
On the practical CPAD security of “exact” and
threshold FHE schemes and libraries⋆

Marina Checri, Renaud Sirdey, Aymen Boudguiga, Jean-Paul Bultel and
Antoine Choffrut
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Abstract. In their 2021 seminal paper, Li and Micciancio [9] presented
a passive attack against the CKKS approximate FHE scheme and in-
troduced the notion of CPAD security. The current status quo is that
this line of attacks does not apply to “exact” FHE. In this paper, we
challenge this statu quo by exhibiting a CPAD key recovery attack on
the linearly homomorphic Regev cryptosystem which easily generalizes
to other xHE schemes such as BFV, BGV and TFHE showing that these
cryptosystems are not CPAD secure in their basic form. We also show
that existing threshold variants of BFV, BGV and CKKS are particu-
larily exposed to CPAD attackers and would be CPAD-insecure without
smudging noise addition after partial decryption. Finally we successfully
implement our attack against several mainstream FHE libraries and dis-
cuss a number of natural countermeasures and discuss their consequences
in terms of FHE practice, security and efficiency. The attack itself is quite
practical as it typically takes less than an hour on an average laptop PC,
requiring a few thousand ciphertexts as well as up to around a million
evaluations/decryptions, to perform a full key recovery.

Preliminary remark: The FHE schemes which are studied in this paper are
all proven secure with respect to the CPA security game in which the adversary
has no access to a decryption oracle. It is well known, that all the schemes
considered in this paper are trivially insecure with respect to the CCA(1) security
game. The CPAD security game with respect to which we define our attack grants
the adversary access to a (very constrained) decryption oracle and, as such,
grants him or her more power than allowed by the CPA game. As a consequence,
there is no contradiction between the CPA security of the schemes considered in
this paper and the existence of the attacks that we present.

1 Introduction

Since its inception more than 10 years ago, Fully Homomorphic Encryption
has been the subject of a lot of research towards more efficiency and better
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practicality. From a security perspective, however, FHE still raises a number of
questions and challenges. In particular, all the FHE usable in practice, BFV,
BGV, CKKS and TFHE, achieve only CPA-security. Although it is well-known
that malleability is contradictory with CCA2 security, building efficient FHE
construction achieving some degree of CCA security (e.g. CCA1) remains a very
important open challenge. Being stuck at the CPA level, FHE is thus completely
insecure (and trivially so) as soon as the adversary is granted access to a de-
cryption oracle. In this context, Li and Micciancio [9] were the first to study the
security of FHE against a slight, seamlessly benign extension of CPA security
where the adversary is granted access to a highly constrained decryption oracle
which accepts only genuine ciphertexts or ciphertexts derived from genuine ci-
phertexts by means of genuine homomorphic operations. The intuition is that,
given a FHE scheme S = (KeyGen,Enc,Dec,Eval), if the adversary knows m, f
as well as c = Enc(m), granting her access to Dec(Eval(f, c)) should not raise
any issue since she can compute f(m) by herself and, by definition of FHE,

Dec(Eval(f,Enc(m))) = f(m) (1)

is supposed to hold for all m in the plaintext domain of S. At first glance, it
appears that this constrained oracle does not provide more information to the
adversary than she can compute on herself and, as such, that this CPAD security
is implied or even equivalent to CPA security. Unfortunately, Li and Micciancio
demonstrated that these intuitions are not true for approximate FHE scheme
such as CKKS for which it turns out that neither Dec(Enc(m)) =m nor (1) hold
(with high probability) and where the differences Dec(Enc(m)) −m or

Dec(Eval(f,Enc(m))) − f(m)

leak the LWE noises in the ciphertexts resulting in the ability for the adversary
to easily and practically recover the secret decryption key of the scheme. They
further demonstrated the attack practicality on most mainstream libraries im-
plementing CKKS. To the best of our knowledge, the current consensus in the
state-of-the-art is that this line of attack does not apply to the other schemes
such as BFV, BGV or TFHE which are “marketed” as non-approximate. In
fact, as we shall later see, “non-approximate” does not mean “exact”, and these
schemes, at least in their basic forms, are practically vulnerable to CPAD ad-
versaries.

This paper is organised as follows: we first recall the CPAD security game
in Sect. 2. In Sect. 3 We then detail the principles of our attack starting from
vanilla Regev and its RLWE variant. Sect. 4 then adapts the attack to BFV, BGV
and TFHE and provides experimental results showing the attack praticality on
some of the mainstream libraries implementing them. Lastly, Sect. 5 discuss the
implications of our attack on existing threshold variants of these cryptosystems.
We conclude the paper by a discussion on countermeasures and their implications
in terms of FHE efficiency.
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2 Background on CPAD security

In this section, we recall the CPAD security game [9].
Given an encryption scheme

S = (KeyGen,Enc,Dec,Eval),

an adversaryA and value λ for the security parameter, the game is parameterized

by a bit b∗
$←Ð {0,1}, unknown to A, and an initially empty state S of message-

message-ciphertext triplets:

– Key generation: Run (ek,dk) ← KeyGen(1λ), and give ek to A (note that
this security game works identically in the non-public key setting, only ek is
not revealed to A).

