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Abstract—In a seminal work, Ishai et al. (FOCS–2006) studied
the viability of designing unconditionally secure protocols for
key agreement and secure multi-party computation (MPC) using
an anonymous bulletin board (ABB) as a building block. While
their results establish the feasibility of key agreement and honest-
majority MPC in the ABB model, the optimality of protocols
with respect to their round and communication complexity is not
studied. This paper enriches this study of unconditional security
in the ABB model in multiple ways.

• We present a key agreement protocol with a novel com-
binatorial insight to offer a 200% throughput over the
(FOCS–2006) study; i.e., using the same number of mes-
sages, we can (almost) double the bit-length of the agreed
key. We also prove the near optimality of our approach.

• We offer unconditionally secure protocols for the (random)
string oblivious transfer functionalities. We present a 1-
round chosen message random string oblivious transfer and
show how to extend it to a non-interactive (random) string
oblivious transfer protocol and a 2-round chosen message
string oblivious transfer.

• We prove a 1-round lower bound for BEC under certain
conditions.

Central to our technical contributions is the abstraction
of a distributional variant of the random ABB functionality.
Investigating the concrete efficiency of founding MPC from this
primitive leads to fascinating new mathematical challenges in
well-established MPC models, which will be of broader interest
to the community.

I. INTRODUCTION

Securely realizing unconditionally secure cryptographic
primitives is a topic of immense value and has a rich history.
This work revisits a particularly surprising work by Ishai et
al. [24] that analyzes the possibility of performing cryptogra-
phy with unconditional security using an anonymous bulletin
board (ABB). Ishai et al. establish unconditional security for
prominent cryptographic tasks such as key agreement and
honest-majority secure multiparty computation (MPC) based
solely on access to an ABB that allows a sender to publish
her message without revealing her identity. In particular, they
demonstrate that ABB is sufficient to implement uncondi-
tionally secure point-to-point channels between two parties
without making any other assumption. Ishai et al. then extend
it to achieve MPC with unconditional security in the presence
of an honest majority, diversifying the primitives that facilitate
secure computation. Interestingly, they complement these con-
structions by showing the impossibility of unconditional secure

computation using anonymous broadcast in the absence of an
honest majority.

Since the publication of the paper by Ishai et al. in
2006, the field of anonymous communication has witnessed
tremendous growth: the anonymous communication network
Tor [16] serves more than two million unique users daily
using an overlay network of several thousand nodes all over
the Internet. As the use of blockchains brings users’ financial
dealing to the (public) Internet, there have been significant
efforts towards introducing and improving anonymity over the
Internet. Startups such as Nym [15] and xx.network [39], [40]
are developing generic anonymous communication networks to
break the link between users’ identity and their transactions,
and several blockchain projects have started incorporating
anonymous communications, such as Tor and I2P, in their
designs [23]. Academic literature on anonymous communi-
cation, as well as protocol implementations, have significantly
expanded in the last two decades [1], [6], [13], [17], [28]. It is
safe to say that ABBs are prevalent on the Internet today.
Motivated by these real-world applications, our goal is to
understand the efficacy and concrete efficiency of developing
cryptography assuming access to such an ABB.

The utility of the ABB towards unconditional security is
easy to illustrate using Ishai et al.’s [24] elegant key agree-
ment protocol between Alice and Bob against an honest-but-
curious adversary. Alice and Bob independently pick random
integers (say rA and rB , respectively) and publish those to
the anonymous broadcast channel. The agreed single secret
bit is 1 if rA > rB and 0 if rA < rB . If rA = rB , then
Alice and Bob fail to establish the secret bit and rerun the
protocol. Notice that Alice and Bob know their respective input
and thus can compute the secret bit; however, eavesdroppers
cannot distinguish rA from rB and have no information about
the agreed bit. Moreover, the failure probability (using the
birthday bound) depends on the size of the sample space of
the integers.

This “indistinguishability property” can be abstracted as
a multi-set. Conceptually, we observe that the use of ABB
converts a vector (or key-value store) of user inputs to a multi-
set. This brings us to the question: what if Alice and Bob
send multiple (say m) messages each? Can we agree on more
than m bits using this 2m-sized multi-set? We answer this
question affirmatively to demonstrate that Alice and Bob can
indeed agree on close to 2m secret bits, which improves the



throughput of the key agreement to 200%, as compared to
Ishai et al. [24]. This work aims to determine the concrete
communication and round complexity of key cryptographic
functionalities based on anonymity. This investigation leads
to both qualitative and quantitative research questions in this
context.

To this end, we establish connections of implementing func-
tionalities using ABB in our context with various well-studied
communication-limited MPC models (like non-interactive cor-
relation distillation [34], [35], secure non-interactive simula-
tion/reduction [2], [26], one-way secure computation [20], and
private simultaneous messages [18]). Our problems translate
into analytically tractable instances of these MPC models,
which have generally been challenging to analyze. These
connections lead us to several (near-optimal) protocol con-
structions. Our practically-motivated research objectives lead
to fascinating research questions in these MPC models, poten-
tially of interest to the broader cryptographic community.

A. Our Contributions

From the modeling perspective, this work assumes the
existence of an anonymous broadcast, which we model as an
Anonymous Bulletin Board (ABB) hybrid. There are four par-
ties A,B, C, and D. The bulletin board ideal functionality, rep-
resented as ABBmA,mB ,mC

, takes as input three multi-sets: (1)
A := {a1, . . . , amA

} from party A, (2) B := {b1, . . . , bmB
}

from B, and (3) C := {c1, . . . , cmC
} from C. Note that party

D does not provide any input. The functionality outputs the
multi-set Γ = A ∪ B ∪ C := {γ1, . . . , γmA+mB+mC

} to all
four parties.

Example 1 (Clarification on our ABB model). For illustrative
purposes, consider mA = mB = mC = 2. Party A sends the
vector (x1, x2) to the ABB, party B sends the vector (y1, y2)
to the ABB, and party C sends the vector (z1, z2) to the ABB.
Our ABB publishes the multi-set of all the received elements
{x1, x2, y1, y2, z1, z2}. More concretely, interpret this multi-
set represented as the sorted vector containing its elements
(with multiplicities). In particular, this multi-set is different
from the following alternative interpretations.

1) The set {{x1, y1, z1} , {x2, y2, z2}}. In this alternative
version, messages with identical indices are linked to
each other. If parties wish to link messages using our
ABB, they need to explicitly encode the indices into their
message, which causes a logarithmic increase in their
length.

2) The set {{x1, x2} , {y1, y2} , {z1, z2}}. This alternative
version links messages sent by the same party while
hiding the identity of the party. Such linking is achieved
using our ABB by encoding anonymized identities of the
parties into their respective messages.

We refer to party C as the helper and party D as the
eavesdropper. In the randomized version of bulletin board
(rABB), the three multi-sets A,B,C are sampled according
to some independent distributions P,Q,R, respectively. See

Section IV for a formal definition of ABB and its randomized
version (rABB).

In addition to the bulletin board, parties also have public
authenticated channels between them. In the ABB setting, we
define each party’s communication complexity as the number
of bits that the party sends to the ABB plus the number of
bits it sends to other parties through the public authenticated
channels. For example, the communication complexity of party
A is the sum of the following quantities.

• The bit length of A (the message that party A sends to
the ABB)

• The bit length of the messages that party A sends to other
parties (B, C, and D).

We define the communication complexity in the rABB
setting in a similar manner. For example, the communication
complexity of A is the sum of the following quantities.

• Bit length of A (the message that that party A receives
from rABB)

• Bit length of the messages that party A sends to other
parties (B, C, and D).

The sequel summarizes our contributions.

Result 1 (Key-agreement Protocol: Informal). We present
a non-interactive two-party key-agreement protocol using
rABBm,m,0 with individual message length n that establishes
(near-optimal) 2m-bit keys with (m · n)-bit communication
complexity.

Theorem 1 provides the formal statement for this result. Our
construction is secure against a computationally unbounded
eavesdropper D. Our construction is straightforward to imple-
ment, and the key length (i.e., throughput) is near-optimal.
Here, throughput is the ratio of the key length to the number
of messages. The length n of the individual messages affects
our algorithm’s failure probability, the event where parties fail
to agree on a key. Small messages would result in close-to-
1 failure probability. Surprisingly, when n is larger than a
particular threshold, it has essentially no impact on the key
length. We also present a duplicate-recovery variant of the
protocol in Result 1, which is suitable for other parameter
regimes. Details on the duplicate-recovery variant can be found
in Section V-G.

Remark 1 (Upper bound on our key length: additional
comments). Our proof of the optimality of our key length
considers a wide family of protocols. In these protocols, parties
can interact over multiple rounds using the public authenti-
cated channels after the rABB invocation. The parties A, B,
and C receive messages from arbitrary independent message
distributions P,Q, and R, respectively (not necessarily the
uniform distribution). In our protocol, rABB delivers random
independent messages to the parties. We prove this result using
mutual information, entropy-based arguments, and the recent
results of [29], [30].

In our protocol, parties have access to a single ABB or
rABB that they call once. Many other protocols (such as [9],



[14], and some protocols in [24]) either require additional
assumptions, such as on the synchrony of the system model
or require multiple independent instances of ABB to be
implemented. We emphasize that this is qualitatively different
from our protocol setting, and a direct comparison of the
communication costs of these protocols against ours results in
an inaccurate representation of both their protocols and ours.
Therefore, we focus our concrete communication cost analysis
on comparison with the state-of-the-art protocol in this setting,
which is [5]. The result of this concrete communication cost
comparison is presented in Figure 1. For typical values of k
such as 128, [5] requires roughly 2.9× our communication
cost.

Fig. 1. Plot of the ratio of communication required by [5] over our protocol’s
communication needed to achieve various expected values of key-length k.
For example, to generate a 128-bit key (on average), [5] requires roughly
2.9× our communication cost.

In the context of implementing oblivious transfers, Ishai et
al. [24] proved the impossibility of realizing oblivious transfer
(OT) using ABB when honest parties are not in the majority.
This implies that it is impossible to realize oblivious transfers
(as well as their randomized versions) in the ABB-hybrid
without the helper party C. We construct oblivious transfer
protocols that achieve a few different functionality variants –
a step towards diversifying setups for oblivious transfers.

