
Zero-Knowledge Proofs of Training for Deep Neural Networks
Kasra Abbaszadeh
University of Maryland

kasraz@umd.edu

Christodoulos Pappas
Hong Kong University of Science and Technology

cpappas@connect.ust.hk

Dimitrios Papadopoulos
Hong Kong University of Science and Technology

dipapado@cse.ust.hk

Jonathan Katz
University of Maryland

jkatz@cs.umd.edu

ABSTRACT

A zero-knowledge proof of training (zkPoT) enables a party to
prove that they have correctly trained a committed model based on
a committed dataset without revealing any additional information
about themodel or the dataset. An ideal zkPoT should offer provable
security and privacy guarantees, succinct proof size and verifier
runtime, and practical prover efficiency. In this work, we present
Kaizen, a zkPoT targeted for deep neural networks (DNNs) that
achieves the above ideals all at once. In particular, our construction
enables a prover to iteratively train their model by the (mini-batch)
gradient-descent algorithmwhere the number of iterations need not
be fixed in advance; at the end of each iteration, the prover generates
a commitment to the trained model attached with a succinct zkPoT,
attesting to the correctness of the entire training process. The proof
size and verifier time are independent of the iteration number.

Kaizen relies on two essential building blocks to achieve both
prover efficiency and verification succinctness. First, we construct
an optimized GKR-style (sumcheck-based) proof system for the
gradient-descent algorithm with concretely efficient prover cost;
this scheme allows the prover to generate a proof for each iteration
of the training process. Then, we recursively compose these proofs
across multiple iterations to attain succinctness. As of independent
interests, we propose a framework for recursive composition of
GKR-style proofs and techniques such as aggregatable polynomial
commitment schemes to minimize the recursion overhead.

Benchmarks indicate that Kaizen can handle a large model of
VGG-11 with 10 million parameters and batch size 16. The prover
runtime is 22 minutes (per iteration), which is 43× faster than
generic recursive proofs, while we further achieve at least 224× less
prover memory overhead. Independent of the number of iterations
and, hence, the size of the dataset, the proof size is 1.36 megabytes,
and the verifier runtime is only 103 milliseconds.

1 INTRODUCTION

Machine learning with deep neural networks (DNNs) has received
unprecedented attention in recent years. At the same time, this
widespread use of neural networks has raised concerns about the
provenance and integrity of DNN models; see, e.g., a recent blog
post [1] from Google about integrity issues in the context of general
machine learning models. Such concerns can arise at any stage of
the model development process. In this work, we focus on the
problems of proofs of training (PoTs) for ensuring the integrity of
the training stage. Here, roughly speaking, a model owner wants
to convince a verifier that a modelM was correctly trained—i.e.,
trained using a publicly known learning algorithm and public
specifications of (e.g., the model architecture and batch size) —using

a specific datasetD.1 When themodel and/or dataset are committed
(i.e., not publicly available), one can also consider zero-knowledge
PoTs (zkPoTs) that reveal no additional information aboutM or D
beyond the correctness of the training procedure. At the most basic
level, a (zk)PoT can be used by a model owner to substantiate the
provenance of a model they release; this can be useful even when
the model or the dataset is public since the cost to train a model can
be orders of magnitude more expensive than verifying that training
was correct. A (zk)PoT can also be useful for other applications:
• Arbitrating copyright claims. There is growing concern about
models being trained on copyrighted data [35], and a model
owner may want to prove that their model was trained without
using some particular copyrighted data item. To achieve this goal,
the model owner can commit to the dataset D used to train the
model, prove using known techniques [11, 47] that the data item
in question is not present in D, and then use a (zk)PoT to show
that the model was trained using the committed dataset D.
• Distributed training. A model owner might distribute the task
of training a model across multiple untrusted workers [44]. In
this setting, the model owner may send portions of the dataset
to each worker and have them return partial results, which can
then be aggregated into a final model. PoTs can allow workers to
prove that the partial model they return was trained correctly.
• Proof of ownership. A deep learning modelM might be stolen
or extracted using model-inference attacks [54]. In that case, the
real model owner can prove that they were the ones who trained
M by committing to the dataset D they used to train the model
and then using a PoT to prove thatM was trained using D. An
adversary would not be able to generate such a proof without
access to D; even with such access, they would have to invest
the resources necessary to train the model from scratch.

An ideal zkPoT should have strong security guarantees, be succinct2,
and not impose too much overhead on the prover. As we discuss
next, however, known techniques fall short of achieving at least one
of these properties when it comes to proofs of training for DNNs.

1.1 Prior Work and Limitations

Jia et al. [36] proposed a proof of training for DNNs. Unfortunately,
their construction does not offer cryptographically strong security
guarantees, and recent work [25, 26] has identified various concrete
attacks on their scheme. Moreover, their construction is neither

1We note this is different from proofs of inference [27, 43, 45, 57] where, given a model
M and an input 𝑥 , the goal is to prove that the classification of 𝑥 was done usingM.
2Succinctness means the proof size and the verifier time are sublinear the computation
size. For some applications it might be critical; consider e.g., a prover posting a (zk)PoT
on blockchain [3], and it is desirable to minimize the on-chain verification overhead.

zero-knowledge nor succinct; it reveals model weights and data
items to the verifier who partially re-executes training. Recently,
Garg et al. [29] constructed zkPoTs with provable security; however,
their construction is not succinct and, as a result, only supports
basic learning algorithms such as logistic regression but cannot
support DNNs due to the significant verification overhead.

In principle, one can build a zkPoT using generic zero-knowledge
proofs. Unfortunately, despite recent advances in such constructions
[6, 20, 34, 59], they are still not sufficiently scalable to practically
instantiate zkPoTs for complex models like DNNs. In particular,
succinct zero-knowledge proofs (zkSNARKs) [13, 38, 48] incur
prohibitive prover costs in terms of both the proof-generation time
(at least 1000× slowdown compared to the training time) and the
required memory overhead. On the other hand, constructions of
proofs with efficient provers [12, 30, 61] are not succinct.

As already noted, existing works on zero-knowledge proofs
of inference [43, 45, 57] solve a different (and somewhat easier)
problem than the one we are considering here. While some of
the optimizations they propose are also useful in our setting, the
techniques used in those works are not sufficient to yield efficient
zkPoTs for DNNs—note, in particular, that DNN training involves
multiple iterations, where each iteration can be roughly 100× more
expensive than DNN inference. Eisenhofer et al. [23] used generic
SNARKs to address the problem of verifiable machine unlearning,
where the goal is to retrain a model by removing particular items
from the dataset. The computational complexity of unlearning is
fairly low; thus, generic proofs can efficiently support this problem.

1.2 Our Contributions

In this work, we propose a technique for constructing efficient and
succinct zkPoTs for DNN models that are trained using multiple
iterations of the mini-batch gradient-descent algorithm. We also
implement and evaluate Kaizen,3 an instantiation of our approach.
Conceptually, our work involves two high-level components:

Efficient proofs of gradient descent. First, we construct an
optimized proof of gradient descent (PoGD), a scheme for proving
the correctness of a single gradient-descent iteration. Our PoGD is
constructed from GKR-style (i.e., sumcheck-based) proof systems
[59, 62, 63] since they offer concretely efficient prover overhead and
succinct verification. Moreover, such proofs can be optimized for
matrix operations such as matrix multiplication or convolution used
in gradient-descent for DNNs to obtain sublinear proof-generation
time [45, 53]; this is in contrast to generic proofs, which have prover
overhead at least linear in the complexity of the computation. More
details about our PoGD are presented in Sections 3.1 and 4.

Recursive composition of sumcheck-based proofs. Although
our PoGDs offer succinct proofs for each gradient-descent iteration,
they do not suffice to obtain succinct proofs for DNN training
overall because such training involves a number of iterations that
are typically linear in the size of the dataset. Thus, having the PoT
include a PoGD for each iteration would result in a linear-sized
proof. Alternately, using a single GKR-style proof for all iterations
would result in a linear prover memory and verification overheads;
note such proofs have verification linear in the computation depth.

3Kaizen is a Japanese term translated as “change for the better”.

Instead, we use recursive proof composition, also referred to as
incrementally verifiable computation (IVC) [10, 14, 55], to achieve
succinctness. Roughly, at each iteration we prove both that the
iteration was performed correctly and (recursively) that there is a
valid proof of correctness for all previous iterations. In this way, the
proof generated at the final iteration demonstrates the correctness
of the entire computation with a proof size and verification cost
independent of the iteration number. Additionally, the incremental
nature of an IVC allows for prover memory cost only proportional
to the complexity of one iteration, not the entire computation.

The challenge in recursively composing our sumcheck-based
PoGDs is the relatively large circuit size of the verifier algorithm,
which imposes a significant recursion cost; this is in contrast to
generic IVC schemes [14, 17, 39], which offer efficient recursion cost
but incur substantial prover cost overall for the gradient-descent
computation since they rely on generic zero-knowledge proofs.
To overcome this, we propose a framework for minimizing the
recursion overheadwhen building IVC from sumcheck-based proofs.
In particular, inspired byHalo [17] and follow-upworks [15], we use
aggregation schemes to reduce the cost of verifying the polynomial
commitments used in the PoGDs for all executed iterations.

A difficulty here is that sumcheck-based proofs use commitments
to multivariate polynomials instead of the univariate polynomials
involved in prior work [15, 17]; existing aggregation schemes for
polynomial commitments only handle univariate polynomials, and
naively extending them to support multivariate polynomials would
result in quasilinear prover overhead. To mitigate this limitation,
and as a key building block for our recursion framework, we propose
an aggregation scheme for multivariate polynomial commitments
with linear prover overhead and logarithmic verifier overhead.More
details of our aggregation scheme are presented in Section 5.

We further improve the overhead of recursive composition of
sumcheck-based proofs with sumcheck-specific optimizations for
lightweight hash functions [7] and aggregation of the evaluations of
circuit-wiring predicates; see Sections 3.2 and 6 for more details. To
our knowledge, building IVC from sumcheck-based proofs has not
been considered by prior work, and our framework and techniques
might be of independent interest as stand-alone primitives.

Implementation and evaluations.WeevaluateKaizen on several
well-known architectures [41, 42, 51], e.g., a convolutional model
VGG-11 with 10 million parameters, 11 layers, and batch size 16.
The model is trained on the CIFAR-10 dataset. Our prover time is 22
minutes per iteration, and independent of the number of iterations
and the dataset size, the proof size is 1.36megabytes, and the verifier
time is only 103 milliseconds. Moreover, we compare Kaizen with
generic IVCs [17, 21, 39] as the baseline, where we achieve 43×
faster prover time and at least 224× less prover memory usage.