– Encryption request: When A queries (test messages,m0,m1), m0,m1 ∈ P
compute c = Encek(mb∗), give c to A and do

S ∶= [S; (m0,m1, c)].

– Evaluation request: When A queries (eval, f, l1, . . . , lK) (li ≤ ∣S∣,∀i), com-
pute

m′0 = f(S[l1].m0, . . . , S[lK].m0),
and

m′1 = f(S[l1].m1, . . . , S[lK].m1),
as well as

c′ = Eval(f,S[l1].c, . . . , S[lK].c),
and do

S ∶= [S; (m′0,m′1, c′)].
– Decryption request: When A queries (ciphertext, l) (l ≤ ∣S∣) proceed as

follows: if S[l].m0 ≠ S[l].m1 then return � to A, otherwise return her
Decdk(S[l].c).

– Guessing stage (after polynomially many interleaved encryption and decryp-
tion requests): When A outputs (guess, b), the outcome of the game is de-
termined as follows. If b = b∗ then A wins the game. Otherwise, A looses the
game.

A number of points should be emphasized with respect to the above game.
First, the decryption oracle accepts only ciphertexts from the game state which
are necessarily well-formed (either produced by an encryption oracle via an en-
cryption request or derived by the evaluation oracle via an evaluation request
i.e. derived by correctly applying homomorphic operators to well-formed cipher-
texts). As such, the above game thus does not capture any CCA aspects. Sec-
ond, when S[l].m0 = S[l].m1 it is important that the decryption oracle returns
Decdk(S[l].c) and not S[l].m0 (or, equivalently in this case, S[l].m1). For ex-
act FHE, this has no impact as, Decdk(S[l].c) = S[l].m0 = S[l].m1 in this case
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(and, as A learns nothing it does not already knows, CPAD security coincide
with CPA security for exact FHE). For approximate or non-exact FHE, how-
ever, even when S[l].m0 = S[l].m1, we may have that Decdk(S[l].c) ≠ S[l].m0

and Decdk(S[l].c) ≠ S[l].m1. Thus for approximate or non-exact FHEs, the de-
cryption oracle grants A access to information she cannot compute on her own,
resulting or not in a guessing advantage depending on whether or not the cryp-
tosystem at hand is CPAD secure. As a last remark, let us also emphasize that
in the above game, A has control on the homomorphic calculations that are
performed as f is included in the evaluation request.

3 A CPAD key recovery attack on Regev

In this section, after recalling the specification of the Regev cryptosystem, we
describe how a CPAD attacker can retrieve the absolute value of the LWE noise
in some ciphertexts and then find ciphertexts with noises of same sign. After
enough such ciphertexts have been obtained, the adversary is then able to recover
the scheme secret key by solving two linear systems.

3.1 The Regev cryptosystem

We first start by considering the simple Regev cryptosystem [12]. Withouth loss
of generality, we describe only the symetric variant which is parametrized by a
dimension n, an integer q and a probability distribution χσ on Zq with standard
deviation σ. Plaintexts are elements of Z2 and ciphertexts are elements of Zn

q ×Zq.
The algorithms of the scheme are as follows:

– KeyGen: pick a (symmetric) secret key s ∈ Zn
q (different probability distribu-

tions are possible).
– Encrypt: given a plaintext m ∈ Z2, pick a ∈ Zn

q uniformly at random, pick e
in Zq according to χσ, and return (a; b) with b = ⟨a, s⟩ + q

2
m + e.

– Decrypt: given a ciphertext ct = (a; b), return ⌈ 2
q
(b − ⟨a, s⟩)⌋ mod 2.

For this cryptosystem, ciphertexts such that

q

4
≤ b − ⟨a, s⟩ < 3q

4

decrypt to 1. Other ciphertexts decrypt to 0. It is well-known that the Regev
cryptosystem is additively homomorphic as given two ciphertexts (a; b) and
(a′; b′) of messages m and m′, ciphertext (a + a′; b + b′) is an encryption of
m +m′, provided the total error is bounded by q/4.

3.2 Extracting the noise amplitude of a given ciphertext

In this section, we show how to determine the absolute value of the noise of an
encryption of 0 by means only of valid CPAD security game requests. Given a
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ciphertext c, we denote by idx(c), its index in the game state S (note that A can
mirror state S on its side).

Extracting the additive depth k. The first step consists in asking for
an encryption of 0 via a request of the form (test messages,0,0). A then
gets c0 = (a; ⟨a, s⟩ + e), e being of course unknown to her. By means of CPAD

game requests of the form (eval, sum, idx(c0), idx(c0)), (ciphertext, idx(c1)),
(eval, sum, idx(c1), idx(c1)), (ciphertext, idx(c2)), . . ., (eval, sum, idx(ck−1), idx(ck−1)),
(ciphertext, idx(ck)), A can obtain ciphertexts c1 = c0 + c0, ..., ck = ck−1 + ck−1
where

ck = (2ka; ⟨2ka, s⟩ + 2ke).
and decrypt them, stopping either when ck−1 decrypts to 0 and ck decrypts to
1, in which case A can conclude that

q

2k+2
≤ ∣e∣ < q

2k+1
, (2)

or when ck still decrypts to 0 when 2k > q
4
, in which case she can conclude that

∣e∣ = e = 0 and gets one linear equation in s (the probability of this happening
depending on the noise distribution).

