
Attacks Against the IND-CPAD Security of Exact FHE Schemes

Jung Hee Cheon∗, Hyeongmin Choe†, Alain Passelègue‡, Damien Stehlé‡ and Elias Suvanto‡

∗CryptoLab Inc., Seoul National University, Seoul, Republic of Korea
†Seoul National University, Seoul, Republic of Korea

‡CryptoLab Inc., Lyon, France

Abstract—A new security model for fully homomorphic encryp-
tion (FHE), called IND-CPAD security and introduced by Li and
Micciancio [Eurocrypt’21], strengthens IND-CPA security by
giving the attacker access to a decryption oracle for ciphertexts
for which it should know the underlying plaintexts. This includes
ciphertexts that it (honestly) encrypted and those obtained
from the latter by evaluating circuits that it chose. Li and
Micciancio singled out the CKKS FHE scheme for approximate
data [Asiacrypt’17] by giving an IND-CPAD attack on it and
(erroneously) claiming that IND-CPA security and IND-CPAD

security coincide for FHEs on exact data.
We correct the widespread belief according to which

IND-CPAD attacks are specific to approximate homomorphic
computations. Indeed, the equivalency formally proved by
Li and Micciancio assumes that the schemes are not only
exact but have a negligible probability of incorrect decryption.
However, almost all competitive implementations of exact FHE
schemes give away strong correctness by analyzing correctness
heuristically and allowing noticeable probabilities of incorrect
decryption.

We exploit this imperfect correctness to mount efficient
indistinguishability and key-recovery attacks against all major
exact FHE schemes. We illustrate their strength by concretely
breaking the default BFV implementation of OpenFHE and
simulating an attack for the default parameter set of the CGGI
implementation of TFHE-rs (the attack is too expensive to
be run on commodity desktops, because of the cost of CGGI
bootstrapping). Our attacks extend to threshold versions of the
exact FHE schemes, when the correctness is similarly loose.

1. Introduction

In a fully homomorphic encryption (FHE) scheme,
arbitrary circuits can be publicly applied to encrypted data.
The most direct application is to outsource computations
confidentially: a client encrypts data and sends the ciphertexts
and a circuit to the server; given the ciphertexts, the server
homomorphically evaluates the circuit and produces a new
ciphertext that it sends back to the client; the client then
decrypts to obtain the result of the computation. If the
FHE scheme is indistinguishable under chosen plaintext
attacks (IND-CPA), then the server cannot learn anything
about the client’s data. Application scenarios of FHE and its

extensions abound, and additional security properties may
be required [1].

IND-CPA security suffices for applications of FHE in
which the data that shall remain confidential is accessible
only to the entity that encrypts it and to the owner of the
decryption key. In this work, we are interested in a different
type of applications of FHE where the decrypted data is
being shared publicly. Let us consider three parties: the
encryptor, the evaluator and the decryptor. The adversary
is the encryptor. It is honest but curious, in the sense
that it encrypts by following the specifications of the
encryption procedure. It can then request the evaluator to
homomorphically evaluate circuits of its choice, and can
ask the decryptor to decrypt a ciphertext that is produced
honestly via encryption and/or evaluation. To address this
scenario, Li and Micciancio [2] extended IND-CPA security
to the notion of indistinguishability under chosen plaintext
attacks with a decryption oracle (IND-CPAD). In the security
game, the adversary is given access to the above-mentioned
oracles, with the restriction that the decryption oracle can
be called only on ciphertexts whose underlying plaintexts
are independent of the challenge bit.

At first sight, one may think that the public sharing
of the decryption should not help the adversary in any
way as decryption should provide it information that it
already has. The definition from Li and Micciancio is
motivated by the CKKS FHE scheme [3], which performs
arithmetic computations on approximations to real/complex
plaintexts. In this scheme, the errors due to inaccuracies of
the approximations are entangled with the errors introduced
for security, due to the use of the Learning With Errors
problem (LWE) [4]. Decryption then gives information on
the latter type of errors. In fact, simply encrypting a message
and requesting its decryption already gives a linear equation
with the secret key vector. By repeating this, the adversary
obtains an invertible system of linear equations and can
recover the secret key. This gives a key-recovery with a
decryption oracle (KRD) attack. KRD security, later defined
in [5], is an adaptation of IND-CPAD security that asks the
attacker to recover the secret key. It is a weaker notion of
security than IND-CPAD security, as a KRD attack gives an
IND-CPAD attack.

Let us now consider exact FHE schemes, i.e., FHE
schemes for discrete data with exact homomorphic eval-

uations. The most efficient such schemes are BGV [6],
BFV [7, 8], DM [9] and CGGI [10], which are implemented
in multiple libraries. Li and Micciancio claimed that FHE
schemes for exact data are immune to IND-CPAD attacks.
This leads them to conclude that the IND-CPAD security
shows a weakness that would be specific to approximate
FHE schemes. The same statement is repeated in [5].

Our contributions. We exhibit IND-CPAD and KRD attacks
for BGV/BFV and DM/CGGI. This invalidates the claim
of Li and Micciancio that exact schemes are immune
to IND-CPAD attacks and that IND-CPAD insecurity would
be specific to approximate schemes. As pointed out in [11]
in the context of CKKS, IND-CPAD security is a notion
that rather models specific application scenarios of FHE.
For many available implementations of the aforementioned
exact schemes, our attacks are very efficient. We report
experimental data showing their practical strength, breaking
the BFV implementation from OpenFHE [12] and the CGGI
implementation from TFHE-rs [13]. We stress that these are
only examples, our attack being widely applicable. We also
extend our attacks to some Threshold Fully Homomorphic
Encryption schemes (Threshold-FHE). Threshold-FHE is
an extension of FHE allowing to share the decryption key
between different parties [14, 15]. As an illustration, we
discuss the impact of our attack on the Noah’s Ark scheme
from [16].

How is it even possible? Li and Micciancio proved in [2,
Lemma 1] that for an exact scheme, IND-CPA security
implies IND-CPAD security. The proof notably relies on the
correctness of the FHE scheme, defined in [2, Section 2] by
requiring that the decrypted value is correct with probability
negligibly close to 1 as a function of the security parameter,
over the internal randomness of the encryption algorithm.
There are two significant caveats when translating this lemma
into practice. First, for all efficient implementations of FHE
schemes, correctness is heuristic. Statement on correctness
even involve probabilities in contexts where there is no
randomness, heuristically modeling some errors occurring in
homomorphic circuit evaluation as probabilistic. Second, the
value of “negligible” may be sufficiently small for honest
users but not for adversaries collecting decryption failures:
concrete decryption failure “probabilities” can be of the order
of 2−40 or even higher (for instance, Concrete-python,
a TFHE compiler for TFHE-rs, has decryption failure
probability of the order of 2−17). Our attacks exploit
decryption failures. At a theoretical level, we propose a
converse to [2, Lemma 1], whose proof implies that the
advantages for IND-CPA and IND-CPAD attackers differ by
no more than the decryption error probability multiplied by
the number of decryption queries. We give an IND-CPAD

attack whose advantage is essentially the decryption error
probability multiplied by the number of decryption queries.
Below, we focus on stronger attacks, namely KRD attacks,
for specific schemes and implementations.

A key-recovery attack on BFV/BGV. The BFV/BGV schemes
are based on leveled schemes that support homomorphic

evaluation of arithmetic circuits with bounded multiplicative
depth, and on bootstrapping procedures that turn them in
fully homomorphic schemes. In this work, we consider their
leveled variants. As they rely on the RLWE [17, 18] problem,
their ciphertexts are associated to error (or noise) components.
Since the error increases at each homomorphic operation and
may interfere with the plaintext when it becomes sufficiently
large, bounding the magnitudes of the errors is important to
guarantee correctness. Different noise management strategies
are available in the literature to ensure the correctness
of these schemes. Absolute bounds based on the triangle
inequality provide rigorous correctness guarantees but lead
to large parameters. To avoid this performance penalty, most
current implementations rely on heuristic noise estimates.
The principle is to assume that manipulated ciphertexts
have noise terms that are Gaussian and independent. These
heuristic noise estimates are much closer to what happens in
typical executions, but correctness is only heuristic. A recent
work [19] showed that those heuristic noise estimates can be
exploited to obtain a KRD attack against CKKS, by using
correlated input ciphertexts. We show that such noise bounds
also make BFV/BGV insecure by adapting the KRD attack
to the CKKS context. The attack adds an encryption of 0
sufficiently many times with itself so that the noise moves
to the plaintext position and can be read by requesting a
decryption. We successfully mounted the attack against the
BFV implementation of OpenFHE.