1.3 Organization of the Paper

In Section 2, we introduce notation and include some background
information on zero-knowledge proofs and DNNs. In Section 3,
we present an overview of our techniques. Section 4 describes our
PoGD protocol. We introduce our aggregation scheme in Section 5,
and use this as a key building block of our recursive sumcheck
framework presented in Section 6. In Section 7, we present Kaizen,
which we evaluate and compare to prior generic IVCs in Section 8.

2

2 PRELIMINARIES

We use F to denote a finite field. We let _ be the security parameter,
and negl be a negligible function. We define [𝑛] := {0, 1, . . . , 𝑛 − 1}.
We use bold lowercase letters 𝒙,𝒚 for vectors, and bold uppercase
letters 𝑿 , 𝒀 for matrices. For a vector 𝒙 , we use both 𝒙𝑖 and 𝒙 [𝑖]
to denote the 𝑖th element of 𝒙 , and for a matrix 𝑿 , both 𝑿𝑖, 𝑗 and
𝑿 [𝑖, 𝑗] indicate the element in row 𝑖 and column 𝑗 . We use 𝑿 [𝑖, :]
to denote the 𝑖th row and 𝑿 [:, 𝑗] to denote the 𝑗th column of the
matrix 𝑿 . We use ◦ for the Hadamard (element-wise) product.

Merkle tree. A Merkle tree [47]MT is a data structure that can be
used to commit to a vector. It consists of the following algorithms:
• Commit: on input a vector 𝒙 and randomness 𝑟 , returns the root
𝜌 of the Merkle tree as a commitment to the vector.
• Open: on input a vector 𝒙 , randomness 𝑟 , and opening index 𝑖 ,
returns an element 𝒙𝑖 and proof 𝑝𝑖 .
• Verify: on input a commitment 𝜌 , index 𝑖 , element 𝒙𝑖 , and proof 𝑝𝑖 ,
returns accept or reject.

The commitment time is linear in the length of the vector; proofs
and verifier times are logarithmic in the length of the vector.

Multilinear extensions. Let 𝑉 : {0, 1}ℓ → F be a function. The
multilinear extension of 𝑉 is defined as the unique multilinear
polynomial 𝑉 : Fℓ → F with 𝑉 (𝒙) = 𝑉 (𝒙) for all 𝒙 ∈ {0, 1}ℓ .
For 𝒃 ∈ {0, 1}ℓ , let 𝛽𝒃 : {0, 1}ℓ → {0, 1} denote the function
with 𝛽𝒃 (𝒙) = 1 if 𝒃 = 𝒙 and 𝛽𝒃 (𝒙) = 0 otherwise, and note that
𝛽𝒃 (𝒙) =

∏ℓ
𝑖=1 ((1 − 𝒙𝑖) (1 − 𝒃𝑖) + 𝒙𝑖𝒃𝑖). We can then compute 𝑉 as

𝑉 (𝒙) =
∑︁

𝒃∈{0,1}ℓ
𝛽𝒃 (𝒙) ·𝑉 (𝒃) .

We can define multilinear extensions of vectors by viewing a vector
𝒗 = (𝑣0, 𝑣1, . . . , 𝑣𝑛−1) ∈ F𝑛 as a function 𝑣 : {0, 1}log𝑛 → F such
that∀𝑖 ∈ [𝑛] : 𝑣 (𝑖) = 𝒗𝑖 . A similar method is applied to the matrices.

2.1 Proofs, Arguments, and Commitments

An interactive proof for relation 𝑅 with corresponding language
𝐿𝑅 is an interactive protocol between a prover P and a verifierV
on joint input 𝑥 . The protocol satisfies completeness if, in an honest
execution when the prover additionally holds a witness 𝑤 with
(𝑥,𝑤) ∈ 𝑅, the verifier always accepts. Soundness guarantees that a
malicious P cannot convinceV to accept when 𝑥 ∉ 𝐿𝑅 , except with
negligible probability. Knowledge soundness is a stronger property
requiring that if a malicious prover can cause the verifier to accept
with high probability on joint input 𝑥 , then it is possible to extract
a witness𝑤 from the prover such that (𝑥,𝑤) ∈ 𝑅. Such a protocol
is called an argument if (knowledge) soundness holds against only
computationally-bounded provers. Informally, a proof/argument is
zero-knowledge if a malicious verifier learns no information from the
protocol about𝑤 other than (𝑥,𝑤) ∈ 𝑅. We say a proof/argument is
succinct if the runtime ofV and the communication between P and
V are poly(_, |𝑥 |, log |𝑤 |); see Appendix A.1 for formal definitions.

A proof/argument is public-coin if the messages sent by the
honest verifier consist simply of random challenges. Under certain
conditions, a public-coin protocol can be made non-interactive
using the Fiat-Shamir transform [28] in the random-oracle model
by replacing the challenge for each round with the output of the
random oracle evaluated on the transcript of prior rounds.

Incrementally verifiable computation (IVC). IVC schemes [55]
enables succinct verification of iterative computations. Let F be
a function, 𝜔0, . . . , 𝜔𝑖−1 be witness auxiliary inputs, and 𝑧0 be an
initial input; define ∀𝑘 ∈ [𝑖] : 𝑧𝑘+1 = F (𝑧𝑘 , 𝜔𝑘). IVC allows a
prover to incrementally generate a proof 𝜋𝑖 substantiating that
there exist𝜔0, . . . , 𝜔𝑖−1 such that 𝑧𝑖 was correctly computed from 𝑧0.
More formally, an IVC protocol consists of the following algorithms:
• G: on input security parameter, returns public parameters pp.
• P: on input an iteration counter 𝑖 , initial input 𝑧0, last output 𝑧𝑖−1,
auxiliary input𝜔𝑖−1, proof𝜋𝑖−1, and public parameters pp, returns
the next iteration output 𝑧𝑖 and a proof 𝜋𝑖 .
• V: on input an iteration counter 𝑖 , initial input 𝑧0, last output 𝑧𝑖 ,
proof 𝜋𝑖 , and public parameters pp, returns accept or reject.

Each 𝜋𝑖 is a zero-knowledge argument for the relation:

𝑅IVC𝑖
=

{
(𝑖, 𝑧0, 𝑧𝑖), (𝜔0, . . . , 𝜔𝑖−1) :
∀𝑘 ∈ [𝑖] : 𝑧𝑘+1 = F (𝑧𝑘 , 𝜔𝑘)

}
.

A canonical technique for constructing IVC is recursive composition
of a baseline succinct non-interactive proof. In particular, let P𝑏
andV𝑏 be the prover and verifier algorithms of the baseline proof,
respectively. Let F𝐴 be the augmented function defined as:

(F (𝑧𝑖 , 𝜔𝑖),V𝑏 (𝑖, 𝑧0, 𝑧𝑖 , 𝜋𝑖)) ← F𝐴 (𝑖 + 1, 𝑧0, 𝑧𝑖 , 𝜔𝑖 , 𝜋𝑖).

P, on input 𝑖 + 1, 𝑧𝑖 , 𝜔𝑖 , and 𝜋𝑖 , outputs 𝑧𝑖+1 and invokes P𝑏 to
generate a proof 𝜋𝑖+1 that F𝐴 (𝑖 + 1, 𝑧0, 𝑧𝑖 , 𝜔𝑖 , 𝜋𝑖) = (𝑧𝑖+1, 1). The
incremental design of IVC ensures that prover memory overhead,
proof size, and verifier overhead are independent of the number of
iterations and only proportional to the complexity of F𝐴 .

Polynomial commitments. A polynomial commitment scheme
(PCS) enables a proverP to generate a commitment to a polynomial
and later open the polynomial at some input evaluation point. More
formally, a PCS consists of the following procedures:
• KeyGen: on input the security parameter, number of variables ℓ ,
and degree bound 𝑑 , returns public parameters pp.
• Commit: on input a polynomial 𝑓 , randomness 𝑟 , and public
parameters pp, returns a commitment 𝜎 to the polynomial.
• Open: on input a point 𝑥 , a polynomial 𝑓 , the randomness 𝑟 , and
public parameters pp, returns the evaluation 𝑦 = 𝑓 (𝑥) and an
evaluation opening proof 𝜋 .
• Verify: on input a commitment 𝜎 , point 𝑥 , evaluation 𝑦, and
evaluation opening proof 𝜋 , returns accept or reject.

A PCS is hiding if the commitment reveals no information about the
polynomial. A PCS satisfies evaluation binding if a prover cannot
open a commitment 𝜎 to two distinct evaluations at any input
point 𝑥 . Knowledge soundness ensures that a prover generating a
correct evaluation proof must know the polynomial underlying the
commitment. A zero-knowledge PCS guarantees that evaluation
proofs reveal no additional information about 𝑓 other than the
value 𝑓 (𝑥). Formal definitions are provided in Appendix A.1.

2.2 GKR-Based Zero-Knowledge Arguments

Goldwasser et al. [31] proposed an interactive proof system for
layered arithmetic circuits, referred to as the GKR protocol, based
on the sumcheck protocol. We review the scheme here.

3

The sumcheck protocol. Fix an ℓ-variate polynomial 𝑓 : Fℓ → F
with variable-degree bound 𝑑 . The sumcheck protocol [46] enables
a verifierV to delegate computation of the sum of 𝑓 over the binary
hypercube, i.e., 𝐻 =

∑
𝑏∈{0,1}ℓ 𝑓 (𝑏), to a prover P. At the end of

the protocol,V needs the ability to learn the evaluation of 𝑓 at a
single (random) point 𝑟 ∈ Fℓ . The prover time is 𝑂 (𝑑ℓ), and the
verification time and proof size are 𝑂 (𝑑ℓ). The soundness error is
𝑂 (𝑑ℓ/|F|). We present the scheme in Protocol 1 of Appendix A.