The parameter α∗. Now, unless c0 is identified as noise free, given 1 ≤ α <
q
4
such that α = ∑⌈log2(α)⌉

k=0 αk2
k, via one of more CPAD game (eval, sum, ...)

requests , A obtains ciphertext

c(α) ∶= ∑
k∶αk=1

ck,

so that
c(α) = (αa; ⟨αa, s⟩ + αe) .

The adversary can then start a dichotomic search for the value α∗ such that
c(α∗) duly decrypts to 0 while c(α∗+1) decrypts to 1 and conclude that

q

4(α∗ + 1)
≤ ∣e∣ < q

4α∗
. (3)

Determination of ∣e∣. Then ∣e∣ is uniquely determined when ⌈ q
4(α∗+1)⌉ =

⌊ q
4α∗
⌋ and this occurs (Sect. A) when

∣e∣ <
√
q

2
. (4)

So the bottom-line, at this point, is whether or not this is likely to occur often
enough to lead to a practical attack considering commonly used FHE parameters.
For example, for TFHE, q = 232 and σ = 217 are often used. Then ciphertexts
with noise below

√
q/4 = 215 will have their noise completely determined. A
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“back of the envelope” calculation tells us that this will be the case for around
20% of the ciphertexts. So, as an order of magnitude, with the above parameter
set, the attack will need to work over around 1.5 × n/0.2 fresh encryptions of 0
to achieve a full key recovery. For BFV, BGV, the tendency generally is to use
quite large moduli e.g., 2200, and small variance e.g., σ = 3.2. With this kind of
parameters condition (4), is satisfied with overwhelming probability.

All the decrypted values used in this section are obtained by means of CPAD

game requests of the form (ciphertext, idx(c(α∗))) as all involved ciphertexts
are by construction registered in the game state S. The magnitude of the noise in
our original c0 is then determined by means only of valid CPAD game requests.

3.3 Identifying ciphertexts with noise of equal sign

We now consider two ciphertexts c0 and c′0 for which ∣e∣ > 0 and ∣e′∣ > 0 (as
well as α∗ and α′∗) have been determined following the previous section. Now,

if α∗∣e∣ + α′∗∣e′∣ > q
4
, A obtains ciphertext c(α∗) + c(α′∗) via a CPAD game eval

request, similarly to the previous Sect. If this latter ciphertext decrypts to 1, she
can conclude that e and e′ have the same sign (as α∗e and α′∗e

′ have added up
over q

4
). Otherwise, when 0 is obtained as a decryption, α′∗e

′ partially cancelled
α∗e and the resulting noise magnitude remained below q

4
.

3.4 Finalizing key recovery

Using the techniques in the two previous section A can now proceed as follows,
starting from an initial encryption of 0, c0, obtained by means of a CPAD game
test messages request for which ∣e∣ > 0 is exactly determined. She then looks
for a second encryption of 0, c′0 such that ∣e′∣ is determined and checks if c′0’s
noise e′ has the same noise sign as c0’s noise e from the CPAD game as in Sect.
3.3 (note that noise-free ciphertexts are always kept at this stage). If not, A
discards c′0 and restarts, otherwise she keeps c′0. A then repeats this procedure
until she gets N ciphertexts c1, ..., cN with known noise magnitudes ∣e1∣, ..., ∣eN ∣
(determined from the CPAD game as in Sect. 3.2) and same noise signs (that
is, either ei = ∣ei∣ for each i or ei = −∣ei∣ for each i). Then there only remains to
solve the two linear systems

⟨a1, s⟩ = b1 + ∣e1∣
. . . = . . .

⟨aN , s⟩ = bN + ∣eN ∣

and

⟨a1, s⟩ = b1 − ∣e1∣
. . . = . . .

⟨aN , s⟩ = bN − ∣eN ∣,
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getting two candidate values for the secret key s. She can then determine which
of these two solutions is the correct key by asking a few more encryptions of 0
and attempting to decrypt them with our candidate secret key (with the correct
one always leading correct decryptions). Once the correct key is identified, A
trivially wins the CPAD game by decrypting the outcome of a single request of
the form (test messages,0,1).

3.5 First experimental results

Table 3.5 provides some statistics for a number of representative LWE parameter
sets. These statistics have been obtained with a preliminary Python implemen-
tation of the attack on Regev. In the table, n, q, σ are the LWE parameters,
λ the security level (estimated with the lattice-estimator1), P is the proportion
of ciphertexts for which ∣e∣ was determined, P0 the proportion of ciphertexts for
which ∣e∣ = 0, the other columns respectively provide the number of encryption,
evaluation and decryption requests done to achieve secret key recovery. Follow-
ing these results, we are now ready to attempt implementing the attack against
real-world libraries. We do so in Sect. 3.

n q σ λ P P0 # enc # eval # dec

636 232 217 97 0.235 ε 5358 150437 150437
1024 232 217 175 0.226 ε 8427 236324 236324
8192 2240 3.19 82 1 0.13 14593 6512218 6512218
16384 2240 3.19 218 1 0.16 29016 12924174 12924174

Table 1. Statistics obtained by a proof-of-concept implementation of the attack in
Sect. 3. The security level λ is estimated using the lattice-estimator. Note that for the
last two rows, we are always able to determine ∣e∣ (hence P = 1) since the condition
that ∣e∣ <

√
q/2, see (3), is satisfied with overwhelming probability.

