as:

L2(inp) :=
(
s1, ..., sn,W2(prm1, prm2)

)
.

Definition 5 (Ci–Side Leakage). Let L be the leakage function defined in Relation 6 and inp be the
input of all parties. Moreover, let DSSrv be Srv’s dataset while DSCi

be Ci’s dataset. Also, let SSrv be a set
of pairs each of which has the form (ID, featu), where ID represents a random ID of a sample and featu
refers to user U’s unique feature, held by both Srv and Ci). Then, leakage to Ci is defined as: Li+2(inp) :=(

(DSSrv ∩ DSCi
), |DSSrv|, SSrv

)
.
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Theorem 1. Let F be the functionality defined in Relation 5. Moreover, let L1(inp),L2(inp), and Li+2(inp)
be the leakages defined in Definitions 3, 4, and 5 respectively. If PM is ε-differentially private and provides
optimal flag privacy (w.r.t. Game presented in Figure 2), the SecureBoost and PSI are secure, then Starlit
securely realizes F , w.r.t. Definition 2.

We prove the above theorem in Appendix B.

10 Implementation of Starlit

We carry out comprehensive evaluations to study Starlit’s performance from various aspects, including
privacy-utility trade-off, efficiency, scalability, and choice of parameters. In the remainder of this section,
we elaborate on the analysis.

10.1 The Experiment’s Environment

We implement Starlit within an FL framework, called Flower (discussed in Section 4.5). We use Python
programming language to implement Starlit. Experiments were run using AWS ECS cloud with docker con-
tainers with 56GB RAM and 8 Virtual CPUs. The FATE SecureBoost implementation uses multiprocessing
to operate on table-like objects. We set the partitions setting to 5, which means operations on tables are
performed with a parallelism of 5.

We adjusted and used the Python-based implementation of the efficient PSI introduced in [36]. We have
run experiments to evaluate the performance of this PSI.

We conducted the experiments when each party’s set’s cardinality is in the range [29, 219]. Briefly, our
evaluation indicates that the PSI’s runtime increases from 0.84 to 367.93 seconds when the number of
elements increases from 29 to 219. Appendix C presents further details on the outcome of the evaluation.
Each instance of the PSI, for each account, takes as input string: accountnumber|| customername||streetname
||countryCityzipcode. The output of the PSI is received by the participating bank. To implement Starlit, we
had to overcome a set of challenges, including the use of Flower and FATE. In Appendix F, we discuss these
challenges in detail and explain how we addressed them.

10.2 Dataset

Our experiment involves the utilization of two synthetic datasets:

• Dataset 1: Synthetic dataset that simulates transaction data obtained from the global payment network
of FSP (acting as Srv).

• Dataset 2: Synthetic dataset related to customers (or users), inclusive of their account information and
flags, derived from the partner banks (or clients) of FSP.

Furthermore, the sizes of the datasets are as follows.

� FSP’s training datasets, in total, contain about 4,000,000 rows.
� The banks’ dataset includes around 500,000 rows.
� FSP’s test dataset comprises about 700,000 rows.

Outline of Dataset 1. Each row (or sample) in this dataset corresponds to an individual transaction,
signifying a payment from a sending bank to a receiving bank. Each transaction encapsulates details such
as the originators and beneficiaries, sender and receiving banks, and payment corridor. The dataset spans
approximately a month’s worth of transactions and involves fifty institutions.

It contains various fields such as (a) MessageId: a globally unique identifier, (b) Sender: a bank sending the
transaction, (c) Receiver: a bank receiving the transaction, and (d) OrderingAccount: an account identifier
for the originating ordering entity. Appendix D provides detailed explanations of the fields contained in
Dataset 1.
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Outline of Dataset 2. The dataset comprises databases from various banks, encompassing information
about their customers’ accounts, e.g., the flags associated with each account. Initially, the data was unpar-
titioned, with all the banks’ information consolidated into a single table.

This dataset contains various fields, for instance: (a) Account: an identifier for the account, (b) Name,
name of the account, (c) Street: street address associated with the account, (d) CountryCityZip: remaining
address details associated with the account, and (e) Flags: enumerated data type indicating potential issues
or special features that have been associated with an account. Appendix E elaborates on the fields that
Dataset 2 contains.

11 Empirical Results

Our evaluation of Starlit includes various perspectives (a) privacy-utility trade-off, discussed in Section 11.1,
(b) efficiency and scalability, explored in Section 11.2, and (c) the choice of concrete parameters, covered in
Section 11.3.

In this study, our focus does not lie on feature exploration or hyperparameter tuning to enhance model
accuracy. Instead, we employ a straightforward approach, utilizing example features extracted from FSP,
as provided in the data, in conjunction with four binary values derived from the banks’ data. The features
extracted from FSP for model training encompass the following: settlement amount, instructed amount,
hour, sender hour frequency, sender currency frequency, sender currency amount average, and sender-receiver
frequency. Additionally, we incorporate four binary flags, indicating the agreement between FSP and the
banks on sender and receiver address details, as well as whether the sending and receiving accounts share
the same flag for a given account.

11.1 Privacy-Utility Trade-off

Baseline. To analyze the trade-off between utility and privacy, we establish a benchmark using a centralized
model constructed within FSP. In this centralized model, all data from banks is revealed in plaintext. The
same set of features listed above is extracted. We train a standard XGBoost model with 30 trees. We employ
a 5-fold cross-validation with the average precision score as the metric. It is important to note that default
values are utilized for all hyperparameters during the model training process.

Evaluation Procedure. The “Area Under the Precision-Recall Curve” (AUPRC) refers to a metric em-
ployed to evaluate the performance of an ML classification model. The unit of AUPRC is a value in the range
[0, 1], representing the area under the precision-recall curve. It measures the trade-off between precision and
recall and provides a summary of the model’s performance across different threshold values for classification.
A higher AUPRC indicates better model performance, with 1 being the ideal value representing perfect
precision and recall.

Starlit. In the evaluation of Starlit’s implementation, for analyzing AUPRC that can be achieved at a given
level of privacy, we modify the flag values that banks send using DP and construct XGBoost models with
these noisy features.

We use the same parameters as in the baseline model (30 trees and 5-fold cross-validation) and measure
the average precision score for the final model on training and test data, averaging over 5 runs to account
for the randomness of the privacy mechanism and the training process.

SecureBoost does the same computation as XGBoost while constructing the trees albeit on encrypted
gradients. Hence, the additional cost will not be on accuracy but rather on performance (which we discuss
in section 11.2). We also observed this to be the case from our experimental results.
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(b) Rand. Response vs Asym. matrices.

Fig. 4: Plot(a) compares the effect on AUPRC of the model when using RR and Laplace mechanism with post-
processing for achieving LDP. Plot(b) compares the effect on AUPRC when using RR and privacy mechanisms at the
same value of ε but with the constraint of 10% less probability of converting 0 to 1 (1 to 0) than what is recommended
by RR. In Plot(a), red dotted line: non-private-train, blue dotted line: non-private-test, solid blue line: RR-train, solid
orange line: RR-test, solid green line: Laplace-train, and solid red line: Laplace-test. In Plot(b), red dotted line: non-
private-train, blue dotted line: non-private-test, solid blue line: RR-train, solid orange line: RR-test, solid green line:
10% less 0-¿1 than RR-train, solid red line: 10% less 0-¿1 than RR-test, solid purple line: 10% less 1-¿0 than RR-train,
and solid brown line: 10% less 1-¿0 than RR-test.

Key Takeaways. Figure 4 provides a summary of our utility-privacy trade-off analysis. Plot(a) in this
figure compares the effect on AUPRC of the model when using Randomized Response (RR) and Laplace
mechanism with post-processing for achieving LDP. Consistent with the optimality results presented in
[65,33], RR offers a superior utility-privacy trade-off when compared to the Laplace mechanism. Both RR
and the Laplace mechanism yield symmetric transformation matrices, meaning an equal probability for
converting a 0 to 1 and a 1 to 0.

Plot(b) in Figure 4 illustrates the impact on AUPRC when employing RR and privacy mechanisms. This
comparison is conducted at the same ε value, with the additional constraint of reducing the probability of
converting 0 to 1 (and 1 to 0) by 10% compared to the recommendations provided by RR. These recom-
mendations are determined using our game framework. The results demonstrate that even a slight increase
in the probability of converting a zero flag to a non-zero value has a significant impact on the model’s per-
formance. This observation aligns with intuition, considering the substantial proportion of zero flag values
in the dataset.

11.2 Efficiency and Scalability

Baseline. SecureBoost’s training was configured with 10 trees, each with a depth of 3, a dataset sampling
rate of 40%, and a “Gradient-based One Side Sampling” (GOSS) sampling of 0.1. Efficiency results for
this baseline are provided in Table 2. This baseline is used to investigate various configurations’ impact on
efficiency.

Table 2: Efficiency metrics of the baseline. H represents time in hours and GB refers to gigabytes.

Efficiency Metric Unit Tree’s depth Result

AUPRC – 3 0.4715

The total training time H 3 1.1

The peak training memory usage GB 3 12.38

The network disk volume usage GB 3 4.98

The network file volume usage GB 3 993
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Starlit. We analyzed Starlit’s efficiency with different SecureBoost configurations. The evaluation’s results
are illustrated in Table 3. SecureBoost offers various options that can be employed to enhance efficiency in
different settings. For instance, both direct sampling12 and GOSS sampling offers a means to reduce network
and memory overhead by decreasing the volume of data processed in each round of training.

The tree depth is also a crucial parameter for improving accuracy while maintaining an appropriate
level of efficiency in terms of training time and memory consumption. Also, the integration of Starlit with
FATE and Flower enables the splitting of large messages into chunks, facilitating more efficient processing.
Furthermore, Starlit utilizes numerous Flower rounds, with a significant portion of the final rounds remaining
empty due to the requirement of a pre-set round number by Flower. This situation has an impact on the
network metrics.

Table 3: Starlit’s Runtime using various training parameters. In the table, H represents time in hours and GB refers
to gigabyte. The row highlighted in yellow corresponds to the choice of parameters where AUPRC is at the highest
level.

Sampling Approach
Tree’s depthEfficiency Metric Unit

Direct Sampling Rate GOSS
Tree’s depth Max Message Size Result

AUPRC
–

40% 0.1 3 100MB 0.4715

100% 0.1 3 100MB 0.5786

40% Disabled 3 100MB 0.47

40% 0.3 3 100MB 0.5965

40% 0.1 5 100MB 0.652

40% 0.1 3 1GB 0.4715
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l tr
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e

H

40% 0.1 3 100MB 1.1

100% 0.1 3 100MB 2.21

40% Disabled 3 100MB 2.83

40% 0.3 3 100MB 1.5

40% 0.1 5 100MB 1.13

40% 0.1 3 1GB 1
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40% 0.1 3 100MB 12.38
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100% 0.1 3 100MB 17.48

40% Disabled 3 100MB 18.39

40% 0.3 3 100MB 13.66

40% 0.1 5 100MB 16.4

40% 0.1 3 1GB 12.22
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40% 0.1 3 100MB 4.98
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100% 0.1 3 100MB 14.51

40% Disabled 3 100MB 16.61

40% 0.3 3 100MB 7.84

40% 0.1 5 100MB 5.1

40% 0.1 3 1GB 4.34

The
net

wor
k

file

GB

40% 0.1 3 100MB 993
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100% 0.1 3 100MB 1270

40% Disabled 3 100MB 1256

40% 0.3 3 100MB 1035

40% 0.1 5 100MB 1316

40% 0.1 3 1GB 927

Furthermore, Starlit’s scalability is attributed to its design choice, which maintains the model training
phase’s independence from the number of banks. In contrast, the feature extraction phase’s computational
complexity scales linearly with the number of banks and the suspicious accounts identified by FSP.