TheGKRprotocol. Let C be a circuit of depth𝑑 over a finite field F,
with layer 0 the output layer and layer 𝑑 the input layer, and where
each gate in the 𝑖th layer takes two inputs from the (𝑖 + 1)st layer.
Let 𝑆𝑖 be the number of gates in the 𝑖th layer, and 𝑠𝑖 := ⌈log 𝑆𝑖 ⌉.
Define wiring predicates 𝑎𝑑𝑑𝑖 ,𝑚𝑢𝑙𝑡𝑖 : {0, 1}𝑠𝑖+2𝑠𝑖+1 → {0, 1}, where
𝑎𝑑𝑑𝑖 (resp.,𝑚𝑢𝑙𝑡𝑖) takes as input a gate label 𝑧 for layer 𝑖 , and gate
labels 𝑥,𝑦 for layer 𝑖 + 1, then returns 1 iff gate 𝑧 is an addition
(resp., multiplication) gate with inputs 𝑥 and 𝑦. Fixing some input
to the circuit, we define 𝑣𝑖 : {0, 1}𝑠𝑖 → F so that 𝑣𝑖 (𝑏) is the output
of the 𝑏th gate in the 𝑖th layer. Note that

�̃�𝑖 (𝑧) =
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1
𝑎𝑑𝑑𝑖 (𝑧, 𝑥,𝑦) · (�̃�𝑖+1 (𝑥) + �̃�𝑖+1 (𝑦)) +

�𝑚𝑢𝑙𝑡𝑖 (𝑧, 𝑥,𝑦) · �̃�𝑖+1 (𝑥) · �̃�𝑖+1 (𝑦). (1)

P can prove the evaluation of C as follows. AssumeV has oracle
access to �̃�0 and �̃�𝑑 (i.e., the input and output).V samples a random
challenge 𝑟0 and evaluates �̃�0 (𝑟0). Then, P,V run the sumcheck
protocol on Equation (1) for 𝑖 = 0, at the end of which V asks
P for two evaluations of �̃�1, say at points 𝑟1,0, 𝑟1,1. Say P claims
𝑦0 = �̃�1 (𝑟1,0) and𝑦1 = �̃�1 (𝑟1,1). The verifier then chooses𝛾0, 𝛾1 ← F
and the parties run the sumcheck protocol to prove that

𝛾0 · 𝑦0 + 𝛾1 · 𝑦1 =
∑︁

𝑥,𝑦∈{0,1}𝑠𝑖+1

(𝛾0 · 𝑎𝑑𝑑𝑖 (𝑟1,0, 𝑥,𝑦) + 𝛾1 · 𝑎𝑑𝑑𝑖 (𝑟1,1, 𝑥,𝑦)) · (�̃�𝑖+1 (𝑥) + �̃�𝑖+1 (𝑦)) +

(𝛾0 ·�𝑚𝑢𝑙𝑡𝑖 (𝑟1,0, 𝑥,𝑦) + 𝛾1 ·�𝑚𝑢𝑙𝑡𝑖 (𝑟1,1, 𝑥,𝑦)) · �̃�𝑖+1 (𝑥) · �̃�𝑖+1 (𝑦) .
This reduces the problem to a claim of two evaluations of �̃�1. The
parties then continue this procedure for 𝑑 iterations; at the final
iterationV can check the evaluations of �̃�𝑑 using its oracle access.
The formal protocol is provided in Protocol 2 of Appendix A. The
GKR protocol can bemade zero-knowledge by using zero-knowledge
sumchecks [16, 59] and zero-knowledge polynomial commitments
to provide oracle access to �̃�0 and �̃�𝑑 . The protocol can be made
non-interactive using the Fiat-Shamir transform.

2.3 Deep Neural Networks and Training

ADNNmaps an input feature to a prediction by applying a sequence
of transformations across 𝐿 layers. The ℓth layer consists of a linear
operation parameterized by weights𝑾ℓ followed by application of
a non-linear activation function. A layer is dense or convolutional.
In dense layers, the linear operation returns 𝑻 = 𝑾 · 𝑼 given an
input 𝑼 and weights𝑾 , and convolutional layers returns 𝑻 =𝑾 ∗𝑼 ,
where if 𝑼 is of size 𝑢 × 𝑢 and 𝑾 is of size 𝑤 × 𝑤 , then 𝑻 is a
(𝑢 −𝑤 + 1) × (𝑢 −𝑤 + 1) matrix such that

𝑻 [𝑖, 𝑗] =
𝑤−1∑︁
𝑎,𝑏=0

𝑼 [𝑖 + 𝑎, 𝑗 + 𝑏] ·𝑾 [𝑎, 𝑏] .

Following the linear operation, an activation function is performed;
this is ReLU(𝑥) = max(𝑥, 0), tanh(𝑥) = (𝑒2𝑥 − 1)/(𝑒2𝑥 + 1), each
applied coordinate-wise, or Softmax(𝑥𝑖) = (𝒆𝑥𝑖)/(

∑
𝑗 𝑒

𝑥 𝑗). A layer
may also include a pooling that slides a window over the input and
extracts one element from each window deterministically, e.g., it
returns the maximum or average value in each of the windows.

Training DNNs using mini-batch gradient-descent. When
training a DNN, the architecture, i.e., the number of the layers, the
type of each layer, and an initial set of weights, is fixed in advance,
and the goal is to optimize the weights at each layer to minimize
a specified loss function L over the training dataset. The training
dataset is a set of data items, where each items consists of a feature
and associated labels. The most popular optimization method for
DNNs is mini-batch gradient-descent [50], which proceeds in a
series of epochs. In each epoch, the datasetD is randomly partitioned
into batches 𝑩1, . . . ,𝑩𝑘 , each containing a specified number 𝑁 of
data items. An epoch consists of 𝑘 iterations (one per batch). In the
𝑖th iteration, let 𝑼𝑖,0 be the concatenation of the input features of
the data items in 𝑩𝑖 and let 𝑼𝑖,ℓ (for ℓ > 0) be the concatenation
of outputs of the ℓth layer given the current weights. In the 𝑖th
iteration the current weights {𝑊𝑖−1,ℓ }𝐿ℓ=1 are updated to obtain new
weights {𝑊𝑖,ℓ }𝐿ℓ=1 via the following steps:

(1) Forward pass: We feed the inputs 𝑼𝑖,0 to the model, apply layers
sequentially, and for ℓ = 1 to 𝐿, compute 𝑼𝑖,ℓ .

(2) Backward pass: Let 𝐻𝑖 be the average loss over the batch, and
define the gradients𝑮𝑖,ℓ := 𝜕𝐻𝑖/𝜕𝑾𝑖−1,ℓ and 𝑹𝑖,ℓ := 𝜕𝐻𝑖/𝜕𝑼𝑖,ℓ−1.
These are computed for ℓ = 𝐿 to 1 as:

𝑮𝑖,ℓ = 𝑹𝑖,ℓ+1 ·
𝜕𝑼𝑖,ℓ

𝜕𝑾𝑖−1,ℓ
, 𝑹𝑖,ℓ =

𝜕𝑼𝑖,ℓ
𝜕𝑼𝑖,ℓ−1

· 𝑹𝑖,ℓ+1 . (2)

𝑹𝑖,𝐿+1 is evaluated using the labels of the data items. Moreover,
the gradients 𝜕𝑼𝑖,ℓ/𝜕𝑾𝑖−1,ℓ and 𝜕𝑼𝑖,ℓ/𝜕𝑼𝑖,ℓ−1 are evaluated by
applying some linear operations and non-linear activations to
the inputs 𝑼𝑖,ℓ−1 and weights𝑾𝑖−1,ℓ , respectively.

(3) Update: Given a learning rate [ℓ for each layer, the weights are
updated as 𝑾𝑖,ℓ = 𝑾𝑖−1,ℓ − [ℓ · 𝑮𝑖,ℓ , where 𝑮𝑖,ℓ indicates the
average of 𝑮𝑖,ℓ over the data items in the batch.

A high-level illustration is presented in Figure 1, and more details
are presented in Algorithm 1 of Appendix A.

3 TECHNICAL OVERVIEW

In this section, we provide an overview of our techniques; low-level
technical details are still deferred to subsequent sections.

3.1 Sumcheck Proofs for Gradient Descent

Our PoGD is a GKR-style sumcheck-based proof for one iteration
of the mini-batch gradient-descent algorithm (cf. Section 2.3). In
particular, given a fixed batch of data points and some model
weights, PoGD enables the prover to update the weights by applying
a gradient-descent iteration, and then, convince the verifier that
the update is executed correctly. For the linear portions of the
algorithm, we use optimized sumcheck-based proofs with sublinear
proof-generation time. For the non-linear operations, we use bit
decompositions along with a generic version of the GKR protocol.
We discuss each of these components in more detail next.

4

Matrix Operation

Activation

𝑼𝑖,0

𝑾𝑖−1, 1

𝑼𝑖,1

𝑼𝑖,2

...

𝑾𝑖−1, 2

Layer 1

Layer 2

Layer 𝐿

𝑾𝑖−1, 𝐿

Matrix Operation

Matrix Operation

Activation

Activation

𝑹𝑖,𝐿+1

𝑮𝑖, 𝐿

𝑮𝑖, 2

𝑮𝑖, 1

...

𝑼𝑖,𝐿

𝑹𝑖,𝐿

𝑹𝑖,3

𝑹𝑖,2

𝑼𝑖,𝐿−1

Figure 1: A high-level illustration of the 𝑖th gradient-descent

iteration. 𝑼𝑖−1,0 denotes the input features, 𝑼𝑖,ℓ (for ℓ > 0)
denotes the output of layer ℓ , and𝑾𝑖−1,ℓ denotes the current
weights of layer ℓ . 𝑹𝑖,ℓ and 𝑮𝑖,ℓ are the gradients computed in

the backward pass. Blue are red arrows indicate the flow of

the forward and backward passes, respectively.

Linear operations. Linear operations, such asmatrixmultiplication
or convolution, are the most computationally intensive parts of the
gradient-descent algorithm. Fortunately, prior work [45, 53] has
shown optimized sumcheck protocols for these operations that have
proof-generation time sublinear in the runtime of the computation
itself. In particular, Thaler [53] proposed a sumcheck proof for
the multiplication of two 𝑛 × 𝑛 matrices with 𝑂 (𝑛2) prover time;
note the underlying computation takes time Θ(𝑛3) if naive matrix
multiplication is used, and even the best matrix multiplication
algorithms require time 𝜔 (𝑛2). More recently, Liu et al. [45] gave a
sumcheck protocol for convolution of an 𝑛 × 𝑛 input matrix with a
𝑤 ×𝑤 weights where the prover time is𝑂 (𝑛2 +𝑤2), asymptotically
faster than computing the convolution itself in 𝑂 (𝑛2 ·𝑤2) time.