3.6 Adaptation to RLWE

Let us consider an elementary RLWE variant of Regev working over Zq[X]/(XN+
1) [10], where N is a power of 2. Encryption: given m0, ...,mN−1 ∈ ZN

2 return
(a; b) where b = a.s + q

2
pm + e where pm(X) = ∑N−1

i=0 miX
i. Decryption: given

(a; b), return ⌈ 2
q
(b − a.s)⌋ mod 2 where the rounding is performed coefficient-

wise. Essentially, this RLWE variant consists in grouping N LWE pairs in a
single ciphertext as the i-th (i = 0, ...,N − 1) coefficient of polynomial b is

i

∑
j=0

ai−jsj −
N−1
∑

j=i+1
ai+N−jsj +

q

2
mi + ei. (5)

1 https://github.com/malb/lattice-estimator

https://github.com/malb/lattice-estimator
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As such, our attack on Regev is straightforward to adapt to this RLWE set-
ting by focusing on a single arbitrarily chosen coefficient, say i, of the involved
polynomial. For example, illustrating this for the first steps of the attack, the
adversary starts by asking for an encryption of the null polynomial p0 via
a request of the form (test messages, p0, p0). A then gets c0 = (a;a.s + e),
the polynomial e being of course unknown to her. Similarly to the LWE case,
by means of CPAD game requests of the form (eval, sum, idx(c0), idx(c0)), ...,
(eval, sum, idx(ck−1), idx(ck−1)), A can obtain ciphertexts c1 = c0 + c0, ..., ck =
ck−1 + ck−1 where

ck = (2ka; 2ka.s + 2ke).
stopping either when ck−1 decrypts to a polynomial whose i-th coefficient is 0
and ck decrypts to a polynomial whose i-th coefficient is 1 (ignoring the values
of coefficients j ≠ i in the decrypted polynomials), in case A can conclude that

q

2k+2
< ∣ei∣ ≤

q

2k+1
,

or when ck still decrypts to a polynomial whose i-th coefficient is 0 when 2k > q
4
,

in which case she can conclude that ∣ei∣ = ei = 0 and straight away obtain one
linear equation in s following (5):

i

∑
j=0

ai−jsj −
N−1
∑

j=i+1
ai+N−jsj = 0.

The rest of the attack works similarly to the LWE case, performing RLWE
CPAD game requests until she gets N ciphertexts c(1), ..., c(N) with known

noise magnitudes ∣e(1)i ∣, ..., ∣e
(N)
i ∣ and same noise signs in the i-th coefficient of

their noise polynomials. She can then postprocess these ciphertexts on her own
to extract and solve the two linear systems (κ ∈ {0,1}),

i

∑
j=0

a
(1)
i−jsj −

N−1
∑

j=i+1
a
(1)
i+N−jsj = bi + (−1)κ∣e(1)i ∣

...
i

∑
j=0

a
(N)
i−j sj −

N−1
∑

j=i+1
a
(N)
i+N−jsj = bi + (−1)κ∣e(N)i ∣

with one of them giving s.
For simplicity’s sake, we have described the most direct adaptation of our

CPAD attack on Regev to RLWE. Even though it is already highly practical in
this form, there are a number of simple ways in which it can be optimized. In
particular, the adversary may wish to exploit all the coefficients in a given RLWE
ciphertext in an attempt to extract more than one linear equations for a given
such ciphertext. Indeed, given a RLWE encryption of the null polynomial (a;a.s+
e), the above noise absolute value determination procedure can be repeated
independently for each coefficient index i of the RHS polynomial of the RLWE
pair, yielding, when condition (3) holds for this index, ∣ei∣. To determine, whether



On the practical CPAD security of “exact” and threshold FHE schemes 9

the noises ei and ej for two coefficients i < j, for which ∣ei∣ and ∣ej ∣ have been
determined, have the same sign, A can employ the same technique as in Sect.
3.3 after a cyclic rotation of the coefficient obtained by a multiplication with the
constant polynomial Xj−i (depending on the chosen encoding).

4 Adaptation to mainstream FHE and libraries

In this section, we show that BFV, BGV and TFHE are variants of either Regev
or its simple RLWE variant that we described in the previous section and, as
such, vulnerable to the CPAD attack path which we have discussed. For each
of these cryptosystems, we provide experimental results obtained when imple-
menting the attack on some of the mainstream libraries which support it. We
assume the reader is already familiar with these cryptosystems.