Result 2. We present a 1-round (round-optimal) protocol
for establishing (chosen message) random string oblivious
transfer (cmROTℓ) from sender B to receiver A with the
helper C.

The cmROTℓ functionality takes as input two ℓ-bit messages
x0 and x1 from the sender and delivers the tuple (b, xb) to the
receiver, where the bit b is chosen uniformly at random.

The round optimality of this construction is a consequence
of Result 3 and the fact that one can use (chosen message)

random string OT to implement an erasure channel.1

Corollary I.1. We extend Result 2 to a non-interactive proto-
col for establishing random string oblivious transfer (ROTℓ)
from sender B to receiver A with the helper C.

The ROTℓ functionality samples two uniformly random
messages x0, x1, a uniformly random bit b, delivers the tuple
(x0, x1) to the sender, and delivers the tuple (b, xb) to the
receiver. Discussions on the non-interactive random string
oblivious transfer can be found in Section VI-D.

Corollary I.2. We extend Result 2 to a two-round protocol
for establishing (chosen message) string oblivious transfer
(cmOTℓ) from sender B to receiver A with the helper C.

The cmOTℓ functionality takes as input two ℓ-bit messages
x0 and x1 from the sender, one bit b from the receiver, and
delivers xb to the receiver. Theorem 6 provides the formal
statement of this result. This protocol achieves unconditional
security against semi-honest adversaries. In our protocol, the
sender B sends a message to A using a private authenticated
channel. Discussions on the string oblivious transfer can be
found in Section VI-D.

Corollary I.3. We extend these protocols to 1-out-of-N OT
(where the sender chooses N inputs) in Section VI-D.

Corollary I.4. Using results from [20], we can realize any
one-way secure computation for arbitrary (possibly random-
ized) sender-receiver functions from our ROT protocol.

Corollary I.5. We can implement a Binary Erasure Channel
(BEC) with erasure probability e

d using 1-out-of-d ROT from
Corollary I.3.

This can be done by having e of the messages be a special
“erased” message while the remaining d− e messages are the
actual bit being sent.

Remark 2 (New research problems in interaction-limited
MPC models). Our use of rABBP,Q,R can be interpreted as
sampling from the joint distribution (P,Q,R|Γ) in a prepro-
cessing step, where Γ is the union of the three. Under this
interpretation, our research problems translate into research
questions in the NICD [34], [35], SNIS [26], SNIR [2],
OWSC [20], and PSM [18] models.

1) For key agreement, we prove that the uniform distribu-
tion achieves the optimal result even against arbitrary
independent distributions.

2) For random string oblivious transfer, we show that by
using specialized distributions P,Q,R, we are able to
obtain non-interactive random string oblivious transfer.

Result 3. We prove a 1-round lower bound for implementing
a binary erasure channel from B to A utilizing the rABB
(with a helper) and a public authenticated channel from

1The sender can choose to send x0 = 11 and x1 = 0m for a bit
m ∈ {0, 1}. The receiver receives the bit m with a probability of 1/2;
otherwise, it is erased with a probability of 1/2. Therefore, the impossibility
of implementing an erasure channel extends to this case.



B (the sender) to A (the receiver) when the messages are
sampled from uniform distributions P,Q,R (see Theorem 7
for details). Proving the optimality for arbitrary independent
distributions P,Q,R remains open. Recall P,Q,R represent
the distribution of the messages sent by rABB to the parties
A,B, and C, respectively. Analyzing this distributional variant
of rABB motivates new research directions in interaction-
limited MPC models, like SNIS and SNIR. This problem is
challenging even when P,Q,R are flat distributions over a
sparse subset of the message space. Typically, these models
(like NICD [34], [35], SNIS [26], SNIR [2], OWSC [20],
and PSM [18]) have strong hardness-of-computation results.
However, for our application scenarios, there are non-trivial
and practically useful construction as well.

B. Related Works

1) Key-Agreement: There are many works focused on key-
agreement or developing secure point-to-point links based on
anonymous communication. [5] performs key agreements by
having each party send a set of position-labeled bits, and
discard any identical bits to use the remaining bits as the key.
There are also several works that expand upon or improve
[5]. For example, [42] expands [5] to work over semi-honest
channels. [9] proposes a protocol that only requires k total
messages for a k-bit key by utilizing the fact that parties
can set the source of the message to be honest or false, and
also send messages in random order. [14] similarly proposes a
protocol that requires the parties to send messages in a random
order by implementing random wait times. [36] considers key-
agreement when the receivers (instead of the senders) are
anonymous. [19] considers key-agreement in a similar setting,
where a “deck of cards” is dealt such that each party has
several cards from the deck. The remaining cards are dealt to
the adversary. Using this setup, the parties would like to agree
on a secret key. Finally, Gilad and Herzberg [21] demonstrate
the practical utility of [24] for the IP-level security protocol
IPSec.

There has been extensive study of establishing fixed length
secret key in the source model in which parties observe i.i.d
samples from a joint distribution and the eavesdropper possibly
observes some side information from these samples [4], [12],
[22], [31]–[33]. The main objective is to study the achievable
key rate when the number of samples tend to infinity.

[25] study the question of bootstrapping anonymous com-
munication. The objective is to communicate a large amount
of data using non-anonymous communication and only a small
amount of anonymous broadcasts.

2) Communication-limited MPC Models: Non-interactive
Correlation Distillation. In information theory and theoret-
ical computer science, non-interactive correlation distillation
(NICD) is a well-studied analytically-tractable problem [8],
[10], [34], [35], [41]. NICD also aims to establish secure key
agreements. In NICD, each party holds a noise version of some
source bits, a particular form of correlated private randomness.
It is common in NICD that the failure probability for the key-
agreement instances is high. On the other hand, parties have

access to ABB that generates a different form of conditional
distribution in the rABB-hybrid model. We are the first to
choose this distribution and achieve near-optimal key length.

Secure Non-interactive Simulation/Reduction. Secure non-
interactive simulation/reduction (SNIS/SNIR) is a crypto-
graphic primitive introduced recently [2], [26]. In this model,
parties have i.i.d samples of a source correlated private ran-
domness; the objective is to non-interactively and securely
transform these samples into i.i.d samples of another target
correlated private randomness. This line of work investigates
both the feasibility and efficiency of SNIS/SNIR constructions.
We shall employ the techniques to prove the impossibility
results in their settings to show the round-complexity of
realizing BEC or OT using rABB-hybrid.

One-way Secure Computation. One-way secure computa-
tion [3], [20] uses one round of communication to securely
transform the samples of the source distribution to the samples
of the target distribution.

II. TECHNICAL OVERVIEW

This section provides a technical overview of our results.
For a complete list of notations and backgrounds, refer to
Section III. The formal definition of the anonymous bulletin
board (ABB) and its variant are in Section IV.

A. Key Agreement

We first present an overview of our (near-optimal) key-
agreement protocol in Figure 4. We construct a key agreement
protocol in which parties A and B receive a set of m messages
of n bits each (A and B respectively). Additionally, all parties
(A, B, D) receive the set of 2m messages (Γ = A ∪B) from
the rABB. The parties first discard any duplicate messages in
Γ, resulting in 2m′ total messages where m′ messages belong
to each set A and B. Since no duplicate messages exist, only
parties A and B can identify which of the 2m′ messages
belong to each set A and B. By using a canonical ordering
of the 2m′ messages and assigning messages belonging to A
as 1 and messages belonging to B as 0, the two parties can
agree on a 2m′ bit string that is known only to them. Then,
by using standard techniques in combinatorics, the two parties
can index the agreed upon bit string out of the

(
2m′

m′

)
possible

bit strings and agree on a key of length log
((

2m′

m′

))
.

We discuss how the parameter choices m and n affect the
expected key length and the failure probability using standard
techniques in probability. Additionally, we perform brute force
searches to identify the optimal parameters for various key
lengths and compare those results with previous state-of-the-
art results.

Finally, using techniques on mutual information, we prove
that under the setting of arbitrary/unlimited message length,
our protocol achieves the optimal expected key length given
parameter m.

Additionally, we present a variant of our protocol called
duplicate recovery, which is suitable for small values of n.
In duplicate recovery, instead of removing all duplicates,



the protocol considers the duplicates as part of the possible
distributions. We note that in this case, indexing the possible
distributions becomes non-trivial. We present such a problem
as a new problem in combinatorics, as well as reformulate
it as an Integer Programming (IP) problem. We believe this
problem may be of independent interest.

The complete description and analysis of the key agreement
protocol can be found in Section V.

B. Chosen Message Random String Oblivious Transfer

We present an overview of our construction of cmROT in
Figure 7. A single bit of random oblivious transfer can be seen
as two BEC instances that are correlated in a way such that
whenever one of the messages is erased, the other message is
delivered.

We use a set of four elements, one belonging to A, one
belonging to C, and two belonging to B, that is divided into
two subsets that each contain an element belonging to B. B
is able to identify both messages that belong to B in the two
subsets, and can therefore obtain two bits. On the other hand,
A can only identify the element belonging to B in the subset
that contains A’s element. This creates a setting where B is
able to identify two messages while A is only able to identify
one of them.

When we directly perform the above step multiple times,
a natural issue arises in which B is unable to identify what
messages A can obtain, but will instead get a cartesian product
of all the possible bits.

The key observation is that security still holds if we set
all elements belonging to A to be even (or odd), all elements
belonging to C to be odd (or even, respectively), and half the
elements belonging to B to be even and half to be odd. This
will allow B to “link” the bits that form the same message,
thus identifying the two possible messages that A can obtain
without learning which message A obtains.

We can also compress the multiple calls to rABB into a
single call using sequence identifiers and parallel identifiers
(full detail can be found in Section IV-D).

Finally, to ensure that C learns nothing about either message,
B sends two “correction messages” that get xored with the
original message to create the final message to A through a
private authenticated channel (such a private channel can be
established in parallel with no additional round using our key-
agreement protocol).

The complete description and analysis of the random string
oblivious transfer protocol can be found in Section VI.

III. PRELIMINARIES

This section introduces some notations and basic back-
ground that will be useful in the later sections.