A key-recovery attack on DM/CGGI. In the DM/CGGI FHE
schemes, evaluating a circuit gate is performed jointly with
a bootstrapping operation. We describe our attack for CGGI,
which relies on binary secret key vectors, but note that it
can be adapted to DM. Bootstrapping is a procedure that
reduces the noise of a given ciphertext, allowing for further
homomorphic manipulations. These schemes make use of
LWE [4] formats for regular ciphertexts, and GLWE [6, 20]
formats inside the so-called BlindRotate procedure. In the
BlindRotate procedure, GLWE ciphertexts encrypt powers
of X whose exponents correspond to the pre-BlindRotate
ciphertext. As a result, the pre-BlindRotate ciphertexts are
defined modulo 2N , where N is the GLWE ring degree. For
efficiency purposes N is taken as small as possible, implying
the need to switch the modulus q of regular ciphertexts to 2N
before BlindRotate. This step is called ModSwitch. Our
attack focuses on this step, because it introduces significant
noise and hence significantly contributes to the bootstrapping
error probabilities, and because the rounding noise ẽ is
publicly known. When a decryption failure occurs, we obtain
that ⟨ẽ, s⟩ + e ≥ t, where s is the secret key, the term e
can be modeled as an independent integer Gaussian sample,
and t is a correctness threshold. As we have LWE samples
for s, this looks like an instance of LWE with hints, which
has been the focus of recent works on lattice-cryptography
cryptanalysis [21, 22]. Running the security estimate script
corresponding to [22] already gives interesting attack costs,
but we take an even more direct approach. We observe
that conditioned on a decryption failure, the distribution
of ẽi is (heuristically) uniform in [−1/2, 1/2] when si =

2

0, and very different when si = 1. We then amplify the
distributional discrepancy by considering many decryption
failures, allowing us to recover s.

To assess the strength of our attack, we considered
the TFHE-rs library [13]. For its default parameters, the
bootstrapping failure probability is of the order of 2−40. We
then expect to have to run around 240 bootstraps to observe
a bootstrapping error. This is large (but not unreachable)
when taking into account the limited performance of TFHE-
rs bootstrapping: it would take around 300 years on a
single-thread CPU. We consider two experiments. In the
first one, we modify the TFHE-rs parameters so that it still
has 128 bits of IND-CPA security but with a bootstrapping
error probability of around 1%. In this case, we are able
to mount our attack using only the TFHE-rs API. In
the second experiment, we keep the default TFHE-rs
parameters, but simulate bootstrapping errors rather than
running bootstrapping itself. In this experiment, we recover
all coefficients of the secret key s with the observation of 256
bootstrapping failures.

Extension to Threshold-FHE. Threshold-FHE, introduced
in [14] and then formalized and generalized in [15], is an
extension of FHE where the decryption key is shared between
different users. To decrypt, the users locally run a partial
decryption and then recombine their partial decryption results
to obtain a plaintext. An adversary is allowed to corrupt some
number of parties and to access a partial decryption oracle
for the other parties. In the indistinguishability-based security
definition, it is then required to distinguish between two sets
of ciphertexts, with the restriction that the partial decryption
oracle calls for corresponding ciphertexts in the two sets
must correspond to identical plaintexts. To a threshold-
FHE scheme, we associate the FHE scheme with the same
key generation, encryption and evaluation algorithms, and
with decryption defined as the composition of the partial
decryptions and recombination. Then one can see that if there
is an IND-CPAD attack on the FHE scheme, it is possible to
derive an attack on the Threshold-FHE scheme. Given this,
it is tempting to extend our IND-CPAD attacks to concrete
proposals of Threshold-FHE schemes. We detail a concrete
attack on the Noah’s scheme from [16], extending the above
IND-CPAD attack on TFHE-rs. We stress that we could
as well have chosen other Threshold-FHE schemes derived
from BGV/BFV and DM/CGGI.

The codes are publicly available at the following git
repository:

https://github.com/hmchoe0528/INDCPAD HE ThresFHE

2. Preliminaries

Notation. Vectors and polynomials are denoted in bold fonts.
The i-th component of a vector or the i-th coefficient of a
polynomial is denoted with subscript i. Given a measurable
set X , we let U(X) denote the uniform distribution over X .

For any real σ > 0 and a vector µ ∈ Rn, define
the Gaussian function on Rn centered at µ with standard

deviation parameter σ as ρµ,σ = exp(−∥x− µ∥2/2σ2) for
all x ∈ Rn. For the discrete Gaussian distribution over Zn,
with center parameter µ and standard deviation parameter σ,
we denote as Dµ,σ which is defined by

∀x ∈ Zn :
ρµ,σ(x)∑

x∈Zn ρµ,σ(x)
.

We omit the subscript µ when it is 0.
For the normal distribution over R, centered at µ and

with standard deviation σ, we use the notation N (µ, σ2). Its
probability density is (1/

√
2πσ)ρµ,σ(x) (for x ∈ R). We let

erfc(x) denote the complementary error function, defined as
erfc(x) = 1 − (2/

√
π) ·

∫ x

0
exp(−t2)dt. It then holds that,

for e ∼ N (0, σ2) and t > 0:

Pr[e > t] =
1

2
erfc

(
t√
2σ

)
.

2.1. Fully Homomorphic Encryption

A fully homomorphic encryption scheme is an encryption
scheme that enables the evaluation of circuits on the data
underlying ciphertexts.

Definition 2.1 (Fully homomorphic encryption). A fully
homomorphic encryption scheme (FHE) is a tuple of effi-
cient algorithms (KeyGen,Enc,Dec,Eval) with the following
specifications:

• KeyGen outputs a secret key sk and a public key pk;
• Enc takes as inputs a public key pk and a plaintext m ∈
{0, 1}, and outputs a ciphertext ct;

• Eval takes as inputs a public key pk, a binary circuit C
and a tuple of ciphertexts ct1, . . . , ctk where k is the
number of input wires of C, and outputs a ciphertext ct;

• Dec takes as inputs a secret key sk and a ciphertext ct,
and outputs a plaintext m.

For ε ≥ 0 and a circuit size bound B, the scheme is said
(ε,B)-correct if for any pair (sk, pk) output by KeyGen, for
any binary circuit C, for any plaintexts m1, . . . ,mk ∈ {0, 1}
where k is the number of input wires of C, the following
holds with probability ≥ 1 − ε over cti := Enc(pk,mi)
(for i ≤ k):

Decsk (Evalpk(C, (ct1, . . . , ctk))) = C(m1, . . . ,mk) .

An FHE scheme is perfectly correct if it is ε-correct for ε = 0
and any B.

Typical FHE definitions also include a ciphertext com-
pactness condition, to avoid vacuous constructions. We omit
it as this is irrelevant to our work. We note that the plaintext
space of concrete FHEs can be more complex than {0, 1},
such as rings Z/kZ for some integer k or Cartesian products
of such rings, or approximations to Rd or Cd. In the latter
case, the FHE is said approximate. When it enables exact
computations on discrete data, it is said exact.

Concerning correctness, we note that most concrete
schemes are not ε-correct as per the above definition. All

3

https://github.com/hmchoe0528/INDCPAD_HE_ThresFHE

known FHE constructions have a notion of noise, which
goes throughout homomorphic manipulations. The noise
must remain sufficiently small to enable correct decryption.
To obtain better parameters, concrete schemes often make
heuristic assumptions on noise growth, notably relying on
probabilistic arguments without any randomness. To decrease
the noise, the known constructions rely on an operation called
bootstrapping, which has a (heuristic) failure probability. For
very long computations, bootstrapping may be required many
times, so that ε-correctness cannot be ensured, for any ε < 1.

The default notion of security for an FHE is indistin-
guishability against chosen plaintext attacks (IND-CPA).

Definition 2.2 (IND-CPA security game). Let
Π = (KeyGen,Enc,Dec,Eval) be an FHE scheme.
We define the advantage AdvIND-CPA(A) of an adversary A
against the IND-CPA security of Π as:

∣∣∣∣∣∣2 · Pr
b = b′

∣∣∣∣∣∣
(pk, sk)← KeyGen;
b← U ({0, 1}) ;

b′ ← A(pk,Enc(b))

− 1

∣∣∣∣∣∣ .

In the context of FHE, IND-CPAD security is typically
inherited from the presumed hardness of LWE [4], RLWE [17,
18], GLWE [6, 20] and circular security assumptions.

2.2. IND-CPAD Security

IND-CPAD security, introduced in [2], augments
IND-CPA security by allowing the adversary to access
decryptions of ciphertexts obtained by encrypting and
evaluating messages of its choice. This is defined formally
by allowing the adversary to access three types of oracles,
to encrypt, evaluate and decrypt. Decryption queries can be
made only on ciphertexts produced by the encrypt/evaluate
oracle. This is simply to ensure that these ciphertexts are
well-formed. The database S appearing in the oracles is
used to store all ciphertexts formed by using the encryption
and evaluation oracles as well as the underlying pair of
plaintexts (m0,m1), where mb is the encrypted plaintext
(possibly the result of some prior evaluations) for b being
the challenge bit. Notably, the database is used to ensure
that a decryption query made on a ciphertext does not lead
to a trivial attack by checking that the underlying plaintext
is independent of the challenge bit b.

