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Abstract—To improve the throughput of Byzantine Fault Tol-
erance (BFT) consensus protocols, the Directed Acyclic Graph
(DAG) topology has been introduced to parallel data processing,
leading to the development of DAG-based BFT consensus. How-
ever, existing DAG-based works heavily rely on Reliable Broadcast
(RBC) protocols for block broadcasting, which introduces sig-
nificant latency due to the three communication steps involved
in each RBC. For instance, DAGRider, a representative DAG-
based protocol, exhibits a best latency of 12 steps, considerably
higher than non-DAG protocols like PBFT, which only requires 3
steps. To tackle this issue, we propose LightDAG, which replaces
RBC with lightweight broadcasting protocols such as Consistent
Broadcast (CBC) and Plain Broadcast (PBC). Since CBC and
PBC can be implemented in two and one communication steps,
respectively, LightDAG achieves low latency.

In our proposal, we present two variants of LightDAG, namely
LightDAG1 and LightDAG2, each providing a trade-off between
the best latency and the expected worst latency. In LightDAG1,
every block is broadcast using CBC, which exhibits a best latency
of 5 steps and an expected worst latency of 14 steps. Since CBC
cannot guarantee the totality property, we design a block retrieval
mechanism in LightDAG1 to assist replicas in retrieving missing
blocks. LightDAG2 utilizes a combination of PBC and CBC for
block broadcasting, resulting in a best latency of 4 steps and an
expected worst latency of 12(t+1) steps, where t represents the
number of actual Byzantine replicas. Since a Byzantine replica
may equivocate through PBC, LightDAG2 prohibits blocks from
directly referencing contradictory blocks. To ensure liveness, we
propose a mechanism to identify and exclude Byzantine replicas
if they engage in equivocation attacks. Extensive experiments
have been conducted to evaluate LightDAG, and the results
demonstrate its feasibility and efficiency.

Index Terms—Byzantine fault tolerance, DAG, consensus,
blockchain

I. INTRODUCTION

The exponential rise of blockchain technology [1] has
brought significant attention to Byzantine Fault Tolerance
(BFT) consensus protocols [2]–[4], which facilitate data agree-
ment among multiple replicas [5]. Traditional BFT protocols
like PBFT [6] and HotStuff [7] process data sequentially,
limiting protocol throughput. To address this limitation, re-
cent advancements such as DAGRider [8], Bullshark [9],
and Tusk [10] have introduced the Directed Acyclic Graph
(DAG) topology, parallelizing data processing and improving

Fig. 1: Structure of existing DAG-based protocols. Blocks with
orange borders are committed by the leader block Lw+1.

performance [11]. These protocols are collectively referred to
as DAG-based BFT protocols [12].

Generally, existing DAG-based (BFT) protocols progress
in waves, with each wave comprising multiple rounds, as
depicted in Fig. 1. In each round, every replica broadcasts
a block using the Reliable Broadcast (RBC) protocol [13],
providing the properties of consistency and totality in block
delivery. In a system with n ≥ 3f + 1 replicas, a valid block
must include at least n − f block hashes from the previous
round. A block B1 is said to reference another block B2 if
B1 includes B2’s hash. This reference relationship is transitive,
meaning that if B1 references B2 and B2 references B3, B1

is considered as referencing B3 as well. Blocks referenced by
a block B are referred to as B’s ancestors. At the end of a
wave, a block from the first round of this wave is selected as
the leader block. If the leader block satisfies certain predefined
conditions, such as being referenced by enough blocks, it and
its ancestor blocks can be committed.

Despite the significant throughput improvements offered by
DAG-based protocols, they suffer from high latency due to
the RBC protocol. To be more specific, the RBC protocol
requires a minimum of three communication steps (as shown
in Fig. 1). Consequently, a DAG-based protocol with four RBC
rounds in a wave, like DAGRider [8], necessitates at least 12
communication steps to commit a leader block, which is much
larger than the latency of the non-DAG protocol (e.g., PBFT,
requiring only 3 communication steps).

To address latency issues in existing DAG-based protocols,
we propose LightDAG, which replaces the RBC protocol with
lightweight broadcasting protocols: Plain Broadcast (PBC)



and Consistent Broadcast (CBC) [14]. PBC represents the
simplest broadcast process, where the broadcaster transmits
data to each replica, and each replica delivers the data once
receiving it. While PBC does not guarantee consistency or
totality, it achieves this with a single communication step.
On the other hand, CBC is a broadcast protocol stronger
than PBC but weaker than RBC. Specifically, CBC ensures
consistency, even in the presence of a Byzantine broadcaster,
but it cannot guarantee totality. CBC can be implemented with
two communication steps.

Replacing RBC with PBC or/and CBC offers a straight-
forward reduction in consensus latency due to the decreased
number of communication steps. However, this substitution
presents challenges, as CBC lacks the totality property, and
PBC lacks both consistency and totality. To address these
shortcomings, we introduce a block retrieval mechanism to
assist replicas in obtaining missing blocks from others, mit-
igating the lack of totality in CBC or PBC. Furthermore, to
address the absence of consistency in PBC, we implement
a consistent reference mechanism to prevent a block from
directly referencing contradictory blocks.

Concretely speaking, we present two variants of LightDAG:
LightDAG1 and LightDAG2, offering a trade-off between the
best latency and the expected worst latency. In LightDAG1,
a wave consists of three CBC rounds. Since CBC cannot
ensure the totality property, we leverage the block retrieval
mechanism. A replica participates in the CBC process of a
block B only if it has already delivered all of B’s ancestor
blocks. Similar to existing DAG-based protocols, LightDAG1
selects a block from the first round as the leader block of the
wave. If the leader block is referenced by at least f+1 blocks
in the second round, it and its ancestor can be committed.
Consequently, LightDAG1 achieves a best latency of 6 steps
and an expected worst latency of 14 steps.

In LightDAG2, a wave also consists of three rounds: a
PBC round, a CBC round, and another PBC round, in that
specific order. Since a Byzantine replica can equivocate in
PBC rounds, LightDAG2 leverages the consistent reference
mechanism to prevent a block from referencing contradictory
blocks directly. Besides, a replica (px) cannot vote for two
blocks in the same CBC round if these two blocks directly
reference contradictory blocks. Instead, px will send the
Byzantine proof to the block proposer (py). py will then
repropose a block without referencing contradictory blocks,
which will be voted on by px. In a good situation, it only takes
4 steps to commit a block. However, if a Byzantine replica
equivocates in a wave, the leader block cannot be committed
during that wave, thereby compromising liveness. To tackle
this challenge, LightDAG2 introduces a rule that helps each
replica identify and exclude Byzantine replicas in subsequent
waves. By doing so, LightDAG2 achieves an expected worst
latency of 12(t + 1) steps, where t represents the number of
actual Byzantine replicas.

We implement prototype systems for both variants of
LightDAG and compare them to the state-of-the-art proto-
cols through extensive experiments. The experimental results

TABLE I: Comparison between different DAG-based proto-
cols. Latency is measured by the communication steps, and t
represents the number of actual Byzantine replicas.