A. Sets

Throughout the paper, we may use the word “set” when we
mean “multi-set”. We will often use capital letters to denote
multi-sets. Alternatively, we will define a multi-set by listing
its elements in curly braces. We denote elements of the multi-
set using lowercase letters. Whenever we talk about multi-sets,

especially the union of sets, we assume that all elements are
randomized. For example, for multi-set A and B, by only
looking at A∪B, it should be impossible to determine which
elements came from A. Additionally, we assume that there
exists some canonical ordering of elements in a multi-set. For
simplicity, it may help to assume that sets are automatically
sorted by their canonical ordering. We note that the desired
properties such as not being able to determine which elements
came from A by only looking at A∪B hold for when sets are
randomized or when they are sorted according to the canonical
ordering.

B. Binary Erasure Channel (BEC)

In a binary erasure channel (BEC) with erasure probability
p, a sender S sends a binary message m ∈ {0, 1} to a receiver
R. With probability 1 − p, R receives the message m. With
probability p, the message is “erased” and R receives nothing.
In this case, we say that R receives ⊥. The sender is unaware
of whether the erasure happened or not.

Roughly, security of BEC requires that the sender does not
learn whether the bit was erased or not, and the receiver not
learning anything about the bit if it is erased (and it received
⊥).

C. String Oblivious Transfer

String Oblivious Transfer. ℓ-bit string (1-out-of-2) obliv-
ious transfer, denoted as OTℓ, is a two-party functionality
that takes as input (x0, x1) ∈

(
{0, 1}ℓ

)2
from Bob, a bit

b ∈ {0, 1} from Alice, and outputs xb to Alice. Security of
OT requires that Alice learns nothing about the bit b, and Bob
learns nothing about x1−b.

Note that when ℓ = 1, the functionality OT1 is the
(standard) bit oblivious transfer.

Random String Oblivious Transfer. Random oblivious trans-
fer, denoted as ROTℓ, is a correlation that samples x0 ∈
{0, 1}ℓ, x1 ∈ {0, 1}ℓ, b ∈ {0, 1} uniformly and independently
at random. It provides Bob with the secret share rB = (x0, x1)
and provides Alice the secret share rA = (b, xb).

Chosen Message String Random Oblivious Transfer. Cho-
sen Message Random oblivious transfer, denoted as cmROTℓ,
is a functionality that takes as input (x0, x1) ∈

(
{0, 1}ℓ

)2
from Bob, samples a bit b uniformly at random, and outputs
(b, xb) to Alice.

D. Entropy and Mutual Information

We shall use mutual information and entropy-based argu-
ments to prove the optimality of our key-agreement protocols.

Definition III.1 (Mutual Information). Let X and Y be a
pair of discrete random variables over the space X × Y . If
their joint probability distribution is PXY (x, y), the mutual
information between them, denoted as I(X,Y ), is

I(X,Y ) :=
∑

x∈X ,y∈Y
PXY (x, y) log

PXY (x, y)

PX(x)PY (y)
.



Moreover, the conditional mutual information of (X,Y |Z) is
defined as follows.

I(X,Y |Z) :=∑
z∈Z

PZ(z)
∑
y∈Y

∑
x∈X

PX,Y |Z(x, y|z) log
PX,Y |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)
.

Definition III.2 (Entropy). Let X be a discrete random
variable distributed according to P : X → (0, 1). The entropy
of X , denoted as H(X), is defined as

H(X) := −
∑
x∈X

P (x) logP (x).

Definition III.3 (Conditional Entropy). The conditional en-
tropy of X given Y is defined as

H(X|Y ) := −
∑

x∈X ,y∈Y
PXY (x, y) log

PXY (x, y)

PY (y)
.

Fact 1. It holds that

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Furthermore,

I(X,Y |Z) =

H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z).

IV. ANONYMOUS BULLETIN BOARD FORMALISM

In this section, we first formally define Anonymous Bul-
letin Board (ABB) and Random Anonymous Bulletin Board
(rABB). We then discuss the similarities and differences be-
tween ABB and rABB, and crucially, show that our protocol is
equivalent in the ABB-hybrid and the rABB-hybrid. Addition-
ally, we present a connection of rABB with the offline phase
of the offline-online model.

A. Anonymous Bulletin Board

We assume all messages are from the domain Z2n , where
n ∈ N is called the message length. In an anonymous bulletin
board (ABB), parties can privately send multiple messages to
the ABB. Then, the ABB will broadcast the “set” of messages,
with order and sender information removed. Additionally, we
note that the ABB waits until it receives all messages before
publishing. Therefore, a rushing adversary is impossible.

We define the ideal functionality in Figure 2. It is defined
over a four-party setting, A and B represent the main partici-
pants that are trying to achieve something through interaction
with the ABB. C represents the facilitators that are trying to
assist A and B through interaction with the ABB. D represents
eavesdroppers that do not send messages to the ABB, but
receive the output of the ABB.

We define this ideal functionality as ABBmA,mB ,mC
.

Formally, ABBmA,mB ,mC
takes multi-set of inputs

A := {a1, . . . , amA
} from A, multi-set of inputs

B := {b1, . . . , bmB
} from B, multi-set of inputs

C := {c1, . . . , cmC
} from C, and outputs the multi-set

Γ = A ∪ B ∪ C := {γ1, . . . , γmA+mB+mC
}. In particular,

Ideal Functionality of ABBmA,mB ,mC

A B C D

ABBmA,mB ,mC

1
: A

2
:
Γ
:=

A
∪
B
∪
C

1
:
B

2
:
Γ
: =

A
∪
B
∪
C 2

:
Γ
:=

A
∪
B
∪
C

1
:
C

2
:
Γ
:=

A
∪
B
∪
C

Fig. 2. Ideal Functionality of Anonymous Bulletin Board (ABB). Dotted lines
represent private authenticated channels, while solid lines represent public
channels. The number in front of messages shows the order/round in which
the messages are sent. A is the multi-set {a1, . . . , amA}, B and C are
similarly defined.

note that there are no “links” or associations between the
different messages that A sends.

We note that this model is more powerful than the random
public anonymous bulletin board functionality presented next
since ABB allows messages to be chosen adaptively, that is,
dependent on previous messages.

Additionally, we emphasize that one call to ABBm,m,m is
different from m calls to ABB1,1,1, even when we do not
consider adaptive message choosing. Specifically, for m calls
to ABB1,1,1, all parties will know that the first 3 messages
did not come from the same parties. That is, parties gain
additional information on subsets of messages that definitely
did not come from the same party. Whereas in a single call to
ABBm,m,m, parties do not gain such information.

B. Random Anonymous Bulletin Board

We also define a random anonymous bulletin board (rABB)
in Figure 3, which takes additional parameters P , Q, R, which
are independent distributions, and samples set of messages A
according to distribution P , set of messages B according to
distribution Q, set of messages C according to distribution
R, privately outputs A to A, B to B, C to C (using pri-
vate authenticated channels denoted with dashed lines), and
outputs the multi-set Γ to all parties (using public channels
denoted with solid lines). We define the ideal functionality as
rABBP,Q,R

mA,mB ,mC
.

C. Comparison between ABB and rABB

We note that the rABB functionality is as powerful as the
ABB functionality when messages are not chosen adaptively.
Essentially, since messages are not chosen adaptively, the
parties should be able to determine the distribution of the
messages they want to send before interacting with ABB.
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Fig. 3. Ideal Functionality of Random Anonymous Bulletin Board (rABB).
Dotted lines represent private authenticated channels, while solid lines repre-
sent public channels. The number in front of messages shows the order/round
in which the messages are sent. A is the multi-set {a1, . . . , amA} sampled
according to P , B is sampled according to Q, and C is sampled according
to R.

Therefore, parties can simply program a rABB with the
appropriate P,Q,R in order to mimic the messages they are
going to send. We note that P,Q,R can be distributions with
sample space of size 1. Effectively making them deterministic.

In all of our protocols, parties sample their inputs uniformly
at random (without replacement) and send them to the ABB.
We note that this is precisely equivalent to rABB with P,Q,R
set to output values uniformly at random without replacement.
Intuitively, since the messages are chosen at random by semi-
honest parties, it does not matter if the parties chose them and
sent them to ABB, or if rABB chose them and sent them to
the parties. The end result is both the ABB/rABB and parties
will have the same random values.

D. Compression of Non-Adaptive Sequential and Parallel
Calls

We also note that when messages are not chosen adaptively,
we can compress multiple sequential calls to the ABB or
rABB into a single call to the ABB/rABB by including a
“sequence identifier” in each message. Furthermore, we can
also compress multiple parallel calls to the ABB or rABB into
a single call to the ABB or rABB by including a “parallel
identifier” in each message.

Using the rABB as an example. Let rABBi,j represent
rABBPi,j ,Qi,j ,Ri,j

mAi,j
,mBi,j

,mCi,j
.

Let us assume we want to call
rABB1,1, rABB1,2, . . . , rABB1,π in the first round, rABB2,1,
rABB2,2, . . . , rABB2,π in the second round, up to
rABBσ,1, rABBσ,2, . . . , rABBσ,π in the σth round.

We can instead call rABB′
i,j , where rABB′

i,j is

rABB
P ′

i,j ,Q
′
i,j ,R

′
i,j

mAi,j
,mBi,j

,mCi,j
, where P ′

i,j is the same distribution as

Pi,j , except that every message is prefixed by i, j. Q′
i,j and

R′
i,j are similarly defined.
Given this modification, we can now call

rABB′′ := rABBP ′′,Q′′,R′′∑
i,j m′

A,
∑

i,j m′
B ,

∑
i,j m′

C
where P ′′ is

the union of all P ′
i,j . Q′′ and R′′ are similarly defined. m′

A

is defined as the sum of all m′
Ai,j

, and m′
B and m′

C are
similarly defined.

Given that all messages in rABB′′ are prefixed by their
sequence identifier and parallel identifier, the parties can
locally divide them into the appropriate rABB′

i,js, and the
result remains the same as the original.

E. An Equivalent Reformulation of rABB

In the semi-honest setting, the random anonymous bulletin
board can be reformulated as the preprocessing step (offline
phase) of the offline-online paradigm. In this step, parties
will receive private correlated randomness from a conditional
distribution.