4.1 BFV

With BFV[3,8], to encrypt a polynomial message m with the public key pk =
(p0;p1) = ([−(a ⋅ sk + e)]q ;a) ∈ Rq

2, one must sample r
$←Ð R2, e0, e1

$←Ð χ and

return c = ([∆ ⋅m + p0 ⋅ r + e0]q ; [p1 ⋅ r + e1]q), where ∆ = ⌊ q
t
⌋. An encryption of

0 is then c = (c0; c1) = ([p0 ⋅ r + e0]q ; [p1 ⋅ r + e1]q). Thus, modulo q we have

c0 = −(a ⋅ sk + e) ⋅ r + e0
= −(a ⋅ r) ⋅ sk + e ⋅ r + e0 + e1 ⋅ sk − e1 ⋅ sk
= −c1 ⋅ sk + (e ⋅ r + e0 + e1 ⋅ sk)

b′ = −a′ ⋅ sk + e′.

If we only select one coefficient of the polynomial ciphertext, we obtain an LWE
instance and can proceed with the attack on Regev.

SEAL The SEAL2 library implements the BGV, BFV and CKKS schemes,
allowing us to choose default security settings of 128, 192 or 256 bits. We choose
to use the BFV cryptosystem with parameters giving a security of 128 or 256
bits. To carry out the attack, we need to access the polynomial’s coefficients
before encryption and after decryption, which is easily done with this library,
which overloads the [ ] operator in C++. The practical attack follows exactly
the theoretical attack: we try to estimate the noise of the ciphertext, which can

be exactly recovered if the condition ∣e∣ <
√
q

2
from (3) is verified. This condition

is almost always satisfied with the default BFV parameters, which uses a q that
is very large compared to the error (for example, 109 bits for N = 4096 and
128-bit security and a standard deviation of the Gaussian used to generate the
noise equal to σ = 3.2).
2 https://github.com/microsoft/SEAL

https://github.com/microsoft/SEAL
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When carrying out the attack, we (almost) systematically find the noise of the
ciphertext with the dichotomy. To check that we correctly recover the absolute
value of the noise, we display the true noise of this ciphertext - a normally
prohibited action - by modifying the SEAL library. Note that this modification
is not used for the attack itself and only allows us to check that the attack finds
the correct absolute noise value.

We ran the attack with the parameters N = 4096, log2(q) = 58, σ = 3.2,
giving a security of 227 bits according to the lattice-estimator. For this set of
parameters, we systematically recovered the absolute value of the noise, enabling
us to generate the N linear equations in about 1 m 20 s. The number of calls
to the encryption oracle was on average 7393, and the number of calls to both
the evaluation and decryption oracles was 664138. These and other results can
be found in Table 2.

OpenFHE In order to compare the libraries, we also attempt the attack on
BFV as implemented in OpenFHE3 with the default security given for 128-
and 256-bit. As described previously, we need to recover the coefficients before
encryption and after decryption. This operation in OpenFHE is less trivial than
in SEAL. As described in the library, OpenFHE uses three main data classes for
polynomial representations, namely:

– Poly - a single-CRT representation (BigInteger types as coefficients, sup-
porting a large modulus q);

– NativePoly - a single-CRT representation (NativeInteger types limiting
the size of the coefficients, modulus q to 64 bits);

– DCRTPoly - a double-CRT representation.

The encoding used for polynomials is COEF_PACKED_ENCODING, which allows
us to recover the DCRTPoly underlying the freshly created plaintext (before en-
cryption) and then interpolate it to get a Poly, then get one of the coefficients
of the polynomial. After encryption and decryption, the decrypted plaintext no
longer has a DCRTPoly but a NativePoly: we only then have to extract the
coefficient of interest.

To run the attack on BFV with the OpenFHE library, we choose parameters
generated by default by the library, ensuring the security of 256 bits. For this
security, we have to choose an N at least equal to 16384. So we choose N = 16384,
and the library then used as default parameters a q such that log2(q) = 120 and
σ = 3.19. As with SEAL, with this set of parameters, we systematically recover
the absolute value of the noise. For a security of 256 bits, the attack takes about
1 h 15 m 30 s. As for the number of calls to the oracles, there are around 32700
for the encryption oracle and around 6630736 for the evaluation and decryption
oracles. These results are available in table 2.

3 https://github.com/openfheorg/openfhe-development

https://github.com/openfheorg/openfhe-development
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4.2 BGV

For BGV[4], we remark that since the attack requires only homomorphic addi-
tions, level switchings can be ignored.

In BGV, to encrypt m ∈ Rp, one must sample u
$←Ð Rp and e1, e2

$←Ð χ
then create a level-L BGV ciphertext c = (u ⋅ pkL,0 +m + p ⋅ e0;u ⋅ pkL,1 + p ⋅ e1),
where the public key at level L is pkL = (pkL,0;pkL,1) = (aL ⋅ skL + p ⋅ eL;−aL).
A level-ℓ encryption of 0 is c = (c0; c1) = (u ⋅ pkℓ,0 +m + p ⋅ e0;u ⋅ pkℓ,1 + p ⋅ e1).
Then,

−c0 = −(aℓ ⋅ skℓ + p ⋅ eℓ) ⋅ u + p ⋅ e0
= −(aℓ ⋅ u) ⋅ skℓ + p ⋅ eℓ ⋅ u + p ⋅ e0 + p ⋅ e1 ⋅ skℓ − p ⋅ e1 ⋅ skℓ
= c1 ⋅ skℓ − (p ⋅ eℓ ⋅ u + p ⋅ e0 + p ⋅ e1 ⋅ skℓ)

−b′ = a′ ⋅ skℓ + e′.