Wave length Broadcast Best latency † Worst latency

DAGRider [8] 4 RBC 12 (10) 18

Tusk [10] 3 RBC 9 (7) 21

BullShark [9] 4 RBC 6 30

LightDAG1 3 CBC 6 (5) 14

LightDAG2 3 CBC & PBC 4 12(t + 1)§

† If neither safety nor liveness is compromised, we only need to count the
first step in RBC or CBC that reveals the leader. In this way, the latency
can be reduced, whose results are shown in the brackets.

§ Although LightDAG2 shows worse performance when t is large, it can
exclude Byzantine replicas and prevent them from doing evil later.

demonstrate that both two variants effectively reduce latency
and improve throughput compared to existing protocols, with
LightDAG2 achieving the best overall performance. Moreover,
LightDAG exhibits superior scalability, showcasing higher
performance even as the system scales up. Additionally,
LightDAG demonstrates a higher peak throughput when the
system becomes saturated.

II. BACKGROUND & MOTIVATION

A. BFT consensus

Byzantine Fault Tolerance (BFT) consensus protocols are
utilized to reach agreements on data among a group of
mutually untrusting replicas. Some of these replicas, known as
Byzantine replicas, may deviate from the protocol arbitrarily,
while the remaining replicas consistently adhere to the proto-
col and are referred to as non-faulty replicas. In the context
of blockchain systems, data to be considered are referred to
as blocks, which contain multiple transactions from clients. A
block is considered committed if it is agreed upon by the BFT
consensus and assigned a position in the replica’s ledger. A
consensus protocol must satisfy the following two properties:

• Safety: If two non-faulty replicas commit two blocks B
and B′ at the same position respectively, then B = B′.

• Liveness: A transaction sent by a client will be included
in a committed block eventually.

B. DAG-based consensus

Traditional BFT consensus process data in a sequential man-
ner, agreeing upon them one by one. To improve performance,
the concept of Directed Acyclic Graph (DAG) is introduced
to the consensus design, resulting in DAG-based consensus
protocols. These protocols process and agree on data in a
parallel manner, whose representatives include DAGRider [8],
BullShark [9], and Tusk [10].

In DAG-based protocols, the consensus progresses in suc-
cessive waves, as depicted in Fig. 1. Each wave consists of
multiple rounds, and in each round, each replica attempts to
propose a block using the Reliable Broadcast (RBC) protocol.
The RBC protocol can be considered as an enhanced broadcast
protocol, which ensures the consistency of block deliveries
by different replicas in a Byzantine environment [15], whose
properties include:



• Consistency: If two non-faulty replicas deliver blocks B
and B′ respectively, then B must be equal to B′.

• Validity: If a non-faulty broadcaster broadcasts block B,
every non-faulty replica will deliver B.

• Integrity: Each non-faulty replica will deliver at most
one block.

• Totality: If a non-faulty replica delivers a block B, every
non-faulty replica will eventually deliver B.

Every block must include hashes of blocks from the pre-
vious round. A block B is said to directly reference a block
C if B include C’s hash. Additionally, a block B is said to
indirectly reference D if B references C and C references
D. All blocks referenced by a block, whether directly or
indirectly, are referred to as its ancestors. It is important to
note that a block is considered an ancestor of itself. The blocks
directly referenced by a block are also named its parents. At
the end of a wave, typically through messages in the last round
of that wave, a block from the first round is selected as the
leader block, as indicated by blocks encircled by green boxes
in Fig. 1. If the leader block satisfies specific conditions, such
as being referenced by more than two-thirds of the blocks in
the last round (defined in DAGRider [8]), the leader and all
its ancestor blocks can be committed.

Motivation. Existing DAG-based protocols focus on im-
proving throughput by committing multiple blocks in each
wave but overlook the issue of latency. They measure latency
in terms of RBC rounds and claim to have a low number of
RBC rounds. However, an RBC round actually consists of at
least three communication steps [16], resulting in relatively
high latency, as shown in Table I. In this paper, our goal is
to reduce the latency of DAG-based protocols by minimizing
the number of communication steps required.

III. OVERVIEW OF LIGHTDAG

A. Model & definitions

We adopt the same model as the existing DAG-based proto-
cols. Our system consists of n ≥ 3f +1 replicas, where up to
f replicas are Byzantine and controlled by an adversary. This
adversary possesses the capability to coordinate these Byzan-
tine replicas, enabling them to engage in malicious activities.
We assume an asynchronous network where the adversary can
delay messages by an arbitrary but finite period. A Public-
Key Infrastructure (PKI) is established in the system, ensuring
the integrity of messages through digital signatures. We also
assume a threshold-crypto infrastructure, established by Asyn-
chronous Distributed Key Generation (ADKG) schemes [17],
[18]. The adversary is assumed to be computationally bounded
and cannot compromise the safety of the PKI or threshold-
crypto infrastructure.

Our protocol advances through successive rounds, each
uniquely identified by an ever-increasing number r, starting
from 1. Simultaneously, these rounds are structured into waves,
with each wave consisting of three rounds. As a result, a
round can also be represented by a combination of two
parameters: the wave number w and a sequence number e

(where e ∈ {1, 2, 3}) within that wave, taking the format
⟨w, e⟩. We introduce the term ”slot” to refer to a position
in the DAG structure, denoted as ⟨r, i⟩, where i represents the
replica index. Ancestor blocks of a block B are represented
as a unique sequence AB , sorted first by the round number
and then by the replica index of the block’s proposer. We
define a prefix relationship between two sequences, denoted
as S1 ≺ S2, indicating that S1 is a prefix of S2. The ancestor
sequence satisfies the prefix relationship, meaning if B ∈ AC ,
then AB ≺ AC .

B. Building blocks

1) Consistent broadcast: Consistent Broadcast (CBC) is a
commonly used utility to broadcast data in a Byzantine envi-
ronment. It guarantees properties of consistency, validity, and
integrity [14], but it does not ensure totality [19]. Specifically,
if a non-faulty replica delivers a block B using CBC, every
other non-faulty replica either delivers B or does not deliver
any block at all.

Compared to RBC, CBC is a more lightweight protocol that
can be implemented with fewer communication steps. While
RBC requires three communication steps, CBC only needs two
steps [20], [21]. In the first step, named as the VAL step, the
broadcaster sends the block B to each replica. Upon receiving
B, a replica proceeds to broadcast ECHO messages containing
B in the second step, referred to as the ECHO step. At the end
of the ECHO step, if a replica receives n − f or more ECHO
messages containing B, it delivers B. Replicas other than the
broadcaster are considered participants in a CBC instance.
Additionally, we say a replica participates in the CBC process
of a block B if it broadcasts ECHO messages containing B.

2) Global perfect coin: To select a leader block/slot in
each wave, DAG-based consensus protocols rely on the Global
Perfect Coin (GPC) utility [19], [22], [23]. GPC can be
considered a random function with a threshold, where each
replica can call the GPC function, and the output will be
revealed when the number of callers reaches a threshold. The
output is a random number that is identical among all replicas.