Starlit extensively employs CPU resources, primarily driven by the CPU-intensive nature of the underlying
SecureBoost training. This demand arises from the encryption necessary for securing the gradient in the
algorithm. Refer to Figure 7 in Appendix G for the CPU utilization details of Starlit.

12 This direct sampling approach is taken to reduce the training time. It works by randomly using only the stated
fraction of the training set.
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11.3 Choice of Parameters

Our ultimate selection of parameters was informed by (i) the privacy-utility analysis in Section 11.1, specif-
ically in the selection of ε and (ii) the efficiency analysis in Section 11.2, pertaining to the determination of
model hyper-parameters, such as AUPRC, the number of trees, and sampling rate.

For the centralized solution, as far as possible, we matched the parameters used in the centralized XG-
Boost model with those used in the federated solution. Specifically for the number of trees, tree depth, and
L2 regularization parameter. The parameters are set as follows: (a) in both the centralized and federated
settings: number of trees = 10, L2 regularization = 0.1, and (b) in the federated setting: ε = 10.

11.4 Contrasting Starlit with the Baseline

In this section, we provide a brief comparison of Starlit’s performance with the baseline scenario, drawing
insights from the information presented in Tables 2 and 3.

Starlit and the baseline achieve the same level of AUPRC when Starlit’s (i) direct sampling rate is 40%,
(ii) the tree’s depth is 3, and (iii) GOSS is not disabled. This is indicated in Figure 5. In the case where
direct sampling rate = 40% and tree’s depth = 3, regarding:

� The total training time: Starlit and the baseline have similar performance, except for the case when GOSS
in Starlit is disabled. In this case, Starlit underperforms the baseline by a factor of 2.5.

� The peak training memory usage: Starlit and the baseline have similar performance except for the cases
where (i) GOSS in Starlit is disabled and (ii) GOSS is 0.3. In these cases, Starlit underperforms the
baseline by at most a factor of 1.4.

� The network disk volume usage: Starlit and the baseline have similar performance when GOSS = 0.1 and
max message size = 100 MB. However, when max message size = 1 GB, Starlit outperforms the baseline
by a factor of 1.1. In the rest of the cases, Starlit underperforms the baseline by at most a factor of 3.3.

� The network file volume usage: Starlit and the baseline have similar performance when direct sampling
rate = 40%, GOSS = 0.1, and max message size = 100 MB. However, when max message size = 1 GB,
Starlit outperforms the baseline by a factor of 1.07. In the rest of the cases, the baseline outperforms
Starlit by at most a factor of 1.27.

<latexit sha1_base64="I9cDL//k0GLIialkFe5385rSBKA=">AAACCXicbZDNSsNAFIVv6l+Nf1WXbgZLwVVIClqXRTcuK9ofaEOZTCft0MkkzEwKJfQJxK0+hztx61P4GL6B0zYLbT0w8HHOvQz3BAlnSrvul1XY2Nza3inu2nv7B4dHpeOTlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD8e08b0+oVCwWj3qaUD/CQ8FCRrA21oPr1Pqlsuu4C6F18HIoQ65Gv/TdG8QkjajQhGOlup6baD/DUjPC6cyurMSxZBNK/IxzQdTM7qWKJpiM8ZB2DQocUeVni0tmqGKcAQpjaZ7QaOH+3shwpNQ0CsxkhPVIrWZz87+sm+rw2s+YSFJNBVl+FKYc6RjNa0EDJinRfGoAE8nMKYiMsMREm/Js05G32sg6tKqOd+Vc3lfL9Zu8rSKcwTlcgAc1qMMdNKAJBIbwDC/waj1Zb9a79bEcLVj5zin8kfX5A8mFmkM=</latexit>

0.7

<latexit sha1_base64="3saH1qhgRrnXfoS45/fikYew43Y=">AAACCnicbZDNSsNAFIVv/K3xr+rSzWApuApJweqy6MZlBfsDbSiT6aQdOpkJM5NCCX0DcavP4U7c+hI+hm9g0mahrQcGPs65l+GeIOZMG9f9sjY2t7Z3dkt79v7B4dFx+eS0rWWiCG0RyaXqBlhTzgRtGWY47caK4ijgtBNM7vK8M6VKMykezSymfoRHgoWMYJNbrlO3B+WK67gLoXXwCqhAoeag/N0fSpJEVBjCsdY9z42Nn2JlGOF0bldXYqnYlBI/5VwQPbf7iaYxJhM8or0MBY6o9tPFKXNUzZwhCqXKnjBo4f7eSHGk9SwKsskIm7FezXLzv6yXmPDGT5mIE0MFWX4UJhwZifJe0JApSgyfZYCJYtkpiIyxwsRk7eUdeauNrEO75nh15+qhVmncFm2V4Bwu4BI8uIYG3EMTWkBgDM/wAq/Wk/VmvVsfy9ENq9g5gz+yPn8A/duaVg==</latexit>

0.6

<latexit sha1_base64="dNBpUmffFqHWggSkjs8ajrbk0Z4=">AAACCnicbZDNSsNAFIUn/tb4V3XpZrAUXIWkUHVZdOOygv2BNpTJ9KYdOpkJM5NCCX0DcavP4U7c+hI+hm9g0mahrQcGPs65l+GeIOZMG9f9sjY2t7Z3dkt79v7B4dFx+eS0rWWiKLSo5FJ1A6KBMwEtwwyHbqyARAGHTjC5y/POFJRmUjyaWQx+REaChYwSk1uuU7cH5YrruAvhdfAKqKBCzUH5uz+UNIlAGMqJ1j3PjY2fEmUY5TC3qyuxVGwK1E85F1TP7X6iISZ0QkbQy1CQCLSfLk6Z42rmDHEoVfaEwQv390ZKIq1nUZBNRsSM9WqWm/9lvcSEN37KRJwYEHT5UZhwbCTOe8FDpoAaPsuAUMWyUzAdE0WoydrLO/JWG1mHds3xrpz6Q63SuC3aKqFzdIEukYeuUQPdoyZqIYrG6Bm9oFfryXqz3q2P5eiGVeycoT+yPn8A/DeaVQ==</latexit>

0.5

<latexit sha1_base64="oVtMF4buOoiU6C9dPWoxpjPmcxA=">AAACCnicbZDNSsNAFIUn9a/Gv6pLN4Ol4Cokxb9l0Y3LCrYW2lAm05t26GQmzEwKJfQNxK0+hztx60v4GL6BSZuFth4Y+DjnXoZ7gpgzbVz3yyqtrW9sbpW37Z3dvf2DyuFRW8tEUWhRyaXqBEQDZwJahhkOnVgBiQIOj8H4Ns8fJ6A0k+LBTGPwIzIULGSUmNxynXO7X6m6jjsXXgWvgCoq1OxXvnsDSZMIhKGcaN313Nj4KVGGUQ4zu7YUS8UmQP2Uc0H1zO4lGmJCx2QI3QwFiUD76fyUGa5lzgCHUmVPGDx3f2+kJNJ6GgXZZETMSC9nuflf1k1MeO2nTMSJAUEXH4UJx0bivBc8YAqo4dMMCFUsOwXTEVGEmqy9vCNvuZFVaNcd79K5uK9XGzdFW2V0gk7RGfLQFWqgO9RELUTRCD2jF/RqPVlv1rv1sRgtWcXOMfoj6/MH+pOaVA==</latexit>

0.4

<latexit sha1_base64="r/3qxOIh7HXJMtbvthkZNTfhRM8=">AAACCnicbZDNSsNAFIUn9a/Gv6pLN4Ol4CokFX+WRTcuK9haaEOZTG/aoZOZMDMplNA3ELf6HO7ErS/hY/gGJm0W2npg4OOcexnuCWLOtHHdL6u0tr6xuVXetnd29/YPKodHbS0TRaFFJZeqExANnAloGWY4dGIFJAo4PAbj2zx/nIDSTIoHM43Bj8hQsJBRYnLLdc7tfqXqOu5ceBW8AqqoULNf+e4NJE0iEIZyonXXc2Pjp0QZRjnM7NpSLBWbAPVTzgXVM7uXaIgJHZMhdDMUJALtp/NTZriWOQMcSpU9YfDc/b2RkkjraRRkkxExI72c5eZ/WTcx4bWfMhEnBgRdfBQmHBuJ817wgCmghk8zIFSx7BRMR0QRarL28o685UZWoV13vEvn4r5ebdwUbZXRCTpFZ8hDV6iB7lATtRBFI/SMXtCr9WS9We/Wx2K0ZBU7x+iPrM8f+O+aUw==</latexit>

0.3

<latexit sha1_base64="rLNStJ1W6u0K2YpxP1uIHoJQryE=">AAACCnicbZDLSsNAFIYn9VbjrerSzWApuApJwcuy6MZlBXuBNpTJ9KQdOpkJM5NCCX0DcavP4U7c+hI+hm9g0mahrT8MfPz/OQznD2LOtHHdL6u0sbm1vVPetff2Dw6PKscnbS0TRaFFJZeqGxANnAloGWY4dGMFJAo4dILJXZ53pqA0k+LRzGLwIzISLGSUmNxynbo9qFRdx10Ir4NXQBUVag4q3/2hpEkEwlBOtO55bmz8lCjDKIe5XVuJpWJToH7KuaB6bvcTDTGhEzKCXoaCRKD9dHHKHNcyZ4hDqbInDF64vzdSEmk9i4JsMiJmrFez3Pwv6yUmvPFTJuLEgKDLj8KEYyNx3gseMgXU8FkGhCqWnYLpmChCTdZe3pG32sg6tOuOd+VcPtSrjduirTI6Q+foAnnoGjXQPWqiFqJojJ7RC3q1nqw36936WI6WrGLnFP2R9fkD90uaUg==</latexit>

0.2

<latexit sha1_base64="BRHW7g89IwytlO9Z/SCgHL1JoKQ=">AAACCnicbZDLSsNAFIZP6q3GW9Wlm8FScBWSgpdl0Y3LCvYCbSiT6aQdOpkJM5NCCX0DcavP4U7c+hI+hm9g0mahrT8MfPz/OQznD2LOtHHdL6u0sbm1vVPetff2Dw6PKscnbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcpfnnSlVmknxaGYx9SM8EixkBJvcch3PHlSqruMuhNbBK6AKhZqDynd/KEkSUWEIx1r3PDc2foqVYYTTuV1biaViU0r8lHNB9NzuJ5rGmEzwiPYyFDii2k8Xp8xRLXOGKJQqe8Kghft7I8WR1rMoyCYjbMZ6NcvN/7JeYsIbP2UiTgwVZPlRmHBkJMp7QUOmKDF8lgEmimWnIDLGChOTtZd35K02sg7tuuNdOZcP9WrjtmirDGdwDhfgwTU04B6a0AICY3iGF3i1nqw36936WI6WrGLnFP7I+vwB9aeaUQ==</latexit>