Algorithm 1 Encryption oracle OEnc(m0,m1; pk, b, i)

1: ct← Encpk(mb)
2: S[i] := (m0,m1, ct)
3: i := i+ 1
4: return ct, i

Algorithm 2 Evaluation oracle Oeval(C, i1, . . . , ik; b, S)

1: ct← Evalpk(C, S[i1].ct, . . . , S[ik].ct)
2: r0 := C(S[i1].m0, . . . , S[ik].m0)
3: r1 := C(S[i1].m1, . . . , S[ik].m1)
4: S[i] := (r0, r1, ct)
5: i := i+ 1
6: return ct, i

Algorithm 3 Decryption oracle ODec(j; sk, S)

1: if S[j].m0 = S[j].m1 then
2: m← Decsk(S[j].ct)
3: return m
4: else
5: return ⊥
6: end if

Definition 2.3 (IND-CPAD security). Let Π = (KeyGen,
Enc,Dec,Eval) be an FHE scheme. For an adversary A that
is given access to the (stateful) oracles OEnc, OEval and ODec

defined above, we define the advantage AdvINDCPAD(A) of
A against the IND-CPAD security of Π as:∣∣∣∣∣∣2 · Pr

b = b′

∣∣∣∣∣∣
(pk, sk)← KeyGen;
b← U ({0, 1}) ;

b′ ← AOEnc,OEval,ODec(pk)

− 1

∣∣∣∣∣∣ .

2.3. KRD Security

KRD security is a relaxation of IND-CPAD security
introduced in [5]. Given the same types of oracles, the
adversary’s task is to recover the secret key, as opposed
to distinguishing between two (families of) ciphertexts.

Definition 2.4 (KRD security). Let Π = (KeyGen,
Enc,Dec,Eval) be an FHE scheme. For an adversary A
that is given access to the (stateful) oracles OEnc, OEval

and ODec with b fixed to 0, we define the success
probability SuccKRD(A) against the KRD security of Π as:∣∣∣∣Pr [sk = sk′

∣∣∣∣ (pk, sk)← KeyGen; b = 0;
sk′ ← AOEnc,OEval,ODec(pk, b)

]∣∣∣∣ .
Then, an FHE scheme is said KRD secure if the success
probability of any PPT adversary A is negligible on λ.

If a scheme is IND-CPAD secure, then it is KRD secure:
indeed, any adversary A against KRD security of Π leads
to an adversary B against IND-CPAD security of Π with
the same advantage and the same runtime. As a result,
an attack against KRD security is stronger than an attack
against IND-CPAD security.

3. A Generic IND-CPAD Attack

In this section, we describe an IND-CPAD attack against
non-perfectly correct (F)HE schemes, i.e., FHE schemes
with a non-zero decryption failure probability.

4

The attack simply consists in building ciphertexts which
are supposed to result in m0 or m1 with m0 = m1, and then
requesting their decryption. The decryption request is valid,
as the underlying plaintext is supposed to be independent
of b. The attack then exploits the fact that, even though the
underlying plaintext messages are identical, the decryption
failure probability of the corresponding ciphertexts can differ
significantly. Since the adversary also knows the underlying
plaintext, it can distinguish whether or not decryption failed,
which leads to breaking IND-CPAD security.

As a warm-up, we start with an attack targeting binary
HE, i.e., HE whose plaintext space is {0, 1}. Then, we
introduce a technique boosting the success probability with
repetitions. We note that the attack can be easily extended
to general HE schemes over larger rings, as {0, 1} can be
embedded in any ring.

Binary HE. Let {T,F} denote the message space. We
consider a binary HE scheme supporting Boolean operations
AND and OR.

Adversary Challenger

b← {0, 1}
OEnc(T,F)−−−−−−−−−−−−−−−→ S[0] = (T,F, ct0)

OEnc(F,F)−−−−−−−−−−−−−−−→ S[1] = (F,F, ct1)

OEval(AND(·, ·), 0, 1)
−−−−−−−−−−−−−−−→ S[2] = (F,F, ct2)

ODec(2)−−−−−−−−−−−−−−−→ mres ← Decsk(ct2)
mres←−−−−−−−−−−−−−−−

b′ =

{
0 if mres = T ,

1 else.

Figure 1: A generic IND-CPAD attack on binary HE.

Our IND-CPAD attack, described in Figure 1, proceeds
as follows. The attacker first makes two encryption queries
(m0

0 = T, m0
1 = F) and (m1

0 = F, m1
1 = F). Then it asks

the evaluation oracle to evaluate the AND function on the
two ciphertexts, resulting in a ciphertext ct2. Finally, it asks
the decryption oracle to decrypt ct2.

Since AND(m0
b ,F) is always equal to F regardless of b,

the tracked message are F and F, and the decryption queries
passes the check of the oracle. Hence, the attacker receives
the decryption result mres = Decsk(ct2). The attacker outputs
b′ = 0 if the decrypted result if T, and b′ = 1 otherwise.

The decrypted result is mres = F if there is no
failure during the homomorphic operations. However, if the
ciphertext ct1 fails to decrypt properly, i.e., Decsk(ct1) ̸= F,
then the decryption result of ct2 is

Decsk(ct2) = AND(Decsk(ct0),Decsk(ct1))

= AND(Decsk(ct0),T)

= mb ,

assuming that no additional failure happened (which is the
case with probability close to 1). The attacker thus has a
success probability slightly higher than 1/2 as:

Pr[b = b′] = (1− p) · Pr[b = b′ | ¬A] + p · Pr[b = b′ | A]

= (1− p) · 1
2
+ p · 1

=
1

2
+

p

2
,

where A is the event Decsk(ct1) ̸= F and p = Pr[A].

Boosting the adversary’s advantage. We can increase the
success probability by repeating the encryption, evaluation,
and decryption queries

OEnc(m
i
0 = F,mi

1 = F),

OEval(AND(·, ·), 0, 2i− 1),

ODec(2i),

for i = 1, . . . , N , and the attacker receives N decrypted
messages

∀i ≤ N : mres,i = Decsk(ct2i).

The adversary outputs 0 if T appears among the decrypted
results, and else outputs 1. This attack requires (N + 1)
encryption queries, N evaluation queries and N decryption
queries, and succeeds with probabiity

Pr[b = b′] ≈ (1− p)N · 1
2
+
(
1− (1− p)N

)
· 1

≈ 1

2
+

Np

2
,

where the last approximation is valid when Np≪ 1.
We note that, by querying the circuit evaluating the

OR of all the above AND operations, we can decrease the
number of evaluation and decryption queries to a single one.
Specifically, for a circuit C : CN+1 7→ C defined as,

C(x, x1, · · · , xN) = (x ∧ x1) ∨ (x ∧ x2) ∨ · · · ∨ (x ∧ xN),

where ∧ is an AND operation and ∨ is an OR operation,
the two values C(T,F, · · · ,F) and C(F,F, · · · ,F) are both
equal to F. However, if there exists i such that xi = T, the
two values become different. Thus, we can have the same
advantage of approximately 1/2+Np/2 as before, but with
only (N + 1) encryption, 1 evaluation, and 1 decryption
queries. We detail this attack in Figure 2, which can be
viewed as a generalization (N = 1) of the attack in Figure 1.

From fresh to arbitrary ciphertexts. We observe that
the freshly encrypted ciphertexts cti (for i ≤ N) can be
replaced by the ciphertexts having higher decryption failure
probability.

For example, assume that there exists a circuit C∗ with k
input wires such that ct = Evalpk(C

∗, (ct1, · · · , ctk)) has a
decryption failure probability p∗, over the randomness used
by Enc to obtain the ctj’s (for j ≤ k) . Then we replace the

5

Adversary Challenger

b← {0, 1}
OEnc(T,F)−−−−−−−−−−−−−−−→ S[0] = (T,F, ct0)

OEnc(F,F)−−−−−−−−−−−−−−−→ S[1] = (F,F, ct1)

...
...

OEnc(F,F)−−−−−−−−−−−−−−−→ S[N] = (F,F, ctN)

OEval(C
′, 0, · · · , N)

−−−−−−−−−−−−−−−→ S[N + 1] = (F,F, ctN+1)

ODec(N + 1)
−−−−−−−−−−−−−−−→ mres ← Decsk(ctN+1)

mres←−−−−−−−−−−−−−−−

b′ =

{
0 if mres,

1 else.

Figure 2: Boosted IND-CPAD attack on binary HE.

(N + 1) encryption queries by (Nk + 1) encryption queries
and change the evaluation circuit C : CN+1 7→ C by

C ′ = C ◦ (id, C∗, · · · , C∗) : CNk+1 7→ C .

This attack can be viewed as a generalization of the attack in
Figure 2 (by taking C∗ = id and k = 1). It can be mounted
with (Nk + 1) encryption queries, 1 evaluation query, and
1 decryption query. The success probability of this attack
is ≈ 1/2 +Np∗/2, i.e., exactly the same as before, but p is
replaced by p∗.

The discussion above shows that loose correctness
directly impacts IND-CPAD security. Further, in this context,
what should be considered is the failure of decryption
probability for a ciphertext resulting from the evaluation
of a very large circuit.