As for the BFV case, we can focus on only one coefficient of the polynomial
ciphertext to obtain an LWE instance and go back to the Regev case.

OpenFHE The attack on the OpenFHE implementation of BGV works sim-
ilarly to that of BFV. The main difference is that a CryptoContextBGVRNS
context is generated instead of a CryptoContextBFVRNS context. The polyno-
mial coefficients are recovered in the same way as for BFV. After decryption, we
get the NativePoly from the decrypted plaintext and extract the coefficient of
interest. We carried out this attack on parameters offering 128-bit and 256-bit
security. As with BFV, we (almost) systematically found the absolute noise’s
value and were thus able to recover the linear equations required for the attack.

To attack the OpenFHE implementation of BGV, we used the parameters
generated by default by the library: N = 16384, log2(q) = 120 and σ = 3.19. With
these parameters, we systematically found the absolute value of the noise and
thus carried out the attack in approximately 1 h 8 m 50 s. The number of calls
to the evaluation and decryption oracles is approximately 3475514 while that of
the encryption oracle is 32779. We present these results in Table 2.

HELIB HElib4 is the only library that performs noise level monitoring and
in fact blocks decryption when the estimated noise level is deemed too large to
result in a correct decryption.

Specifically, upon decrypting a Ctxt with the function SecKey::Decrypt(), the
function Ctxt::isCorrect() compares the Ctxt’s noise level estimate noiseBound
against its ciphertext modulus. If Ctxt::isCorrect() returns false, SecKey::Decrypt()
exits with a warning and without running the decryption algorithm.

Our attack requires to generate ciphertexts which actually fail to correctly
decrypt before they are flagged by Ctxt::isCorrect(). But the parameters in HElib
are so conservative that the probability of this happening is negligible. The

4 https://github.com/homenc/HElib

https://github.com/homenc/HElib
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implication is that one cannot determine the (additive) depth k on ciphertexts,
as in (2), let alone the value of α∗ defined in (3). As a result, HElib prevents us
from extracting even the magnitude of the noise e in the initial ciphertext c0.

In conclusion, thanks to this mechanism HElib appears to be the only library
that is immune to our attack in its present form. This hints at a possible counter-
measure to mitigate the attack by monitoring noise levels in ciphertexts and
choosing instance parameters rendering the probability of incorrect decryption
negligible.

We note however that, while the exact determination of ∣e∣ seems out of reach,
the possibility remains open to reduce the range of possible values for ∣e∣ and
thus effectively reduce the security level of the scheme. This deserves further
investigations.

4.3 TFHE

The TFHE encryption scheme was proposed in 2016 [6] and updated in [7]. It
introduces the TLWE problem as an adaptation of the LWE problem to the
Torus T = R/Z, and specifies the most efficient bootstrapping operation in the
literature [2].

TFHE relies on three structures to encrypt plaintexts defined over T, TN [X]
or Z[X]/(XN + 1). In this work, we are only interested in TLWE samples that
serve for encrypting messages in T. A pair (a; b) is a valid TLWE sample if

a
$←Ð Tn and b ∈ T satisfies b = ⟨a,s⟩ + e, where s

$←Ð Bn is the secret key, and

e
N (0,σ2)←ÐÐÐÐ T is a Gaussian noise. (a; b) is a fresh encryption of 0.
LetM ⊂ T be the discrete message space5. To encrypt a message m ∈M ⊂ T,

we add (0;m) to a fresh TLWE sample (a; b), to obtain the ciphertext c =
(a; b +m). In the following, we refer to an encryption of m with the secret key
s as a TLWE ciphertext noted JmK = c ∈ TLWEs(m).

To decrypt a sample c ∈ TLWEs(m), we compute its phase ϕ(c) = b−⟨a,s⟩ =
m + e. Then, we round to it to the nearest element ofM.

We note that TFHE is an adaptation of the Regev encryption scheme to T
and so it is an additive homomorphic encryption scheme. That is, if we add c1 ∈
TLWEs(m1) to c2 ∈ TLWEs(m2), we get c ∈ TLWEs(m1 +m2).

TFHELib TFHELib6 is an open source library providing the original TFHE
implementation. It supports two discretization for T either on 32 or 64 bits7.
That is, in practice, a TLWE sample corresponds to a Regev encryption with

5 In practice, we discretize the Torus with respect to our plaintext modulus. For ex-
ample, if we want to encrypt m ∈ Z4 = {0,1,2,3}, we encode it in T as one of the
following value {0,0.25,0.5,0.75}.