0.1

<latexit sha1_base64="Bb16ZCKrCIyW+6iY1JXf6373YPk=">AAACCHicbZDNSgMxFIXv1L9a/6ou3QRLwVWZKfizLLpxWcXWQjuUTJppQzPJkGQKZegLiFt9Dnfi1rfwMXwDM+0stPVA4OOcewn3BDFn2rjul1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VJ8CaciZoyzDDaSdWFEcBp4/B+CbLHydUaSbFg5nG1I/wULCQEWysde+W+uWKW3PnQqvg5VCBXM1++bs3kCSJqDCEY627nhsbP8XKMMLprFRdiqViE0r8lHNB9KzUSzSNMRnjIe1aFDii2k/nh8xQ1ToDFEplnzBo7v7eSHGk9TQK7GSEzUgvZ5n5X9ZNTHjlp0zEiaGCLD4KE46MRFkraMAUJYZPLWCimD0FkRFWmBjbXdaRt9zIKrTrNe+idn5XrzSu87aKcAKncAYeXEIDbqEJLSAQwjO8wKvz5Lw5787HYrTg5DvH8EfO5w8PMZne</latexit>

0

<latexit sha1_base64="LyyrNXl7g1Ix+CG7wWwHWm24Cx0=">AAACEHicbVDLSsNAFJ3UV42vqks3wVJwVZKCj2WpG5cV7APbUCbTm3boZCbMTAol9CfErX6HO3HrH/gZ/oGTNgttPXDhcM49XO4JYkaVdt0vq7CxubW9U9y19/YPDo9KxydtJRJJoEUEE7IbYAWMcmhpqhl0Ywk4Chh0gslt5nemIBUV/EHPYvAjPOI0pARrIz028qhtD0plt+ou4KwTLydllKM5KH33h4IkEXBNGFaq57mx9lMsNSUM5nZlxRaSToH4KWOcqLndTxTEmEzwCHqGchyB8tPFQ3OnYpShEwpphmtnof5OpDhSahYFZjPCeqxWvUz8z+slOrzxU8rjRAMny0NhwhwtnKwdZ0glEM1mhmAiqXnFIWMsMdGmw6wjb7WRddKuVb2r6uV9rVxv5G0V0Rk6RxfIQ9eoju5QE7UQQRw9oxf0aj1Zb9a79bFcLVh55hT9gfX5AyyNnSs=</latexit>

Baseline
<latexit sha1_base64="+RU4GZ3CDzEpzphMlekdNWlii8k=">AAACD3icbZDLSsNAFIYn9VbjrerSzWApuCpJwcuy6MZlRXuRNpTJdNIOncyEmZNCCX0IcavP4U7c+gg+hm9g0mahrT8MfPz/OQzn9yPBDTjOl1VYW9/Y3Cpu2zu7e/sHpcOjllGxpqxJlVC64xPDBJesCRwE60SakdAXrO2Pb7K8PWHacCUfYBoxLyRDyQNOCaTW4z0QLTjYdr9UdqrOXHgV3BzKKFejX/ruDRSNQyaBCmJM13Ui8BKigVPBZnZlKVaaTxj1EiEkNTO7FxsWETomQ9ZNUZKQGS+Z3zPDldQZ4EDp9EnAc/f3RkJCY6ahn06GBEZmOcvM/7JuDMGVl3AZxcAkXXwUxAKDwlk5eMA1oyCmKRCqeXoKpiOiCYW0wqwjd7mRVWjVqu5F9fyuVq5f520V0Qk6RWfIRZeojm5RAzURRSF6Ri/o1Xqy3qx362MxWrDynWP0R9bnD5wRnOE=</latexit>

Starlit

<latexit sha1_base64="Fwwd/olfxfZ7zeH+DT02nqpDTb4=">AAACF3icbZDLSgMxGIUzXut46ahLN8FScNOSqddlqRs3QgV7gXYomTRtQzPJkGQKZeiDiFt9Dnfi1qWP4Rs4085CWw8EPs75f8J//JAzbRD6stbWNza3tnM79u7e/kHeOTxqahkpQhtEcqnaPtaUM0EbhhlO26GiOPA5bfnj2zRvTajSTIpHMw2pF+ChYANGsEmsnpO/QCXkls5LLkL3NdvuOQVURnPBVXAzKIBM9Z7z3e1LEgVUGMKx1h0XhcaLsTKMcDqzi0uxVGxCiRdzLoie2d1I0xCTMR7SToICB1R78fyuGSwmTh8OpEqeMHDu/t6IcaD1NPCTyQCbkV7OUvO/rBOZwY0XMxFGhgqy+GgQcWgkTEuCfaYoMXyaACaKJadAMsIKE5NUmXbkLjeyCs1K2b0qXz5UCtVa1lYOnIBTcAZccA2q4A7UQQMQEIFn8AJerSfrzXq3Phaja1a2cwz+yPr8AYzKnQo=</latexit>

40-01-3-100MB
<latexit sha1_base64="wlNX5iZ3rd9gLjmx+gHg1fsTYs8=">AAACF3icbZDLSgMxGIUz9VbHS0ddugmWgpuWTMXLstSNG6GCvUA7lEyatqGZzJBkCmXog4hbfQ534talj+EbmGlnoa0HAh/n/D/hP37EmdIIfVm5jc2t7Z38rr23f3BYcI6OWyqMJaFNEvJQdnysKGeCNjXTnHYiSXHgc9r2J7dp3p5SqVgoHvUsol6AR4INGcHaWH2n4CJURm75omzgvm73nSKqoIXgOrgZFEGmRt/57g1CEgdUaMKxUl0XRdpLsNSMcDq3SytxKNmUEi/hXBA1t3uxohEmEzyiXYMCB1R5yeKuOSwZZwCHoTRPaLhwf28kOFBqFvhmMsB6rFaz1Pwv68Z6eOMlTESxpoIsPxrGHOoQpiXBAZOUaD4zgIlk5hRIxlhiok2VaUfuaiPr0KpW3KvK5UO1WKtnbeXBKTgD58AF16AG7kADNAEBMXgGL+DVerLerHfrYzmas7KdE/BH1ucPxeSdLQ==</latexit>

100-01-3-100MB
<latexit sha1_base64="n9oBVLI/NiwiQ9v0RwdI1iKUWss=">AAACHXicbVDLSsNAFJ3UV42vqLhyEywFNy2T+lyW6sKNUME+oA1lMp20QyeTMDMplNBvEbf6He7ErfgZ/oGTNgttPXDhcM65XO7xIkalgvDLyK2srq1v5DfNre2d3T1r/6Apw1hg0sAhC0XbQ5IwyklDUcVIOxIEBR4jLW90k/qtMRGShvxRTSLiBmjAqU8xUlrqWUfnsHRLJdJ5WTorORDe10yzZxVgGc5gLxMnIwWQod6zvrv9EMcB4QozJGXHgZFyEyQUxYxMzeKCHQo6JthNGONYTs1uLEmE8AgNSEdTjgIi3WT23dQuaqVv+6HQw5U9U39vJCiQchJ4OhkgNZSLXir+53Vi5V+7CeVRrAjH80N+zGwV2mlVdp8KghWbaIKwoPoVGw+RQFjpQtOOnMVGlkmzUnYuyxcPlUK1lrWVB8fgBJwCB1yBKrgDddAAGCTgGbyAV+PJeDPejY95NGdkO4fgD4zPHyAyoAw=</latexit>

40-Disables-3-100MB
<latexit sha1_base64="k1DVVBre8O5XXyOKJTshy2VjHzY=">AAACGHicbZDLSsNAGIUnXmu8RV26GSwFNw2T1tuy1I0boYK9QBvKZDpph04mYWZSKKEvIm71OdyJW3c+hm9g0mahrQcGPs75f4b/eBFnSiP0Zaytb2xubRd2zN29/YND6+i4pcJYEtokIQ9lx8OKciZoUzPNaSeSFAcep21vfJvl7QmVioXiUU8j6gZ4KJjPCNap1besC1RGdrVcLTsI3ddNs28VkY3mgqvg5FAEuRp967s3CEkcUKEJx0p1HRRpN8FSM8LpzCwtxaFkE0rchHNB1MzsxYpGmIzxkHZTFDigyk3mh81gKXUG0A9l+oSGc/f3RoIDpaaBl04GWI/UcpaZ/2XdWPs3bsJEFGsqyOIjP+ZQhzBrCQ6YpETzaQqYSJaeAskIS0x02mXWkbPcyCq0KrZzZV8+VIq1et5WAZyCM3AOHHANauAONEATEDABz+AFvBpPxpvxbnwsRteMfOcE/JHx+QMDdp1E</latexit>

40-0.3-3-100MB
<latexit sha1_base64="KBEy3TUVopm3ujsc7QOmIi45LgM=">AAACGHicbZDLSsNAGIUn9VbjLerSTbAU3DRMilWXpW7cCBXsBdpQJtNJO3QyCTOTQgl9EXGrz+FO3LrzMXwDJ20W2npg4OOc/2f4jx8zKhWEX0ZhY3Nre6e4a+7tHxweWccnbRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen4k9ss70yJkDTij2oWEy9EI04DipHS1sCyLmEFOm6lVnEhvG+Y5sAqQQcuZK+Dm0MJ5GoOrO/+MMJJSLjCDEnZc2GsvBQJRTEjc7O8EkeCTgn2UsY4lnOzn0gSIzxBI9LTyFFIpJcuDpvbZe0M7SAS+nFlL9zfGykKpZyFvp4MkRrL1Swz/8t6iQpuvJTyOFGE4+VHQcJsFdlZS/aQCoIVm2lAWFB9io3HSCCsdJdZR+5qI+vQrjrulVN7qJbqjbytIjgD5+ACuOAa1MEdaIIWwGAKnsELeDWejDfj3fhYjhaMfOcU/JHx+QMDcp1E</latexit>

40-0.1-5-100MB
<latexit sha1_base64="jBEu2TbiJdFCULGEIySLG09ygvg=">AAACFHicbVDLTgIxFO3gC8cX6tJNIyFxw2SG+FoSXOgSE3kkMJJOKdDQaSdth4RM+A3jVr/DnXHr3s/wD+zALBQ8Nzc5Oefe3NwTRIwq7bpfVm5tfWNzK79t7+zu7R8UDo+aSsQSkwYWTMh2gBRhlJOGppqRdiQJCgNGWsH4JvVbEyIVFfxBTyPih2jI6YBipI30eO6WXccrm7qt2XavUHQddw64SryMFEGGeq/w3e0LHIeEa8yQUh3PjbSfIKkpZmRml5ZsIemEYD9hjGM1s7uxIhHCYzQkHUM5Conyk/lTM1gySh8OhDTNNZyrvzcSFCo1DQMzGSI9UsteKv7ndWI9uPYTyqNYE44XhwYxg1rANCHYp5JgzaaGICypeQXiEZIIa5NjmpG3nMgqaVYc79K5uK8Uq7UsrTw4AafgDHjgClTBHaiDBsBAgmfwAl6tJ+vNerc+FqM5K9s5Bn9gff4AimuclQ==</latexit>

40-0.1-1-1GB

<latexit sha1_base64="zEe2yFfh8gwN5fXLrq68sTQKxVU=">AAACDXicbZDNTsJAFIWn/mL9Q126aSQkrkhL4s8SZeMSjQUSaMh0uMCE6UwzMyUhDc9g3OpzuDNufQYfwzdwCl0oeJJJvpxzbyb3hDGjSrvul7W2vrG5tV3YsXf39g8Oi0fHTSUSScAnggnZDrECRjn4mmoG7VgCjkIGrXBcz/LWBKSigj/qaQxBhIecDijB2litG7/xULftXrHkVty5nFXwciihXI1e8bvbFySJgGvCsFIdz411kGKpKWEws8tLsZB0AiRIGeNEzexuoiDGZIyH0DHIcQQqSOfXzJyycfrOQEjzuHbm7u+NFEdKTaPQTEZYj9Rylpn/ZZ1ED66DlPI40cDJ4qNBwhwtnKwap08lEM2mBjCR1JzikBGWmGhTYNaRt9zIKjSrFe+ycnFfLdVu87YK6BSdoXPkoStUQ3eogXxE0Bg9oxf0aj1Zb9a79bEYXbPynRP0R9bnD/xgm2U=</latexit> A
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Fig. 5: Comparing the AUPRC of the baseline and different settings of Starlit. A bar’s label for Starlit is a
concatenation of (1) direct sampling rate, (2) GOSS, (3) tree’s depth, and (4) maximum message size.