Reformulation of rABBP,Q,R
mA,mB ,mC

. The bulletin board sam-
ples (A,B,C) from the distribution (P,Q,R), where A =
{a1, a2, . . . , amA

}, B = {b1, b2, . . . , bmB
}, and C =

{c1, c2, . . . , cmC
}. Alice receives the multi-set A, Bob receives

B, and C receives C. The bulletin board sends Γ = A∪B∪C to
all parties A,B, C,D. So, party D gets some side information
about the correlated randomness of A,B, C. We note that from
the perspective of the parties, (A,B) is sampled according to
the conditional distributions (P,Q|Γ).

Discussion. Unlike the standard offline-online model in
which correlated private randomness is sampled from a joint
distribution, our model samples them from a conditional
distribution, which is a family of joint distributions.

V. KEY AGREEMENT PROTOCOLS

This section presents our optimal length key agreement
protocols in the rABB-hybrid in which party C does not send
any messages to the bulletin board. We start by defining the
problem setting.

A. Problem Setting

Suppose parties are in rABBP,Q
mA,mB

-hybrid (without the
helper C). That is, the parties have access to a single instance
of rABBP,Q

mA,mB
, which they can call one time. We note

that this is different from having access to max (mA,mB)

different rABBP ′,Q′

1,1 -hybrid. That is, party A has A =
{a1, a2, . . . , amA

} sampled according to P , party B has B =
{b1, b2, . . . , bmB

} sampled according to Q, and party D has
A ∪ B. Every message is n-bit. Parties A and B are allowed
to communicate with each other through a public noiseless
channel. Party D (the eavesdropper) can see the messages sent
between A and B. At the end of the protocol, two parties
A and B agree on a sample space ΩL for the key, and A
outputs a (variable-length) key KA ∈ ΩL, and B outputs a key
KB ∈ ΩL. So, the key length is log|ΩL|, where log denotes
the logarithmic with base two. We define the expected key
length of the protocol as the expectation of log|ΩL|, where



the expectation is taken over the randomness of samples A
and B.

The protocol is correct if KA = KB = K with high
probability and K is close to a uniform distribution over ΩL.
It is secure if the eavesdropper D learns almost nothing about
the key K. More formally, the statistical distance between two
distributions (KA,KB , T, A ∪ B) and (UΩ, UΩ, T, A ∪ B) is
small, where T is the transcript of the protocol (messages sent
between A and B).

Given a desired key length k, we define the
failure probability as

min (Pr[length(KA) < k],Pr[length(KB < k)]) ,

where the probabilities are taken over the randomness of KA

and KB , respectively. Typically, the failure probability is negli-
gible. We define the communication cost as m ·n+ length(T ),
where length(T ) denotes the length of the protocol’s tran-
script.

Objectives. In this work, we focus on the following objectives.
Given a desired length k ∈ N and a failure probability δ,
we are interested in constructing key agreement protocols that
output a (variable-length) key of length at least k with failure
probability at most δ and with least communication costs.

Remark. Our protocols always achieve perfect correctness
and perfect secrecy even when the key length is less than
the desired threshold k. Our problem setting is similar to the
key agreement model considered in [30]. The main difference
is that parties get components A and B, respectively, of a
conditional distribution of the form (P,Q|Z) in our setting;
while parties get A and B sampled according to a joint
distribution of the form (P,Q) in their setting. Similar to the
setting considered in another line of work [4], [31], [32], the
eavesdropper has some side information about the samples of
A and B. The difference is that parties have access to multiple
i.i.d samples in their setting, while parties have access to only
one sample of a (large) joint distribution.

Remark. In our problem setting, parties agree on a variable-
length key. One can rely on the asymptotic equipartition
property and apply standard extraction procedures to obtain
a fixed-length key.

B. Our Protocol

Next, we present our protocol in Figure 4, as well as provide
an overview of the protocol below.

The protocol is similar to the example presented in [24].
At a high level, parties A and B will each receive m random
values from the rABB, which are sampled from P and Q
respectively. For security, P and Q are independent identical
copies, and for optimal performance, P is a uniform distri-
bution over (Z2n)

m under the constraint that elements do not
repeat. That is, P produces a set A := {a1, . . . , am} such that
all elements are equally likely to be in the set, and that for
all i ̸= j, ai ̸= aj . Q produces a similar set B. Once they see
the set of values, A and B can easily distinguish between A’s
values and B’s values, while the eavesdropper cannot. Using

this information, A and B can agree on a key K determined by
the positions of A’s values. Intuitively, there are

(
2m
m

)
possible

cases of which ones are A’s values, and only A and B can
identify one of the

(
2m
m

)
possible cases.

We can also efficiently assign key values to the identified
cases. We do so by assuming a canonical ordering of the
elements in the set, and the more A’s values are towards the
“front” of the set, the higher the value of K is.

To efficiently compute the value of K, we employ standard
techniques for analyzing fixed-weight bitstrings using com-
binatorial2. These techniques and algorithms have long been
known and described in various places such as [7].

For completeness, we present such an algorithm in Algo-
rithm 1 and briefly explain the logic behind the algorithm.

Algorithm 1: Key Determination
Parameters:
Input : A′,Γ′

Output : K
1 We assume there exists some canonical ordering of

elements in a set.
2 Identifies which of γ′

1, . . . , γ
′
2m′ are in the set A′, and

create a bitstring x such that if the ith element is in
A′, then the ith bit is set to 1.

3 Compute m′ = size(A′)
4 K = 0
5 c = m′

6 for i in range(2 ·m′): do
7 if x [i] == 1 then
8 K = K + binomial(2 ·m′ − i− 1 , c)
9 c = c− 1

10 return K

a) Explanation of Algorithm 1: The idea behind Algo-
rithm 1 is to first convert the set of elements into a binary string
using the canonical ordering and assigning 1s at A’s inputs and
0s to B’s input. The algorithm can determine which bit string
this is by examing all the 1 bits that appear and counting how
many bit strings are skipped. For example, let us look at a
simple case of m = 3, and the bit-string being 101010. Upon
seeing the first 1, the algorithm knows all bit-strings of the
form 0 ∗ ∗ ∗ ∗∗ have been skipped over, where the ∗ ∗ ∗ ∗ ∗
consists of 3 1s, and 2 0s. There are

(
5
3

)
of them. Then, upon

seeing the next 1, the algorithm knows all bit-strings of the
form 100∗∗∗ have been skipped over, where the ∗∗∗ represents
2 1s and 1 0s. There are

(
3
2

)
of them. By continuing through

the entire bit-string, the algorithm can determine the value of
this bit-string, thus determining the value of the key K.

C. Performance Analysis and Parameter Choices

Now, we use concentration bounds to show that the expected
key length in our protocol is highly concentrated around the

2We thank our anonymous reviewers for pointing us in the direction of
these techniques.



Key-Agreement Protocol
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1
: A

1
:
Γ
:=

A
∪
B
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:
B

1
:
Γ
: =

A
∪
B 1

:
Γ
:=

A
∪
B

A
1. Receive A ∈ ({0, 1}n)m := {a1, . . . , am}
and Γ = A ∪B := {γ1, . . . , γ2m} from rABB.
2. Disregard γi, γj for all i ̸= j s.t. γi = γj ,
obtaining set Γ′ := γ′

1, . . . , γ
′
2m′ .

3. Compute A′ = A ∩ Γ′.
4. Compute k := Algorithm 1(A′,Γ′).

B
1. Receive B ∈ ({0, 1}n)m := {b1, . . . , bm}
and Γ = A ∪B := {γ1, . . . , γ2m} from rABB.
2. Disregard γi, γj for all i ̸= j s.t. γi = γj ,
obtaining set Γ′ := γ′

1, . . . , γ
′
2m′ .

3. Compute A′ = Γ′ − (B ∩ Γ′).
4. Compute k := Algorithm 1(A′,Γ′).

Fig. 4. Key-agreement protocol between parties A and B in presence of an eavesdropper D in the rABBP,Q
m,m-hybrid, where P,Q are independent uniform

distributions.

mean that is large. Therefore, our protocol outputs a long key
with high probability.

Theorem 1. Fix m,n ∈ N, and 0 ⩽ ε ⩽ 1. Our non-
interactive protocol in Figure 4 uses m messages (each being
n-bit strings) to help parties agree on a key of length at
least k = log

(
2m′

m′

)
= (2m′) · (1 − o(1)) with failure

probability at most exp
(
−ε2 ·m ·

(
1− m

2n

)
/2
)
, where m′ =

m ·
(
1− m

2n

)
· (1− ε).

Proof. Let us fix the elements of B. For each element of A,
there is at least

(
1− m

2n

)
probability that such an element of A

will not be a duplicate of an element of B. Therefore, we can
apply a simplified Chernoff Bound. For 2m′ unique elements,
A and B can agree on a log

(
2m′

m′

)
≈ log

(
4m√
mπ

)
-bit key.

Theorem 2. Fix m,n ∈ N, satisfying m = o
(
2n/3

)
. Using m

messages of size n-bit each, our protocol in Figure 4 allows
parties to agree on a k = log

(
2m
m

)
= 2m · (1− o(1)) bit key

with probability at least 1− exp
(
− m2

2·2n

)
.

Proof. By the birthday bound, with probability at least 1 −
exp

(
− m2

2·2n

)
, all 2m values will be unique. For 2m unique

elements, A and B can agree on a log
(
2m
m

)
-bit key.

Parameter Choices. Our protocol has two main parameters,
m and n. The expected key length increases with m and n. At
the same time, the communication cost increases with m and
n as well. However, we note that this is a simple optimization

problem and that automatic searches for optimal parameters
can be done. Furthermore, for common key-length such as
128 or 256 bits, the search only has to be performed once.

We perform this automated search and present our results
in Figure 5. Concretely, using 702-bits of communication, A
and B can agree on a 128-bit key in expectation, and using
1550-bits of communication, A and B can agree on a 256-bit
key in expectation.

D. Comparison With previous State-of-the-Art

Recall that we are in the setting where parties have access
to a single ABB or rABB that they can call once. To the
best of our knowledge, the best previous state-of-the-art key
agreement protocol that works in this setting is [5]. Other
protocols such as [9] and [14] require that parties send
their message in a random order (which requires additional
assumptions on the synchrony of the system model), and
are often presented as using sequential calls to the ABB in
order to perform key agreement on more than one bit. The
key agreement protocols presented in [24] either require more
communication rounds and communication costs than the one
in [5], or are fundamentally similar to the one in [5].