6 https://tfhe.github.io/tfhe/
7 The 64-bit implementation of TFHE is less maintained when compared to the 32-bit
one. So, when we refer to TFHELib in this paper, we will be referring to 32-bit
implementation.

https://tfhe.github.io/tfhe/
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q = 232 (or q = 264). TFHELib allows adding ciphertexts without bootstrapping.
So, it provides the elementary operations for implementing the attack described
in Sect. 3. Indeed, we implement this attack within TFHELib and we succeed,
in less than 1 second, in finding the number of linear equations required for key
recovery (as described in Table 2).
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5 Remarks on threshold homomorphic encryption

One of the existing multi-user approaches is the Threshold (also called Multi-
Party) Homomorphic Encryption. It allows users to encrypt their data using a
joint public key, constructed from their individual public keys. The decryption
phase is collaborative, so no user holds the associated global private key. To keep
the secrecy of their individual private keys, no user should be able to extract
information on another user’s or the joint private key from the public knowledge
(i.e. the joint public key or even the encrypted messages under this joint key).

Thus, in a threshold approach, users can encrypt their data using this joint
public key and perform collaborative decryption without knowledge of the global
secret key. Now, if the underlying scheme is CPAD insecure, an adversary may
be able to retrieve the decryption key from the knowledge of several triplets
{m,c,Dec(c)} (where c is an encryption of m). In the collaborative threshold
decryption setup each user is first given the ciphertext c to decrypt (encrypted
under the global secret key that he or she does not know) and, at the end of
the collaborative decryption protocol, is granted access to Dec(c). Assuming
the messages are also known, every user is clearly in the position of a CPAD

attacker on the global secret key. Therefore, CPAD security is a must-have in
the threshold setting.

5.1 The case of Lattigo

Now, we illustrate this with the N -out-of-N threshold scheme from [11] based
on core RLWE-based homomorphic encryption and which serves as a basis for
the Lattigo library. Our notations for the rest of this section are the ones of [11],
which are standard in the context of RLWE-based schemes.

Let CRS be the uniform distribution in Rq, according to a common random
string, i.e., elements sampled from this distribution are uniformly distributed and
the same for allN parties Pi ∈ P. In addition with the usual public parameters for
RLWE, this multi-user scheme requires a public polynomial p1 with coefficients
sampled from the CRS (see [5] for more information about the CRS model).

This scheme is a tuple MBFV = (EncKeyGen, RelinKeyGen, KeySwitch,
PubKeySwitch) that extends the BFV scheme:

– EncKeyGen(sk1, . . . , skN ) constructs a collective encryption key from individ-
ual secret keys;

– RelinKeyGen(sk1, . . . , skN ) constructs a collective relinearization key from
individual secret keys;

– KeySwitch(ct, sk′1, . . . , sk
′
N , sk1, . . . , skN ) re-encrypts a ciphertext ct from a

collective public key EncKeyGen(sk1, . . . , skN ) to a collective public key
EncKeyGen(sk′1, . . . , sk

′
N );

– PubKeySwitch(ct,pk′, sk1, . . . , skN ) re-encrypts a ciphertext ct from a col-
lective public key EncKeyGen(sk1, . . . , skN ) to a public key pk′.

Each party Pi constructs its individual public key p0,i ∶= −pisi + ei from
its individual private key si. The joint public key EncKeyGen(sk1, . . . , skN ) is
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then (p0;p1) with p0 = ∑Pj∈P p0,j . There is no need to detail how the joint
re-linearization key is constructed in our context.

To perform a collaborative key switch KeySwitch(ct, sk′1, . . . , sk
′
N , sk1, . . . , skN )

on a ciphertext

ct = (c0; c1) = (m + up0 + e0;up1 + e1),

each party Pi (owner of the secret keys si and s′i) picks a smudging noise ei and
discloses

hi ∶= (si − s′i)c1 + ei
to the other parties. The smudging noise is sampled from a discrete Gaussian
distribution with (very large) variance σ2

smg = 2λσ2
ct, where σ

2
ct is the ciphertext’s

noise variance (which is monitored during FHE evaluation) and λ is the desired
security level. The output re-encrypted ciphertext ct′ ∶= (c0 +∑Pj∈P hj ; c1) can
then be computed by any party. Finally, there is no need to detail the public key
switch protocol PubKeySwitch here.

Now, observe that the key switching protocol KeySwitch with private inputs
(si; 0) (that is, s′i = 0 for all party i) is actually a collaborative decryption. To
perform this collaborative decryption, each party Pi picks a smudging noise ei
and discloses hi ∶= sic1+ei to the other parties. The decryption is then performed
by any party by computing c0 +∑Pj∈P hj .

Note that this collective decryption is actually equivalent to a decryption
under the key s ∶= ∑Pi∈P si, which is not known by any unique party. Hence,
any party is actually a potential CPAD attacker. Indeed, each party can ob-
tain ciphertexts by performing encryption with the joint public key, evaluation
requests on these ciphertexts, and collaborative decryption requests on them,
which is equivalent to decryption requests under the associated private key s
that she does not know.

The smudging technique, as introduced by Asharov et al. [1], aims at making
the ciphertext-noise unexploitable as a side-channel by flooding it with some
freshly sampled noise terms in a distribution of larger-variance, as mentionned
in [1]. Characterizing the side-channel leakage in this setting is presented as an
open problem in [11]. Now, the smudging technique is an efficient countermeasure
against our attack, without which the threshold scheme would be vulnerable
to our attack (as long as the base FHE scheme is not CPAD secure). Hence,
smugding noise addition should then be used in a systematic way and not be made
optional by any library implementing the threshold homomorphic encryption
scheme specified in [11].