In the context of a DAG-based protocol, the GPC function
can be implemented using the threshold signature scheme.
Specifically, in the last round of a wave, each replica will have
a partial threshold signature on the wave number included in
the block. When a replica receives t blocks, it can generate a
complete threshold signature. This signature is then converted
into an integer number m. By taking the modulus of m and n
(the total number of replicas), the remainder i corresponds to a
replica index. The slot ⟨⟨w, 1⟩ , i⟩ is then considered the leader
slot for this wave. It is important to note that in existing DAG-
based protocols [8]–[10], each slot contains at most one block
due to the consistency property of RBC. Hence, each leader
slot corresponds to a unique leader block, and we can perceive
the leader block as being directly selected through GPC in
existing DAG-based protocols. To prevent the adversary from
having foreknowledge of leader slots and destroying liveness,
t is typically set to a value larger than f + 1.



Fig. 2: Structure of LightDAG1

Fig. 3: Structure of LightDAG2

C. Overview of LightDAG1

Our first variant of LightDAG, namely LightDAG1, is a sim-
ple modification to existing DAG-based protocols that replaces
RBC with CBC. By utilizing CBC, LightDAG1 benefits from
the reduced number of communication steps required. Due
to the consistency property of CBC, each slot can contain at
most one block. Therefore, a block can be directly represented
by its corresponding slot, denoted as B⟨r,i⟩ or B⟨⟨w,e⟩,i⟩.
Additionally, each wave can have at most one leader block.
Thus, we can assume that a leader block is randomly selected
through GPC at the end of wave w, which is denoted as Lw.

As shown in Fig. 2, a wave in LightDAG1 consists of three
CBC rounds. The leader block of a wave is revealed based on
the messages exchanged in the third round. Besides, to further
reduce latency without compromising safety and liveness, we
merge the third round of a wave with the first round of the
next wave. Consequently, a round can be represented as ⟨w, e⟩,
where e ∈ {1, 2, 3}, and ⟨w, 3⟩ = ⟨w + 1, 1⟩. Furthermore, the
one-dimensional round number r is given by 2w + e. If the
leader block is referenced by f + 1 or more blocks in the
second round of the wave, it, along with its ancestor blocks,
can be committed. This allows LightDAG1 to achieve a best
latency of 6 communication steps, or even 5 steps if we count
only the first step in the third CBC round.

However, as we mentioned in Section III-B, CBC blocks
cannot guarantee totality, meaning that blocks broadcast
through CBC may only be delivered by a subset of non-faulty
replicas. To address this issue, we propose a block retrieval
mechanism that helps replicas retrieve missing blocks from
each other. A replica participates in the CBC instance of a
block B only after it has delivered all the ancestor blocks of
B through the block retrieval mechanism.

(a) Retrieve the lacking block

(b) Participate in the CBC process
Fig. 4: An example to show the block retrieval mechanism

D. Overview of LightDAG2

To further reduce latency, we propose LightDAG2 as an-
other variant, where a wave consists of two rounds of Plain
Broadcast (PBC) and one round of CBC. By PBC, we mean a
broadcasting process where the broadcaster directly sends its
block B to others, and each receiver delivers B upon receiving
it. Compared to RBC and CBC, PBC is more lightweight. As
illustrated in Fig. 3, three rounds of a wave are implemented
with PBC, CBC, and PBC, respectively. Since a Byzantine
replica can equivocate through PBC, there may be multiple
blocks in a slot, and a block cannot be directly represented by
its corresponding slot. Instead, each block in a slot is denoted
as Bj

⟨r,i⟩(j ≥ 0), where j represents the index of block in
the same slot. A slot in the first round will be selected as
the leader slot based on GPC messages exchanged in the third
round. The blocks in the leader slot are referred to as candidate
leader blocks or candidate blocks, denoted as Cj

w(j ≥ 0).
If a candidate block is referenced by at least n − f

blocks in the third round, the candidate block, along with
its ancestor blocks, can be committed. To ensure totality, the
block query mechanism is also employed in LightDAG2. In
a favorable situation, LightDAG2 achieves a best latency of
4 communication steps, comprising two PBC rounds and one
CBC round.

We will explain in Section V that the safety and liveness
of LightDAG2 are not compromised by the equivocation in
PBC. Intuitively, in a system with n ≥ 3f + 1 replicas and
up to f Byzantine ones, at most one candidate block can
be referenced by n − f blocks, ensuring safety. Regarding
liveness, although Byzantine replicas can equivocate through
PBC to prevent committing within a wave, their equivocation
exposes their Byzantine identities and they are excluded in the
subsequent waves. Therefore, at most t equivocation attacks
can be launched, where t represents the actual number of
Byzantine replicas. After that, a candidate block can definitely
get committed.



Fig. 5: Indirectly and directly committed leaders

IV. LIGHTDAG1 DESIGN

To address the limitation of CBC which cannot guarantee
the totality property, we propose a block retrieval mechanism
in Section IV-A. Additionally, as mentioned earlier in Sec-
tion III-C, all blocks are committed through leader blocks,
either directly as leader blocks or indirectly as ancestors
of leader blocks. We have discussed how a leader block is
committed in Section III-C and will complete the description
of committing other non-leader blocks in Section IV-B.

A. Block retrieval mechanism

To elaborate, when a replica pi receives a block B through
the VAL step of CBC from another replica pj , pi checks
whether it has already delivered all parent blocks of B. If
not, pi sends a request to retrieve the missing blocks by
including their hashes in the request. If pj is non-faulty, it
responds to pi with all the requested blocks. Upon receiving
pj’s response, pi further checks if it has delivered all parents
of the blocks included in the response, continuing to retrieve
any missing ones. This block retrieval process continues until
pi has delivered all the ancestors of B. Then, pi participates
in the CBC process of B by echoing B.

Fig. 4 provides an example of the block retrieval mechanism
involving four replicas. In Fig. 4a, p2 delivers block C and
proposes block B, which directly references C. When p3
receives B through the VAL step of CBC (① in Fig. 4a),
it realizes that it lacks C whose hash is included in B. p3
sends a request to p2 to retrieve C (② in Fig. 4a), and p2 will
respond with C (③ in Fig. 4a) if it is a non-faulty replica.
Only after delivering C, p3 participates in the CBC process of
B by echoing B (④ in Fig. 4b).). Each replica can then deliver
B after receiving n− f ECHO messages (⑤ in Fig. 4b).