Therefore, we focus our concrete communication cost anal-
ysis on comparison with [5]. Additionally, we present our
analysis using the expected value of the key length. Similar
analyses can be done on achieving the desired key length with
high probability instead of in expectation by using standard
techniques on concentration bounds, etc.



Fig. 5. For various key lengths k, we plot the communication required (in
bits) such that the expected key length is at least k. We also label two points,
one for 128-bit keys and one for 256-bit keys. We label the key length and
communication required, as well as the parameter choices of m and n used.

To achieve a k-bit key in expectation, [5] requires each party
to send 2k messages, each of length log(2k)+1, where log(2k)
bits are used to represent the sequence identifier and 1-bit
is used to represent the random bit chosen. This results in a
total communication cost of 2k ·(log(2k) + 1). Even when we
assume that parties do not send the leading 0s in the sequence
identifiers, the total communication cost is still 2k+

∑log(2k)
i=1 i·

2i−1 = 2k log(2k) + 1.
We then compare this communication cost for various key

lengths against the result from our automated search results
presented in Figure 5 by taking a ratio of their communication
cost divided by our communication cost, which produced
Figure 1 shown in our contribution at the beginning of the
paper.

For example, for 128-keys, their protocol required 2 ·
128 log(2 · 128) + 1 = 2049 bits of communication while
our protocol required 702 bits of communication, resulting in
a ratio of 2049

702 = 2.9188.
For completeness, we also analyze the sequential version of

the key-agreement protocol in [5]. In the sequential protocol,
parties use number of rounds linear in the length of the key
to achieve a lower communication cost. To obtain a k bit key,
each party sends 1 bit in each of the 2k rounds, resulting in
2k total bits of communication per party.

An anonymous reviewer also proposed an alternate protocol
for key agreement. We will briefly present their proposed
protocol here and then compare our protocol to it.

Recall that in [24], Ishai et al. presented a non-interactive
SUM protocol, in which two parties each send the additive
shares of their values to the ABB. The two parties can sum up
all messages (shares), and then subtract their value to learn the
other’s value, while both values are statistically hidden from

the adversary. This protocol can be used to allow one party
to send a secret/private message to another. To achieve key
agreement, Alice will pick a secret key, create additive shares
of the key, and send them to the ABB, while Bob can send
multiple random values to the ABB. Bob can then identify
Alice’s messages, and use their sum to compute the shared
key.

Firstly, we want to point out that the SUM protocol is
only statistically secure, while our protocol is unconditionally
secure. While having the same round complexity (both being
non-interactive), our protocol achieves a lower total commu-
nication cost (in bits). As stated in Lemma 4.1 from [24], they
require each party share the messages into at least κ shares
such that log

(
2κ
κ

)
> ℓ, where ℓ is the length of the message

in bits. This translates to a bound of k shares of length at
least k bits each in order to obtain a k bit key. This means
the proposed protocol will require k2 bits of communication,
while our protocol only requires 2k ·(log(2k) + 1) bits of total
communication.

E. On the Optimality of Key Length

In this section, we analyze protocols under the setting
of having arbitrary/unlimited message length and show that
our protocol in Figure 4 is near optimal in terms of the
expected key length based on the number of messages. In fact,
we will prove a much stronger result. That is, the expected
key length of any interactive protocol for key agreement in
the rABBP,Q

m,m is at most 2m − poly(logm), where P,Q are
arbitrary independent distributions over ({0, 1}n)m, and n is
the message length. By Theorem 1, for any ε > 0, our protocol
achieves 2(1−ε)m-bit key length with an exponentially small
failure probability (depending on ε). This means that our non-
interactive protocol asymptotically achieves the optimal key
length of the best interactive protocol. We provide detailed
proof below.

First, we upper bound the expected key length by the mutual
information. Then, we show that the mutual information of any
rABBP,Q

m,m is at most log
(
2m
m

)
.

Theorem 3. Let m,n ∈ N and P,Q be independent distri-
butions over ({0, 1}n)m. Suppose parties are in the random
public anonymous bulletin board hybrid rABBP,Q

m,m. Then, the
expected key length in any key agreement protocol (allowing
interaction) is at most I(rABBP,Q

m,m) + 1 + log 3.

We shall employ the techniques developed recently in [29],
[30] to prove the theorem above. We say that Alice and Bob
are in (X,Y )-correlation hybrid if Alice has x and Bob has
y, where (x, y) is sampled according to the joint distribution
(X,Y ). The following result shall be useful for the proof.

Theorem 4. [29], [30] Let (X,Y ) be a joint distribu-
tion. Then, the maximal expected key length in the (X,Y )-
correlation hybrid (allowing an arbitrary amount of commu-
nication) is at most I(X,Y ) + 1 + log 3.

Proof of Theorem 3. Recall the reformulation of rABB as
correlated private randomness in Section IV-E. The correlation



rABBP,Q
m,m is a conditional distribution of the form (X,Y |Z),

where Z the random variable denoting the eavesdropper’s view
(the set A∪B ∪C). Conditioned on fixing the eavesdropper’s
view (Z = z), applying Theorem 4 to the joint distribu-
tion (X,Y |Z = z) yields that the key length is at most
I(X,Y |Z = z) + 1 + log 3. Thus, the expected key length
is at most

Ez[I(X,Y |Z = z) + 1 + log 3] = I(X,Y |Z) + 1 + log 3.

Next, we bound the mutual information of the rABB.

Lemma 1. Let (X,Y |Z) be the correlation corresponding to
the random public bulletin board rABBP,Q

m,m. For each z in the
sample space of the random variable Z, let ℓz be the length
of z after removing all duplicate elements. Then

I(X,Y |Z) =
∑
z

pZ(z) · log
(
2ℓz
ℓz

)
= Ez

[
log

(
2ℓz
ℓz

)]
.

Proof. First, note that Z = X ∪ Y . Thus, H(X|Y,Z) = 0
since X is completely determined conditioned on knowing Y
and Z. We have

I(X,Y |Z)

=
∑
z

pZ(z) · I(X,Y |Z = z)

=
∑
z

pZ(z) · (H(X|Z = z)−H(X|Y, Z = z)) (Fact 1)

=
∑
z

pZ(z) ·H(X|Z = z)

For each x = {a1, a2, . . . , am} in the sample space of X ,
there is no duplicates in x; that is ai ̸= aj for every i ̸= j.
Conditioned on Z = z = {a1, . . . , am, b1, . . . , bm}, which
might contain duplicates, the number of x that are consistent
with z is

(
2ℓz
ℓz

)
. Thus, the support’s size of the random variable

(X|Z = z) is
(
2ℓz
ℓz

)
. Observe that the random variable (X|Z =

z) is uniform over its support. This implies that H(X|Z =
z) = log

(
2ℓz
ℓz

)
, for every z such that pZ(z) > 0. Therefore,

we have

H(X,Y |Z) =
∑
z

pZ(z) · log
(
2ℓz
ℓz

)
,

which completes the proof.

By our construction in Figure 4, it is clear that the expected
key length of our protocol is the quantity Ez log

(
2ℓz
ℓz

)
defined

above. The following results are consequences of Lemma 1.

Corollary V.1. The expected key length of the protocol in
Figure 4 is exactly I(rABBP,Q

m,m), where P and Q are the
distribution that samples m messages randomly without re-
placement.

Corollary V.2. Let m,n ∈ N and let P,Q be arbitrary
distributions over ({0, 1}n)m. Then, the expected key length
of any protocol in the rABBP,Q

m,m is at most log
(
2m
m

)
.

F. Security Analysis

Theorem 5. The key-agreement protocol in Figure 4 securely
establishes a shared key K between A and B, with D learning
no information regarding the key.

Proof. We give an outline of the security proof. The cor-
rectness comes from the fact that A can determine which
elements were received by A and thus belong to A, while
B can determine which elements were received by B and thus
belong to B. Since Γ := A ∪ B, B is also able to determine
which elements were received by A and thus belong to A.
Therefore, the information that A and B have are the same,
and will allow them to agree on the same key K. Regarding
privacy, note that due to the property of rABB, only A and
B can determine which elements were received by A and
thus belong to A. To D, elements belonging to A and B
look indistinguishable. Therefore, only A and B will know
the value of the key K. We also note that since A and B are
chosen according to the same distribution (uniform distribution
in this case), all key values are equally likely to occur and the
adversary gains no information.

G. Duplicate Recovery

We discuss a variant of our protocol named duplicate-
recovery variant that is especially useful in settings where m
is relatively close to 2n, which means that many duplicates
are likely to occur. This protocol allows parties to consider
duplicates as opposed to disregarding them and is optimal
in these settings. (We note that under the same m, having
duplicates will decrease the key length k. This variant is
designed to “recover” slightly from cases when duplicates
exist. However, increasing n such that no duplicates occur
will result in a larger key length.)

We also highlight a combinatorial problem that naturally
arises in this variant that may be of independent interest.

Protocol Overview. This variant of the protocol is very similar
to the original key-agreement protocol, with the key difference
being P and Q allows sample with replacement, i.e. duplicate
messages from the same party are possible and parties do not
discard the duplicates. Then, when parties want to determine
the key k, they have to consider all possible cases. (Note
that for security, P cannot sample values independently and
uniformly at random, instead, P samples in a way such that
every “set” occurs with equal probability. For example, {0, 0}
and {0, 1} have the same probability of occurring. With this,
the security of this variant closely follows the security of the
original protocol.)

In general, given a multi-set of values Γ, one can list all
possible values of A and B that can produce such a multi-set.
However, a direct listing requires exponential computation as
there are exponentially many possible cases. Given a generic
algorithm for counting the number of possible cases, one can
apply the same idea as Algorithm 1 to recursively determine
the k value of a given set of inputs. We note that this generic
algorithm for counting the number of possible cases given Γ
may be of independent interest in the field of combinatorics.