4. KRD Attacks on B(F/G)V-like FHE Schemes

In this section, we present our KRD attack against the
BGV and BFV (F)HE schemes [6, 7, 8] and their variants,
when they rely on (heuristically) average-case noise analysis.
We note that our attack also holds for the leveled version
of those schemes (i.e., without bootstrapping), with no level
consumption. For the sake of simplicity, we focus on the
BFV scheme, and its implementation in OpenFHE. We
stress that our attack also applies to other implementations
of BGV and BFV that rely on average-case noise analyses.
For instance, HElib uses a worst-case noise analysis after
encryption, thus our attack is not applicable. However, many
recent instantiations of BGV and BFV [12, 23, 24] rely on
average-case noise analyses to improve performance. These
are vulnerable to our attack.

4.1. Noise Analysis for BFV

We start with the following notations for the BFV FHE
scheme.

• N > 0: the ring degree;
• R: the base ring, of the form Z[X]/Φ(X) for some

cyclotomic polynomial of degree N ;
• q > 0: the ciphertext modulus;
• Rq: the quotient ring R/qR;
• t > 0: the plaintext modulus;
• ∆ = ⌊q/t⌉: the scale factor.

The RLWE key s ∈ {−1, 0, 1}N ⊂ R is chosen ternary,
possibly sparse (i.e., with many 0’s).

Let us start with a RLWE-format ciphertext ct = (b,a) ∈
R2

q satisfying

b+ as = ∆m+ e mod q ,

for some plaintext m ∈ Rt and some error e ∈ R. For a fresh
ciphertext, the coefficients of e are independently sampled
from Dσ, a discrete Gaussian distribution over Z centered
in 0 with standard deviation σ. For two ciphertexts, we
define their homomorphic addition as their component-wise
addition in R2

q , i.e., for ct0 = (b0,a0) and ct1 = (b1,a1)
with underlying errors e0, e1 ← Dσ, their homomorphic
addition is

(b0 + b1 mod q,a0 + a1 mod q) ,

resulting in an underlying error term that is equal to e0+e1.
This error has coefficients that have a variance of ≈ 2σ2 if the
errors e0 and e1 are sampled independently and identically
from Dσ . However, if the two ciphertexts are correlated, the
variance can be smaller, or larger. In the worst case, we have
ct0 = ct1 and the error term 2e0 has a variance of 4σ2. The
most efficient instantiations only consider the first option, as
this leads to improved parameters and performance. However,
it may result in underestimating the error probability.

The evaluation (or the decryption of the evaluated result)
is allowed if the variance is sufficiently small compared to the
threshold ∆/2. More precisely, the probability of evaluation
failure is bounded from above by erfc((∆/2)/(

√
2σ)),

where σ is the standard deviation of the error in the ciphertext
under scope.

4.2. Key-Recovery Attack

As discussed above, the average-case noise analysis does
not capture the different types of variance increases, depend-
ing on whether the ciphertexts are statistically independent
or correlated. Our attack takes advantages of this gap, which
can be exploited by the attacker, and the ciphertext can be
decrypted to a message other than what it should have been,
in the view of the challenger.

The attack is given in Algorithm 4. Note that the calls
to Enc, Eval and Dec correspond to oracle queries made to
the challenger, as per Definition 2.4. The attack is pictorially
represented in Figure 3. For the sake of simplicity, we
focus on the power-of-2 integer for scale factor ∆. We
first encrypt 0 and obtain a ciphertext ct0, whose error e is
sampled from Dσ . We then recursively add the ciphertext to
itself. The standard deviation of the resulting error is doubled
for each iteration. After k = ⌊log2 ∆⌉ iterations, the error

6

Algorithm 4 KRD attack on BFV.

1: Query ct0 ← Encpk(0)
2: for 0 ≤ i < k := ⌊log2 ∆⌉ do
3: Query cti+1 ← Evalpk(Add, cti, cti)
4: end for
5: Query e← Decsk(ctk)
6: Solve b− e = as over Rq

7: return s

ct0 =

cti+1 =

ctk =

m = 0 e

e

e

t ∆

...

...

Figure 3: Position of the error in b+ as mod q during the
iterations of the KRD attack.

has a standard deviation 2kσ ≈ ∆σ. However, the average-
case analysis estimates that the error standard deviation
is 2k/2σ ≈

√
∆σ. Thus, the estimation of the decryption

failure probability based on the average-case analysis is
≈ erfc((∆/2)/(

√
2∆σ)). Unless this is deemed too large,

the attacker receives the decryption result by querying the
decryption oracle, and then obtains⌊

2ke mod q

∆

⌉
= e,

unless the infinite norm of e is larger than t. If the error e has
infinite norm larger than t, we may repeat the process with
⌊log2 ∆⌉−1, ⌊log2 ∆⌉−2, etc iterations instead of ⌊log2 ∆⌉,
to learn e, chunk by chunk. The attacker can then recover the
secret key by solving a linear equation as = b− e over Rq

with unknown s. If it needs a few more equations to find
the solution (note that Rq is not a field), it may repeat the
process several times.

4.3. Experimental Results

For our experiments, we consider a typical BFV pa-
rameter set for the OpenFHE library. We have N = 4096,
q = 260, t = 216+1, and ∆ = 244−ε for some small ε. The
standard deviation of the initial error is ≈ 27.41. We start from
a fresh encryption of 0 that we recursively double k = 44
times. The decryption failure probability estimate based on
the average-case approach is ≈ erfc(213.5) ≈ 2−227.5 , which
is extremely low. The decryption result is⌊

244e

244 − ε

⌉
= e+

⌊
εe

244 − ε

⌉
= e,

unless the infinite norm of e is larger than (244− ε)/(2ε) ≈
216. This is very unlikely to happen, since each coefficient
has a standard deviation of ≈ 27.

5. A KRD Attack on DM/CGGI

In this section, we present our KRD attack against the
DM and CGGI FHE schemes [9, 10], also respectively known
as FHEW and TFHE. For the sake of simplicity, we only
focus on the CGGI scheme and the TFHE-rs library [13],
but stress that our attack is general and not specific to
our choice of variant for DM/CGGI and our choice of
target implementation. As in the IND-CPAD attacks of
Section 3, the KRD attacker can observe decryption failures
and obtain information from the failure/non-failure events.
Our KRD attack takes advantage of the large rounding error
in the ModSwitch step during gate bootstrapping, that gives
approximate hints on the secret key.

In the following, we first recall the CGGI (gate) boot-
strapping. We then introduce the KRD attack strategy and,
finally, we illustrate its strength with experiments.

5.1. TFHE (Gate) Bootstrapping

We use the following notations for the CGGI scheme
parameters.

• n > 0: the LWE dimension;
• q > 0: the initial modulus of ciphertexts;
• N : the ring degree, set as a power-of-2 integer;
• p > 0: the plaintext modulus;
• ∆ = q/p: the scale factor.

The LWE key s = (s1, . . . , sn) ∈ {0, 1}n is chosen binary.

TFHE bootstrapping. Let us start with an LWE ciphertext
ct = (b, a1, . . . , an) ∈ Zn+1

q satisfying

−b+
n∑

i=1

aisi = ∆m+ ein mod q,

for some m ∈ {0, . . . , p − 1} and some integer ein whose
absolute value is small relative to ∆. The bootstrapping
procedure consists of 4 steps, namely, ModSwitch, BlindRo-
tate, SampleExtract, and KeySwitch. An illustration of
bootstrapping is provided in Figure 4.

Note that the error (relatively to the modulus) is decreased
by BlindRotate, and is unchanged or increased at all other
steps. We will focus on ModSwitch because 1) the error
incurred by this step is quite large and 2) information
concerning this error is publicly available.

ModSwitch maps a ciphertext ct = (b, a1, · · · , an) ∈
Zn+1
q with modulus q to a ciphertext c̃t = (b̃, ã1, · · · , ãn) ∈

Zn+1
2N with modulus 2N with q ≫ 2N , by rounding:

b̃ =

⌊
2N · b

q

⌉
, ãi =

⌊
2N · ai

q

⌉
,∀i ≤ n.

7

LWEs

mod q
Var: σ2

LWEs

mod 2N
Var: σ2 + σ2

ms

GLWEs′

mod q
Var: σ2

br

LWEs′

mod q
Var: σ2

br

ModSwitch

BlindRotate

SampleExtract

KeySwitch

Figure 4: High-level overview of the TFHE bootstrapping
loop. In each box, we give the ciphertext format, the secret
key, the current ciphertext modulus, and the (heuristic)
normalized variance of the noise after decryption with the
secret key (the normalized variance is the variance divided
by the square of the modulus). The initial variance σ2

can vary depending on the input: a fresh ciphertext,
a bootstrapped ciphertext, or a linear combination of
bootstrapped ciphertexts (for gate bootstrapping).