B. Block commitment mechanism

The block commitment mechanism in LightDAG1 is similar
to existing DAG-based protocols. It is important to note that a
leader block Lw of wave w may not be committed in the same
wave w if it is not referenced by f+1 blocks in round ⟨w, 2⟩.
However, Lw may be referenced by a later leader block (Lv),
while Lv gets referenced by f +1 blocks in round ⟨v, 2⟩ and
gets committed in wave v. Fig. 5 illustrates this scenario with
4 replicas and f = 1. On one hand, leader Lw is referenced
by only 1 (< f + 1) block in round ⟨w, 2⟩, which cannot be
committed in wave w. On the other hand, Lv is referenced by 3

Fig. 6: Search of indirectly committed blocks

Fig. 7: Sorting blocks in LightDAG1

(≥ f +1) blocks in round ⟨v, 2⟩, allowing it to be committed
in wave v. Additionally, Lw is indirectly referenced by Lv ,
thus getting committed through the commitment of Lv . The
commitment of a leader block in its respective wave is referred
to as direct leader commitment (e.g., the commitment of Lv),
while the commitment of a leader block through a later leader
block is referred to as indirect leader commitment (e.g., the
commitment of Lw).

Once a replica pi determines that a leader block can be
committed directly (indicated by Lv in Fig. 6), meaning it is
referenced by f + 1 blocks in the second round, pi follows a
specific procedure to commit ancestors. Firstly, pi searches
for the most recent directly committed leader in its local
storage/ledger (exemplified by Lu in Fig. 6). Next, pi identifies
all leader blocks referenced by Lv and appearing after Lu,
such as Lw in Fig. 6. These blocks are indirectly committed
leaders through the commitment of Lv and, along with Lv ,
are denoted as a set ILv

. Subsequently, pi iterates over the
leader blocks in ILv , starting from the smaller wave number
to the larger one. For each Lk in ILv , pi sorts all the ancestor
blocks of Lk that have not yet been committed. The sorting
process is performed first by the block’s round number and
then by the replica index of the block’s proposer. The sorted
blocks are considered committed. All the committed blocks are
sorted in total order, first by the index of the corresponding
committed leader block k, then by the round number of blocks
r, and finally by the replica index of block proposers i. Fig. 7
provides an example illustrating the sorting the committed
blocks through two leader blocks B3,4 and B5,2. We describe
the details of the block commitment and sorting mechanisms
by pseudocode, which are deferred to Section A of Appendix
for space limitation.



C. Correctness analysis

The correctness analysis of LightDAG1 encompasses two
main aspects: safety and liveness.

1) Safety analysis: In the block commitment mechanism
described in Section IV-B, all blocks in LightDAG1 are com-
mitted through leader blocks. These leader blocks, whether
directly or indirectly committed, can be sorted in a total order
and assigned incremental indices k. Based on the consistency
property of CBC, we only need to prove that the committed
leaders with the same index are identical across different repli-
cas. This safety property can be expressed through Theorem
2, the proof of which relies on Lemma 1. Due to space
limitations, the proof of Lemma 1 is deferred to Section B
of Appendix.

LEMMA 1. In LightDAG1, if two leader blocks (L and L′)
are directly committed by two non-faulty replicas, respectively,
then either L ∈ AL′ or L′ ∈ AL.

THEOREM 2 (Safety of LightDAG1). If two leader blocks
(L and L′) are committed by two non-faulty replicas with the
same index, respectively, then L = L′.

Proof. Let D and D′ represent directly committed leaders
corresponding to L and L′, respectively. If L (respectively, L′)
is directly committed, then D = L (respectively, D′ = L′).
According to Lemma 1, either D ∈ AD′ or D′ ∈ AD.
Without loss of generality, let us assume D ∈ AD′ . Since
L ∈ AD, we have L ∈ AD′ and AL ≺ AD′ . On the other
hand, AL′ ≺ AD′ . In other words, both sequences AL and
AL′ are prefixes of the same sequence AD′ . Therefore, either
AL ≺ AL′ or AL′ ≺ AL. Since L and L′ are assigned the
same index, L must be identical to L′, thus concluding the
proof of safety.

2) Liveness analysis: For brevity, we refer to blocks pro-
posed by non-faulty replicas as correct blocks. Since a client
sends its transaction to every replica, as long as the probability
of at least one correct block being directly committed in a
wave is not infinitely small, this transaction will eventually get
committed, ensuring liveness. Additionally, as a leader block
must reference at least n − f blocks, with at least f + 1 of
them are correct, we interpret the liveness property through
Theorem 3.

THEOREM 3 (Liveness of LightDAG1). The probability
that a leader block gets directly committed in a wave is not
infinitely small.

Proof. If a block B in round ⟨w, 1⟩ is referenced by at least
f + 1 blocks in round ⟨w, 2⟩, it will be indirectly referenced
by every block in round ⟨w, 3⟩, as each block in ⟨w, 3⟩ must
reference at least n − f blocks in ⟨w, 2⟩. If B is selected
as the leader block of wave w, it can be committed directly.
Our proof involves determining the number of blocks in round
⟨w, 1⟩ that are referenced by at least f + 1 blocks in ⟨w, 2⟩,
forming a set. Subsequently, we calculate the probability of the
leader block coincidentally belonging to this set, indicating the
likelihood of directly committing the leader block.

(a) One block in each slot can
be referenced by a block

(b) Multiple blocks in a slot may
be referenced by different blocks

Fig. 8: Examples to show block references to a slot. A block
directly referencing two contradictory blocks within a slot
is deemed unallowable, as indicated by the cross sign in
(a). In contrast, distinct blocks are permitted to reference
contradictory blocks within a slot, as illustrated in (b).

According to the threshold property of GPC, when the
leader block of a wave w is revealed, at least one correct block
in round ⟨w, 3⟩ is proposed. At this point, at least n−f blocks
in round ⟨w, 2⟩ have completed the CBC process, denoted as
T . Since each block in T directly references at least n − f
blocks in round ⟨w, 1⟩, the blocks in round ⟨w, 1⟩ will be
directly referenced (n − f) · (n − f) times in total. In other
words, there are at least (n − f) · (n − f) references from
round ⟨w, 2⟩ to ⟨w, 1⟩.

To facilitate presentation, we say a block B is assigned
a reference if B is directly referenced by a later block. To
determine the minimum number of blocks in round ⟨w, 1⟩ that
are referenced at least f + 1 times, we attempt to distribute
the references by initially assigning f references to each block
in round ⟨w, 1⟩, taking up n cot f references. Each block in
round ⟨w, 1⟩ can then be assigned at most n− 2f references.
Since (n−f) · (n−f) ≥ (n−f) · (2f +1) ≥ n ·f +(n−f) ·
(f + 1)− f · (f + 1) = n · f + (f + 1) · (n− 2f), more than
f +1 blocks in round ⟨w, 1⟩ will be assigned extra references
in addition to the initial f references.

In other words, there are at least f + 2 blocks in round
⟨w, 1⟩, denoted as a set G, each being directly referenced at
least f +1 times. If the leader block Lw is a member of G, it
can be directly committed. The probability of Lw ∈ G is larger
than 1/3, which is not infinitely small, thus proving Theorem
3 and liveness.

V. LIGHTDAG2 DESIGN

In this section, we address the issue of Byzantine equiv-
ocations due to PBC utilized in the first and third rounds
of a wave. To aid understanding, we present LightDAG2’s
design in a step-by-step manner, with each step as a newly
added rule. Additionally, we briefly describe the block retrieval
and commitment mechanisms in LightDAG2, which closely
resemble those in LightDAG1.