Handling non-linear operations. Sumcheck proofs only support
arithmetic operations over finite fields. However, neural networks
use non-linear operations that cannot be compactly encoded in
an arithmetic circuit, even once the underlying values have been
quantized (cf. Section 4.1). We use standard techniques to handle
these. For example, proofs about a comparison such as 𝑎 ≥ 0 can
be handled using bit decomposition: the prover provides the binary
representation of 𝑎 (including a sign bit) as an auxiliary input,
and the verification circuit checks that the binary representation is
consistent. The sign bit is then taken as the result of the comparison.
To reduce the size of the circuit and wiring predicates, we express
consistency checks directly as sumcheck instances rather than
reducing them to an arithmetic circuit. As another example, we
handle exponentiations using piece-wise linear approximations,
which have been shown to provide sufficient accuracy [19, 24, 49].

3.2 Recursive Composition of Sumcheck Proofs

A challenge in applying recursive proof composition to our PoGD
is the relatively large size of the baseline verification circuit V𝑏
and hence F𝐴 (cf. the discussion of IVC in Section 2.1). The circuit
V𝑏 mainly consists of three components: verifying opening proofs
for polynomial commitments, verifying sumcheck messages, and
verifying the hashes of messages used to generate the challenge
for the Fiat-Shamir transform. We discuss how we improve the
efficiency of each of these components.

Commitment openings. For a GKR-based zkSNARK, the verifier
needs to verify openings of several polynomial commitments. It is
thus desirable to have a polynomial commitment scheme with a
small verification circuit. Known constructions fall short: schemes
based on pairings [37] have𝑂 (1) verification overhead, but are not
compatible with recursive proof composition [10], schemes based
onMerkle trees [8, 32, 63] require the verifier to compute Ω(log2 𝑁)
hash evaluations for a polynomial of size 𝑁 , and constructions
based on prime-order groups [18, 56] have verification time Ω(

√
𝑁)

making them impractical for recursive proof composition.
Several prior IVC schemes [15, 17] resolved this problem by

employing commitment aggregation. Roughly speaking, rather than
verifying the opening of commitments in each recursive step, the
commitments across all steps are aggregated and the aggregate is
verified at the end. Unfortunately, the aggregation scheme used
in prior work only applies to polynomial commitment schemes
for univariate polynomials, whereas for applications to GKR-based
proofs we need commitments to multivariate polynomials. Naively
extending existing univariate schemes to the multivariate case
would incur superlinear, i.e., Θ(𝑁 log𝑁), prover time.

In this work, we propose an aggregation scheme compatible
with multivariate polynomial commitments. For polynomials with
𝑁 coefficients, the scheme has 𝑂 (𝑁) prover time and 𝑂 (log𝑁)
proof size and verifier time. Our aggregation technique is inspired
by the evaluation reduction technique [31], which is a specific
case of aggregation where multiple evaluations of a polynomial
are combined into a single evaluation. We generalize this idea to
the case of having multiple committed polynomials with multiple
evaluation points. Our techniques applies to various polynomial
commitment schemes. We also make the proofs zero-knowledge.

Sumcheckmessages.V𝑏 must evaluate the multilinear extensions
of the wiring predicates at several random points. Evaluating these
polynomials requires time linear in the size of the circuit. Interactive
implementations of the GKR protocol mitigate this overhead by
preprocessing the evaluations; the verifier samples the random
points and computes the evaluations in advance [62, 63]. However,
for recursive proof composition the baseline proof system must be
non-interactive and such preprocessing is not possible.

We avoid this overhead using an approach similar to aggregation.
The various wiring-predicate evaluations are combined into a single
evaluation by a sumcheck run. The combined evaluation is passed
to the next iteration, and verification is deferred until the end.
While a similar effect could also be achieved using the evaluation
reduction technique, which is a specific case of our commitment
aggregation scheme, using the sumcheck protocol offers concretely
better prover performance in this setting.

5

Fiat-Shamir challenges. Due to the Fiat-Shamir transform,V𝑏
must verify the evaluation of a hash function on many inputs. In
particular, 𝑂 (𝑑𝐴 · log |F𝐴 |) hashes need to be verified, where 𝑑𝐴
denotes the depth of the augmented function F𝐴 . We use MiMC [4],
a sumcheck-friendly hash, to reduce this cost. MiMC applies a
low-degree round function for multiple rounds. As observed in
prior work [7], we can represent each round of MiMC directly
as a sumcheck instance, rather than by explicitly writing it as an
arithmetic circuit, and thus further reduce the size ofV𝑏 .

3.3 Constructing a zkPoT

We construct a zkPoT for DNNs by recursively composing our
sumcheck-based PoGDs across multiple iterations. In doing so,
there is one additional complication: we need to ensure that the
prover uses a (random) partition of the committed dataset in each
epoch. We ensure this as follows. The prover commits to the dataset
using a Merkle tree. In each epoch, the prover then partitions the
dataset using a public “quasi-random” permutation, e.g., a cubic
function, applied to the indices of the 𝑛 items in the dataset; the
key for the permutation is varied for each epoch. During each
iteration of an epoch, the prover provides the data items contained
in the current partition along with their Merkle proofs. As part of
computing gradient-descent iterations, the we additionally check
the correctness of the partition as well as the Merkle proofs.

4 PROOFS OF GRADIENT DESCENT

Wepresent our proof of gradient descent (PoGD), which is a GKR-style
sumcheck-based proof for onemini-batch gradient descent iteration.

4.1 Handling Fixed-Point Operations

Model weights and data items are often represented by real numbers,
but we need to encode them as field elements. We fix a field size 𝑝
large enough to ensure no overflow during the computation. We
quantize a real number 𝑟 as a 𝑞-bit integer (𝑞 ≪ 𝑝) with 𝑓 -bit
precision as follows: when 0 ≤ 𝑟 ≤ 2𝑞−𝑓 , map 𝑟 to 𝑠 = ⌊𝑟 ·2𝑓 ⌉ ∈ F𝑝 ,
and when −2𝑞−𝑓 ≤ 𝑟 < 0, map 𝑟 to 𝑠 = 𝑝 − ⌊𝑟 · 2𝑓 ⌉ ∈ F𝑝 .

Integer arithmetic and comparison. Two numbers can be added
by adding their quantizations. For the multiplication of numbers 𝑎
and 𝑏 with quantizations 𝑠𝑎 and 𝑠𝑏 , respectively, we need to scale
𝑧 = 𝑠𝑎𝑠𝑏 by a factor of 2−𝑓 . For this purpose, we ask the prover
to provide 𝑧0, . . . , 𝑧𝑞−1, the bit-decomposition of 𝑧, as an auxiliary
input along with a sign bit 𝑧𝑞 with 𝑧𝑞 = 1 indicating negativity; The
verifier checks whether the provided bit-decomposition consists of
binary values consistent with 𝑧, and returns the truncated output;
i.e., if 𝑧 = (−1)𝑧𝑞 ∑𝑞−1

𝑖=0 𝑧𝑖 · 2𝑖 output (−1)𝑧𝑞 ·
∑𝑞−𝑓 −1
𝑖=0 𝑧𝑖+𝑓 · 2𝑖 .

A similar technique can be used for comparisons. Say we need to
check whether 𝑧 ≥ 0. The prover can provide the bit-decomposition
of 𝑧, including a sign bit; this can be easily checked by the verifier,
and the result of the comparison is then the sign bit. We can also
handle divisions. To compute the quotient 𝑎/𝑏, where 𝑠𝑎 and 𝑠𝑏
are the quantizations of 𝑎 and 𝑏, respectively, the prover provides
a quotient 𝑧 and a remainder 𝑟 . The verifier then checks whether
𝑠𝑎 = 𝑧 · 𝑠𝑏 + 𝑟 and 𝑟 < 𝑠𝑏 and returns 𝑧 · 2𝑓 + 𝑟 · 2−𝑓 as the output.
To further reduce the circuit size, we accumulate scaling factors for
each layer and defer scalings of to the output of the layer.

Sumcheck for binary operations. Scalings and bit-decomposition
consistency checks can be handled by a field arithmetic circuit and
verified by applying a generic proof to the circuit. However, for
complex models, such binary operations blows up the size of the
circuit and wiring predicates. To overcome this, we express these
operations directly as sumcheck instances. In particular, let 𝒛 be
an 𝑛-sized vector of values that the prover is required to provide
their bit-decomposition. Let 𝒁Bit be a matrix of size 𝑛 × 𝑞 and
𝒛Sign be an 𝑛-sized vector, where 𝒁Bit [𝑖, :] is claimed to be the
bit-decomposition of 𝒛 [𝑖], and 𝒛Sign [𝑖] indicates the associated sign
bit. To check whether 𝒁Bit and 𝒛Sign are binary, the verifier sends
challenges 𝑟, 𝑟𝑥 , 𝑟𝑦 , and parties run the sumcheck protocol on:

0 =
∑︁

𝑥 ∈{0,1}log𝑛,𝑦∈{0,1}log𝑞
𝛽𝑥 (𝑟𝑥) · 𝛽𝑦 (𝑟𝑦) ·

(𝑟 · �̃�Sign (𝑥) · (1 − �̃�Sign (𝑥)) + 𝒁Bit (𝑥,𝑦) · (1 − 𝒁Bit (𝑥,𝑦))) . (3)

The verifier then sends another challenge 𝑟𝑧 , and parties verify the
consistency of the bit-decompositions by running a sumcheck on:

�̃� (𝑟𝑧) =
∑︁

𝑥 ∈{0,1}log𝑛,𝑦∈{0,1}log𝑞
𝛽𝑥 (𝑟𝑧) · 𝒁Bit (𝑥,𝑦) ·

(1 − 2 · �̃�Sign (𝑥)) · 2𝑦 . (4)

We can handle scalings similarly. In particular, we only need to
restrict the range of 𝑥 and 𝑦 to the proper intervals in Equation (4);
the range of 𝑥 selects which values are targeted and must be scaled,
and the range of 𝑦 determines what scaling factor we apply.