For each coefficient, this rounding creates a rounding error ẽi
which is a deterministic function of the publicly available
ciphertext:

−ẽ0 =

⌊
2N · b

q

⌉
− 2N · b

q
, ẽi =

⌊
2N · ai

q

⌉
− 2N · ai

q
,

for i ≤ n. We have

−b̃+
n−1∑
i=0

ãisi =
2N

q
(∆m+ ein) + ⟨ẽ, (1, s)⟩ mod 2N .

We have a pre-ModSwitch error ein with standard deviation σ
and a new error ems = ⟨ẽ, (−1, s)⟩ with standard devia-
tion σms. Assuming that ẽ ∼ U

(
(−q/2, q/2]n+1

)
and that

s has as many 1’s as 0’s, the normalized standard deviation
of ems is

σms =

√
1

12

(
1 +

n

2

)
· 1

2N
.

We note that this bound assumes that the Hamming weight
of the secret key vector is n/2, which is the most likely
situation but may not be the case for specific secret keys.

We emphasize that the rounding error ẽ is publicly
computable. We also argue that it is typically large relatively
to the new modulus 2N : it is (heuristically) uniform
in (−1/2, 1/2]; and N is set as small as possible as it has
a strong impact on the bootstrapping performance.

The BlindRotate step computes X−b̃+
∑

i ãisi · V in
encrypted state, using the GLWE encryptions of the si’s
under the GLWE secret key s′. The polynomial V allows
to map the message in the exponent to the constant
term. Additional errors are introduced during this step
in the coefficients of the GLWE ciphertexts, whereas the
exponent of the plaintext monomial is handled exactly. Thus,
the pre-BlindRotate errors and the post-BlindRotate are
(heuristically) independent.

The last two steps of the bootstrapping loop are Sam-
pleExtract, which extracts the constant term of the GLWE
ciphertext to make an LWE ciphertext under the secret key
set s′ (converted from polynomial to vector), and KeySwitch,
which changes the secret key s′ to the original one s. The
SampleExtract step does not introduce any additional errors,
but the KeySwitch step does.

Correctness of bootstrapping. Assume we start with a
ciphertext modulo q that decrypts to a plaintext m under
key s. We say that bootstrapping fails if after ModSwitch,
BlindRotate, SampleExtract, and KeySwitch, the new
ciphertext does not decrypt to m anymore. Recall that
decryption fails (i.e., the decryption result is incorrect) if
the error in the ciphertext exceeds a threshold. As the noise
keeps increasing (except with BlindRotate), the moment
when it is most likely to provide a decryption error is
after ModSwitch. Several errors contribute: those introduced
during BlindRotate, those introduced by KeySwitch, and
those introduced by ModSwitch. In practice, the largest one
is typically the one introduced by ModSwitch.

Before ModSwitch, the ciphertext is associated to an
error ein of (heuristic, normalized) standard deviation σ
satisfying σ2 = σ2

br+σ2
ks, where the term σks corresponds to

the error introduced by KeySwitch. ModSwitch introduces
an extra error term ems, whose normalized standard deviation
is σms. Note that we heuristically assume all errors from
all steps to be statistically independent. The total relative
error is given as (ein/q + ems)/(2N), which has variance
σ2

bts = σ2
br + σ2

ks + σ2
ms. Assuming that the error behaves

as a continuous Gaussian, the probability of incorrect
bootstrapping is computed as:

erfc

(
1/16√
2 · σbts

)
.

Here 1/16 is the relative threshold for the correct decryption:
when the error is above this value, the plaintext obtained
by decrypting after bootstrapping may differ from the initial
plaintext m.

Correctness of gate bootstrapping. Gate bootstrapping
combines the evaluation of a binary gate and bootstrapping.
This is achieved by adding two ciphertexts and a constant
before, or after KeySwitch, and running bootstrapping as
above. When to add the two ciphertexts depends on the
parameter choice. We consider the case of adding the
ciphertexts after KeySwitch, as this corresponds to the
default situation in the TFHE-rs library, but we stress that
the attack works for both cases (with success probabilities
depending on the parameter choices). The addition of
the two ciphertexts corresponds to an addition of the
underlying plaintexts over the integers, which suffices for
gate evaluation as any symmetric binary gate is a function
of the integer sum of the input bits. For example, for ct0
and ct1 two ciphertexts modulo q respectively decrypting
to m0 and m1 under key s′, the AND gate is implemented
by computing ct = ct0 + ct1 − (q/8, 0, · · · , 0). The

8

ciphertext ct then goes through ModSwitch, BlindRotate,
etc. If ct0 = ct1, we have σ2 = 4(σ2

br + σ2
ks) and thus

σ2
gbts = 4σ2

br + 4σ2
ks + σ2

ms. Assuming that the error behaves
as a continuous Gaussian, the probability of incorrect
bootstrapping is erfc(1/(16

√
2 · σgbts)).

As an example, consider the DEFAULT PARAMETERS
of the TFHE-rs library. We have n = 722, N = 512 and q =
232. The claimed error probability is at most 2−40.1 The error
in the pre-ModSwitch ciphertexts has an experimentally
measured standard deviation of

√
σ2
br + σ2

ks = 2−8.31. The
ModSwitch error has a relative standard deviation of σms =
2−7.54. We then obtain a somewhat lower than claimed
probability of incorrect gate bootstrapping of 2−44.41.

5.2. Key-Recovery Attack

The attacker has access to a decryption oracle (limited
to properly created ciphertexts). Decryption takes place for
ciphertexts modulo q under key s̃, i.e., after KeySwitch
and before ModSwitch. The attack consists in generating
a ciphertext, gate-bootstrapping it a first time to increase
its error, then gate-bootstrapping it again and checking if it
decrypts properly. Decryption can fail for several reasons:

• the post-ModSwitch error in the first bootstrap is too
large;

• the post-ModSwitch error in the gate-bootstrap is too
large;

• the pre-decryption BlindRotate error is too large.
As the bootstrapping error is much smaller for a fresh
ciphertext than for a bootstrapped ciphertext, the first
possibility is much less likely than the second one. Similarly,
the error due to BlindRotate is small compared to the overall
bootstrapping error, making the third event very unlikely
compared to the second one. Finally, the conjunction of
more than one such event is very unlikely. In particular, we
can neglect the event that two such events could compensate
themselves and result in a correct ciphertext. Overall, when
decryption fails in our process, it indicates, with probability
extremely close to 1, that the post-ModSwitch error in the
gate-bootstrap was above the correct decryption threshold.
Choosing the plaintext and gate appropriately, the latter
is 1/16 (after normalization by the modulus).

In the case of decryption failure, ModSwitch also
provides an error vector ẽ ∈ Zn+1, giving information of
the form

⟨ẽ, s̃⟩+ e > t ,

for some unknown secret s̃ = (1, s), error e = 2Nein/q
and a known threshold t = 2N/16. This leads us to define
approximate inequality hints on a secret key.

Definition 5.1 (Approximate Inequality Hint). For σ, t > 0,
a (σ, t)-approximate-inequality hint on the secret key s ∈
{0, 1}n is a vector e ∈ Rn such that

⟨e, s⟩+ e > t ,

1. This figure is borrowed from the TFHE-rs library and its website,
https://docs.zama.ai/tfhe-rs/fine-grained-apis/boolean/parameters.

where e ∼ N (0, σ2).

In the case of ModSwitch, the error vector ẽ is uniformly
distributed in (−1/2, 1/2]n+1, but a decryption failure tells
us whether a given ẽ is an approximate inequality hint. As a
result, those ẽ’s are well-aligned with the secret key s̃. This
leads us to the following statement, on the distribution of
rounding error coefficients conditioned on failures.

Lemma 5.2. Let σ, t > 0 and a secret key s̃ ∈ {0, 1}n.
Let ẽ ∼ U([−1/2, 1/2]n) and e ∼ N (0, σ2). Let i ≤ n
and Yi = ⟨ẽ, s̃⟩ − ẽisi. The probability density function f
of ẽi conditioned on the event ⟨ẽ, s̃⟩ + e > t satisfies, for
all xi ∈ [−1/2, 1/2]:

f(xi) =

{
Pr[xi+Yi+e>t]
Pr[ẽi+Yi+e>t] if si = 1,

1 if si = 0.

Proof. We consider two cases. If si = 0, the failure event
is independent of the random variable ẽi and its conditional
distribution remains the uniform distribution on [−1/2, 1/2].
If si = 1, Bayes’ law gives

f(xi) = 1 · Pr[⟨ẽ, s̃⟩+ e > t|ẽi = xi]

Pr[⟨ẽ, s̃⟩+ e > t]
.

We use the equality ẽisi + Yi = ⟨ẽ, s̃⟩ to conclude.

In our case, as n is very large, we can heuristically
assume that Yi has a distribution similar to that of ⟨ẽ, s̃⟩.
Lemma 5.2 implies that the distributions of the rounding
error coefficients ẽi are very different depending on their
corresponding secret key coefficient si. Indeed, one is
uniform while the other is similar to a truncated scaled
erfc function. As t is chosen so that the gate bootstrapping
failure probability is low, we are indeed somewhat far in
the erfc function, in a range where it varies significantly.
Figure 5 displays the distribution of ẽi for the TFHE-
rs DEFAULT PARAMETERS. We note that we could
similarly exploit the distributions of the ẽi’s conditioned on
correct decryption, but then the two distribution functions,
for si = 0 and si = 1, are extremely close.