A. Block creation and broadcast rules

1) Rule 1: First, we introduce Rule 1, which applies to
blocks in all rounds. Under Rule 1, a block is allowed to
directly reference at most one block in each slot of the previous



round. This prevents a single block from directly referencing
two contradictory blocks equivocated by Byzantine replicas,
as illustrated in Fig. 8a.

Rule 1

A block must directly reference at least n − f blocks
from the previous round, with each of these referenced
blocks occupying a distinct slot.

Rule 2

• If a replica px has voted for a block B that directly
references a block C0

⟨r,i⟩ in the previous PBC round,
it will refrain from voting for another block D that
directly references C1

⟨r,i⟩.
• Instead, px will send C0

⟨r,i⟩ to replica py who proposes
D.

• Upon receiving C0
⟨r,i⟩, py becomes aware of the Byzan-

tine identity of pi who is C0
⟨r,i⟩’s proposer. py will then

repropose a new block D′ that references none of pi’s
blocks. Additionally, D′ will include both C0

⟨r,i⟩ and
C1

⟨r,i⟩ as a proof of pi’s Byzantine identity.
• Subsequently, px can vote for D′.

2) Rule 2: However, there may be multiple contradictory
blocks in a slot being referenced by different blocks, as shown
in Fig. 8b. To address this, we introduce Rule 2, specifically
for the CBC round in each wave. In the CBC process, which
consists of the VAL step and ECHO step, a replica p is said to
vote for a block B if it broadcasts ECHO messages for B. Rule
2 aims to resolve conflicts by preventing replicas from voting
for contradictory blocks. Fig. 9 illustrates an example of Rule
2. From the perspective of replica px, which has already voted
for block B, it will refrain from voting for block D (as shown
in Fig. 9a). Instead, px will send the contradictory block to
the proposer of D, replica py , as depicted in Fig. 9b. py will
then propose a new block D′ that includes both blocks C0 and
C1 as a proof, and broadcast D′ using CBC. Subsequently, px
can vote for D′, as shown in Fig. 9c.

In essence, Rule 2 ensures that, for any two blocks that
are delivered in the same CBC round, they will not directly
reference two contradictory blocks from the previous round.
In other words, situations like the one depicted in Fig. 10a
become impossible under Rule 2. However, it is still possible
for multiple blocks in the same CBC slot to be delivered,
as illustrated in Fig. 10b. This scenario can occur even if
the proposer of B or B′ is a non-faulty replica, presenting
a challenge to liveness since there may be more than n blocks
delivered in the CBC round.

Rule 3

• Once a replica proposes or votes for a CBC block in
wave w, it will abstain from voting for any CBC block
in a previous wave v(v < w).

Fig. 9: A example to describe Rule 2

(a) Impossible situation (b) Possible situation
Fig. 10: Delivery situations in a CBC round

• Upon receiving a Byzantine proof for a replica pb, a
replica will refrain from referencing any block proposed
by pb. Additionally, it will include the Byzantine proof
in its subsequent proposed block.

• Upon receiving a Byzantine proof for a replica pb, a
replica will abstain from voting for any CBC block
B that directly references a block proposed by pb.
Furthermore, it will send the Byzantine proof to B’s
proposer.

3) Rule 3: To address the liveness challenge illustrated in
Fig. 10b, LightDAG2 introduces Rule 3 to the CBC round.
For brevity, the proof of a replica’s Byzantine identity is
referred to as Byzantine proof. As demonstrated by Lemma 8
in Section V-C, under Rule 3, if multiple blocks are delivered
in a CBC slot, some Byzantine replicas will be recognized and
excluded in subsequent waves, which contributes to liveness.

Rule 4

• A replica will first search for the non-empty leader slot
with the highest wave number, denoted as sw, where
the wave number is w.

• Based on the blocks in round ⟨w, 3⟩, the replica will
determine a unique block for sw. Since sw is non-
empty, at least one block in round ⟨w, 3⟩ does not
reference ⊥ in sw. Additionally, all blocks in round
⟨w, 3⟩ reference at most one block in sw. Therefore,
from the replica’s view, there is one and only one block
in sw, denoted as Bsw .

• After excluding all the slots that have already been
determined by Bsw , the replica proceeds to determine a
unique block for each remaining slot. If a slot contains
only one block, the replicas simply determines that
block for the slot. Otherwise, the replica determines one
randomly and contains the determination in the newly
proposed block.



4) Rule 4: Similar to LightDAG1, all blocks in LightDAG2
are committed through the candidate blocks in the leader slots.
However, since some blocks are broadcast through PBC, a
candidate block may reference contradictory blocks, which
poses a safety challenge. To tackle this challenge, Rule 4 is
proposed specifically for the blocks in the first rounds. Under
Rule 4, a block in the first round must determine a unique
block for each slot in its ancestor view, particularly in cases
where multiple blocks exist in a slot. As demonstrated by
Lemma 4 in Section V-C, in a wave w, all blocks in round
⟨w, 3⟩ will not reference contradictory blocks in a slot in round
⟨w, 1⟩. In other words, for a specific slot ⟨⟨w, 1⟩ , i⟩ in the
first round, every block in round ⟨w, 3⟩ will either indirectly
reference the same block B⟨⟨w,1⟩,i⟩ or not reference any block
in that slot. We refer to a block that does not reference any
block in a slot as referencing ⊥ in that slot.

Fig. 11 provides an example to illustrate Rule 4. When a
replica p wants to propose a new block B in the first round of
wave v, it will search for the non-empty leader slot with the
maximum wave number. In Fig. 11, the leader slot in wave
w + 1 will be skipped since it is empty, and the leader slot
in wave w is chosen. Following Rule 2, there will be only
one block in the leader slot of wave w, denoted as C in the
example. As a block in the first round of wave w, C must have
determined all the blocks in its ancestor view, indicated by the
blue shadow. Replica p will determine all blocks in its ancestor
view that have not been determined by C. For slots with more
than one block, such as slot ⟨⟨w, 1⟩ , 3⟩ and ⟨⟨w + 1, 2⟩ , 1⟩,
p can randomly determine a block in the slot and incorporate
its determination into the new block. It is important to note
that either through its own determination or through another
candidate block in its ancestor view (e.g., C in Fig. 11), a
candidate block can uniquely determine a block for each slot.

B. Block retrieval & commitment mechanisms

In LightDAG2, the block retrieval mechanism remains con-
sistent with LightDAG1. A replica will only deliver a PBC
block B or vote for a CBC block B if all of B’s ancestor
blocks have been delivered. In the case of a candidate block in
the leader slot, if it is referenced by n−f or more blocks in the
last round of the wave, this candidate block can be committed.
Once committed, the candidate block will proceed to sort and
commit all the blocks that have not yet been committed by the
previously committed candidate block. The remaining sorting
and commitment mechanisms in LightDAG2 are the same as
those in LightDAG1.