Exponentiation. Natural exponentiation is used in functions such
as Softmax and tanh. In practice, weights and data items are typically
normalized to the interval [−1, 1]. Similar to prior work [29, 49],
we employ the following piece-wise approximation for 𝑒𝑥 :

𝑓 (𝑥) =

0 𝑥 < −1/2
1
2 + 𝑥 −1/2 ≤ 𝑥 ≤ 1/2
1 𝑥 > −1/2

4.2 Our PoGD Design

The prover P updates weights𝑾𝑖−1 to𝑾𝑖 using a data batch 𝑩𝑖−1
(cf. the discussion of gradient-descent in Section 2.3); the PoGD
uses sumcheck proof messages to convince a verifier V that the
update is done correctly. For this purpose, P uses a polynomial
commitment scheme to give V oracle access to the inputs and
outputs of the algorithm (i.e., �̃�𝑖 , �̃�𝑖−1, 𝑩𝑖−1), and also auxiliary
inputs denoted by �AUX𝑖 , including bit-decompositions, quotients,
and remainders; note that𝑾𝑖 ,𝑾𝑖−1, and AUX𝑖 are concatenations
of𝑾𝑖,ℓ ,𝑾𝑖−1,ℓ , and AUX𝑖,ℓ , respectively for all layers ℓ = 1 to 𝐿.

PoGD then proceeds in several phases. In the first phase, parties
verify the update step of the algorithm, the second phase verifies
the backward pass, and the third phase verifies the forward pass.
Once sumcheck messages are generated, parties combine random
evaluations of inputs and outputs received from different phases
together by running additional sumcheck instances. V verifies
the final evaluations using its oracle access. For linear operations,
parties run sublinear sumcheck protocols [45, 53], and for non-linear
operation they run a generic GKR proof, e.g., Virgo++ [62] in our
implementation. Below, we sketch the four phases of our PoGD.

6

Phase 1: For ℓ = 1 to 𝐿, V asks for a random evaluation of the
trained weights �̃�𝑖,ℓ . Having this evaluation, parties run GKR on
𝑾𝑖,ℓ =𝑾𝑖−1,ℓ−[ℓ ·𝑮𝑖,ℓ , where the run ends with random evaluations
of the inputs �̃�𝑖−1,ℓ and 𝑮𝑖,ℓ . The former proceeds to Phase 4, and
the latter proceeds to Phase 1 to bootstrap the next sumchecks.

Phase 2: For ℓ = 1 to 𝐿, having the evaluation of 𝑮𝑖,ℓ received from
Phase 1 and also the evaluation of 𝑹𝑖,ℓ from the previous iteration
(If ℓ ≠ 1) parties verify Equation (2). We use the sublinear sumcheck
protocols for linear operations, GKR exploiting bit-decomposition
of inputs for non-linear operations, and the sumcheck protocol
on Equation (3) and Equation (4) for binary operations of scalings
and consistency checks. The run ends with evaluations of �̃�𝑖−1,ℓ ,
𝑼𝑖,ℓ−1, 𝑹𝑖+1,ℓ , and �AUX𝑖,ℓ , where 𝑹𝑖+1,ℓ proceeds to the next iteration,
𝑼𝑖,ℓ−1 proceeds to Phase 3, and others proceed to Phase 4. For ℓ = 𝐿,
parties run GKR on the loss calculation from the actual labels of
the data items included in the batch, yielding evaluations of 𝑩𝑖−1
and 𝑼𝑖,𝐿 and proceeding to Phase 4 and Phase 3, respectively.

Phase 3: For ℓ = 𝐿 to 1, having evaluations of 𝑼𝑖,ℓ received from
Phase 2 and the previous iteration (if ℓ ≠ 𝐿), parties verify the
forward pass by running the sublinear sumcheck protocols for the
linear operations, GKR for non-linear operations, and the sumcheck
protocol for scalings and consistency checks. The run ends with
evaluations of inputs of the layer, i.e., �̃�𝑖−1,ℓ , 𝑼𝑖,ℓ−1, and �AUX𝑖,ℓ ,
where 𝑼𝑖,ℓ−1 proceeds to the next iteration, and �̃�𝑖−1,ℓ and �AUX𝑖,ℓ

proceed to Phase 4; note that 𝑼𝑖,0 is viewed as an evaluation 𝑩𝑖−1.

Phase 4: Parties combine all evaluations of �̃�𝑖−1, 𝑩𝑖−1, and �AUX𝑖

received from the previous phases. In particular, consider a generic
ℓ-variate multilinear polynomial 𝑓 and multiple evaluations of form
{(𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1, where 𝑓 (𝑥𝑖) = 𝑦𝑖 . Given challenges {𝛾𝑖 }𝑘𝑖=1, we reduce
evaluations into a single one by running the sumcheck protocol on:

𝑘∑︁
𝑖=1

𝛾𝑖 · 𝑦𝑖 =
∑︁

𝑧∈{0,1}ℓ
𝑓 (𝑧) ·

𝑘∑︁
𝑖=1

𝛾𝑖 · 𝛽𝑧 (𝑥𝑖) . (5)

In Phase 4 of our PoGD, parties run this sumcheck by instantiating
𝑓 with �̃�𝑖−1, 𝑩𝑖−1, and �AUX𝑖 . At the end of the run, for each of the
polynomials, the verifier receives a single evaluation. Along with
the evaluation of �̃�𝑖 from Phase 1, the verifier checks these using
the oracle access, i.e., by asking for evaluation opening proofs.

We provide more formal details in Protocol 3 and present the
security proof for our construction in Appendix B.

Theorem 1. The PoGD construction presented in Protocol 3 satisfies
completeness, knowledge soundness, and zero knowledge.

Let 𝑠in,ℓ be the input size and 𝑠out,ℓ be the output size of the 𝑙th
layer, 𝑁 be the batch size, 𝑞 be the quantization bit-length. We
use Orion [60] as our polynomial commitment scheme due to its
linear-time and concretely efficient prover and succinct verification.
The prover time is 𝑂 (∑𝐿−1

𝑖=0 𝑁 𝑠in,ℓ 𝑠out,ℓ + 𝑁𝑞𝑠out,ℓ). The proof size
and verifier time are 𝑂 (∑𝐿−1

𝑖=0 log2 (𝑁 𝑠in,ℓ 𝑠out,ℓ) + log2 (𝑁𝑞𝑠out,ℓ)),
which is dominated by evaluation opening proofs. In the next
sections, we discuss how to reduce the verification cost using our
aggregation scheme to 𝑂 (∑𝐿−1

𝑖=0 log(𝑁 𝑠in,ℓ 𝑠out,ℓ) + log(𝑁𝑞𝑠out,ℓ))
when we compose PoGDs recursively; see Sections 5 and 6. The
protocol can be made non-interactive by the Fiat-Shamir heuristic.

5 AGGREGATABLE COMMITMENT SCHEMES

We present an aggregatable polynomial commitment scheme for
multivariate polynomials, a key building block for our recursive
proof composition framework. In our setting, a prover has generated
commitments 𝜎1, . . . , 𝜎𝑘 to polynomials 𝑓1, . . . , 𝑓𝑘 : Fℓ → F each is
ℓ-variate with variable-degree at most 𝑑 . The prover then wants to
convince a verifier that 𝑦𝑖 = 𝑓𝑖 (𝑥𝑖) for some points 𝑥1, . . . , 𝑥𝑘 more
efficiently than giving 𝑘 independent evaluation opening proofs.
We propose an scheme that allow the prover and verifier to map
{(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1 to a tuple (𝜎

∗, 𝑥∗, 𝑦∗) such that 𝜎∗ is a commitment
to a polynomial 𝑓 ∗ of size at most as each input polynomial 𝑓𝑖 and
such that (with high probability) 𝑓 ∗ (𝑥∗) = 𝑦∗ iff ∀𝑖 : 𝑓 (𝑥𝑖) = 𝑦𝑖 ;
thus a proof that 𝑓 ∗ (𝑥∗) = 𝑦∗ can substantiate the original claim to
the verifier. The stronger property of knowledge soundness ensures
that a prover who can generate valid aggregation messages and
an evaluation opening proof for (𝜎∗, 𝑥∗, 𝑦∗) must know 𝑓 ∗ and
the inputs {𝑓𝑖 }𝑘𝑖=1. The scheme is zero-knowledge if the process
for generating (𝜎∗, 𝑥∗, 𝑦∗) and the eventual opening proof for 𝑓 ∗

leak no additional information about the {𝑓𝑖 }𝑘𝑖=1. We present more
formal definitions of these properties in Appendix C.

5.1 Aggregating Evaluations

We begin by reviewing a technique [31] for aggregating multiple
evaluations of a single polynomial. We then show how to generalize
that to support distinct polynomials, and to add zero-knowledge.

Single polynomial, multiple points. Consider the case where
𝑓1 = · · · = 𝑓𝑘 = 𝑓 and 𝜎1 = · · · = 𝜎𝑘 = 𝜎 , but {𝑥𝑖 } are distinct.
The prover and verifier interpolate a degree-(𝑘 − 1) univariate
polynomial 𝐿 : F → Fℓ with 𝐿(𝑖) = 𝑥𝑖 for 𝑖 ∈ {1, . . . , 𝑘} ⊆ F.
The prover then sends the verifier a polynomial 𝑔 = 𝑓 ◦ 𝐿 : F→ F
of degree𝑂 (𝑑𝑘ℓ). The verifier checks that ∀𝑖 : 𝑔(𝑖) = 𝑦𝑖 , then, for a
random 𝑟 ∈ F, the parties set 𝑥∗ = 𝐿(𝑟) and 𝑦∗ = 𝑔(𝑟); in this case,
the output polynomial and commitments are 𝑓 ∗ = 𝑓 and 𝜎∗ = 𝜎 .

We claim that 𝑓 (𝑥∗) = 𝑦∗ iff∀𝑖 : 𝑓 (𝑥𝑖) = 𝑦𝑖 with high probability.
Completeness is immediate. Soundness can be argued as follows.
Without loss of generality, say 𝑓 (𝑥1) ≠ 𝑦1. If 𝑔 = 𝑓 ◦ 𝐿, the verifier
rejects since 𝑔(1) ≠ 𝑦1. If 𝑔 ≠ 𝑓 ◦ 𝐿 then 𝑔 and 𝑓 ◦ 𝐿 agree on
at most deg(𝑔) = 𝑂 (𝑑𝑘ℓ) points, and we have 𝑓 (𝑥∗) = 𝑦∗ with a
negligible probability at most 𝑂 (𝑑𝑘ℓ/|F|).