As illustrated in Table 3, Starlit achieves its highest AUPRC level (i.e., 0.652) when the tree’s depth is
set to 5. Remarkably, in this instance, Starlit’s AUPRC surpasses even the baseline setting (i.e., 0.652 versus
0.4715).

Having identified the parameter that yields the highest AUPRC in Starlit, i.e., when the tree’s depth is
set to 5, we proceed to compare Starlit’s other efficiency metrics for only that parameter(s).
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• The total training time: As Figure 6a demonstrates, Starlit’s training time is almost the same as the
baseline’s training time, i.e., 1.13 compared to 1.10.

• The peak training memory usage: As Figure 6b illustrates, under this metric, Starlit underperforms the
baseline by a factor of 1.3, i.e., 16.4 versus 12.38.

• The network disk volume usage: As Figure 6c shows, Starlit and the baseline demonstrate similar perfor-
mance under this metric, i.e., 5.1 compared to 4.98.

• The network file volume usage: As Figure 6d demonstrates, under this metric, Starlit underperform the
baseline by a factor of 1.3, i.e., 1316 versus 993.

Hence, when the tree’s depths in Starlit and baseline are set to 5 and 3 respectively, then Starlit can
attain a superior AUPRC level compared to the baseline. However, in this setting, Starlit would impose
approximately 1.3 times higher cost than the baseline does.

<latexit sha1_base64="LyyrNXl7g1Ix+CG7wWwHWm24Cx0=">AAACEHicbVDLSsNAFJ3UV42vqks3wVJwVZKCj2WpG5cV7APbUCbTm3boZCbMTAol9CfErX6HO3HrH/gZ/oGTNgttPXDhcM49XO4JYkaVdt0vq7CxubW9U9y19/YPDo9KxydtJRJJoEUEE7IbYAWMcmhpqhl0Ywk4Chh0gslt5nemIBUV/EHPYvAjPOI0pARrIz028qhtD0plt+ou4KwTLydllKM5KH33h4IkEXBNGFaq57mx9lMsNSUM5nZlxRaSToH4KWOcqLndTxTEmEzwCHqGchyB8tPFQ3OnYpShEwpphmtnof5OpDhSahYFZjPCeqxWvUz8z+slOrzxU8rjRAMny0NhwhwtnKwdZ0glEM1mhmAiqXnFIWMsMdGmw6wjb7WRddKuVb2r6uV9rVxv5G0V0Rk6RxfIQ9eoju5QE7UQQRw9oxf0aj1Zb9a79bFcLVh55hT9gfX5AyyNnSs=</latexit>

Baseline
<latexit sha1_base64="+RU4GZ3CDzEpzphMlekdNWlii8k=">AAACD3icbZDLSsNAFIYn9VbjrerSzWApuCpJwcuy6MZlRXuRNpTJdNIOncyEmZNCCX0IcavP4U7c+gg+hm9g0mahrT8MfPz/OQzn9yPBDTjOl1VYW9/Y3Cpu2zu7e/sHpcOjllGxpqxJlVC64xPDBJesCRwE60SakdAXrO2Pb7K8PWHacCUfYBoxLyRDyQNOCaTW4z0QLTjYdr9UdqrOXHgV3BzKKFejX/ruDRSNQyaBCmJM13Ui8BKigVPBZnZlKVaaTxj1EiEkNTO7FxsWETomQ9ZNUZKQGS+Z3zPDldQZ4EDp9EnAc/f3RkJCY6ahn06GBEZmOcvM/7JuDMGVl3AZxcAkXXwUxAKDwlk5eMA1oyCmKRCqeXoKpiOiCYW0wqwjd7mRVWjVqu5F9fyuVq5f520V0Qk6RWfIRZeojm5RAzURRSF6Ri/o1Xqy3qx362MxWrDynWP0R9bnD5wRnOE=</latexit>

Starlit

<latexit sha1_base64="q2cVO8csq09WSsIg0Nx7I0wv4F4=">AAACIXicbZDLSgMxFIYz3h1vVVfiJlgKrspMwctSdONSwV6gHUomPW1DM8mQnBHKUHwYcavP4U7ciU/hG5jWLrT1h8DP/59DOF+cSmExCD68hcWl5ZXVtXV/Y3Nre6ewu1ezOjMcqlxLbRoxsyCFgioKlNBIDbAkllCPB1fjvn4Pxgqt7nCYQpSwnhJdwRm6qF04uOsDRY1MUjRMKKF6FEUCvt8uFINyMBGdN+HUFMlUN+3CV6ujeZaAQi6Ztc0wSDHKmUHBJYz80kytjbgHHuVSKm5HfiuzkDI+YD1oOqtYAjbKJxeOaMklHdrVxj2FdJL+3shZYu0wid1kwrBvZ7tx+F/XzLB7HuVCpRmC4j8fdTMHQ9MxLtoRBjjKoTOMG+FOobzPDOPooI4ZhbNE5k2tUg5Pyye3leLF5ZTWGjkkR+SYhOSMXJBrckOqhJMH8kSeyYv36L16b977z+iCN93ZJ3/kfX4DS0Sjfw==</latexit> T
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<latexit sha1_base64="DvYDJ1ZqDyTj40Pkivt6dklgL4s=">AAACB3icbZDLSgMxFIYzXut4q7p0EywFV2Wm4GVZdOOyBXuBdiiZ9EwbmkmGJFMoQx9A3OpzuBO3PoaP4RuYtrPQ1h8CH/9/DuH8YcKZNp735Wxsbm3v7Bb23P2Dw6Pj4slpS8tUUWhSyaXqhEQDZwKahhkOnUQBiUMO7XB8P8/bE1CaSfFopgkEMRkKFjFKjLUaXr9Y8ireQngd/BxKKFe9X/zuDSRNYxCGcqJ11/cSE2REGUY5zNzySiwVmwANMs4F1TO3l2pICB2TIXQtChKDDrLFHTNcts4AR1LZJwxeuL83MhJrPY1DOxkTM9Kr2dz8L+umJroNMiaS1ICgy4+ilGMj8bwUPGAKqOFTC4QqZk/BdEQUocZW59qO/NVG1qFVrfjXlatGtVS7y9sqoHN0gS6Rj25QDT2gOmoiigA9oxf06jw5b86787Ec3XDynTP0R87nD9mRmco=</latexit>

0

<latexit sha1_base64="qhti0A4LzxaYWjZ4PaJeyYMiHy4=">AAACCXicbZDLSsNAFIYn9VbjrerSTbAUXIWkeFsW3bisaC/QhjKZnrRDJzNhZlIooU8gbvU53Ilbn8LH8A2ctllo6w8DH/9/DsP5w4RRpT3vyyqsrW9sbhW37Z3dvf2D0uFRU4lUEmgQwYRsh1gBoxwammoG7UQCjkMGrXB0O8tbY5CKCv6oJwkEMR5wGlGCtbEePPe8Vyp7rjeXswp+DmWUq94rfXf7gqQxcE0YVqrje4kOMiw1JQymdmUpFpKOgQQZY5yoqd1NFSSYjPAAOgY5jkEF2fySqVMxTt+JhDSPa2fu/t7IcKzUJA7NZIz1UC1nM/O/rJPq6DrIKE9SDZwsPopS5mjhzGpx+lQC0WxiABNJzSkOGWKJiTbl2aYjf7mRVWhWXf/Svbivlms3eVtFdIJO0Rny0RWqoTtURw1E0AA9oxf0aj1Zb9a79bEYLVj5zjH6I+vzB8ScmkA=</latexit>

0.4

<latexit sha1_base64="WTJTEI97hrvi6QBNDbSpXAd7aBY=">AAACCXicbZDNSsNAFIVv6l+Nf1WXbgZLwVVICmqXRTcuK9ofaEOZTCft0MkkzEwKJfQJxK0+hztx61P4GL6B0zYLbT0w8HHOvQz3BAlnSrvul1XY2Nza3inu2nv7B4dHpeOTlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD8e08b0+oVCwWj3qaUD/CQ8FCRrA21oPr1Pqlsuu4C6F18HIoQ65Gv/TdG8QkjajQhGOlup6baD/DUjPC6cyurMSxZBNK/IxzQdTM7qWKJpiM8ZB2DQocUeVni0tmqGKcAQpjaZ7QaOH+3shwpNQ0CsxkhPVIrWZz87+sm+qw5mdMJKmmgiw/ClOOdIzmtaABk5RoPjWAiWTmFERGWGKiTXm26chbbWQdWlXHu3Iu76vl+k3eVhHO4BwuwINrqMMdNKAJBIbwDC/waj1Zb9a79bEcLVj5zin8kfX5A8somkQ=</latexit>

0.8

<latexit sha1_base64="AM/syvT0oXP1/PEmdD3UfLRKpC8=">AAACCXicbZDNSgMxFIUz9a/Wv6pLN8FScDXMFPxZFt24rGhroR1KJr3ThmaSIckUytAnELf6HO7ErU/hY/gGpu0stPVA4OOcewn3hAln2njel1NYW9/Y3Cpul3Z29/YPyodHLS1TRaFJJZeqHRINnAloGmY4tBMFJA45PIajm1n+OAalmRQPZpJAEJOBYBGjxFjr3ndrvXLFc7258Cr4OVRQrkav/N3tS5rGIAzlROuO7yUmyIgyjHKYlqpLsVRsDDTIOBdUT0vdVENC6IgMoGNRkBh0kM0vmeKqdfo4kso+YfDc/b2RkVjrSRzayZiYoV7OZuZ/WSc10VWQMZGkBgRdfBSlHBuJZ7XgPlNADZ9YIFQxewqmQ6IINba8ku3IX25kFVo1179wz+9qlfp13lYRnaBTdIZ8dInq6BY1UBNRNEDP6AW9Ok/Om/PufCxGC06+c4z+yPn8AcL7mj8=</latexit>

1.2

<latexit sha1_base64="d3WwIJWNevwj+YabPapzLIhtilk=">AAACCXicbZDNSsNAFIVv6l+Nf1WXbgZLwVVIClaXRTcuK9ofaEOZTCft0MkkzEwKJfQJxK0+hztx61P4GL6B0zYLbT0w8HHOvQz3BAlnSrvul1XY2Nza3inu2nv7B4dHpeOTlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD8e08b0+oVCwWj3qaUD/CQ8FCRrA21oPn1Pqlsuu4C6F18HIoQ65Gv/TdG8QkjajQhGOlup6baD/DUjPC6cyurMSxZBNK/IxzQdTM7qWKJpiM8ZB2DQocUeVni0tmqGKcAQpjaZ7QaOH+3shwpNQ0CsxkhPVIrWZz87+sm+rw2s+YSFJNBVl+FKYc6RjNa0EDJinRfGoAE8nMKYiMsMREm/Js05G32sg6tKqOV3Mu76vl+k3eVhHO4BwuwIMrqMMdNKAJBIbwDC/waj1Zb9a79bEcLVj5zin8kfX5A8mHmkM=</latexit>