{{0, 0},
{0, 0, 0, 0}}

{{0, 0},
{0, 0, 0, 1}}

{{0, 0},
{0, 0, 1, 1}}

{{0, 1},
{0, 0, 0, 1}}

{{0, 1},
{0, 0, 1, 1}}

{{0, 1},
{0, 1, 1, 1}}

{{1, 1},
{0, 0, 1, 1}}

{{1, 1},
{0, 1, 1, 1}}

{{1, 1},
{1, 1, 1, 1}}

{{0, 0},
{0, 0, 0, 0}}

{{0, 0},
{0, 0, 0, 1}}

{{0, 0},
{0, 0, 1, 1}}

{{0, 1},
{0, 0, 0, 1}}

{{0, 1},
{0, 0, 1, 1}}

{{0, 1},
{0, 1, 1, 1}}

{{1, 1},
{0, 0, 1, 1}}

{{1, 1},
{0, 1, 1, 1}}

{{1, 1},
{1, 1, 1, 1}}

{0, 0, 0, 0}

{0, 0, 0, 1}

{0, 0, 1, 1}

{0, 0, 0, 1}

{0, 0, 1, 1}

{0, 1, 1, 1}

{0, 0, 1, 1}

{0, 1, 1, 1}

{1, 1, 1, 1}

Fig. 6. Bipartite-graph for parties view and transcript for m = 2, n = 1. The
nodes at the left represent the view of A, which includes its private input (A)
and the transcript it sees (Γ). Similarly, the nodes at the right represent the
view of B. Edges represent consistent views (transcript matches the private
inputs produce correct transcript), with the transcript (Γ) labeled above the
edges.

Counting Solutions. We elaborate more on the problem of
counting the number of possible sets that exist for a given Γ.
One can easily do so by enumerating all possible solutions.
For example, let us look at the simple case of when m = 2
and n = 1. Figure 6 shows all possible Γ and the corre-
sponding possible A and B. We can clearly see that when
Γ = {0, 0, 1, 1}, there are 3 possible solutions for A, B, and
when Γ = {0, 1, 1, 1}, there are 2 possible solutions for A, B.

Alternatively, we can model it as an Integer Programming
(IP) problem. Let us define z1, . . . , zN−1 as zi being the
amount of the element i showing up in Γ. Similarly, define
x1, . . . , xN−1 as xi being the amount of i showing up in
A, and y1, . . . , yN−1 being the amount of i in B. Note that
∀i, xi ∈ Z, yi ∈ Z, zi ∈ Z.

We need to find the number of possible solutions to the xis

and yjs satisfying the equations and constraints

N−1∑
i=0

xi = m

N−1∑
i=0

yi = m

∀i, xi + yi = zi

∀i, xi ⩾ 0

∀i, yi ⩾ 0

To the best of our knowledge, there are no works specifically
answering this question. We believe this question may be of
independent interest. We also note that when there are no
duplicates, that is ∀i, zi ⩽ 1, this reduces to a simple binomial
problem with the solution being

(
2m
m

)
.

VI. RANDOM STRING OBLIVIOUS TRANSFER

In this section, we consider the construction of chosen
message random oblivious transfer (cmROT) (see Section III
for definitions) in the rABB-bybrid.

In the rABB-hybrid with the helper C, we construct an
efficient 1-round protocol. We start by describing the problem
setting as follows.

Problem Setting. A and B will like to establish a chosen
message random string oblivious transfer (cmROTℓ) for ℓ-bit
strings between them with A being the receiver and B being
the sender. They have access to a rABB and a helper party C,
as well as a public authenticated channel from B to A. We
note that with the key-agreement protocol, A and B can turn
the public authenticated channel into a private authenticated
channel. Furthermore, by using the technique in Section IV-D,
this key-agreement can be done in parallel with the first step
of the cmROTℓ protocol and does not require any additional
round.

We also note that in our setting, we assume that no dupli-
cates exist. Practically, by setting n to be large enough, we
can ensure that with a high probability, no duplicates exist. In
the event that duplicates occur, parties can simply abort and
rerun the protocol. Therefore, we assume that no duplicates
exist throughout the rest of the section.

We shall prove the following theorem.

Theorem 6. For any ℓ ∈ {1, 2, . . . }, there is a perfectly secure
1-round protocol for cmROTℓ in the rABB-hybrid (with the
helper).

A. Construction

Intuition. We begin with some intuition. The main idea
behind the protocol is that given a set of two values, one
from A and one from B, both B and A can distinguish and
identify the owner of the values, and agree on a random one-
bit message. On the other hand, if the set of two values is
from B and C, then A learns nothing about the message.
Additionally, observe that this still holds if we randomly set



all messages from A to be even (or odd) and C to be odd (or
even respectively), while messages from B contain both even
and odd values.

Additionally, by using the technique discussed in Sec-
tion IV-D, we can effectively perform several parallel calls
to the rABB in the same round.

Formally, the parties utilize rABBP,Q,R, where P = P1 ∪
P2∪· · ·∪Pσ , Q = Q1∪Q2∪· · ·∪Qσ , and R = R1∪R2∪· · ·∪
Rσ for some parameter σ ∈ {1, 2, . . . } (chosen appropriately
later).

Independently, each Pi is in “even mode” with probability
1
2 , which means Pi = P

(EV EN)
i,1 ∪P (EV EN)

i,2 ∪· · ·∪P (EV EN)
i,ℓ ,

where each P
(EV EN)
i,j samples a n bit even value (with

least significant bit being 0) uniformly at random, denoted as
α
(EV EN)
i,j , and outputs the tuple

(
i, j, α

(EV EN)
i,j

)
. Similarly,

each Pi is in “odd mode” with probability 1
2 , which means

Pi = P
(ODD)
i,1 ∪P (ODD)

i,2 ∪· · ·∪P (ODD)
i,ℓ , where each P

(ODD)
i,j

samples a n bit odd value (with least significant bit being
1) uniformly at random, denoted as α

(ODD)
i,j , and outputs the

tuple
(
i, j, α

(ODD)
i,j

)
.

Ri is defined as an independent copy of Pi. Similarly, we
denote the output of Q(EV EN)

i,j as
(
i, j, ω

(EV EN)
i,j

)
.

Qi = Qi,1∪Qi,2∪· · ·∪Qi,ℓ, where each Qi,j independently
samples one even n-bit value uniformly at random and samples
one odd n-bit value uniformly at random, and outputs the set
of the two tuples

{(
i, j, β

(EV EN)
i,j

)
,
(
i, j, β

(ODD)
i,j

)}
.

Parties first invoke rABBP,Q,R, which samples A according
to distribution P , samples B according to distribution Q, and
samples C according to distribution R. rABBP,Q,R then sends
A to A, B to B, and C to C, as well as send Γ = A∪B ∪C
to A, B, C.
A now has σℓ values in the form of

(
i, j, α

()
i,j

)
. C now has

σℓ values in the form of
(
i, j, ω

()
i,j

)
. B now has 2σℓ values in

the form of
(
i, j, β

()
i,j

)
. All parties also see the set containing

all values.
Using the index information, parties can locally sep-

arate the values according to i, j. Each i, j should
now contain

(
i, j, α

()
i,j

)
,
(
i, j, β

(EV EN)
i,j

)
,
(
i, j, β

(ODD)
i,j

)
,

and
(
i, j, ω

()
i,j

)
.

The parties will first look at i, j = 1, and find the
lexicographically smallest i such that the four values they see
contain exactly two even and two odd values. We denote this
as i∗. The parties will now disregard all i ̸= i∗, and focus
only on i∗, j. Note that this means that Pi∗ and Ri∗ were in
different modes, that is, if Pi∗ was in even mode, then Ri∗

was in odd mode, or vice versa. Furthermore, A, having access
to α

()
i∗,j , can identify whether Pi∗ was in even mode or odd

mode. Without loss of generality, let us assume Pi∗ was in
even mode, and Ri∗ is in odd mode. Each i∗, j now con-
tains

(
i∗, j, α

(EV EN)
i∗,j

)
,
(
i∗, j, β

(EV EN)
i∗,j

)
,
(
i∗, j, β

(ODD)
i∗,j

)
,

and
(
i∗, j, ω

(ODD)
i∗,j

)
.

B now computes the two “intermediate message” yEV EN

and yODD (we can equivalently think of them as y0 and
y1). To compute the jth bit of yEV EN , denoted as yEV EN,j ,
B looks at (i∗, j, βi∗,j,EV EN ) and (i∗, j, αi∗,j,EV EN ). If
βi∗,j,EV EN ⩾ αi∗,j,EV EN , then yEV EN,j = 0, else
yEV EN,j = 1. Note that B simply compares the other even
value against βi∗,j,EV EN . In particular, B does not know
whether he is comparing against αi∗,j,EV EN or ωi∗,j,EV EN .
Similarly, if βi∗,j,ODD is the greater of the two odd values
(βi∗,j,ODD ⩾ ωi∗,j,ODD in this case), then yODD,j = 0, else
yODD,j = 1.
B can do this for all i∗, 1 to i∗, ℓ, and obtain two ℓ-bit

messages yEV EN and yODD. B then computes ℓ-bit “key”
rEV EN such that yEV EN ⊕ rEV EN = xEV EN = x0 and
rODD such that yODD ⊕ rODD = xODD = x1.

Since A has αi∗,j,EV EN , A similarly computes yEV EN by
comparing the two even values against each other and setting
yEV EN,j = 0 if α

(EV EN)
i∗,j is smaller than β

(EV EN)
i∗,j , and 1

otherwise. Note that as A cannot distinguish between β
(ODD)
i∗,j

and ω
(ODD)
i∗,j , and thus cannot compute yODD.

Then, using a private authenticated channel, B sends
(rEV EN , rODD) to A, in that order. A can now compute
x0 = xEV EN = yEV EN ⊕rEV EN . Additionally, A computes
b = 0 if αi∗,j is even, and b = 1 otherwise.

Role of C. We briefly discuss the role of C, and why C
is necessary for BEC and ROT, but not for key agreement.
Essentially, C serves to create confusion and cause some in-
formation to be lost/erased. In BEC, with a certain probability,
the message needs to be erased, and that happens precisely
when C influences the protocol (C’s value was selected by B).
In ROT, one of the two messages needs to be erased, and
it’s the message that is affected by C that ends up being lost.
On the other hand, for key agreement, we want to preserve as
much information as possible in order to obtain a larger key.
Thus removing the participation of C from the key agreement
allows the best protocol performance.