Multiple polynomials, multiple points. We now extend the
above idea to the general case of (possibly) distinct polynomials {𝑓𝑖 }
and points {𝑥𝑖 }. As before, the parties define 𝐿 : F→ Fℓ such that
∀𝑖 : 𝐿(𝑖) = 𝑥𝑖 . The prover then sends the 𝑘 univariate polynomials
𝑔𝑖 = 𝑓𝑖 ◦ 𝐿, and the verifier checks whether ∀𝑖 : 𝑔𝑖 (𝑖) = 𝑦𝑖 . Then,
for random challenges {𝛼𝑖 }𝑘𝑖=1 and 𝑟 , the parties set 𝑥∗ = 𝐿(𝑟),
𝑔 =

∑
𝑖 𝛼𝑖𝑔𝑖 , and 𝑦∗ = 𝑔(𝑟). The output polynomial is 𝑓 ∗ =

∑
𝑖 𝛼𝑖 𝑓𝑖 ;

we defer to Section 5.2 the details of how the parties can generate
the commitment 𝜎∗; we refer to that as commitment aggregation.

Again, we claim that 𝑓 (𝑥∗) = 𝑦∗ iff ∀𝑖 : 𝑓 (𝑥𝑖) = 𝑦𝑖 with high
probability. Completeness holds because

𝑓 ∗ (𝑥∗) = (𝑓 ∗ ◦ 𝐿) (𝑟) = ∑
𝑖 𝛼𝑖 (𝑓𝑖 ◦ 𝐿) (𝑟) =

∑
𝑖 𝛼𝑖𝑔𝑖 (𝑟) = 𝑔(𝑟) .

For soundness, if there exists some 𝑓𝑖 (𝑥𝑖) ≠ 𝑦𝑖 , the prover must
send 𝑔𝑖 ≠ 𝑓𝑖 ◦ 𝐿 to pass verification. But then with high probability
over choice of {𝛼𝑖 }, 𝑟 , we have 𝑦 = 𝑔(𝑟) ≠ (𝑓 ∗ ◦ 𝐿) (𝑟) = 𝑓 ∗ (𝑥∗).

7

Zero knowledge. Before discussing commitment aggregation, we
briefly discuss how to make the above idea zero-knowledge using
masking polynomials. For all 𝑖 , the prover randomly samples an
ℓ-variate polynomial ℎ𝑖 and sends a commitment 𝜎 ′

𝑖
to ℎ𝑖 along

with an evaluation 𝑣𝑖 = ℎ𝑖 (𝑥𝑖). Given random challenges {𝛽𝑖 }, for
all 𝑖 , the prover then sends 𝑔𝑖 = (𝑓𝑖 + 𝛽𝑖ℎ𝑖) ◦ 𝐿, and the verifier
checks that 𝑔(𝑖) = 𝑦𝑖 + 𝛽𝑖𝑣𝑖 . The rest of the protocol is similar to
above; here the output polynomial is 𝑓 ∗ =

∑
𝑖 𝛼𝑖 𝑓𝑖 + 𝛼𝑖𝛽𝑖ℎ𝑖 .

Naively, one could choose each ℎ𝑖 , above, as a random ℓ-variate
polynomial of variable-degree at most 𝑑 . The number of coefficients
in each ℎ𝑖 would then be 𝑂 (𝑑ℓ) and large, making it inefficient in
practice to commit to the {ℎ𝑖 }. We show (cf. Appendix C) it suffices
to sample each ℎ𝑖 as ℎ𝑖 =

∑ℓ
𝑗=1 ℎ𝑖, 𝑗 , where each ℎ𝑖, 𝑗 is a random

univariate polynomial (in the 𝑗 th variable) of degree 𝑑ℓ . The size of
each ℎ𝑖 is then 𝑂 (𝑑ℓ2), and the cost of zero knowledge is 𝑂 (𝑘𝑑ℓ2).

5.2 Aggregating Commitments

What remains is to showhowparties can compute𝜎∗, a commitment
to 𝑓 ∗ =

∑
𝑖 𝛼𝑖 𝑓𝑖 given {𝜎𝑖 }, commitments to the {𝑓𝑖 }; the procedure

naturally extends to the case of the zero-knowledge scheme, where
𝑓 ∗ =

∑
𝑖 𝛼𝑖 𝑓𝑖 + 𝛼𝑖𝛽𝑖ℎ𝑖 , and parties also hold {𝜎 ′

𝑖
}. Of course, if the

underlying commitment scheme is homomorpic then commitment
aggregation is trivial. However, practical homomorphic commitment
schemes [18, 37, 56] are known only from group assumptions, and
cannot be used efficiently for recursive proof composition. Indeed,
in our application we use Orion [60], a commitment scheme based
on Merkle trees that is not homomorphic. We describe how it is
possible to commit to the linear combination of input polynomials
for that scheme. Although the discussion is specific to Orion, the
technique can be extended to other hash-based schemes [8, 63].

Orion. We briefly review Orion. In that scheme, the coefficients of
a polynomial are mapped to the coefficients of a square matrix 𝑴 ,
say of size 𝑛 × 𝑛. Then, a linear error-correcting code 𝐸 : F𝑛 → F𝑝
is applied to 𝑴 twice. First, we apply the code to each row of 𝑴 ,
yielding an 𝑛×𝑝 matrix 𝑪1. Then, we apply the code to each column
of 𝑪1, yielding a 𝑝 × 𝑝 matrix 𝑪2. The prover computes a Merkle
root for each column of 𝑪2, and then a Merkle root computed over
those 𝑝 roots is returned as a commitment to the polynomial.

The verifier checks the well-formedness of a commitment by
sending a random vector 𝒓 ∈ F𝑛 along with 𝑡 = Θ(_) random
indices in [𝑝]. The prover responds with a vector 𝒗 = 𝒓𝑇 ·𝑴 along
with the corresponding 𝑡 columns of 𝑪1 and the associated Merkle
proofs for the encodings of those columns. The verifier (1) evaluates
the codeword𝒘 = 𝐸 (𝒗); (2) for each challenge index 𝑖 , the returned
column 𝑪1 [:, 𝑖] satisfies𝒘𝑖 = 𝒓𝑇 · 𝑪1 [:, 𝑖]; and (3) the Merkle proofs
are all correct. Evaluation proofs can be generated similarly, but
we omit details. Orion achieves zero knowledge and succinctness
by randomized encoding and composing the verification procedure
described above with a generic succinct zero-knowledge proof [63].

Aggregation for Orion. Assume the verifier holds commitments
{𝜎𝑖 } to polynomials {𝑓𝑖 } known to the prover, and let 𝑴𝑖 , 𝑪𝑖,1, 𝑪𝑖,2
be the corresponding matrices that were generated by the prover
when committing to 𝑓𝑖 . The prover generates a commitment 𝜎∗
to 𝑓 ∗ =

∑
𝛼𝑖 𝑓𝑖 and sends it to the verifier; let 𝑴∗, 𝑪∗1 , 𝑪

∗
2 be the

correspondingmatrices generated during this process. For an honest
prover 𝑴∗ =

∑
𝑖 𝛼𝑖𝑴𝑖 , 𝑪∗1 =

∑
𝑖 𝛼𝑖𝑪𝑖,1 , and 𝑪∗2 =

∑
𝑖 𝛼𝑖𝑪𝑖,2.

On the other hand, if 𝑴∗ ≠
∑
𝑖 𝛼𝑖𝑴𝑖 then, letting 𝛿 be the

minimum distance of 𝐸, the matrices 𝑪∗2 and
∑
𝑖 𝛼𝑖𝑪

∗
𝑖,2 must differ

in at least 𝛿2 entries.4 The key observation is that, in addition to
checking the well-formedness of 𝜎∗, the verifier can check that
the correct linear relationship holds between random entries of 𝑪∗2
and the corresponding entries of {𝑪𝑖,2}; if 𝐸 has constant relative
distance, it suffices to check that the linear combination relationship
holds for Θ(_) randomly opened entries of each 𝑪∗2 and {𝑪𝑖,2}.

We provide more formal details in Protocol 4 and prove the
security of our aggregation scheme in Appendix C.

Theorem 2. The aggregation scheme presented in Protocol 4 satisfies
completeness, knowledge soundness, and zero knowledge.

The prover cost of our scheme is dominated by generating the
commitment 𝜎∗, which can be done in 𝑂 (𝑑ℓ), and evaluating the
{𝑔𝑖 }, which can be done in𝑂 (𝑘 ·𝑑ℓ) time. The proof size is dominated
by theMerkle proofs, which have size𝑂 (𝑘𝑑ℓ); this is also the verifier
complexity. Moreover, the scheme can be made non-interactive via
the Fiat-Shamir transform.

6 RECURSIVE SUMCHECK PROOFS

We present a generic framework for building IVC from GKR-style
sumcheck-based proofs. In particular, our framework relies on the
recursive proof composition technique when the baseline proof
system (P𝑏 ,V𝑏) is instantiated by sumcheck-based non-interactive
succinct proofs. When the baseline proof is recursively composed,
the prover must generate a proof for the executions of the verifier
algorithmV𝑏 . We discuss different components of this algorithm
and our techniques to improve the efficiency of each components.

Aggregation instead of opening. V𝑏 verifies some sumcheck
messages for the previous iteration of the augmented function
F𝐴 . For this purpose, V𝑏 receives several random evaluations of
the inputs and outputs of F𝐴; more precisely, evaluations of the
multilinear extensions of the inputs and outputs. The inputs are
committed by a succinct polynomial commitment scheme; such
commitments prevent a blow-up in the input size across iterations.
The prover then must provide opening proofs for the evaluations
required byV𝑏 to verify sumcheck messages. Outputs of F𝐴 might
be given toV𝑏 in plain or to be committed. Here, for simplicity, we
assume they are given in plain, and they can be evaluated directly.

To reduce the complexity ofV𝑏 , we replace opening proofs for
committed polynomials with aggregation messages. In particular,
for each 𝑖th iteration, V𝑏 receives two commitment/evaluation
instances as follows. First,V𝑏 receives agg𝑖−1 = (𝜎∗𝑖−1, 𝑥

∗
𝑖−1, 𝑦

∗
𝑖−1),

which is the aggregate instance returned the previous iteration; this
includes a commitment 𝜎∗

𝑖−1 and evaluation point (𝑥∗
𝑖−1, 𝑦

∗
𝑖−1), and

it is the aggregation of all commitments and their evaluations up
to the iteration 𝑖 − 2. Second,V𝑏 receives (𝜎𝑖−1, 𝑥𝑖−1, 𝑦𝑖−1), which
is the instance for the inputs of the previous execution of F𝐴 . Here,
again 𝜎𝑖−1 is a commitment to the inputs of F𝐴 , and (𝑥𝑖−1, 𝑦𝑖−1) is
a evaluation point. These two instances are aggregated using our
polynomial commitment aggregation scheme (cf. Section 5) and the
aggregate output agg𝑖 = (𝜎∗𝑖 , 𝑥

∗
𝑖
, 𝑦∗

𝑖
) is passed to the next iteration.