1.6

<latexit sha1_base64="63pl6CQkfEQFw0HQXCKsAhf2Hc8=">AAACA3icbZDLSsNAFIZP6q3GW3XrZrAUXJWk4GVZdOOygr1AG8pketoOnUzCzKRQQh9A3OpzuHPrc/gYvoHTNgtt/WHg4//PYTh/mAiujed9OYWt7Z3dveK+e3B4dHxSck9bOk4VwyaLRaw6IdUouMSm4UZgJ1FIo1BgO5zcL/L2FJXmsXwyswSDiI4kH3JGjbUea/1S2at6S5FN8HMoQ65Gv/TdG8QsjVAaJqjWXd9LTJBRZTgTOHcra3Gs+BRZkAkhmZ67vVRjQtmEjrBrUdIIdZAt75iTinUGZBgr+6QhS/f3RkYjrWdRaCcjasZ6PVuY/2Xd1Axvg4zLJDUo2eqjYSqIicmiFDLgCpkRMwuUKW5PIWxMFWXGVufajvz1RjahVav619Wrcv0u76oI53ABl+DDDdThARrQBAYIL/AKb86z8+58rAYLTr5xBn/kfP4AO4SYhQ==</latexit>

2

(a) Comparison between
the total training time of
the baseline and Starlit.

<latexit sha1_base64="LyyrNXl7g1Ix+CG7wWwHWm24Cx0=">AAACEHicbVDLSsNAFJ3UV42vqks3wVJwVZKCj2WpG5cV7APbUCbTm3boZCbMTAol9CfErX6HO3HrH/gZ/oGTNgttPXDhcM49XO4JYkaVdt0vq7CxubW9U9y19/YPDo9KxydtJRJJoEUEE7IbYAWMcmhpqhl0Ywk4Chh0gslt5nemIBUV/EHPYvAjPOI0pARrIz028qhtD0plt+ou4KwTLydllKM5KH33h4IkEXBNGFaq57mx9lMsNSUM5nZlxRaSToH4KWOcqLndTxTEmEzwCHqGchyB8tPFQ3OnYpShEwpphmtnof5OpDhSahYFZjPCeqxWvUz8z+slOrzxU8rjRAMny0NhwhwtnKwdZ0glEM1mhmAiqXnFIWMsMdGmw6wjb7WRddKuVb2r6uV9rVxv5G0V0Rk6RxfIQ9eoju5QE7UQQRw9oxf0aj1Zb9a79bFcLVh55hT9gfX5AyyNnSs=</latexit>

Baseline
<latexit sha1_base64="+RU4GZ3CDzEpzphMlekdNWlii8k=">AAACD3icbZDLSsNAFIYn9VbjrerSzWApuCpJwcuy6MZlRXuRNpTJdNIOncyEmZNCCX0IcavP4U7c+gg+hm9g0mahrT8MfPz/OQzn9yPBDTjOl1VYW9/Y3Cpu2zu7e/sHpcOjllGxpqxJlVC64xPDBJesCRwE60SakdAXrO2Pb7K8PWHacCUfYBoxLyRDyQNOCaTW4z0QLTjYdr9UdqrOXHgV3BzKKFejX/ruDRSNQyaBCmJM13Ui8BKigVPBZnZlKVaaTxj1EiEkNTO7FxsWETomQ9ZNUZKQGS+Z3zPDldQZ4EDp9EnAc/f3RkJCY6ahn06GBEZmOcvM/7JuDMGVl3AZxcAkXXwUxAKDwlk5eMA1oyCmKRCqeXoKpiOiCYW0wqwjd7mRVWjVqu5F9fyuVq5f520V0Qk6RWfIRZeojm5RAzURRSF6Ri/o1Xqy3qx362MxWrDynWP0R9bnD5wRnOE=</latexit>

Starlit

<latexit sha1_base64="xu3dVOxDMBTBtZOWqxNUN6b60yE=">AAACCXicbZDNSgMxFIUz9a+Of1WXboKl4KrMFPxZFt24rGhroR1KJr1tQzPJkGQKZegTiFt9Dnfi1qfwMXwDM+0stPVA4OOcewn3hDFn2njel1NYW9/Y3Cpuuzu7e/sHpcOjlpaJotCkkkvVDokGzgQ0DTMc2rECEoUcHsPxTZY/TkBpJsWDmcYQRGQo2IBRYqx177lur1T2qt5ceBX8HMooV6NX+u72JU0iEIZyonXH92ITpEQZRjnM3MpSLBWbAA1SzgXVM7ebaIgJHZMhdCwKEoEO0vklM1yxTh8PpLJPGDx3f2+kJNJ6GoV2MiJmpJezzPwv6yRmcBWkTMSJAUEXHw0Sjo3EWS24zxRQw6cWCFXMnoLpiChCjS0v68hfbmQVWrWqf1E9v6uV69d5W0V0gk7RGfLRJaqjW9RATUTRED2jF/TqPDlvzrvzsRgtOPnOMfoj5/MHRM6Z8g==</latexit>

0

<latexit sha1_base64="kKp5aiu801kE40l/91BZfuagNxc=">AAACDHicbZDNSsNAFIUn/tb4V3XpZrAUXIWkWHVZdOOygv2BNpTJ9KYdO5kJM5NCCX0FcavP4U7c+g4+hm9g2mahrQcGPs65l+GeIOZMG9f9stbWNza3tgs79u7e/sFh8ei4qWWiKDSo5FK1A6KBMwENwwyHdqyARAGHVjC6neWtMSjNpHgwkxj8iAwECxklJrOaF06latu9Ysl13LnwKng5lFCueq/43e1LmkQgDOVE647nxsZPiTKMcpja5aVYKjYG6qecC6qndjfREBM6IgPoZChIBNpP58dMcTlz+jiUKnvC4Ln7eyMlkdaTKMgmI2KGejmbmf9lncSE137KRJwYEHTxUZhwbCSeNYP7TAE1fJIBoYplp2A6JIpQk/U368hbbmQVmhXHu3Sq95VS7SZvq4BO0Rk6Rx66QjV0h+qogSh6RM/oBb1aT9ab9W59LEbXrHznBP2R9fkDsL+aqQ==</latexit>

4.25

<latexit sha1_base64="wBftwrraTaQ3R9q21WEIEe47/8c=">AAACC3icbZDNSgMxFIUz9a+Of1WXboKl4GqYKVS7LLpxWcFpC+1QMmmmDc0kQ5IplKGPIG71OdyJWx/Cx/ANzLSz0NYDgY9z7iXcEyaMKu26X1Zpa3tnd6+8bx8cHh2fVE7POkqkEhMfCyZkL0SKMMqJr6lmpJdIguKQkW44vcvz7oxIRQV/1POEBDEacxpRjLSx/KbTsO1hpeo67lJwE7wCqqBQe1j5HowETmPCNWZIqb7nJjrIkNQUM7Kwa2uxkHRGcJAxxrFa2INUkQThKRqTvkGOYqKCbHnLAtaMM4KRkOZxDZfu740MxUrN49BMxkhP1HqWm/9l/VRHzSCjPEk14Xj1UZQyqAXMi4EjKgnWbG4AYUnNKRBPkERYm/ryjrz1RjahU3e8a6fxUK+2bou2yuACXIIr4IEb0AL3oA18gAEFz+AFvFpP1pv1bn2sRktWsXMO/sj6/AE/gppx</latexit>

8.5

<latexit sha1_base64="YwZUvSB92q7Zpoj7q3tDJ2/T6Gw=">AAACDXicbZDNSsNAFIVv6l+Nf1WXbgZLwVVJCrUui25cVrA/0IYymU7aoZNJmJkUSugziFt9Dnfi1mfwMXwDJ20W2npg4OOcexnu8WPOlHacL6uwtb2zu1fctw8Oj45PSqdnHRUlktA2iXgkez5WlDNB25ppTnuxpDj0Oe3607ss786oVCwSj3oeUy/EY8ECRrA2Vtd2a9VG3R6Wyk7VWQptgptDGXK1hqXvwSgiSUiFJhwr1XedWHsplpoRThd2ZS2OJJtR4qWcC6IW9iBRNMZkise0b1DgkCovXV6zQBXjjFAQSfOERkv390aKQ6XmoW8mQ6wnaj3LzP+yfqKDGy9lIk40FWT1UZBwpCOUVYNGTFKi+dwAJpKZUxCZYImJNgVmHbnrjWxCp1Z1r6v1h1q5eZu3VYQLuIQrcKEBTbiHFrSBwBSe4QVerSfrzXq3PlajBSvfOYc/sj5/ACtXmuc=</latexit>

12.75

<latexit sha1_base64="6BJhST8cFllwwAfv2wzyBm6+IMw=">AAACCXicbZDNSsNAFIUn9a/Gv6pLN4Ol4KokBa3LohuXFe0PtKFMpjft0MlMmJkUSugTiFt9Dnfi1qfwMXwDkzYLbT0w8HHOvQz3+BFn2jjOl1XY2Nza3inu2nv7B4dHpeOTtpaxotCikkvV9YkGzgS0DDMcupECEvocOv7kNss7U1CaSfFoZhF4IRkJFjBKTGo9uHV7UCo7VWchvA5uDmWUqzkoffeHksYhCEM50brnOpHxEqIMoxzmdmUllopNgXoJ54Lqud2PNUSETsgIeikKEoL2ksUlc1xJnSEOpEqfMHjh/t5ISKj1LPTTyZCYsV7NMvO/rBeb4NpLmIhiA4IuPwpijo3EWS14yBRQw2cpEKpYegqmY6IINWl5WUfuaiPr0K5V3avq5X2t3LjJ2yqiM3SOLpCL6qiB7lATtRBFI/SMXtCr9WS9We/Wx3K0YOU7p+iPrM8fkEeaIA==</latexit>

17

<latexit sha1_base64="GUOyUtaXERl49RmmJiCQVEugMTc=">AAACInicbVDJSgNBFOyJW4xb1JteGkPAU5gJuByDXjxGMAskQ+jpvCRNehm6ewJhCPgx4lW/w5t4EvwJ/8DOctDEggdF1XsUr6KYM2N9/9PLrK1vbG5lt3M7u3v7B/nDo7pRiaZQo4or3YyIAc4k1CyzHJqxBiIiDo1oeDv1GyPQhin5YMcxhIL0JesxSqyTOvmTKpAhtpowyWQfCxBKj3FiSB86+YJf8mfAqyRYkAJaoNrJf7e7iiYCpKWcGNMK/NiGKdGWUQ6TXHHJVpqNgIYp55KaSa6dGIgJHbrolqOSCDBhOntxgotO6eKe0m6kxTP190VKhDFjEblNQezALHtT8T+vldjedZgyGScWJJ0H9RKOrcLTvnCXaaCWjx0hVDP3CqYDogm1rtWc6yhYbmSV1Mul4LJ0cV8uVG4WbWXRKTpD5yhAV6iC7lAV1RBFj+gZvaBX78l78969j/lqxlvcHKM/8L5+AF4LpLA=</latexit> P
ea

k
tr

ai
n
in

g
m

em
or

y
u
sa

ge

(b) Comparison between
peak training memory us-
age of baseline and Starlit.