Our Construction. Figure 7 presents our protocol construct-
ing cmROTℓ in the rrABB-hybrid. For every message of
the form (i, j, u), we call that (i, j) the identifier of the
message and u the message’s payload. The distributions
P,Q,R are defined as follows. Let σ, ℓ ∈ {1, 2, . . . }. Define
S
(EV EN)
n := {x : x ∈ {0, 1}n, xn = 0} – the set containing

all n-bit even value and S
(ODD)
n = {x : x ∈ {0, 1}n, xn = 1}

– the set containing all n-bit odd value.
For every 1 ⩽ i ⩽ σ and 1 ⩽ j ⩽ ℓ, define P

(EV EN)
i,j is

the uniform distribution over the sample space

S
(EV EN)
i,j,n = {(i, j, α) : α ∈ S(EV EN)

n }.

Similarly, define P
(ODD)
i,j as the uniform distribution over the

sample space

S
(ODD)
i,j,n = {(i, j, α) : α ∈ S(ODD)

n },

and define Qi,j as the uniform distributrion over the sample
sapce

Ti,j,n := S
(EV EN)
i,j,n × S

(ODD)
i,j,n .



Input. B has input (x0, x1) ∈ ({0, 1}ℓ)2 and A has no
inputs.
Hybrid. Parties are in rABBP,Q,R-hybrid with appropriate
P,Q,R such that

1) A has a set A containing σℓ messages of the form
(i, j, u) with distinct identifiers (i, j) and payloads (u’s)
are all even or all odd, where 1 ⩽ i ⩽ σ and 1 ⩽ j ⩽ ℓ.

2) B has a set B containing 2σℓ messages such that,
for any 1 ⩽ i ⩽ σ and 1 ⩽ j ⩽ ℓ, there are two
messages with identifier (i, j) such that their payloads
have different parity.

3) C has a set C containing σℓ messages of the form
(i, j, u) with distinct identifiers (i, j) and payloads (u’s)
are all even or all odd.

Every party also receives Γ = A ∪B ∪ C.

1-Round Protocol.
• Both A and B identify the smallest i∗ ∈ {1, 2, . . . , σ}

such that the payloads of any message in A and any
message in C have different parity.

• For 1 ⩽ j ⩽ ℓ, from the two sets B and Γ, party
B identifies the four messages with identifier (i∗, j).
There are exactly two of them in B and exactly two of
them whose payloads are even. Then, he sets y0,j = 0 if
his even payload is bigger than the other even one and
y0,j = 1 otherwise. Similarly, he sets y1,j = 0 if his
odd payload is bigger than the other odd and y1,j = 1
otherwise.

• B sends (r0, r1) to A using the private authenticated
channel, where r0 = y0 ⊕ x0, r1 = y1 ⊕ x1.

Output Computation. A receives (r0, r1) from B. For 1 ⩽
j ⩽ ℓ, party A identifies the two messages with identifier
(i∗, j) such that (1) one of them is in A and (2) their payloads
have the same parity.

1) Case 1: If the two payloads are even, A sets ỹ0,j = 0 if
his payload is smaller than the other and sets ỹ0,j = 1
otherwise.

2) Case 2: If the two payloads are odd, A sets ỹ1,j = 0 if
his payload is smaller than the other and sets ỹ1,j = 1
otherwise.

Then A outputs (b = 0, ỹ0 ⊕ r0) in case 1, and A outputs
(b = 1, ỹ1 ⊕ r1) in case 2. In any case, B outputs nothing.

Fig. 7. Realizing cmROTℓ in rABBP,Q,R-hybrid with appropriately chosen
independent distributions P,Q,R. The parameter σ is chosen large enough
so that the probability for the existence of such i∗ is negligible.

Now, for every 1 ⩽ i ⩽ σ, define Pi is the uniform distribution
over the sample space

Si,n :=

S
(EV EN)
i,1,n × S

(EV EN)
i,2,n × . . .× S

(EV EN)
i,ℓ,n

∪ S
(ODD)
i,1,n × S

(ODD)
i,2,n × . . .× S

(ODD)
i,ℓ,n .

Define Ri as an i.i.d of Pi. For every 1 ⩽ i ⩽ σ, define
Qi as the joint distribution of independent random variables
X1, X2, . . . , Xℓ distributed according to Qi,1, Qi,2, . . . , Qi,ℓ,
respectively.

Next, define P as the joint distribution (P1, P2, . . . , Pℓ).
Similarly, Q := (Q1, Q2, . . . , Qℓ) and R := (R1, R2, . . . , Rℓ).

B. Correctness and Security Proofs

We provide a high-level proof overview of the security and
correctness of our protocol.
A and B can both distinguish between βi∗,j,EV EN and

αi∗,j,EV EN (or βi∗,j,ODD and αi∗,j,ODD) and can thus agree
on the same message xb.

A corrupt A cannot distinguish between βi∗,j,EV EN and
ωi∗,j,EV EN (or βi∗,j,ODD and ωi∗,j,ODD), therefore A does
not learn anything about the x1−b

A corrupt B cannot distinguish between the case where the
two values are αi∗,j,EV EN and ωi∗,j,ODD, or the case where
the two values are αi∗,j,ODD and ωi∗,j,EV EN . Therefore, B
learns nothing about which message A received (the bit b).

A corrupt C does not see rEV EN and rODD. Therefore,
although C can learn one of yEV EN , yODD, C learns nothing
about xEV EN or xODD.

While our protocol does have a small failure probability, all
such failures are publicly detectable. Conditioned on the fact
that failure does not occur, our protocol is unconditionally
secure. Furthermore, given the protocol output, a reverse
sampling of the view of the parties is efficient. Therefore, we
can trivially construct a simulator that simulates the view of
the corrupt party.

C. Performance Analysis

We provide a brief discussion on how our protocol compares
to the protocol presented in [24]. As stated in [24], once we
can obtain key agreement using rABB, we can then implement
general honest majority MPC to obtain primitives such as
random OT.

Concretely, to get random OT assuming shared keys be-
tween all pairs of A, B, and C, at least two rounds of commu-
nication are required. In contrast, our protocol achieves chosen
message random OT in a single round of communication.

Regarding our communication cost, each party receives
at most 2 · σ · ℓ · n · log(σ) · log(ℓ) bits from the rABB
(excluding Γ) and sends at most 2 · ℓ bits through the private
authenticated channel. Therefore, our communication cost is
O(σℓ log(σ) log(ℓ)n).

The failure probability of our protocol is upper bounded
by 2−σ (where all Pi and Qi are in the same mode) plus



1−
(
1− 2n−1

)2ℓ
(probability of having at least 1 collision in

the messages).
An anonymous reviewer also proposed an alternate protocol

for ROT. We will briefly present their proposed protocol here
and then compare our protocol to it.

Similar to the reviewer proposed key agreement protocol,
recall that in [24], Ishai et al. presented a non-interactive SUM
protocol, in which two parties each send the additive shares
of their values to the ABB. The two parties can sum up all
messages (shares), and then subtract their value to learn the
other’s value, while both values are statistically hidden from
the adversary. This protocol can be used to allow one party to
send a secret/private message to another. To achieve ROT, the
helper party C can pick random m0,m1, b, and send (m0,m1)
to B and (b,mb) to A. We note that although in this case, the
helper party C will know m0,m1, b, if we follow Corollary I.2,
then both the chosen message as well as the choice bit can be
hidden from C.

As stated in the key agreement, we want to point out
that the SUM protocol is only statistically secure, while our
protocol is unconditionally secure. While having the same
round complexity (both being non-interactive), our protocol
achieves a lower total communication cost (in bits). As stated
in Lemma 4.1 from [24], they require each party share the
messages into at least κ shares such that log

(
2κ
κ

)
> ℓ, where

ℓ is the length of the message in bits. This translates to a
bound of k shares of length at least ℓ bits each in order to
send a ℓ bit message. This means the proposed protocol will
require Ω(ℓ2) bits of communication, while our protocol only
requires O (ℓ log(ℓ)) bits of total communication.

Remark 3 (Optimality of Round Complexity). We note that as
we can trivially get BEC(0.5) from a chosen message random
oblivious transfer, the existence of a non-interactive chosen
message random oblivious transfer will imply the existence of
a non-interactive BEC protocol, which contradicts Theorem 7.
This proves that our chosen message random oblivious transfer
is round optimal. We note that as this is based on Theorem 7,
this round optimality only applies to uniform distributions.
We note that the reviewer proposed protocol above is able
to bypass this bound by using non-uniform distribution, and
do not contradict this bound.

D. Generalizations and Extensions
Construction for Corollary I.1 (Non-interactive Random

String Oblivious Transfer) We extend our protocol to a non-
interactive random string oblivious transfer where both the
message and the choice are random. In our protocol, B and
A used our non-interactive key-agreement protocol to agree
on a random shared key that is used to establish a private
authenticated channel in which B is able to send rEV EN and
rODD to A in order to determine the message. Instead of
sending rEV EN and rODD using the shared key, B and A
can directly derive rEV EN and rODD from the key in a non-
interactive way. Since the shared key is random, the resulting
rEV EN and rODD will also be random. This results in a non-
interactive random oblivious transfer protocol.

Construction for Corollary I.2 (2-round Chosen Message
String Oblivious Transfer) Following standard techniques of
obtaining cmOT from cmROT, the receiver will first send a
bit to the sender, which tells the sender if he needs to swap
the two correction messages or not. This allow us to obtain
a 2-round chosen message oblivious transfer from a 1-round
chosen message random oblivious transfer.

1-out-of-N Oblivious Transfer In our protocol, we parti-
tioned values into even and odd, which results in a 1-out-of-2
cmROTℓ. Our protocol can be generalized to any partitioning
scheme ΠN where values are partitioned into N subsets. Our
protocol will be modified to give A one value belonging to
one of the subsets, B N value where each value belonging to
a different subset (one value each from each subset), and C
N − 1 values that belong to all subsets except the one A
received. The rest of the protocol is modified accordingly.
This allows us to achieve one round 1-out-of-N OT. However,
note that the failure probability will now be N−σ . In order
to keep the failure probability low, σ needs to be increased
accordingly, which increases the communication complexity
of our protocol.

Alternatively, we can also use a standard technique of using
log(N) 1-out-of-2 OTs to achieve 1-out-of-N OT.

Note that this result applies to all the different types of OT
and ROT.