In this way, we defer the opening to the final iteration.
4This assumes 𝑪∗2 , {𝑪𝑖,2 } were computed correctly, but in fact, it suffices to check
that 𝜎∗ is well-formed to ensure that each 𝜎𝑖 were well-formed.

8

verification computation

zi−1
𝜔i−1

𝑖 − 1
z0
𝜋i−1

ziF

HASH

GKR.V

AGG.V

𝑖

z0
agg𝑖
wp𝑖

Figure 2: High-level illustration of the augmented function

F𝐴. F denotes the iteration function. HASH, GKR.V, and

AGG.V denote hash evaluation, sumcheck verifier, and

aggregation verifier components of V𝑏 , respectively. agg𝑖
denotes the 𝑖th aggregate commitment/evaluation instance

and wp𝑖 to denote the 𝑖th aggregate predicate evaluation.

Handling wiring predicates. In addition to the input and output
evaluations, V𝑏 also requires several evaluations of the wiring
predicates of F𝐴 at random points to validate sumcheck messages.
Hard-coding all these predicates inV𝑏 blows up its circuit size and,
hence, the recursion cost. Instead, we delegate these evaluations
to the prover. We then apply an evaluation reduction sumcheck,
i.e., the sumcheck protocol on Equation (5) to combine all wiring
predicate evaluations into a single one, which is then passed to the
next iteration. The final verifier receives the aggregation of wiring
predicate evaluation for all iterations and validates its correctness.

Sumcheck-friendly hashing.V𝑏 verifies challenges for sumcheck
proofs and aggregation messages as generated by the Fiat-Shamir
transform. Furthermore, V𝑏 need to evaluate multiple hashes to
verify Merkle proofs included in aggregation messages. To reduce
the circuit size of this component, we instantiate the hash function
with MiMC-𝑝/𝑝 , which is a sponge hash function, and each round
function is 𝐹𝑖 (𝑥) = (𝑥+𝑘𝑖)3 mod 𝑝 for some round key𝑘𝑖 . Suppose
that we have 𝑛 number of hash evaluations and let 𝑑 to denote the
number of rounds. We can prove each hash round by running a
single sumcheck protocol. Let 𝒗0 be the vector of hash outputs, 𝒗𝑑
be the vector of inputs, and 𝒗𝑖 := 𝐹𝑖 (𝒗𝑖−1). Given an initial random
challenge 𝑟0, the prover applies the sumcheck protocol on:

�̃�0 (𝑟0) =
∑︁

𝑧∈{0,1}log𝑛
𝛽𝑧 (𝑟0) · (�̃�1 (𝑧) + 𝑘1)3, (6)

The run ends with an evaluation �̃�1 (𝑟1), which proceeds the round.
The prover continues this process to generate proof for all rounds.

Putting everything together. In the 𝑖th iteration, F𝐴 takes as
input the iteration counter 𝑖 , initial inputs 𝑧0, last output 𝑧𝑖−1, an
auxiliary input 𝜔𝑖−1, and proof 𝜋𝑖−1. The proof includes sumcheck
proofs, aggregation messages, aggregate commitment/evaluation
instance agg𝑖−1, aggregate wiring predicate evaluation wp𝑖−1, and
a commitment and evaluation (𝜎𝑖−1, 𝑥𝑖−1, 𝑦𝑖−1) from iteration 𝑖 − 1.
F𝐴 invokesV𝑏 (𝑖−1, 𝑧0, 𝑧𝑖−1, 𝜋𝑖−1), which evaluates required hashes,
verifies proof messages, aggregates agg𝑖−1 with (𝜎𝑖−1, 𝑥𝑖−1, 𝑦𝑖−1),
aggregates wiring predicate evaluations received at the end of
the sumcheck verification with wp𝑖−1, and outputs the updated
aggregates wp𝑖 and agg𝑖 . OnceV𝑏 is completed successfully, F𝐴
then evaluates 𝑧𝑖 ← F (𝑧𝑖−1, 𝜔𝑖−1) and returns (𝑖, 𝑧0, agg𝑖 ,wp𝑖 , 𝑧𝑖).

We illustrate the augmented function in Figure 2. When execution
of F𝐴 is completed, the IVC prover applies hash sumchecks, i.e.,
sumchecks on Equation (6), to MiMC-𝑝/𝑝 hashes and the baseline
prover P𝑏 for other components. Furthermore, the prover needs to
generate aggregation messages for the next iteration by running the
prover of our aggregation scheme. In the final iteration, the prover
additionally requires to generate an evaluation opening proof for
the final aggregate commitment/evaluation instance.

In Protocol 5 of Appendix D, we provide more formal details of
our recursive sumcheck framework and prove its security.
Theorem 3. Protocol 4 presents an IVC construction that satisfies
completeness, knowledge soundness, and zero knowledge.

The complexity of the scheme depends on the baseline proof
system and the polynomial commitment instantiation. For instance,
consider an instantiation, where the GKR-style baseline proof is
implemented by Virgo++ [62] using Orion [60] as the commitment;
the prover then is𝑂 (|F | + |𝑧 | + |𝜔 |), and proof size and verifier are
𝑂 (𝑑 · log |F | + log2 (|𝑧 | + |𝜔 |)), where 𝑑 denotes the depth of F .

7 ZERO-KNOWLEDGE PROOF OF TRAINING

We first define the notion of zkPoT as a cryptographic primitive
and then propose Kaizen a zkPoT for DNNs.

7.1 Definition

The prior work [29] proposed a monolithic definition of zkPoT,
i.e., the prover executes a universal circuit, representing the entire
training computation being verified, and generates a proof of the
correct execution. Unfortunately, this approach is unsuited for
iterative training algorithms as it requires fixing the number of
training iterations in advance; the prover should complete the all
iterations to generate a verifiable proof. For applications where
a model owner incrementally updates their model, it is desirable
to have a succinct zkPoT at any stage of the training process. To
achieve this goal, we present an incremental definition of zkPoT,
which generates a succinct zkPoT at the end of each iteration,
attesting to the integrity of the entire training computation.

A consideration of such incremental definitions is ensuring data
consistency; each iteration is only given a batch of data items
claimed to be randomly sampled from the dataset. To resolve this,
assume that there exists some fixed permutation of the dataset for
each epoch and the dataset is committed to by a position-binding
commitment, e.g., its Merkle root. At each iteration, the prover uses
the batch consistent with the permutation and provides opening
proofs to each data item in the batch. Before running the training
iterations, Merkle openings are first validated. More precisely, let C
be the iteration circuit in which the permutations are hard-coded.
Let𝑾0 be some initial model and D be the dataset committed to
by 𝜌 . In each 𝑖th iteration, C takes as input the iteration counter
𝑖 , dataset commitment 𝜌 , the last model weights𝑾𝑖−1, a batch of
data samples 𝑩𝑖−1 ⊆ D, and the batch opening proof 𝒑𝐵𝑖−1 . C first
validates the opening proof and the consistency of data items in the
batch with the hard-coded permutations. If verification passes, it
applies the training algorithm and returns weights𝑾𝑖 . In practice,
we can compactly hard-code permutations by fixing a key for an
efficient pseudorandom permutation for each epoch, which enables
C to evaluate the permuted positions required at each iteration.

9

A zkPoT enables the prover to first commit to the dataset and
initial model weights, then sample a batch for each iteration and
execute C. Once an iteration is completed, the prover can generate
a commitment to the updated weights and a succinct proof that all
iterations are correctly executed. More formally, a zkPoT consists:
• KeyGen: on input the security parameter, the setup algorithm
generates the public parameters pp.
• DataCom: on input the training datasetD, randomness 𝑟𝜌D , and
public parameters pp, returns a commitment 𝜌D .
• WeiCom: on input some weights 𝑾𝑖 , a randomness 𝑟𝜎𝑾𝑖

, and
public parameters pp, returns a commitment 𝜎𝑾𝑖

.
• BatchOpen: on input the datasetD, randomness 𝑟𝜌D , the iteration
counter 𝑖 , and public parameters pp, returns the batch 𝑩𝑖−1 for
the 𝑖th training iteration with an opening proof 𝒑𝐵𝑖−1 .
• Prove: on input an iteration counter 𝑖 , dataset commitment 𝜌D ,
initial weights commitment 𝜎𝑊0 , current weights 𝑾𝑖−1 with a
commitment 𝜎𝑊𝑖−1 , a batch 𝑩𝑖−1 with opening 𝒑𝑩𝑖−1 , a proof 𝜋𝑖−1,
and public parameters pp, returns weights𝑾𝑖 and a proof 𝜋𝑖 .
• Verify: on input an iteration counter 𝑖 , the dataset commitment
𝜌D , the initial weights commitment 𝜎𝑊0 , the trained weights
commitment 𝜎𝑊𝑖

, and a proof 𝜋𝑖 , returns accept or reject.
A proof-of-training satisfies soundness if the probability of passing
verification for an adversary prover, returning inconsistent iteration
counter and commitments is negligible. Knowledge soundness
ensures that a prover accepted by the verifier must know satisfying
weights and the dataset underlying the returned commitments.
Zero knowledge guarantees that no information about the models
and datasets is revealed; see Appendix E for formal definitions. For
practicality, we require the proof size and the verifier runtime to be
𝑂 (|𝐶 |) and independent of the number of iterations and the prover
cost to be 𝑂 (|𝐶 | log |𝐶 |) per iteration.

7.2 Implementing a zkPoT for DNNs

Kaizen commits to the dataset by its Merkle root, and the opening
of a particular data batch includes Merkle proofs for each of the
data items in the batch. Model weights are committed by generating
a polynomial commitment to their multilinear extension.