5.2 Other threshold schemes

There is a variant of the scheme in [11] with a fixed parameter T < N , in which
any T parties among the N ones are enough to perform a collaborative decryp-
tion. In this variant, the individual keys are constructed by means of Shamir’s
secret sharing [13], and the collective key is still a linear combination of them,
constructed from a Lagrange interpolation polynomial. Hence, the conditions of
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the previous section are still met and any one of the T decrypting parties is still
a potential CPAD adversary.

To the best of our knowledge, all the existing threshold constructions from
HE schemes based on LWE and its variants are analogous to this one, with a
collective decryption protocol equivalent to a simple decryption under an alge-
braic sum of individual private keys in some ring structure, making each party
a CPAD attacker in a similar way. Hence, existing threshold schemes over BFV,
BGV and CKKS may be insecure if no smudging is applied, due to the CPAD

insecurity of these schemes.

6 Concluding remarks on mitigation

In this section, we propose several countermeasures.
Monitor&block. Inspired by HElib’s strategy (Sect. 4.2), one possible coun-

termeasure is as follows. Given a noise budget B, the cryptosystem parameters
shoud be chosen such that a B-noisy ciphertext has probability neg(λ) to gen-
erate a decryption error. Then ciphertext noise bounds must be monitored by
the homomorphic operators implementation and the decryption function has to
provide no output for ciphertexts with noise beyond the noise budget B. Note
that these mechanisms thus become part of the cryptosystem specification and,
as such, a (passive) CPAD attacker cannot work around them. This has implica-

tions on the choice of modulus as q
2t
≥ 2λ

2 B (hence on the choice of n and hence
on the efficiency of the homomorphic operations).

Bootstrap. Another natural strategy is to bootstrap after each homomor-
phic operation. Since bootstrapping resets the noise to a preset value, decryption
errors cannot occur anymore and the scheme becomes exact (with probability
1−neg(λ)). In this case, CPA security and CPAD security are known to be equiv-
alent. Using systematic bootstrapping as a countermeasure also has efficiency
implications as an efficient bootstrapping procedure does not always exist (e.g.
for BFV and BGV) and, when it does (e.g. for TFHE), the current trend in FHE
research is to try to avoid doing it too often. It is also interesting to note that
bootstrapping may thus have (positive) security implications when it is usually
considered a (slight) weakness due to the circular security assumption.

Monitor&smudge. For threshold schemes, we have shown that they are
inherently subject to CPAD adversaries. The (very large variance) smudging
noise, which also depends on the ciphertext noise bound, added on each partial
decryption acts as an effective countermeasure against our attack and allows to
build secure threshold schemes from CPA secure and (possibly) CPAD insecure
schemes. As a consequence, noise smudging must not be optional in FHE thresh-
old scheme implementations. As a side remark, this diminishes the interest of
using CKKS in the threshold setting. Indeed, since CKKS is CPAD insecure,
without smudging, the resulting threshold scheme is not secure (allowing de-
crypting parties to recover the global key via a CPAD attack) or, when smudging
is used, the resulting large noise jeopardizes the precision of the postdecryption
results.
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A Threshold for exact noise determination

Let T = q
4
and consider a ciphertext with noise ∣e∣. Following Sect. 3.2 we have

α∗ = ⌊ T∣e∣⌋ and α∗ + 1 = ⌊ T∣e∣ + 1⌋. Condition (3) can then be rewritten as

T

⌊ T∣e∣ + 1⌋
≤ ∣e∣ < T

⌊ T∣e∣⌋
.

We are now looking under which condition on ∣e∣ we have

⎡⎢⎢⎢⎢⎢⎢

T

⌊ T∣e∣ + 1⌋

⎤⎥⎥⎥⎥⎥⎥
=
⎢⎢⎢⎢⎢⎢⎣

T

⌊ T∣e∣⌋

⎥⎥⎥⎥⎥⎥⎦
. (6)
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We first deal with the RHS. Assume T = k∣e∣+ r with 0 ≤ r < ∣e∣, then T
∣e∣ = k +

r
∣e∣

and ⌊ T∣e∣⌋ = k. Then,
T

⌊ T∣e∣⌋
= k∣e∣ + r

k
= ∣e∣ + r

k
.

It follows that,
⎢⎢⎢⎢⎢⎢⎣

T

⌊ T∣e∣⌋

⎥⎥⎥⎥⎥⎥⎦
= ∣e∣

if and only if r
k
< 1 i.e. r < k. Since r < ∣e∣ this is true when ∣e∣ < k and since

k = ⌊ T∣e∣⌋, this is guaranteed to happen when ∣e∣ < ⌊ T∣e∣⌋ i.e. when ∣e∣ <
√
T .

As this is a conservative bound on ∣e∣, the LHS of Eq. (3) can be used to
identify the cases slightly above that bound for which the noise can also be
exactly determined.


	On the practical CPAD security of ``exact'' and threshold FHE schemes and libraries