VII. ON THE LOWER BOUND OF BEC

This section will show that it is impossible to securely
implement BEC in the rABB-hybrid without communication.
In fact, we will show that it is impossible to implement the
BEC with randomized inputs, a weaker functionality. We shall
employ the techniques from secure non-interactive simulation
(SNIS/SNIR), recently introduced in [2], [26], [27], to prove
the following theorem.

Theorem 7. Let p ∈ (0, 1) be the erasure probability. Any zero
round protocol implementing BEC(p) in rABBUA,UB ,UC

mA,mB ,mC
-

hybrid has constant insecurity, where UA, UB , UC are uniform
distribution over ({0, 1}n)mA , ({0, 1}n)mB , ({0, 1}n)mC re-
spectively, and n is the message length.

Proof Sketch. We prove this by contradiction. Suppose that it
is possible to get BEC(p) from the rABBUA,UB ,UC

mA,mB ,mC
. It follows

from [2], [26] that if it is possible to implement the randomized
inputs BEC(p) from some other distribution (X,Y ), then the
eigenvalues of BEC(p) must be a subset of eigenvalues of the
distribution (X,Y ). Note that the eigenvalues of BEC(p) are
1 and

√
1− p. The correlation rABBmA,mB ,mC

is a family of
joint distributions of the form (X,Y |Z). Therefore, it must
be the case that

√
1− p is an eigenvalue of the correlation

(X,Y |Z = z), for every z in support of the random variable
Z. This implies that

√
1− p is an eigenvalue of all the

conditional distributions (X,Y |Z = z), which is impossible.
We provide elaborated arguments on Appendix A. Addi-

tionally, we propose an alternative round-optimal protocol for
achieving BEC in Appendix A
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APPENDIX

On the Lowerbound of BEC

Theorem 8. Suppose p = e/d for e, d ∈ {1, 2, . . . }
and e < d. Any zero round protocol implement-
ing BEC(p) in rABBUA,UB ,UC

d−e,1,e -hybrid has constant inse-
curity, where UA, UB , UC are uniform distribution over
({0, 1}n)d−e, {0, 1}n, ({0, 1}n)e respectively, and n is the
message length.

Proof. We prove this by contradiction. Suppose there is a
non-interactive secure protocol for BEC(p) in rABB-hybrid.
We introduce some terminologies and notations. Let m =
mA +mB +mC . Let A,B,C be random variables sampled
according to the distributions UA, UB , UC , respectively. Recall
that A ∪ B ∪ C contains no duplicate with high probability
over the random choices of A,B,C. Let Γ be a set containing
m distinct elements in {0, 1}n. Consider the conditional
distribution (A,B|A ∪ B ∪ C = Γ). After removing all
zero rows and columns, the probability mass function of
(A,B|A∪B∪C = Γ) is a matrix of size

(
m
mA

)
×
(

m
mB

)
. From

now, we refer to (A,B|A ∪ B ∪ C = Γ) as the distribution
after removing all these zero rows and columns. Observe that
any protocol realizing BEC(p) from (A,B|A ∪ B ∪ C = Γ)
has constant insecurity if there is no perfectly secure protocol
realizing BEC(p) from that distribution. Now, observe that
for any two Γ and Γ′ each containing m distinct elements,
the probability mass functions (A,B|A ∪ B ∪ C = Γ) and
(A,B|A ∪ B ∪ C = Γ′) are the same (up to permutations
of rows and columns). Therefore, there must exist a perfect
secure protocol for BEC(p) from (A,B|A ∪B ∪ C = Γ).

Now, we employ the technique developed recently in secure
non-interactive simulation/reduction [26]. Let T and T̄ be the
Markov and the adjoint Markov operator associated with the
conditional distribution (A,B|A ∪ B ∪ C = Γ) (refer to [26]
for definitions).

There is a perfectly secure protocol if and only if there are
functions f, g such that

Tg = f, and T̄ f = (1− p)g.

Combining two equations together yields T T̄f = (1 − p)f.
This implies that (1− p) is an eigenvalue of the operator T T̄
with associated eigenvector f . We shall show that these two
conditions yield a contradiction. Observe that any column of
T T̄ is a permutation of any other column of T T̄ . Following
the approach in [26], [27], the function f must have only
two output values 1 or −1. These two facts together give the
contradiction.

Binary Erasure Channel Rabin and Crépeau [11], [37],
[38] showed that binary erasure channels suffice for general
secure computation using interaction. These elegant noise
sources provide uncluttered access to abstract the primary hur-
dles in achieving security. This section focuses on constructing
binary erasure channels in the rABB-hybrid. We present our
round-optimal secure protocols.
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A. Problem Setting.

Suppose parties are in the rABBP,Q,R
mA,mB ,mC

hybrid (with
the helper C). That is, party A has A = {a1, a2, . . . , amA

}
sampled according to P , party B has B = {b1, b2, . . . , bmB

}
sampled according to Q, and C has C = {c1, c2, . . . , cmC

}
sampled according to R. Furthermore, all parties have the set
A∪B∪C. Parties A and B want to establish a binary erasure
channel BEC(p) between them, with A being the receiver and
B being the sender. Parties A and B can communicate via
an authenticated channel. We are in the semi-honest adversary
model; that is, parties follow the protocol description but are
curious to learn more from the protocol’s transcript. Unlike in
the key agreement protocols, the adversary here can corrupt a
party.

For the binary erasure channel, without loss of generality,
we assume that B is the sender and A is the receiver. So
B will send a bit β to A. The protocol is correct if A
receives β with probability (1−p), and A receives ⊥ (nothing)
with erasure probability p. We define security following the
standard simulation-based definition. Intuitively, it is secure
against the corrupted sender B if B does not know whether the
sender bit gets erased or not; it is secure against the corrupted
receiver if the sender bit is uniformly random in the receiver’s
view whenever she outputs ⊥. We say that the protocol is
ε-statistical secure if the simulation error is at most ε, and
perfectly secure if ε = 0.

We assume that no duplicates exist throughout the rest of the
section. In the event that duplicates occur, parties can abort and
rerun the protocol. Practically, by setting n to be large enough,
we can ensure that with a high probability, no duplicates exist.
Remark. We note that with the key-agreement protocols in the
previous section, A and B can establish a private authenticated
channel from an authenticated channel. Furthermore, using the
technique in Section IV-D, we can establish the private authen-
ticated channel in parallel with the BEC protocol without using
any additional rounds of communication.

Theorem 9. Let p ∈ (0, 1) be a rational number. There is a
perfectly secure one-round protocol for BEC(p) in the rABB-
hybrid.

Remark. The communication cost in our protocol is propor-
tional to the denominator of the erasure probability. We left
determining the minimum communication cost as an open
problem.

Note that any irrational number can be approximated by
a rational number with arbitrary precision. For example, this
can be done by using Drichilet’s approximation algorithm.
Therefore, we have the following result as a corollary.

Corollary A.1. For any erasure probability p ∈ (0, 1) and
ε ∈ (0, 1), there is a ε-statistical secure one-round protocol
for BEC(p) in the rABB-hybrid.

B. Construction

We present our protocol in Figure 8, as well as provide an
overview of the protocol below.

The main idea behind the protocol is that given a set of
two values, one from A and one from B, both B and A can
distinguish and identify the owner of the value, and agree on
a one-bit key used to send a one-bit message. On the other
hand, if the set of two inputs is from B and C, then A learns
nothing about the key and thus nothing about the message.

Therefore, in the protocol, A and C will each receive several
values from the rABB, while B receives one value. B will then
select two values from the multi-set published by the rABB,
ensuring that one of them is his value, and encrypt the bit
message using the key derived from those two values. If he
selected his value and one of C’s values, then the message is
erased. If he selected his value and one of A’s values, then A
receives the message. Note that B cannot distinguish between
A’s and C’s value, so B will not know if the message was
erased, and A cannot distinguish between B and C’s value, so
the message can indeed be erased.

C. Correctness and Security Proofs

Correctness. Observe that γi ̸= γj since there are no colli-
sions at all. Thus, γi > γj with probability 1/2 and γi < γj
with probability 1/2. Thus, the bit k is a uniformly random
bit. Observe that γi ∈ A with probability (d − e)/d. So, A’s
output is β with probability 1 − e/d and ⊥ with probability
e/d. Therefore, the protocol is perfectly correct.

Security. For security against a corrupted B, whether the bit
gets erased or not depends entirely on the event γj ∈ A that B
knows nothing about. Therefore, B does not know whether A’s
output is ⊥ (erased) or β. For security against a corrupted A,
we need to show that when A outputs ⊥, the bit β is uniformly
random in the view of A. A outputs ⊥ when γj /∈ A. In
A’s view, the event γi > γj is uniformly random. It means
that A has β masking with a uniformly random bit. Hence, it
follows from the property of the one-time pad that the bit β
is uniformly random in A’s view.



Binary Erasure Channel for p = e
d

A B C D

rABBP,Q,R
d−e,1,e

1
: A

1
:
Γ
:=

A
∪
B
∪
C

1
:
B

1
:
Γ
: =

A
∪
B
∪
C 1

:
Γ
:=

A
∪
B
∪
C

1
:
C

1
:
Γ
:=

A
∪
B
∪
C

2 :
{γi, γj},
β ⊕ k

A
1. Receive A ∈ ({0, 1}n)d−e := {a1, . . . , ad−e}
and Γ = A ∪B ∪ C := {γ1, . . . , γd+1} from rABB.
2. Receive {γi, γj}, β ⊕ k from B.
3. (Assume γi ∈ B) If γj ∈ A:

3.1 If γi > γj set k = 0.
3.2 Else (γi ⩽ γj) set k = 1.
3.3 Compute β = (β ⊕ k)⊕ k.

4. Else (γj /∈ A), β =⊥.

B
1. Receive B ∈ {0, 1}n := {b}
and Γ = A ∪B ∪ C := {γ1, . . . , γd+1} from rABB.
2. Choose γi, γj randomly s.t.
i ̸= j and b ∈ {γi, γj}.
3. (Assume b = γi). If γi > γj , set k = 0.
4. Else (γi ⩽ γj), set k = 1.
5. Send {γi, γj}, β ⊕ k to A.

C
1. Receive C := {c1, . . . , ce}
and Γ = A ∪B ∪ C := {γ1, . . . , γd+1} from rABB.

Fig. 8. Binary Erasure Channel from B to A using a helper C and in presence of an eavesdropper D
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