The attack exploits the fact that the two pdfs differ signifi-
cantly. In particular, the expectancy of the one corresponding
to si = 0 is 0, whereas the other one has expectancy α > 0.
Intuitively, if a value ẽi is below α/2, it is likely that it was
picked from the pdf corresponding to si = 0, whereas if it
is above α/2, it is likely that it was picked from the pdf
corresponding to si = 1. This leads to the attack described
in Algorithm 6. The calls to Enc, Eval and Dec formally
correspond to oracles to the challenger, as per Definition 2.4.
The parameter γ quantifies the number of attempts to create
decryption failures. The variable f counts the number of
observed decryption failures. Finally, the vector sest is a
guess for the secret key s.
Claim. Algorithm 6 recovers the secret key s with over-
whelming probability, if the number of trials f satisfies
f = Ω(

√
log n/α2).

Indeed, the random variable ẽ = (
∑f−1

j=0 ẽj)/f ∈ Rn is
a sum of i.i.d. random variables. The central limit theorem

9

https://docs.zama.ai/tfhe-rs/fine-grained-apis/boolean/parameters

Figure 5: Distributions of the coefficients of ẽ condi-
tioned on decryption failures, for the TFHE-rs library
DEFAULT PARAMETERS. The blue and orange curves
respectively depict the pdfs of ẽi when si = 1 and si = 0.

−0.5 −0.25 0 0.25 0.5

0

0.5

1

1.5

Algorithm 5 KRD attack on TFHE

1: f := 0
2: for 0 ≤ k < γ do
3: Query ctk ← Enc(true)
4: Query ct′k ← Eval(AND, ctk, ctk)
5: Query ct′′k ← Eval(AND, ct′k, ct

′
k)

6: Query m← Decsk(ct
′′
k)

7: if m = false then
8: Compute the rounding error ẽf from ct′k
9: f := f + 1

10: end if
11: end for
12: Compute ẽ = 1

f

∑f−1
j=0 ẽj

13: For all i ≤ n, compute s̃i =

{
1 if ẽi < α/2
0 otherwise

14: return sest

states that its distribution is close to an n-dimensional
Gaussian distribution, when f is sufficiently large. For the
coordinates i such that si = 0, we have a sum of i.i.d.
uniformly random variables over [−0.5, 0.5], so that the
standard deviation is σ0 = 1/

√
12f and the center is 0.

For the coordinates i such that si = 1, the center is α and
the standard deviation is some σ1 = Θ(1/

√
f). Therefore,

for each i ≤ n, the reply of Algorithm 6 is incorrect with
probability ≤ erfc(O(α

√
f)) = O(1/n).

5.3. Experimental Results

The KRD attack requires sufficiently many gate boot-
straps to observe decryption failures. The gate bootstrapping
failure probability depends on the considered parameter
set. In OpenFHE [12], the decryption failure probabilities
mentioned in depicted in [25] range from 2−33 for the

STD256 parameter set to 2−101 for the STD192Q parameter
set. In TFHE-rs [13], the decryption failure probability upper-
bound is 2−40 in the default parameters. The Hamming
weight of the secret key increases the ModSwitch error,
so the failure probability depends on the secret key. Since
gate bootstrapping takes a relatively long time, of around
10ms on a single threaded CPU, performing 240 gate
bootstrapping may take more than 300 years. With the
FPGA implementation from [26], this may still take around
a year. We highlight that this computation time is on the
challenger/oracle side and that it is high only because of
the limited performance of DM/CGGI. In fact, our KRD

attack is very efficient: it just averages the rounding errors
corresponding to decryption failures.

Since current implementations of gate bootstrapping are
too inefficient to experiment the attack on used parameter
sets, we present two types of experimental results.

• TFHE-rs with modified parameters. We increased the
error in the switching keys used in BlindRotate and
decreased the ring dimension N . This allows to maintain
the same level of IND-CPA security, and at the same
time increase the bootstrapping error probability. It
also provides better bootstrapping performance. The
bootstrapping error probability and the efficiency of
bootstrapping allow to experiment the attack in practice
in a reasonable time on a conventional CPU. Our
experiments show that our attack recovers the secret key
in practice, using only the public API. The challenger
side is executed by a Rust code using TFHE-rs while
the KRD adversary is implemented in Python.

• Simulations. We simulate the distribution of ciphertexts
conditioned on failures using a standard rejection
sampling technique. This allows us to circumvent the
slowness of current implementations and to experiment
our attack on more parameter sets, in particular those
with lower decryption failure probabilities.

Practical experiments. Table 6 gives the default parameters
of TFHE-rs for 128 bits of IND-CPA security and our
modified parameters, which still enjoy 128 bits of IND-CPA
security. As usual in FHE literature, the bit security is
computed by the lattice estimator [27].2

Note that security increases with the dimension and the
relative error. We decreased the dimension and increased
the relative noise to maintain security. This results both in
a performance increase and an increased failure probability.
The custom parameter set has a decryption failure probability
of the order of 1%.

Using our custom parameter set, we ran the KRD

experiment (Algorithm 6) with γ = 1, 000, 000 samples.
We plotted the experimental distribution of the rounding
error coefficients of failed ciphertexts. The blue (resp.
orange) histogram depicts the experimental distribution of
the rounding error coefficients ẽi such that si = 1 (resp.
si = 0). The figure shows that even with only a single
failure, the advantage for recovering an individual secret key

2. Git commit 564470e07d816f788d9c85acf72a1789c7787574

10

coefficient is non-negligible, since the two distributions are
quite distinct. Note that the pdfs are less distinct than in
Figure 7. This is because the bootstrapping error probability
is less large and hence the rejection condition is less far
away in the Gaussian tail.

To improve the accuracy of the guessing of the secret key,
the KRD attack averages all the failed ciphertext rounding
errors. This amounts to averaging i.i.d. samples from the
distributions of Figure 7. Thanks to the law of large numbers,
the average behaves as a Gaussian random variable whose
center depends on si. With a sufficiently large number of
samples, the variance becomes sufficiently small to be able
to accurately distinguish si = 0 from si = 1. In Figure 8,
we plot the Hamming weight of s − sest, as a function of
the number of decryption failures, where s is the actual
secret key and sest is its guess. With 1 million samples, our
attack recovered 597 secret key coefficients out of 600 for
the custom parameter set. We also ran our KRD attack on
the TFHE-rs default parameters set using ciphertext samples
generated by simulations. Our attack fully recovered the
secret key with less than 256 decryption failures. One can
query more samples to have an even better accuracy or
perform an exhaustive search over secret keys that are close
to the guess in Hamming distance.

6. About (In)security of Threshold-FHE

In this section, we discuss the insecurity of Threshold-
FHE schemes by relying on our IND-CPAD and KRD attacks.

6.1. Definitions and Relation to IND-CPAD Security

The purpose of Threshold-FHE is to distribute the secret
decryption key among several parties, such that any subset
of large enough size (corresponding to the threshold) can
jointly decrypt any ciphertext, while any smaller subset of
parties cannot learn anything about the underlying plaintext.

The capabilities of the attacker against Thres-IND-CPA
security present important similarities with those in
IND-CPAD and KRD security. Indeed, an attacker is allowed
to request encryption queries, evaluation queries, as well as
and partial decryption queries of the ciphertexts obtained

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

Figure 7: Experimental distributions of ẽi conditioned on
decryption failure. Blue is for the si = 1 case, orange is for
the si = 0 case.

0 2 4 6 8 10 12

0

100

200

300

log2(f)

H
am

m
in

g
w

ei
gh

t
of

s
−

s e
st

Figure 8: Performance of the attack as a function of the
number of decryption failures. The cyan and magenta curves
respectively correspond to the custom parameter set and the
TFHE-rs default parameters.

Figure 6: Parameter sets of TFHE-rs with 128 bits of IND-CPA security.

Parameter DEFAULT PARAMETERS CUSTOM PARAMETERS
lwe_dimension 722 600
glwe_dimension 2 7
polynomial_size 512 128

lwe_modular_std_dev 0.000013072 0.000143792
glwe_modular_std_dev 0.000000050 0.000000550

pbs_base_log 6 6
pbs_level 3 3
ks_base_log 3 3
ks_level 4 4

encryption_key_choice Small Small

11

from prior queries as long as the underlying plaintext is
independent of the challenge bit b.

The main differences between Threshold-FHE and FHE
are the setup procedure, which distributes the secret key
between parties, and the decryption procedure, which is
split in two phases: 1) each party can compute a partial
decryption of a ciphertext using its share of the secret key,
2) (a sufficiently large set of) partial decryptions of a same
ciphertext can be recombined to recover the underlying
plaintext.