C. Correctness analysis

1) Safety analysis: In LightDAG2, all committed candidate
blocks can be sorted based on their wave numbers and assigned
incremental indices k. We define U as a block sequence
representing a candidate block’s ancestors, which includes
the unique block for each slot and is sorted first by the
round number and then by the replica index. As all blocks
in LightDAG2 are committed through the commitment of
candidate blocks, we interpret safety property as Theorem 6,

Fig. 11: A example to describe Rule 4

whose proof relies on Lemma 4 and Lemma 5. We also defer
the proof of lemmas to Section B of Appendix.

LEMMA 4. In a wave of LightDAG2, all blocks in the third
round will not reference contradictory blocks in the first round.

LEMMA 5. In LightDAG2, if two candidate blocks (C
and C ′) are directly committed by two non-faulty replicas,
respectively, then either C ∈ UC′ or C ′ ∈ UC .

THEOREM 6 (Safety of LightDAG2). If two candidate
blocks (C and C ′) are committed by two non-faulty replicas
with the same index, respectively, then C = C ′.

Proof. The proof of Theorem 6 follows a similar approach to
the proof of Theorem 3. Let D and D′ denote the directly
committed candidates corresponding to C and C ′. According
to Lemma 5, we have D ∈ UD′ or D′ ∈ UD, and we assume
D ∈ UD′ without loss of generality. Since C is referenced by
D, it implies that C ∈ UD′ , and consequently, UC ≺ UD′ . On
the other hand, UC′ ≺ UD′ , meaning that both UC and UC′

are prefixes of UD′ . Therefore, we can conclude that either
UC ≺ UC′ or UC′ ≺ UC . Since C and C ′ are committed with
the same index, in either case of UC ≺ UC′ and UC′ ≺ UC ,
we must have C = C ′.

2) Liveness analysis: We define a block as a reproposed
block if it is reproposed by a replica p after p receives a
Byzantine proof. Note that all reproposed blocks are CBC
blocks. According to Rule 2 of LightDAG2, a reproposed
block will include the Byzantine proof. As a result, any
replica that receives the reproposed block can recognize the
Byzantine identity of the corresponding replica. The liveness
of LightDAG2 is interpreted through Theorem 10, which
asserts that the expected number of waves required to directly
commit a candidate block is less than 3(t + 1), where t
represents the actual number of Byzantine replicas. We prove
Theorem 10 based on three lemmas, whose proof is presented
in Appendix due to space limitation.

LEMMA 7. In LightDAG2, if a reproposed block with a
Byzantine proof for pb is delivered in wave w, any CBC block
of wave v(v > w) that directly references a block proposed
by pb will not be delivered.

LEMMA 8. In LightDAG2, if a reproposed block with a
Byzantine proof for pb is delivered in wave w, each replica will



recognize pb’s Byzantine identity in or before round ⟨w + 1, 3⟩.

LEMMA 9. In a wave w of LightDAG2, if no reproposed
block is delivered, the probability that a candidate block gets
directly committed is larger than 1

3 .

THEOREM 10 (Liveness of LightDAG2). In a system with
t(t ≤ f) Byzantine replicas, the probability that a candidate
block gets directly committed within t+ 1 waves exceeds 1/3.

Proof. Denote a system with k(k ≤ t) unrecognized Byzan-
tine replicas as ℑk and denote the probability that a candidate
block gets directly committed in ℑk as g(k). It is easy to know
g(0) > 2

3 . We will consider two cases in a wave w, based on
whether a reproposed block is delivered:

• Case 1: No reproposed block is delivered.
• Case 2: At least one reproposed block is delivered.
Let ρt be the probability that Case 1 occurs in a system ℑk,

and qk be the probability that a leader gets directly committed
in Case 1. According to Lemma 9, we have qk > 1

3 . If Case
2 occurs in a wave, it implies that one or more Byzantine
replica will be recognized. We denote the set of recognized
Byzantine replicas as S, and let s = |S| (s ≥ 1). According to
Lemma 7, any CBC block in wave v(v > w) that references
a block proposed by any replica in S will not be delivered.
According to Lemma 8, each replica in or after the round
⟨w + 1, 3⟩ will recognize the Byzantine identities of replicas
in S. Therefore, if Case 2 occurs in wave w, S will be excluded
from the consensus protocol after wave w, and the number of
unrecognized replicas in the system will be k− s. Hence, we
can express g(k) as g(k) = ρk · qk +(1−ρk) · g(k− s). Next,
we will prove g(k) > 1

3 by mathematical induction.
• Base case: g(0) > 2

3 > 1
3 .

• Inductive step: For a given number m, we assume that
∀i ≤ m : g(i) > 1

3 . According to Equation 1, we have
g(m+ 1) > 1

3 .
g(m+ 1) = ρm+1 · qm+1 + (1− ρm+1) · g(m+ 1− s)

> ρm+1 ·
1

3
+ (1− ρm+1) ·

1

3
=

1

3

(1)

Therefore, by mathematical induction, we have g(k) > 1
3 for

all k ≤ t. In other words, for each k ≤ t, the probability that
a candidate block is directly committed within k+1 waves is
larger than 1

3 . This implies that the expected number of waves
required to directly commit a candidate block in ℑt is smaller
than 3(t+ 1).

VI. IMPLEMENTATION & EVALUATION

To evaluate LightDAG, we implement prototype systems for
both variants and compare them to the state-of-the-art, namely
Tusk [10] and BullShark [9].

A. Implementation & settings

We implement all of LightDAG, Tusk, and BullShark in
Golang using a common framework to ensure a fair and
consistent comparison. The total lines of code for these
implementations amount to approximately 4,600. We utilize

various open-source libraries, such as kyber1 for threshold
signature schemes and go-msgpack2 for encoding and decod-
ing functions. The CBC protocol implementation is based on
Dolev’s paper [14]. Regarding the RBC protocol in Tusk and
BullShark, it is implemented based on Cachin’s paper [24].

All experiments are conducted on Alibaba Cloud, with each
replica deployed as an ECS.g6e.xlarge instance, featuring 4
vCPU and 16 GB memory. These replicas are deployed on four
continents to mimic a distributed setting and are connected
through peer-to-peer network links with a bandwidth of 100
Mbps. The transaction size is consistently set to 128 bytes,
and each group of experiments is repeated five times to reduce
experimental errors. The focus of the experiments is on two
metrics: latency and throughput. Latency is measured as the
time taken by a transaction to be committed from the moment
it is proposed, while throughput is computed as the number
of committed Transactions Per Second (TPS).