<latexit sha1_base64="LyyrNXl7g1Ix+CG7wWwHWm24Cx0=">AAACEHicbVDLSsNAFJ3UV42vqks3wVJwVZKCj2WpG5cV7APbUCbTm3boZCbMTAol9CfErX6HO3HrH/gZ/oGTNgttPXDhcM49XO4JYkaVdt0vq7CxubW9U9y19/YPDo9KxydtJRJJoEUEE7IbYAWMcmhpqhl0Ywk4Chh0gslt5nemIBUV/EHPYvAjPOI0pARrIz028qhtD0plt+ou4KwTLydllKM5KH33h4IkEXBNGFaq57mx9lMsNSUM5nZlxRaSToH4KWOcqLndTxTEmEzwCHqGchyB8tPFQ3OnYpShEwpphmtnof5OpDhSahYFZjPCeqxWvUz8z+slOrzxU8rjRAMny0NhwhwtnKwdZ0glEM1mhmAiqXnFIWMsMdGmw6wjb7WRddKuVb2r6uV9rVxv5G0V0Rk6RxfIQ9eoju5QE7UQQRw9oxf0aj1Zb9a79bFcLVh55hT9gfX5AyyNnSs=</latexit>

Baseline
<latexit sha1_base64="+RU4GZ3CDzEpzphMlekdNWlii8k=">AAACD3icbZDLSsNAFIYn9VbjrerSzWApuCpJwcuy6MZlRXuRNpTJdNIOncyEmZNCCX0IcavP4U7c+gg+hm9g0mahrT8MfPz/OQzn9yPBDTjOl1VYW9/Y3Cpu2zu7e/sHpcOjllGxpqxJlVC64xPDBJesCRwE60SakdAXrO2Pb7K8PWHacCUfYBoxLyRDyQNOCaTW4z0QLTjYdr9UdqrOXHgV3BzKKFejX/ruDRSNQyaBCmJM13Ui8BKigVPBZnZlKVaaTxj1EiEkNTO7FxsWETomQ9ZNUZKQGS+Z3zPDldQZ4EDp9EnAc/f3RkJCY6ahn06GBEZmOcvM/7JuDMGVl3AZxcAkXXwUxAKDwlk5eMA1oyCmKRCqeXoKpiOiCYW0wqwjd7mRVWjVqu5F9fyuVq5f520V0Qk6RWfIRZeojm5RAzURRSF6Ri/o1Xqy3qx362MxWrDynWP0R9bnD5wRnOE=</latexit>

Starlit

<latexit sha1_base64="84XvVbHkQ8QyiagXoB5S7C95sn4=">AAACCXicbZDNSsNAFIVv6l+Nf1WXbgZLwVVIClWXRTcuK9ofaEOZTCft0MkkzEwKJfQJxK0+hztx61P4GL6B0zYLbT0w8HHOvQz3BAlnSrvul1XY2Nza3inu2nv7B4dHpeOTlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD8e08b0+oVCwWj3qaUD/CQ8FCRrA21kPN8fqlsuu4C6F18HIoQ65Gv/TdG8QkjajQhGOlup6baD/DUjPC6cyurMSxZBNK/IxzQdTM7qWKJpiM8ZB2DQocUeVni0tmqGKcAQpjaZ7QaOH+3shwpNQ0CsxkhPVIrWZz87+sm+rw2s+YSFJNBVl+FKYc6RjNa0EDJinRfGoAE8nMKYiMsMREm/Js05G32sg6tKqOd+nU7qvl+k3eVhHO4BwuwIMrqMMdNKAJBIbwDC/waj1Zb9a79bEcLVj5zin8kfX5A8fsmkI=</latexit>

5.1

<latexit sha1_base64="72GaJ7AFKcQ6IRRlC89OkNX3/Wc=">AAACJXicbVDLSgMxFM3UV62vqksRgqXgqswUfCyLblxW6AvaoWTS2zY0kwxJplKGrvwYcavf4U4EV36Df2DazkJbD1w4nHMPl3uCiDNtXPfTyaytb2xuZbdzO7t7+wf5w6OGlrGiUKeSS9UKiAbOBNQNMxxakQISBhyaweh25jfHoDSTomYmEfghGQjWZ5QYK3Xzp7UhYAHmQaoR7jE9wmPJ4xBwrMkAuvmCW3LnwKvES0kBpah289+dnqQ2LwzlROu250bGT4gyjHKY5opLtlRsDNRPOBdUT3OdWENE6MieblsqSAjaT+ZfTnHRKj3cl8qOMHiu/k4kJNR6EgZ2MyRmqJe9mfif145N/9pPmIhiA4IuDvVjjo3Es8psLQqo4RNLCFXMvoLpkChCjS02ZzvylhtZJY1yybssXdyXC5WbtK0sOkFn6Bx56ApV0B2qojqi6BE9oxf06jw5b86787FYzThp5hj9gfP1A7bupeY=</latexit> T
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(d) Comparison between
network file volume usage
of the baseline and Starlit.

Fig. 6: In this figure, Starlit’s: sampling rate = 40, GOSS = 0.1, tree’s depth = 5, and max message size =
100MB.

12 Further Applications of Starlit

Starlit demonstrates notable adaptability across a diverse array of collaborative analysis tasks, as outlined
in the subsequent sections. Additionally, Starlit’s components may have other applications, as discussed in
Appendix G.1.

12.1 Mitigating Terrorism

The effective response to the challenge of counter-terrorism calls for the establishment of collaborative
partnerships among diverse crime agencies at both national and international levels. While various countries
may occasionally exchange some of their intelligence in plaintext, factors such as mishandling or leakage of
(top) secret data [48,77] can dissuade them from doing so.

The facilitation of such collaboration in a privacy-preserving manner can be achievable through the
utilization of Starlit. By leveraging Starlit, crime agencies can engage in joint efforts, sharing their knowledge
to create a unified intelligence model [57]. This collaborative approach involves the integration of data from
different crime agencies, allowing for a more comprehensive understanding of potential threats. Specifically,
each crime agency can augment its own dataset with flags assigned by counterpart agencies to individuals
deemed suspicious, whether citizens or tourists. These flags are based on factors such as a person’s history
of violence or associations with known terrorist organizations.

In this framework, Starlit can also empower crime agencies to identify disparities in the information
provided by certain individuals across different countries’ crime agencies. The exchange of information facil-
itated by Starlit in real-time contributes to a more comprehensive and accurate understanding of individuals
with potential security implications.
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12.2 Enhancing Digital Health

While digital healthcare offers numerous advantages, addressing one of its primary challenges, namely data
privacy, is crucial [23]. Starlit holds the promise of delivering advantages to the digital health sector. For
example, it can empower hospitals, local medical practitioners, and wearable devices that gather diverse
patient data. This data may encompass crucial indicators/flags revealing a patient’s susceptibility to chronic
diseases or their ongoing management of such conditions [29]. Starlit enables the identification of common
patients among each of these entities and the active party responsible for developing a global model. They
can then construct a model using the shared data and flags.

Within this framework, Starlit is capable of pinpointing disparities in features attributed to overlapping
patients among different entities. For example, it can ascertain whether each involved party prescribed
distinct medications for the same patient, afflicted with the same disease, at varying points in time. This
unique capability plays a pivotal role in the detection of medication errors and streamlines the process of
medication reconciliation [9], all while upholding the vital principle of privacy.

12.3 Detecting Benefit Fraud

This process aims to empower different entities, such as government agencies, social service organizations,
and different countries’ banks to collaboratively develop a model to deal with benefit fraud [26], which is
against the law in certain countries. In this particular scenario, Starlit serves as the enabling technology,
facilitating a government organization to develop a collaborative model with both national and international
banks. Each participating bank can assign a distinctive flag to each customer’s account, indicating whether
the account is receiving social benefits from the respective country or is deemed suspicious.

Much like its original application, Starlit excels in identifying disparities in the information provided by
a customer to different entities. In this context, technology plays a crucial role in preventing fraud or misuse,
ensuring that resources are allocated with fairness and appropriateness as top priorities.

13 Conclusion and Future Work

In this work, we introduced Starlit, a scalable privacy-preserving and demonstrated its applications in dealing
with financial fraud, mitigating terrorism, and improving digital health. We formally defined and proved the
security of Starlit in the simulation-based model. To formally capture the security of Starlit, we have defined
a set of leakage functions that may hold independent significance. We implemented Starlit and conducted
a comprehensive analysis of its performance and accuracy, using synthetic data provided by one of the key
players facilitating financial transactions worldwide.

In any secure FL, the output inevitably discloses certain information about participating parties’ private
inputs. This fact may dissuade some parties with sensitive and valuable inputs from engaging in the FL pro-
cess, particularly when they lack interest in the outcome. Future research could enhance Starlit by rewarding
active contributors, which could also bridge the gap between the data market [25,34,61] and FL. Another
avenue is strengthening Starlit’s security against fully malicious parties.
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A Related Work

In this section, we discuss the approaches used to deal with fraudulent financial transactions. This includes:

• A centralized approach, where a client (e.g., bank) either trains its model based on the history of financial
transactions it holds, or a centralized party (server) collects data in plaintext from different sources without
considering the privacy of different parties. This approach is covered in Section A.1.

• A decentralized approach that involves multiple entities, such as different banks and financial service
providers (e.g., Visa or SWIFT), where parties collaboratively train their models while preserving the
privacy of input data. This approach is discussed in Section A.2.

• Other none AI-based schemes, which is covered in Section A.3.
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A.1 Centralized Approaches Without Privacy Support

Afriyie et al. [2] studied the performance of three different machine learning models, logistic regression,
random forest, and decision trees to classify, predict, and detect fraudulent credit card transactions. They
conclude that random forest produces maximum accuracy in predicting and detecting fraudulent credit card
transactions. Askari and Hussain [6] aim to achieve the same goal as Afriyie et al. (i.e., to classify, predict,
and detect fraudulent credit card transactions) using “Fuzzy-ID3” (Interactive Dichotimizer 3). Saheed et al.
[50] examined machine learning models for predicting credit card fraud and proposed a new model for credit
card fraud detection by relying on principal component analysis and supervised machine learning techniques
such as K-nearest neighbor, ridge classifier, and gradient boost.

Srokosz et al. [54] designed a mechanism to improve the rules-based fraud prevention systems of banks.
The proposed mechanism is a rating system that uses unsupervised machine learning and provides early
warnings against financial fraud. The proposed system basically distinguishes between rogue and legitimate
bank account login attempts by examining customer logins from the banking transaction system. The sug-
gested method enhances the organization’s rule-based fraud prevention system. Al-Abri et al. [4] proposed
a data mining mechanism based on logistic regression to detect irregular transactions, implemented the so-
lution, and analyzed its performance. We refer readers to [14] for a survey of AI-based mechanisms used in
traditional financial institutions.

Researchers have also focused on financial reports/statements of companies and developed financial state-
ment fraud detection mechanisms for Chinese listed companies using deep learning, e.g., in [69,71]. Their
threat model and solution considered companies as misbehaving actors who want to convince investors,
auditors, or governments that they have followed the regulations and that their financial statements are
valid.