Since a threshold-FHE scheme encompasses a standard
FHE scheme (e.g., consider the secret key as being the set
of all partial decryption keys), our attacks extend to the case
of threshold-FHE. However, we emphasize that in general,
and unlike for standard FHE (for which many application
scenarios do not require IND-CPAD security), having access
to a decryption oracle in scenarios involving threshold-FHE
is the default option. Therefore, our attacks have a strong
impact on threshold variants of the schemes studied so far.

Let us first recall the definition of Threshold-FHE.

Definition 6.1 (Threshold-Fully Homomorphic Encryption).
Let n ≥ t ≥ 0. A (t, n)-threshold-fully homomorphic
encryption scheme (Threshold-FHE) is a tuple of efficient
algorithms (Setup,Enc,Eval,PDec,FinDec) with the follow-
ing specifications:

• Setup outputs secret keys sk1, . . . , skn and a public
key pk;

• Enc takes as inputs a public key pk and a plaintext m ∈
{0, 1}, and outputs a ciphertext ct;

• Eval takes as inputs a public key pk, a binary circuit C,
and a tuple of ciphertexts ct1, . . . , ctk where k is the
number of input wired of C, and outputs a ciphertext ct;

• PDec takes as inputs a secret key ski for i ≤ n, and a
ciphertext ct, and outputs a partial decryption pi;

• FinDec takes as inputs a public key pk, and a set
{pi}i∈S for some S ⊆ {1, . . . , n}, and outputs a
plaintext m ∈ {0, 1,⊥}.

For ε ≥ 0 and a circuit size bound B, the scheme
is said (ε,B)-correct if for any key set (sk1, . . . , skn, pk)
output by Setup, for any binary circuit C, for any plain-
texts m1, . . . ,mk ∈ {0, 1} where k is the number of input
wires of C, for any set S ⊆ {1, . . . , n} with |S| ≥ t, the fol-
lowing holds with probability ≥ 1−ε over ctj := Encpk(mj)
(for j ≤ k) and pi = PDecski (Evalpk(C, (ct1, . . . , ctk)):

FinDecpk({pi}i∈S) = C(m1, . . . ,mk).

A scheme is perfectly correct if it is ε-correct for ε = 0.

As mentioned above, a threshold-FHE scheme Π encom-
passes an underlying FHE scheme Π∗, defined as:

• Π∗.KeyGen outputs (sk = (sk1, . . . , skn), pk), where
(sk1, . . . , skn, pk)← Π.Setup,

• Π∗.Encpk = Π.Encpk,
• Π∗.Evalpk = Π.Evalpk,
• Π∗.Decsk(·) = Π.FinDecpk({PDecski(·)}i≤n).

Thres-IND-CPA security is defined very similarly to
IND-CPAD security. Actually, IND-CPAD security can be
seen as Thres-IND-CPA security seeing the FHE scheme as
a (1, 1)-Threshold FHE scheme. We provide a detailed defi-
nition below. (This is an indistinguishability-based security
definition, note that sometimes simulation-based definitions
are preferred.)

Definition 6.2 (Thres-IND-CPA security). Let Π = (Setup,
Enc,Eval,PDec,FinDec) denote a Treshold-FHE scheme.
For an adversary A = (A0,A1) that is given access to the
(stateful) oracles OEnc, OEval and OPDec defined below, we
define the advantage AdvThres-IND-CPA(A) of A against the
Thres-IND-CPA security of Π as:

∣∣∣∣∣∣∣2 · Pr
b = b′

∣∣∣∣∣∣∣
(pk, sk1, . . . , skn)← KeyGen;

b← U ({0, 1}) ;
T ← A0(pk);

b′ ← AOEnc,OEval,OPDec

1 (pk, {ski}i∈T)

− 1

∣∣∣∣∣∣∣ ,

where A0 is required to output a (possibly empty) set
T ⊂ {1, . . . , n} of corrupted parties of size at most t − 1.
Oracles OEnc and OEval are defined exactly as for IND-CPAD

security. Oracle OPDec can be invoked only on a priorly
obtained ciphertext. On input the index j of a priorly
generated ciphertext, oracle OPDec checks that the underlying
plaintext is independent of the challenge bit b, and if so,
returns PDecski(ctj), for i ≤ n.

Then, we have the following.

Theorem 6.3. Let Π be a Threshold-FHE scheme and Π∗

be the underlying FHE scheme of Π. Let B an adversary
against the IND-CPAD security of Π∗. Then, there exists
an adversary A against the Thres-IND-CPA security of Π,
with same advantage and running time as B.

Proof. Let B be an adversary against the IND-CPAD security
of Π∗. We construct an adversary A against the security of Π.
Adversary A obtains a public key pk from its challenger,
which it forwards to B. A does not corrupt any party (i.e.,
adversary A0(pk) returns ∅). Now, adversary A1 runs B
and makes the exact same queries as B to its own oracles.
Then, for each query, adversary A1 simply forwards the
response it obtains to B, except for decryption queries. In
that last case, it first reconstructs the actual decryption result
by running FinDec on input the partial decryption shares it
obtains from OPDec, and then returns the result to B. When
B halts with some output bit b′, so does A1.

By definition, all queries made by B are also valid
queries for A1 since its queries must satisfy the exact same
constraints (i.e., decryption queries should be made only
for ciphertexts whose underlying plaintexts are independent
of the challenge bit). Moreover, it can be seen that A
correctly simulates an IND-CPAD challenger in B’s view,
hence leading to our claim.

12

6.2. Noah’s Ark, a Threshold-FHE Scheme

We first recall the Threshold-FHE scheme from [16]. It
builds upon the CGGI FHE scheme, and thus the underlying
FHE scheme is very similar to the one we studied in
Section 5.

The Setup stage can be done by using a secure multiparty
protocol, generating the underlying secret key data in a secret-
shared form. Once the keys are generated, the encryptions and
evaluations can be done by anyone, with the public key. They
are identical to the CGGI encryptions and evaluations. For a
ciphertext (b,a), the partial decryption algorithm computes
b − ⟨a, si⟩ + ei mod q, where si is the secret key share
of party Pi and ei is a fresh error. The additional error is
introduced to statistically hide the party’s secret information:
to obtain sufficient security, this error term is set quite
large. The final decryption consists in computing a linear
combination of shares.

As CGGI does not have the capacity to absorb a
sufficiently large error ei, in Noah’s ark, the gap between the
error and the plaintext message is increased by using a so-
called Switch-and-Squash technique. It consists in switching
the ciphertext modulus and the LWE dimension, squashing
the errors via bootstrapping. The procedure is identical to
CGGI bootstrapping, except that the moduli and dimension
are changed: it takes as input an LWE ciphertext with
dimension n and modulus q and outputs an LWE ciphertext
with dimension n and modulus 2N via ModSwitch, then the
ciphertext becomes an GLWE ciphertext of ring dimension N
through BlindRotate, and finally goes back to an LWE
ciphertext, now with dimension L and modulus Q.

6.3. Is There a Hole in Noah’s Ark?

There are two possible sources of failures in Noah’s
Ark. A first one is the homomorphic evaluation of gates. A
second one is the Switch-and-Squash method which involves
a bootstrapping for a different set of parameters. In [16],
parameter details are provided only for Switch-and-Squash,
so we chose to present an attack targeting failures of PDec
instead of Eval. The attack is described in Figure 6. For the
sake of simplicity, we describe it for n = t = 2, even though
this is not a parametrization considered in [16].

We recall in the columns of Table 1 the four parameter
sets considered for Switch-and-Squash. The last row gives a
lower bound on the decryption failure probability. The latter
is possibly significantly higher as we compute the bound
using only the ModSwitch error. Indeed, the other error
terms cannot be obtained in [16].

7. Conclusion

We exhibited IND-CPAD and KRD attacks on homo-
morphic encryption schemes for exact data, when their
correctness does not hold with probability sufficiently close
to 1. These attacks also extend to threshold variants of those
schemes. This work hence disproves the common belief

Algorithm 6 Attack on Noah’s Ark, with n = t = 2.

1: f := 0
2: for 0 ≤ k < γ do
3: Query ctk ← Enc(true)
4: Query ct′k ← Eval(AND, ctk, ctk)
5: Query (p1, p2)← PDecsk(ctk)
6: Set m← FinDecpk(p1, p2).
7: if m = false then
8: Compute the rounding error ẽf from ct′k
9: f := f + 1

10: end if
11: end for
12: Compute ẽ = 1

f

∑f−1
j=0 ẽj

13: For all i ≤ n, compute s̃i =

{
1 if ẽi < α/2
0 otherwise

14: return sest

ρ 1 4 1 4
(q, l) (264, 777) (264, 870) (264, 1024) (264, 1024)
(Q,L) (2128, 4096) (2128, 4096) (2128, 4096) (2128, 4096)
N ′ 1024 2048 1024 2048
w′ 4 2 4 2

σms 2−8.49 2−9.41 2−8.29 2−9.29

2−ρ−1−1 2−3 2−6 2−3 2−6

r 25.49 23.41 25.29 23.29

erfc(r/
√
2) 2−1460 2−85.1 2−1110 2−72.8

TABLE 1: Parameter sets of Switch-and-Squash and lower
bounds of decryption failure probability. The notations are
borrowed from [16].

that exact schemes would be immune to IND-CPAD attacks,
oppositely to approximate schemes. Overall, what matters
most for this notion of security is the correctness of the
scheme rather than the type of data that it manipulates
(although schemes on approximate data create specific
definitional difficulties when it comes to correctness).