We examine both favorable situations, where all replicas
adhere to the protocol honestly, and unfavorable situations,
where the adversary orchestrates Byzantine replicas to act
maliciously. Given that the adversary is incapable of compro-
mising the safety or liveness properties, as demonstrated by
the correctness proofs of Tusk, BullShark, and this work, its
impact is limited to damaging protocol efficiency. To achieve
this, we consider the most potent attack that the adversary
can mount against each protocol. As Tusk and LightDAG1
leverages a broadcast protocol that ensures consistency without
introducing optimistic paths, the adversary’s strategy involves
crashing Byzantine replicas to reduce the number of proposed
blocks in each round. BullShark, on the other hand, can be
targeted by delaying blocks from leaders to disrupt the opti-
mistic path. Regarding LightDAG2, the adversary schedules
one Byzantine replica each time, to broadcast contradictory
blocks in the first round of a wave, enticing each replica to
repropose blocks in the second round. This results in more
than n blocks being generated in the second round. When the
leader block is revealed and assumed to be referenced by some
(possibly more than f+1) blocks in the second round, denoted
as R, the adversary strategically schedules block delivery to
prevent blocks in the third round from directly referencing
blocks in R.

B. Basic performance under favorable situations
We compare the performance of LightDAG, Tusk, and

BullShark in two settings: one with 7 replicas and the other
with 22 replicas. We increase the batch size, representing
the number of transactions contained in a block, from 100
to 1,000. The experimental results are depicted in Fig. 12.
By analyzing the performance within the same setting, we
observe that both LightDAG1 and LightDAG2 can consistently
outperform Tusk or BullShark. Moreover, LightDAG2 exhibits
better performance than LightDAG1 in most cases.

When the system comprises 22 replicas and the batch size
is set as 1,000, LightDAG1 and LightDAG2 deliver 1.69x and

1https://github.com/dedis/kyber
2https://github.com/hashicorp/go-msgpack
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Fig. 12: Comparison by increasing the batch size

1.91x higher throughput than Tusk, respectively. In terms of
latency, LightDAG1 and LightDAG2 reduce Tusk’s latency
by 41% and 45%, respectively. In contrast to BullShark,
LightDAG1 demonstrates a modest performance enhance-
ment under these favorable situations. Conversely, LightDAG2
achieves a remarkable 17.4% improvement in throughput and
a 14.0% reduction in latency within the context of 22 replicas
and a batch size of 1000.

C. Scalability under favorable situations

The scalability of a protocol is measured by increasing
the number of replicas. In our experiments, we keep the
batch size fixed at 400 and gradually increase the number of
replicas from 7 to 61. The results are presented in Fig. 13.
Despite the performance degradation as the number of repli-
cas increases, both LightDAG1 and LightDAG2 consistently
outperform Tusk or BullShark. Additionally, as depicted in
Fig. 13b, the slope of the lines representing LightDAG1 and
LightDAG2 is smaller than that of Tusk. This indicates that
the increase in latency for LightDAG is slower, highlighting
its superior scalability. An interesting phenomenon is observed
in Fig. 13a where all curves converge as the replica count
increases. This convergence is attributed to the escalating
communication overhead that accompanies the growth in the
number of replicas, subsequently exerting a negative impact
on system throughput. This phenomenon causes all curves to
trend toward lower and lower values, towards an ultimate and
same value of 0, which accounts for their convergence.
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Fig. 14: Trade-off between latency and throughput under
favorable situations

D. Latency v.s. throughput under favorable situations

As already illustrated in Fig. 12, the throughput initially
increases and then stabilizes at a peak value as the batch
size increases, while the latency continues to increase. This
phenomenon occurs because the system becomes saturated
when the batch size reaches a certain point, and further
increasing it only results in higher latency without improving
the throughput. This trade-off between latency and throughput
can be visualized by plotting both metrics in a figure.

We also conduct experiments in two settings that contain
different numbers of replicas, gradually increasing the batch
size until the peak throughput is reached. The results are
presented in Fig. 14. It is observed that both LightDAG1
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Fig. 15: Trade-off between latency and throughput under
unfavorable situations

and LightDAG2 achieve higher peak throughputs than Tusk or
BullShark, with LightDAG2 consistently achieving the highest
throughput. For instance, in a system with 22 replicas, Tusk
and BullShark achieve a peak throughput of 13.0k TPS and
20.5k TPS, while LightDAG1 and LightDAG2 achieve 21.2k
TPS and 24.1k TPS, respectively.

E. Latency v.s. throughput under unfavorable situations

We also examine the trade-off between latency and through-
put under unfavorable situations, illustrating latency in unsat-
urated conditions and peak throughput in saturated conditions.
Experimental results are presented in Fig. 15. Notably, Bull-
Shark delivers the poorest performance, attributed to the failure
of its optimistic path and the prolonged switch from the op-
timistic path to the pessimistic path. LightDAG1 consistently
outperforms Tusk, aligning with the results analyzed in Table I.

An intriguing observation is that LightDAG demonstrates
the best performance, seemingly contradicting the findings in
Table I. This discrepancy is clarified by the fact that the result
12(t+1) pertains to the worst-case scenario where the adver-
sary successfully prevents block commitment in continuous t
waves, a condition challenging to achieve in practical settings.
Moreover, each time the adversary successfully executes an
attack, one of the Byzantine replicas is identified and excluded,
resulting in improved performance in subsequent waves.

VII. RELATED WORK

A. Non-DAG protocols

The study of BFT consensus dates back to the 1980s, with
the Byzantine general problem being the pioneering work [25],
[26]. Initially, BFT consensus studies are conducted without
adopting a specific topology, where requests at different posi-
tions of the ledger are agreed upon independently. The well-
known representative of this approach is PBFT [6]. Subsequent
to PBFT, various works aim to reduce latency by integrating a
fast path, either through the use of trusted hardware [27], [28],
relaxing the resilience [29], [30], or assuming a flexible fault
model [31], [32]. However, the independent-position scheme
makes these protocol pretty complex and hard to understand
or implement.

The emergence of Bitcoin [33] and Ethereum [34] intro-
duces a new perspective to consensus design by organizing
multiple transactions into blocks and chaining all blocks
together [35], [36]. This chain-based topology simplifies the
consensus protocol and improves system performance. Conse-
quently, many modern BFT works start utilizing the chain-
based topology, such as Tendermint [37], Pili [38], Hot-
Stuff [7], and Streamlet [39]. However, this chain-based topol-
ogy can only process blocks in a sequential manner, which
limits system throughput. Another line of works delves into
enhancing consensus protocols by incorporating accountability
properties [3] or voting validity properties [2]. Alternatively,
some investigations aim to refine these protocols by mitigating
assumptions, such as eliminating the consideration of failure
counts [4].

B. DAG-based protocols

To parallel block processing, the DAG topology is intro-
duced in consensus design [40], with DAGRider being a signif-
icant milestone attempt [8]. Following DAGRider, a series of
works aim to reduce the rounds in a wave to decrease latency,
whose representatives include Tusk [10] and BullShark [9].
However, even though these protocols can reduce the number
of rounds in a wave to smaller, each round relies on the heavy
broadcasting protocol (i.e., RBC), which consists of at least
three communication steps. Therefore, all these DAG-based
protocols still suffer from high latency.

Another line of related works is the public DAG-based
blockchain, which combines the DAG topology with a public
blockchain system. Examples of such works include Con-
flux [41], OHIE [42], and Occam [43]. Although these works
also need to achieve the Byzantine consensus on data pro-
cessing, they are targeted at a different model compared to our
work. Specifically, they operate under a permissionless model,
while our work assume a permissioned model. Additionally,
consensus in a permissioned model typically provides much
better performance than in a permissionless model.