Researchers also proposed data mining-based mechanisms to provide a detection model for Ponzi schemes
on the Ethereum blockchain, e.g., see [31,17]. Very recently, Aziz et al. [8] proposed an optimization strategy
for deep learning classifiers to identify fraudulent Ethereum transactions and Ponzi schemes. We refer readers
to [28] for a survey of anomaly detection in the blockchain network. Note that the proposed solutions for
blockchain cannot be directly applied to the conventional banking system as it is in a different setting.

A.2 Distributed Approaches With Privacy Support

Generally, FL can be categorized into three classes [73], according to how data is partitioned:

• Horizontal Federated Learning (HFL).
• Vertical Federated Learning (VFL).
• Federated Transfer Learning (FTL).

HFL refers to the FL setting where participants share the same feature space while holding different
samples. On the other hand, VFL refers to the FL setting where datasets share the same samples while
holding different features. FTL refers to the FL setting where datasets differ in both feature and sample
spaces with limited overlaps. For the remainder of this section, our focus will mainly be on FL-based schemes
developed to deal with fraudulent transactions.

HFL-Based Approaches. Suzumura et al. [56] developed an ML-based privacy-preserving mechanism to
share key information across different financial institutions. This solution builds ML models by leveraging
FL and graph learning. This would ultimately allow for global financial crime detection while preserving the
privacy of financial organizations and their customers’ data. Given that federated graph learning involves
collaborative training on a shared graph structure (common set of features) distributed across multiple
parties, this proposed solution aligns with the characteristics of HFL. Moreover, Yang et al. [74] proposed
an FL-based method using “Federated Averaging” [41] to train a model that can detect credit card fraud.
Similar to the scheme in [56], this method falls under the HFL category.

Unlike the schemes explained above, Starlit deals with the data that have been partitioned both vertically
and horizontally.
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VFL-Based Approaches. Simultaneously with our solution, another approach has been developed by Qiu
et al . [46]. This alternative relies on neural networks and aims to deal with financial fraud. It strives for
computational efficiency primarily through the use of symmetric key primitives. The scheme incorporates
the elliptic-curve Diffie-Hellman key exchange and one-time pads to secure exchanged messages during the
model training phase. This solution has also been implemented and subjected to performance evaluation.
Starlit versus the Scheme of Qiu et al. The latter scheme requires each client (e.g., bank) to possess knowl-
edge of the public key of every other client and compute a secret key for each through the elliptic-curve
Diffie-Hellman key exchange scheme. Consequently, this approach imposes O(n) modular exponentiation on
each client, resulting in the protocol having a complexity of O(n2), where n represents the total number
of clients. In contrast, in Starlit, each client’s complexity is independent of the total number of clients and
each client does not need to know any information about other participating clients. Moreover, the scheme
proposed in [46] assumes the parties have already performed the identity alignment phase, therefore, the
implementation, performance evaluation, and security analysis exclude the identity alignment phase.

Furthermore, the scheme in [46] fails to terminate successfully even if only one of the clients neglects to
transmit its message. In this scheme, each client, utilizing the agreed-upon key with every other client, masks
its outgoing message with a vector of pseudorandom blinding factors. The expectation is that the remaining
clients will mask their outgoing messages with the additive inverses of these blinding factors. These blinding
factors are generated such that, when all outgoing messages are aggregated, the blinding factors cancel each
other out. Nevertheless, if one client fails to send its masked message, the aggregated messages of the other
clients will still contain blinding factors, hindering the training on correct inputs. The solution proposed in
[12], based on threshold secret sharing, can address this issue. However, incorporating such a patch would
introduce additional computation and communication overheads. In contrast, Starlit does not encounter this
limitation. This is because the message sent by each client is independent of the messages transmitted by
the other clients.

Lv et al . [39] introduced a VFL-based approach to identify black market fraud accounts before fraudulent
transactions occur. This approach aims to guarantee the safety of funds when users transfer funds to black
market accounts, enabling the financial industry to utilize multi-party data more efficiently. The scheme
involves data provided by financial and social enterprises, encompassing financial features extracted from
a bank such as mobile banking login logs, and account transaction information. Social features include the
active cycle corresponding to the mobile phone number, the count of malicious apps, and the frequency of
visits to malicious sites. The approach utilizes insecure hash-based PSI for identity alignment.

This scheme differs from Starlit in a couple of ways: (i) Starlit operates in a multi-party setting, where
various clients contribute their data, in contrast to the aforementioned scheme, which involves only two
parties and cannot be directly applied to the multi-client setting, and (ii) Starlit deals with the data that
has been partitioned both horizontally and vertically, whereas the above scheme focuses only on vertically
partitioned data.

FL-Based Solutions to Detect Fraudulent Financial Transactions when Datasets are Vertical
and Horizontally Partitioned. Recently, to combat the global challenge of organized crime, such as
money laundering, terrorist financing, and human trafficking, the UK and US governments launched a set
of prize challenges [58]. This competition encouraged innovators to develop technical solutions to identify
suspicious bank account holders while preserving the privacy of honest account holders by relying on FML
and cryptography approaches. This underscores the importance the distributed privacy-preserving financial
data analytics for governments.

Very recently, in parallel with our work, Arora et al . [5] introduced an FL-based approach for detecting
anomalous financial transactions. This methodology was specifically devised for the aforementioned prize
challenge and relied on oblivious transfer, secret sharing, differential privacy, and multi-layer perception.
The authors have implemented the solution and conducted a thorough analysis of its performance and
accuracy.
Starlit versus the Scheme of Arora et al. The latter assumes that the ordering bank never allows a customer
with a dubious account to initiate any transactions, but it permits the same account to receive money. In
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simpler terms, this scheme exclusively deals with frozen accounts, limiting its applicability. This approach will
exempt the ordering bank from participating in MPC, which ultimately results in lower overhead (compared
to the case where the ordering bank had to be involved in MPC).

In the real world, users’ accounts might be deemed suspicious (though not frozen), yet they can still con-
duct financial transactions within their bank. However, the bank may handle such accounts more cautiously
than other non-suspicious accounts. In contrast, in the context of dealing with financial transactions, Starlit
does not place any assumption on how a bank treats a suspicious account.

Furthermore, unlike the scheme proposed in [5], which depends on an ad-hoc approach to preserve data
privacy during training, Starlit, employs SecureBoost, which is a well-known scheme extensively utilized and
analyzed in the literature. Thus, compared to the scheme in [5], Starlit considers a more generic scenario
and relies on a more established scheme for VFL.

Kadhe et al . [32] proposed a privacy-preserving anomaly detection scheme, that relies on fully homomor-
phic encryption (highly computationally expensive), DP, hash tables, and secure multi-party computation.
Similarly, the authors have implemented their solution and analyzed its performance.
Starlit versus the Scheme of Kadhe et al. The scheme in [32] heavily relies on fully homomorphic encryption.
In this setting, all parties need to perform fully homomorphic operations, by performing either computation
on the outputs of the homomorphic encryption or encrypting and decrypting ciphertexts. This will affect both
the scalability and efficiency of this scheme. In contrast, Starlit refrains from using any fully homomorphic
scheme.

All of the above solutions share another shortcoming, they lack formal security definitions and proofs of
the proposed systems.

VFL-Based Solutions to Detect Anomaly in Other Contexts We et al . [68] proposed a privacy-
preserving solution specifically designed to detect anomalies within multiple attributed networks in a privacy-
preserving manner, e.g., to detect abnormal IPs or predict cyber attacks. The authors have evaluated the
proposed solution using various real datasets, including Computer networks, Car-hailing, Bicycle-sharing,
Subway traffic, and Point-of-Interest datasets. However, this solution lacks generality and has been designed
specifically for a very specific setting.

A.3 Solutions Beyond AI

There have also been efforts to deal with banking fraud, by using alternative (none AI-based) prevention
mechanisms, such as Multi-Factor Authentication (M-FA) and Confirmation of Payee (CoP) schemes, out-
lined below.

For bank users to prove their identity to remote service providers or banks, they provide a piece of
evidence, called an “authentication factor”. Authentication factors can be based on (i) knowledge factors,
e.g., PIN or password, (ii) possession factors, e.g., access card or physical hardware token, or (iii) inherent
factors, e.g., fingerprint. Knowledge factors are still the most predominant factors used for authentication
[13,43]. The knowledge factors themselves are not strong enough to adequately prevent impersonation [30,53].
M-FA methods that depend on more than one factor are more difficult to compromise than single-factor
methods. Thus, in general, M-FA methods lower the chance of fraudsters who want to gain unauthorized
access to users’ online banking accounts.

Confirmation of Payee (CoP) is a name-checking service for UK-based payments [19,1]. It provides cus-
tomers greater assurance that they are sending payments to the intended recipient, helping to avoid making
accidental, misdirected payments to the wrong account holder, as well as providing another layer of protec-
tion in the fight against fraud, especially Authorised Push Payment fraud [7]. In short, CoP ensures that a
money recipient’s details (inserted by the money sender) match the record held by the recipient’s bank.

B Proof of Security

Proof. We prove Theorem 1 by examining the scenario in which each party is corrupt, one at a time.
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B.1 Corrupt FSP

In the real execution, the view of Srv is defined as follows:

ViewA,StarlitSrv

(
prmSrv, DSSrv︸ ︷︷ ︸

Inputs of Srv

, DSC1
, ..., DSCn︸ ︷︷ ︸

Inputs of C1, ...,Cn

, prmFC︸ ︷︷ ︸
Input of FC

)
:=

{ViewA,PSI1Srv , ...,ViewA,PSInSrv ,ViewA,SBSrv }

where prmSrv includes the input parameters (e.g., the initial global model) of Srv to federated learning,
DSSrv is the dataset held by Srv, DSCi

is a dataset held by Ci, and prmFC includes the inputs parameters
of FC to federated learning.

Furthermore, each ViewA,PSIiSrv refers to the Srv’s real-model view during the execution of an instance of
PSI with Ci, while ViewA,SBSrv is Srv’s real-model view during the execution of SecureBoost. The simulator

SimF,L1
Srv

, which receives Srv’s inputs (prmSrv, DSSrv) and the leakage L1(inp) :=
(
v1, ..., vn,W1(prm1, prm2)

)
operates as follows.

1. generates an empty view.
2. generates n sets DS′C1

, ..., DS′Cn , where the size of each DS′Ci is vi and the element of DS′Ci are picked
uniformly at random from the set elements’ universe (for all i, 1 ≤ i ≤ n).

3. for each Ci, extracts the Srv-side simulation of PSI from the simulator of PSI using input sets DSSrv

and DS′Ci . Let SimPSIi
Srv

denote this simulation. Note that the latter simulation is guaranteed to exist
because this specific PSI, i.e., PSI, has been proven secure in [36]. It appends each SimPSIi

Srv
to the view.

4. extracts the Srv-side simulation of SecureBoost SB from the simulator of SB. Let SimSB
Srv

denote this
simulation. It appends SimSB

Srv
to the view. Note that we assume the latter simulation exists and can be

produced, using the leakage W1(prm1, prm2) and SB introduced in [18]. It outputs the view.

Now, we are prepared to demonstrate that the two views are indistinguishable. Since PSI has been proven
secure, ViewA,PSIiSrv and SimPSIi

Srv
are computationally indistinguishable. Similarly, under the assumption that

SecureBoost is simulatable, ViewA,SBSrv and SimSB
Srv

are distinguishable. Thus, the real and ideal models are
indistinguishable.