We emphasize that loose and possibly heuristic correct-
ness suffices for IND-CPA security, which is relevant in all
applications of homomorphic encryption where the output
results are not shared. When the output results may be
shared, correctness guarantees should be strengthened to
thwart IND-CPAD attacks. This may lead to a performance
penalty: for example, in the case of CKKS, a solution was
given in [5] based on the noise flooding technique. To avoid
paying for this performance penalty across all applications,
a possibility is to specify in software whether the outputs
may be shared or not [11].

References

[1] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and
N. Aaraj, “Survey on fully homomorphic encryption, theory, and
applications,” Cryptology ePrint Archive, Report 2022/1602, 2022,
https://eprint.iacr.org/2022/1602.

[2] B. Li and D. Micciancio, “On the security of homomorphic encryption
on approximate numbers,” in EUROCRYPT 2021, Part I, ser. LNCS,
A. Canteaut and F.-X. Standaert, Eds., vol. 12696. Springer,
Heidelberg, Oct. 2021, pp. 648–677.

13

https://eprint.iacr.org/2022/1602

[3] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic en-
cryption for arithmetic of approximate numbers,” in ASIACRYPT 2017,
Part I, ser. LNCS, T. Takagi and T. Peyrin, Eds., vol. 10624. Springer,
Heidelberg, Dec. 2017, pp. 409–437.

[4] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 34:1–34:40, 2009.

[5] B. Li, D. Micciancio, M. Schultz, and J. Sorrell, “Securing approximate
homomorphic encryption using differential privacy,” in CRYPTO 2022,
Part I, ser. LNCS, Y. Dodis and T. Shrimpton, Eds., vol. 13507.
Springer, Heidelberg, Aug. 2022, pp. 560–589.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” in Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January
8-10, 2012, S. Goldwasser, Ed. ACM, 2012, pp. 309–325.

[7] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical GapSVP,” in CRYPTO 2012, ser. LNCS,
R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer, Heidelberg,
Aug. 2012, pp. 868–886.

[8] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” 2012. [Online]. Available: http://eprint.iacr.org/2012/144

[9] L. Ducas and D. Micciancio, “FHEW: Bootstrapping homomorphic
encryption in less than a second,” in EUROCRYPT 2015, Part I,
ser. LNCS, E. Oswald and M. Fischlin, Eds., vol. 9056. Springer,
Heidelberg, Apr. 2015, pp. 617–640.

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
ASIACRYPT 2016, Part I, ser. LNCS, J. H. Cheon and T. Takagi, Eds.,
vol. 10031. Springer, Heidelberg, Dec. 2016, pp. 3–33.

[11] J. H. Cheon, S. Hong, and D. Kim, “Remark on the security
of CKKS scheme in practice,” IACR Cryptol. ePrint Arch., 2020.
[Online]. Available: https://eprint.iacr.org/2020/1581

[12] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, R. V. Saraswathy, K. Rohloff, J. Saylor,
D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca,
“OpenFHE: Open-source fully homomorphic encryption library,” in
Proceedings of the 10th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, Los Angeles, CA, USA, 7 November 2022,
M. Brenner, A. Costache, and K. Rohloff, Eds. ACM, 2022, pp.
53–63, library available at https://www.openfhe.org/.

[13] ZAMA, “TFHE-rs v0.4,” 2023, https://docs.zama.ai/tfhe-rs. [Online].
Available: https://docs.zama.ai/tfhe-rs

[14] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan,
and D. Wichs, “Multiparty computation with low communication,
computation and interaction via threshold FHE,” in EUROCRYPT 2012,
ser. LNCS, D. Pointcheval and T. Johansson, Eds., vol. 7237. Springer,
Heidelberg, Apr. 2012, pp. 483–501.

[15] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R.
Rasmussen, and A. Sahai, “Threshold cryptosystems from threshold
fully homomorphic encryption,” in CRYPTO 2018, Part I, ser. LNCS,
H. Shacham and A. Boldyreva, Eds., vol. 10991. Springer, Heidelberg,
Aug. 2018, pp. 565–596.

[16] M. Dahl, D. Demmler, S. E. Kazdadi, A. Meyre, J. Orfila, D. Rotaru,
N. P. Smart, S. Tap, and M. Walter, “Noah’s Ark: Efficient threshold-
FHE using noise flooding,” in Proceedings of the 11th Workshop
on Encrypted Computing & Applied Homomorphic Cryptography,
Copenhagen, Denmark, 26 November 2023, M. Brenner, A. Costache,
and K. Rohloff, Eds. ACM, 2023, pp. 35–46.

[17] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, “Efficient public
key encryption based on ideal lattices,” in ASIACRYPT 2009, ser.
LNCS, M. Matsui, Ed., vol. 5912. Springer, Heidelberg, Dec. 2009,
pp. 617–635.

[18] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in EUROCRYPT 2010, ser. LNCS,
H. Gilbert, Ed., vol. 6110. Springer, Heidelberg, May / Jun. 2010,
pp. 1–23.

[19] Q. Guo, D. Nabokov, E. Suvanto, and T. Johansson, “Key
recovery attack on approximate homomorphic encryption with
non-worst-case noise flooding countermeasures,” in 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, 2024. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity24/presentation/guo

[20] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for
module lattices,” Des. Codes Cryptogr., vol. 75, no. 3, pp. 565–599,
2015.

[21] D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi, “LWE
with side information: Attacks and concrete security estimation,” in
CRYPTO 2020, Part II, ser. LNCS, D. Micciancio and T. Ristenpart,
Eds., vol. 12171. Springer, Heidelberg, Aug. 2020, pp. 329–358.

[22] D. Dachman-Soled, H. Gong, T. Hanson, and H. Kippen, “Revisiting
security estimation for LWE with hints from a geometric perspective,”
in CRYPTO 2023, Part V, ser. LNCS, H. Handschuh and
A. Lysyanskaya, Eds., vol. 14085. Springer, Heidelberg, Aug. 2023,
pp. 748–781.

[23] S. Murphy and R. Player, “A central limit framework for ring-LWE
decryption,” Cryptology ePrint Archive, Report 2019/452, 2019, https:
//eprint.iacr.org/2019/452.

[24] B. Biasioli, C. Marcolla, M. Calderini, and J. Mono, “Improving
and automating bfv parameters selection: An average-case approach,”
Cryptology ePrint Archive, Paper 2023/600, 2023, https://eprint.iacr.
org/2023/600. [Online]. Available: https://eprint.iacr.org/2023/600

[25] D. Micciancio and Y. Polyakov, “Bootstrapping in FHEW-like
cryptosystems,” IACR Cryptol. ePrint Arch., 2020, version dated
October 23, 2022. [Online]. Available: https://eprint.iacr.org/2020/086

[26] M. V. Beirendonck, J. D’Anvers, F. Turan, and I. Verbauwhede, “FPT:
A fixed-point accelerator for torus fully homomorphic encryption,”
in Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, W. Meng, C. D. Jensen, C. Cremers, and
E. Kirda, Eds. ACM, 2023, pp. 741–755.

[27] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness
of learning with errors,” J. Math. Cryptol., vol. 9, no. 3, pp. 169–203,
2015, software available at https://github.com/malb/lattice-estimator.

14

http://eprint.iacr.org/2012/144
https://eprint.iacr.org/2020/1581
https://www.openfhe.org/
https://docs.zama.ai/tfhe-rs
https://docs.zama.ai/tfhe-rs
https://www.usenix.org/conference/usenixsecurity24/presentation/guo
https://www.usenix.org/conference/usenixsecurity24/presentation/guo
https://eprint.iacr.org/2019/452
https://eprint.iacr.org/2019/452
https://eprint.iacr.org/2023/600
https://eprint.iacr.org/2023/600
https://eprint.iacr.org/2023/600
https://eprint.iacr.org/2020/086
https://github.com/malb/lattice-estimator

	Introduction
	Preliminaries
	Fully Homomorphic Encryption
	IND-CPAD Security
	KRD Security

	A Generic IND-CPAD Attack
	KRD Attacks on B(F/G)V-like FHE Schemes
	Noise Analysis for BFV
	Key-Recovery Attack
	Experimental Results

	A KRD Attack on DM/CGGI
	TFHE (Gate) Bootstrapping
	Key-Recovery Attack
	Experimental Results

	About (In)security of Threshold-FHE
	Definitions and Relation to IND-CPAD Security
	Noah's Ark, a Threshold-FHE Scheme
	Is There a Hole in Noah's Ark?

	Conclusion
	References