VIII. CONCLUSION

Existing DAG-based protocols suffer from high latency due
to the use of the heavy broadcasting protocol (i.e., RBC). To
deal with this problem, we propose LightDAG, which replaces
RBC with lightweight broadcasting protocols like CBC and
PBC. We specifically present two variants of LightDAG,
namely LightDAG1 and LightDAG2, that offer a trade-off
between best latency and expected worst latency. Comprehen-
sive experiments are conducted to evaluate LightDAG, which
demonstrates its good performance.
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Algorithm 1 Block committing and sorting mechanism (in
wave v)

1: Let sortr,p denote the sorting function first by round
numbers and then by the replica indices of block creators.

2: upon the leader block Lv is selected out do
3: if Lv is referenced by 2f+1 blocks in round ⟨v, 2⟩ then
4: u← v − 1
5: while Lu is not committed
6: u← u− 1
7: w ← u+ 1
8: while (w ≤ v)
9: if Lw is delivered and is an ancestor of Lv then

10: BLw ← all uncommitted ancestor blocks of Lw

11: sortr,p(BLw
)

12: commit blocks in BLw
one by one; commit Lw

13: w ← w + 1

APPENDIX

A. Pesudocode for block committing and sorting

Pesudecode for block committing and sorting in wave v is
described in Algorithm 1.

B. Proof of lemmas

LEMMA 1. In LightDAG1, if two leader blocks (L and L′)
are directly committed by two non-faulty replicas, respectively,
then either L ∈ AL′ or L′ ∈ AL.

Proof. If L and L′ have the same wave number, according to
the consistency property of CBC, L must be identical to L′.
Since we stipulate that a block is also an ancestor of itself,
we have L ∈ AL′ and L′ ∈ AL. Otherwise, without loss of
generality, assume that L has a smaller wave number than L′.
In other words, denote two wave numbers of L and L′ as w and
w′, respectively, then w < w′. Since L is directly committed,
L must be referenced by at least f +1 blocks in round ⟨w, 1⟩,
with these blocks being denoted by R. Besides, as each block
in round ⟨w, 2⟩ references at least 2f + 1 blocks in round
⟨w, 1⟩, at least one of these blocks must be a member of R.
Therefore, each block in round ⟨w, 2⟩ must indirectly reference
L. Similarly, each block in a round with the round number
larger than ⟨w, 2⟩ must indirectly reference L. Thus, L′ must
reference L and L ∈ AL′ , which concludes the proof.

LEMMA 4. In a wave of LightDAG2, all blocks in the third
round will not reference contradictory blocks in the first round.

Proof. According to Rule 2 of LightDAG2, all blocks deliv-
ered in the second round will not directly reference contradic-
tory blocks in the first round. A round in the third round will
directly reference blocks in the second round and indirectly
reference blocks in the first round. Thus, all blocks in the
third round will not reference contradictory blocks in the first
round.

LEMMA 5. In LightDAG2, if two candidate blocks (C
and C ′) are directly committed by two non-faulty replicas,
respectively, then either C ∈ UC′ or C ′ ∈ UC .

Proof. If C and C ′ have the same wave number w, either
C or C ′ will be referenced by at least 2f + 1 blocks in the
third round of wave w. Besides, C and C ′ are in the same
slot. According to Lemma 4, C and C ′ must be identical, and
we have C ∈ UC′ and C ′ ∈ UC . Otherwise, without loss of
generality, assume that C has a smaller wave number than
C ′. In other words, denote two wave numbers of C and C ′

as w and w′, respectively, then w < w′. Since C is directly
committed, C must be referenced by at least 2f+1 blocks in
round ⟨w, 2⟩, which correspond to at least 2f+1 slots in round
⟨w, 2⟩. Among these slots, at least f+1 slots belong to non-
faulty replicas and denote these slots as T . On the other hand,
as each block in round ⟨w+1, 0⟩ references blocks of at least
2f+1 slots in round ⟨w, 2⟩, at least one of these slots must
be a member of T . Therefore, each block in round ⟨w+1, 0⟩
will indirectly reference C and consistently determine C as
the unique block in C’s slot. Since w′ ≥ w+1, C ′ will also
determine C as the unique block in C’s slot, thus C ∈ UC′ .

LEMMA 7. In LightDAG2, if a reproposed block with a
Byzantine proof for pb is delivered in a wave w, any CBC block
of wave v(v > w) that directly references a block created by
pb will not be delivered.

Proof. We assume by contradiction that both the reproposed
block B and the CBC block C are delivered. Since a CBC
block is delivered only if 2f+1 replicas vote for this block, at
least one non-faulty replica votes for both B and C, which is
denoted as pv . We consider the following two cases:

• Case 1: If pv votes for B first, it must receive a Byzantine
proof for pb. According to Rule 3, it will not vote for
any CBC block that references a block created by pb.
Therefore, pv will not vote for C, a contradiction.

• Case 2: If pv votes for C first, according to Rule 3, it
will not vote for any CBC block in a wave with a smaller
wave number than v. Therefore, it will not vote for B, a
contradiction.

LEMMA 8. In LightDAG2, if a reproposed block with a
Byzantine proof for pb is delivered in a wave w, each replica
will recognize pb’s Byzantine identity in or before the round
⟨w + 1, 2⟩.

Proof. Once a reproposed block is delivered in wave w, at
least f + 1 non-faulty replicas must have voted for it and
recognized the Byzantine identity of pb, which are denoted by
a setR. According to Rule 3, each replica inR has not created
a CBC block in wave w + 1 and will contain the Byzantine
proof in its created CBC block in round ⟨w + 1, 1⟩. Denote the
CBC blocks created byR in round ⟨w + 1, 1⟩ as a set S. Since
each block in round ⟨w + 1, 2⟩ will reference 2f+1 blocks in



round ⟨w + 1, 1⟩, at least one block in S will be referenced,
and pb’s Byzantine identity will be recognized.

LEMMA 9. In a wave w of LightDAG2, if no reproposed
block is delivered, the probability that a candidate block gets
directly committed is larger than 1

3 .

Proof. When the leader slot is revealed in wave w, at least
2f + 1 blocks in round ⟨w, 1⟩ are delivered, each of which
references at least 2f +1 blocks in round ⟨w, 0⟩. Since (2f +
1)·(2f+1) > f ·n+(f+1)·(f+1), there are more than f+1
blocks in round ⟨w, 0⟩, denoted by a set M, each of which is
directly referenced by at least f + 1 blocks in round ⟨w, 1⟩.
As no reproposed block is delivered, there is only one block
in each slot in round ⟨w, 1⟩. Therefore, each block in M will
be referenced by every block in round ⟨w, 2⟩. If the leader slot
matches a block in M, this block can be committed directly.
The probability that a leader slot matches a block in M is at
least f+2

3f+1 > 1
3 , and the probability that a block gets directly

committed in this case is larger than 1
3 .