B.2 Corrupt FC

In the real execution, the view of FC is defined as follows:

ViewA,StarlitFC

(
prmSrv, DSSrv, DSC1

, ..., DSCn
, prmFC

)
:=

{SC1
, ..., SCn

,ViewA,SBFC }

where SCi
is a set of size si. It contains triples each of which has the form (IDu, bu, wu) corresponding to

a user U, where IDu represents a random ID of a sample, bu is a differentially-private binary flag indicating
features’ inconsistency, wu is another differentially-private binary flag (indicating a suspicious user). The

simulator SimF,L2
FC

, which receives leakage L2(inp) :=
(
s1, ..., sn, W2(prm1, prm2)

)
operates as follows.

1. generates an empty view.
2. constructs n sets S′C1

, ..., S′Cn , where each S′Ci has the following form.
• contains si triples (ID′, b′, w′).
• each ID′ is a string picked uniformly at random.
• each b′ has been constructed by picking a random binary value and then applying the local differential

privacy to it.
• each w′ is generated the same way as b′ is generated.

3. appends S′C1
, ..., S′Cn to the view.
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4. extracts the FC-side simulation of SB from the simulator of SB. Let SimSB
FC

denote this simulation.
It appends SimSB

FC
to the view. We assume the latter simulation can be produced, using the leakage

W2(prm1, prm2) and SB. It outputs the view.

Next, we argue that the two views are indistinguishable. In the real model, each IDu is a uniformly
random string, as is each ID′ in the ideal model. Thus, they are indistinguishable. Also, the elements of
each pair (bu, wu) in the real model are the output of the differential privacy mechanism (DP), so are the
elements of each pair (b′, w′). Due to the security of DP, (bu, wu) and (b′, w′) are differentially private and
indistinguishable. Moreover, under the assumption that SecureBoost is simulatable, ViewA,SBFC and SimSB

FC
are

distinguishable. Hence, the real and ideal models are indistinguishable.

B.3 Corrupt Client

In the real execution, the view of each Ci is defined as follows:

ViewA,StarlitCi

(
(prmSrv, DSSrv), DSC1

, ..., DSCn
, prmFC

)
:=

{(DSSrv ∩ DSCi
), SSrv,View

A,PSI
Ci

}

The simulator SimF,Li+2

Ci
, which receives inputDSCi

and leakage Li+2(inp) :=
(

(DSSrv ∩DSCi
), |DSSrv|, SSrv

)
operates as follows.

1. generates an empty view and appends DSSrv ∩ DSCi
to the view.

2. sets z = |SSrv|. Then, it generates z pairs, each of which has the form (ID′, feat′u). In each pair, ID′ is a
uniformly random string (picked from the IDs’ universe), and feat′u is one of the user’s unique features
in SSrv.

3. generates an empty set S̄Srv and appends all the above z pairs (generated in step 2) to S̄Srv. It appends
S̄Srv to the view.

4. generates an empty set D̄SSrv and then appends DSSrv ∩ DSCi
to D̄SSrv.

5. appends to D̄SSrv a set of uniformly random elements (from the set elements’ universe) such that the
size of the resulting set D̄SSrv is |DSSrv|.

6. for each Ci, extracts the Ci-side simulation of PSI from the simulator of PSI using input sets D̄SSrv

and DSCi
. Let SimPSIi

Srv
denote this simulation. It appends each SimPSIi

Srv
to the view. It outputs the view.

Now, we are ready to demonstrate that the two views are indistinguishable. The intersectionDSSrv ∩DSCi

is identical in both views; therefore, they have identical distributions. Each ID in SSrv is a uniformly random
string, so is each ID′ in S̄Srv. As a result, they have identical distributions too. Also, each user’s unique feature
featc in SSrv and feat′c in S̄Srv have identical distributions, as they are both picked from SSrv that includes
some users’ of Ci. Due to the security of PSI, ViewA,PSIiSrv and SimPSIi

Srv
are computationally indistinguishable.

We can conclude that the two views are computationally indistinguishable.

C Further Discussion on PSI Implementation

In this work, we initially focused on and implemented the RSA-based PSI proposed in [3], due to its sim-
plicity that would lead to easier security analysis. However, after conducting a concrete run-time analysis
we noticed that this protocol has a very high run time. Therefore, we adjusted and used the Python-based
implementation of the PSI introduced in [36] which yields a much lower run-time than the one in [3]. This
protocol mainly relies on efficient symmetric key primitives, such as Oblivious Pseudorandom Functions and
Cuckoo hashing. The security of this PSI has been proven in a standard simulation-based (semi-honest)
model and the related paper has been published at a top-tier conference. The efficiency of the PSI pro-
tocol mainly stems from the efficient “Oblivious Pseudorandom Function” (OPRF) that Kolesnikov et al.
constructed which itself uses the Oblivious Transfer (OT) extension proposed earlier in [35].
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To compare the two PSIs’ runtime we conducted certain experiments, before developing the Starlit’s
implementation. The experiments were carried out on a laptop with 8 cores, 2.4 GHZ i9 CPU and 64GB of
memory. We did not take advantage of parallelization. Our experiments were carried out with each party
having 2n set elements and compared the run-time of the PSI in [3] with the one in [36]. We concluded that the
PSI in [36] is around 10–11 times faster than the one in [3]. We conducted the experiments when each party’s
set’s cardinality is in the range [29, 219]. Briefly, our evaluation indicates that the PSI’s runtime increases
from 0.84 to 367.93 seconds when the number of elements increases from 29 to 219. Table 4 summarizes the
run-time comparison between the two PSIs. We use the Flower adapter to communicate between the PSI
client (i.e., FSP) and the PSI server (i.e., a bank C). An instance of the PSI, for each account, takes as input
the following string: accountnumber||customername||streetname||countryCityzipcode

Table 4: The run-time comparison between the RSA-based PSI in [3] and our choice of PSI proposed in [36] (in sec.).
Set Cardinality

Protocol
29 210 211 212 213 214 215 216 217 218 219

[3] 4.10 9.32 16.56 32.78 65.45 132.97 252.56 524.32 1059.49 - -

[36] 0.84 1.18 1.84 3.23 6.06 11.63 23.75 45.80 99.09 183.79 367.93

D Fields of Dataset 1

The provided synthetic Dataset 1 contains the following fields:

• MessageId: Globally unique identifier within this dataset for individual transactions.
• UETR: The Unique End-to-end Transaction Reference—a 36-character string enabling traceability of all

individual transactions associated with a single end-to-end transaction
• TransactionReference: Unique identifier for an individual transaction.
• Timestamp: Time at which the individual transaction was initiated.
• Sender: Institution (bank) initiating/sending the individual transaction.
• Receiver: Institution (bank) receiving the individual transaction.
• OrderingAccount: Account identifier for the originating ordering entity (individual or organization) for

end-to-end transaction.
• OrderingName: Name for the originating ordering entity.
• OrderingStreet: Street address for the originating ordering entity.
• OrderingCountryCityZip: Remaining address details for the originating ordering entity.
• BeneficiaryAccount: Account identifier for the final beneficiary entity (individual or organization) for

end-to-end transaction.
• BeneficiaryName: Name for the final beneficiary entity.
• BeneficiaryStreet: Street address for the final beneficiary entity.
• BeneficiaryCountryCityZip: Remaining address details for the final beneficiary entity.
• SettlementDate: Date the individual transaction was settled.
• SettlementCurrency: Currency used for transaction.
• SettlementAmount: Value of the transaction net of fees/transfer charges/forex.
• InstructedCurrency: Currency of the individual transaction as instructed to be paid by the Sender.
• InstructedAmount Value of the individual transaction as instructed to be paid by the Sender.
• Label: Boolean indicator of whether the transaction is anomalous or not. This is the target variable for

the prediction task.

31



E Fields of Dataset 2

The provided synthetic Dataset 2 contains the following fields:

• Bank: Identifier for the bank.
• Account: Identifier for the account.
• Name: Name of the account.
• Street: Street address associated with the account.
• CountryCityZip: Remaining address details associated with the account.
• Flags: Enumerated data type indicating potential issues or special features that have been associated

with an account.

F Challenges

To implement Starlit, we encountered a set of challenges. In this section, we briefly discuss these challenges
and explain how we overcame them, with the hope that they can assist future researchers who need to
develop similar systems.

F.1 The Challenge of Using Flower in Starlit’s Implementation

The Flower clashed with our proposed architecture in which there was no central server controlling the
process. In Starlit, FSP acts as a coordinator responsible for initiating the feature extraction and learning
phases. Nevertheless, in Flower, a central server executes a series of training rounds, each comprising a
sequence of steps that involve sending instructions to and receiving results from the clients in the system.
Flower also demands the server’s strategy to have precise knowledge of each client’s designated actions in
every round of communication.

This process complicates the ability to perform any pre-processing of data before entering the iterative
training process, a necessity for us to complete our feature extraction phase.

To address these challenges, we developed a server strategy implementation that functions as a message
router for the clients in the system. This design enabled us to preserve our initial concept of Srv acting
as a coordinating entity, allowing the server strategy to remain indifferent to the specific actions required
in each round of messages. This alteration significantly streamlined the server logic. Moreover, this change
substantially enhances the prototype’s extensibility and adaptability to additional use cases.

F.2 The Challenge of Using FATE in Starlit’s Implementation

The implementation of Starlit uses SecureBoost implementation initially integrated within FATE, an open-
sourced FL project (as discussed in Section 4.4, page 7). In Starlit, SecureBoost is executed jointly among
Srv and FC. Since Flower does not incorporate FATE and the Flower API itself does not permit parties to
communicate directly with each other, we have devoted significant effort to readjusting the implementation
of Starlit to seamlessly integrate with the Flower API. We address this challenge by routing the messages
that parties exchange through the Flower’s server.

Moreover, the Flower’s clients operate in a stateless manner. To seamlessly integrate with FATE without
the necessity to snapshot the entire system for each Flower round, we developed a new implementation of the
FATE API. This implementation utilizes Python multiprocessing queues for sending and receiving messages.
By adopting this approach, we were able to instantiate longer-lived standalone FATE processes dedicated
to training and prediction tasks. In this configuration, each Flower client acts as a proxy, facilitating the
exchange of messages with the respective FATE process through Python multiprocessing queues.

G Starlit’s CPU Utilization

Figure 7 presents the CPU utilization in Starlit. In the figure, we used 5 CPUs and did not use any CPU-
specific library to run Paillier encryption, used as a subroutine in SecureBoost.
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Fig. 7: CPU utilisation of Starlit. Peaks in the graph indicate times of high CPU activity, while valleys represent
periods of lower activity. A steady line with little variation indicates a consistent level of CPU usage.

G.1 Applications of Starlit’s Components

Through Starlit’s development, we demonstrated privacy preserving creation of features that are a function
of data held by multiple parties (e.g. the string matching features on users’ features held by Srv and the
clients). This flexible feature creation is an essential building block of any federated learning problem.

We have additionally developed a general-purpose framework that can be used (in other contexts) for
selecting optimal obfuscation mechanisms to safeguard flags (any categorical variables), aiming to maximize
inference privacy while adhering to specified constraints on utility and local differential privacy. This frame-
work offers flexibility in expressing utility constraints and can be adapted to prioritize utility maximization
under specified constraints on inference privacy and guarantees of local differential privacy. Our modular
design and integration between FATE and Flower enable not just SecureBoost, but also a broad range of
FATE functions to be executed via Flower. Furthermore, the Flower adapter architecture we have built
contributes to extending the use of Flower to vertically partitioned use cases.
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