Let PRP be a pseudorandom permutation, e.g., a cubic function,
with an initial permutation key 𝑠0. The key can be updated for each
𝑒th epoch to 𝑠𝑒 = H(𝑒 + 𝑠0), given a cryptographic hash function
H ; this ensures that each epoch trains the model on a randomly
sampled partition. Let 𝑁 be the batch size. For each 𝑖th iteration of
𝑒th epoch, the training iteration circuit C is executed as follows:
(1) 𝑠𝑒 ←H(𝑒 + 𝑠0), ∀𝑘 ∈ [𝑁] : 𝑣𝑘 ← PRP(𝑠𝑒 , (𝑖 − 1)𝑛 + 𝑘).
(2) Validate ∀𝑘 ∈ [𝑁] : MT.Verify(𝑣𝑘 , 𝜌D ,𝑩𝑖−1 [𝑘],𝒑𝐵𝑖

[𝑘]) = 1.
(3) If the verification passes, return𝑾𝑖 = GD(𝑾𝑖−1,𝑩𝑖−1), where

GD denotes the the gradient descent algorithm (cf. Algorithm 1).
Consider an instantiation of our recursive sumcheck framework
(i.e., Protocol 5), where the function F is instantiated by C defined
above. The baseline proof system is instantiated by the construction
that verifies the execution of C by generating sumcheck messages
for step 1 by a generic GKR-style proof [62], step 2 by running
sumcheck for MiMC-𝑝/𝑝 hash (cf. Section 6), and step 3 via running
our PoGD scheme as presented in Protocol 3.

A technical consideration is that in protocol 5,V𝑏 receives the
initial inputs and the last iteration output in plain. In Kaizen, these
include model weights and can be significantly large. To prevent a
blow-up in the size ofV𝑏 , Kaizen instead passes commitments to
weights. The prover provides the evaluations of weights required
for verifying sumcheck proofs, and these commitments and their
evaluations are aggregated across the training iterations.

We present more formal details of the Kaizen construction in
Protocol 6 and a proof of its security in Appendix E.

Theorem 4. Kaizen is a zero-knowledge proof of training and
satisfies completeness, knowledge soundness, and zero knowledge.

Followed by the discussion in Section 4.2, let 𝑠in,𝑙 be the input
and 𝑠out,𝑙 the output sizes of the 𝑙th layer,𝑁 the batch size, and 𝑞 the
bit-length of quantization. The Kaizen prover cost per iteration is
𝑂 (∑𝐿−1

𝑖=0 𝑁𝑠in,𝑙𝑠out,𝑙 +𝑁𝑞𝑠out,𝑙) both for generating PoGD messages
and the recursion overhead. The final proof size and verifier cost
are 𝑂 (∑𝐿−1

𝑖=0 log2 (𝑁 𝑠in,ℓ 𝑠out,ℓ) + log2 (𝑁𝑞𝑠out,ℓ)), independent of
the number of iterations and the size of the dataset.

8 IMPLEMENTATION AND EVALUATION

We discuss the implementation of Kaizen and its evaluation results.
The sumcheck and GKR protocols are implemented based on several
open-source libraries [45, 62]. We run all experiments on a Linux
VMwith 8 physical CPUs, 2.80 GHz Intel(R) Xeon(R) Platinum 8370,
and 256GB of RAM. Our current implementation is not parallelized,
and we report the average running time of 10 executions for each
of the benchmarks. Our code is publicly available [2].

Protocol instantiation. Our construction works on any finite
field. We choose the extension field F𝑝2 for the prime 𝑝 = 261 − 1.
We use MiMC-𝑝2/𝑝2 [4] with 80 rounds and SHA-256 as our hash.
The pseudorandom permutation PRP for shuffling the dataset is
replaced by a cubic function over a field of the size as the dataset.
We set 𝑞 = 64 and 𝐹 = 32 for the quantization scheme to ensure
no overflow. The generic GKR-style proof used in our PoGD and
Kaizen protocols is instantiated by the Virgo++ [62]. Our parameters
are chosen to achieve a _ = 100-bit security level.

Moreover, we instantiated the polynomial commitment scheme
in our construction with Orion [60]. A difficulty with the Orion
protocol is that its linear error-correcting code, i.e., Spielman [52],
has a small relative distance, and this yields a significant number
of Merkle tree openings for the aggregation scheme. In particular,
given a relative distance 𝛾 = 0.15, as we use in our implementation,
_-bit security level requires 3045 openings. To reduce this number,
instead of parsing the coefficients of polynomials as square matrices,
we can parse them as matrices with a small constant number of
columns and linear-sized rows. Although this yields a quasi-linear
evaluation opening time, the commitment and aggregation times
remain linear. As in Kaizen, the evaluation opening is invoked only
once at the final iteration, hence, the effect of thismodification to the
prover per iteration cost is negligible; here, we set the column-size
to one to minimize the aggregation cost, yielding 426 openings.

Furthermore, we replace MiMC-𝑝2/𝑝2 with SHA-256 for up to 4
bottom layers of Merkle trees used in the Orion implementation to
reduce the commitment-generation time for large polynomials.

10

Gradient descent API.We implemented an interference for the
DNN gradient descent computation. A user can select specifications
such as the model architectures, the batch size, and learning rate.
The interference outputs sumcheck instances and GKR circuits,
required for the mini-batch gradient-descent computation. The
user can add any number of convolutional or dense layers to the
architecture and specify input, output, and weight sizes. Kaizen can
support a wide range of activations such as ReLU, tanh, Sigmoid,
and Softmax. For pooling methods, we can support both average
and max pooling with arbitrary window sizes and strides.

DNNModels and training datasets.Wemeasure the performance
of our constructions on three well-known model architectures,
LeNet [42], AlexNet [41], andVGG-11 [51]. For AlexNet andVGG-11,
we truncated the number of parameters by reducing the number of
channels and the size of the output size of the layers. LeNet has 3
convolutional layers, 2 average poolings, 2 dense layers, and a total
number of 61706 trainable parameters. AlexNet has 5 convolutional
layers, 3 average poolings, 2 dense layers, and a total number of 4.2
million parameters. Finally, the VGG-11 has 8 convolutional layers,
5 average pooling, 3 dense layers, and a total number of 10.1million
parameters. We use Softmax as the activation for the output layers
and ReLU for others. We use the MNIST dataset [22], including
60, 000 gray-scale 32 × 32 images for LeNet, and CIFAR-10 [40],
including 60, 000 RGB 64 × 64 images for AlexNet and VGG-11.

8.1 Performance of Our Constructions

We first measure the time the prover requires to generate sumcheck
proofs of our PoGD at each iteration. Then, we report the overall
prover and verifier overheads and the evaluation results of Kaizen.

Prover cost of PoGD sumchecks. We report the prover time for
sumchecks used in PoGD with a breakdown into the four phases of
update step, backward pass, forward pass, and evaluation reduction.
The batch size is ranged from 𝑁 = 4 to 16. The results are reported
and summarized in Table 1; note that the prover cost of polynomial
commitments are excluded, and we discuss them in the next reports.
As shown in the table, it takes only 12.68 seconds to generate
sumcheck messages for the gradient-descent of LeNet with 𝑁 = 16.
For AlexNet and VGG-11 it is 35.88 and 157.6 seconds, respectively.

Kaizen Performance. Before starting the training procedure, the
prover generates the Merkle root of the dataset. This takes only
18 seconds for MNIST and 218 seconds for CIFAR-10, where the
Merkle tree is built using MiMC hash. Then, the prover executes the
training iterations and generates proofs and commitments once an
iteration is completed.We report the prover time per iterationwith a
breakdown into generating polynomial commitments, aggregation
overhead5, generating sumcheck messages, and the overhead of
proving the verifier function V𝑏 . Moreover, we report the proof
size and verifier time with breakdown into sumcheck proofs and
polynomial commitment evaluation openings proofs generated in
the final iteration. We range 𝑁 = 4 to 16, and summarize in Table 2.
As shown in the table,Kaizen offers a prover runtime of 380 seconds
per gradient-descent iteration for LeNet, 687 seconds for AlexNet,
and 1357 seconds for VGG-11 given a batch size 𝑁 = 16.

5The cost of generating commitments to aggregate polynomials returned by the
aggregation scheme is considered part of the aggregation cost.

The verification cost is independent of the number of iterations
and, hence, the size of the dataset. For batch size 𝑁 = 16, The
proof size is 900KB for LeNet, 1092KB for AlexNet, and 1360KB
for VGG-11. The verifier time is only 66ms for LeNet, 81.84ms
for AlexNet, and 103ms for VGG-11. This extremely fast verifier
runtime is achieved by applying GKR-style proofs to the iteration
circuit C and using Orion as our polynomial commitment scheme.
As we observe, 67%-78% of the prover overhead is expended by the
commitment and aggregation overheads. For some applications, it
might be desirable to reduce the prover time at the cost of more
verification time using different polynomial commitment schemes.
For instance, one can instantiate Kaizen with Bulletproofs [18] as
the commitment scheme, which can achieve 2× faster prover at the
cost of having verifier time in the order of hundreds of seconds.

8.2 Comparison to Generic IVCs

We compare the performance of Kaizen with prior art generic IVC
constructions, including Fractal [21], Halo [17], and Nova [39]. The
generic constructions require the computation to be modeled as
an arithmetic circuit. In particular, the schemes we discuss here
rely on the rank-1 constraint system (R1CS) circuit representation.
We carefully extracted the size of R1CS for the iteration circuit C
to measure the performance of prior IVCs. For each operation of
the gradient-descent algorithm, we consider the same computation
procedure as our implementation, e.g., we use the standard matrix
multiplication method, convolutions are turned into a few FFTs
and evaluated by the Cooley–Tukey FFT algorithm, and non-linear
operations are handled with bit-decompositions as auxiliary inputs.
In addition to the circuit size, we also consider the output size of C,
which includes model weights. Generic IVCs require the iteration
outputs to be hashed by the verifier circuit multiple times. However,
thanks to the use of GKR-style proofs, our construction can give the
verifier only a commitment to the multilinear extension of outputs.
We consider the hash function as Poseidon [33] for Nova and Fractal
and Rescue [5] for Halo, as discussed in their protocol.

Given 𝑁 = 16, the size of C for LetNet is about 250 million,
for AlexNet is 618 billion, and for VGG-11 is 4.63 billion of gates;
the weight hash constraint sizes are excluded. For this batch size,
comparisonsare reported in Table 3. As shown, for VGG-11, our
prover is 43× faster than state-of-art generic IVC, which is Nova.
Our verifier time is in the order of tens of milliseconds, comparable
with Fractal and significantly faster than Halo and Nova. Our proof
size is relatively large, however, for practical applications it might
be considered negligible. Unfortunately, we are unable to run any
of the mentioned IVC schemes even for LeNet with 𝑁 = 1, as their
memory usage exceeds our limitation, i.e., 256GB. In particular,
we could only run Nova on circuit sizes up to 100 million gates,
whereas LetNet for𝑁 = 1 has 123million gates, including 16million
gates for C and 107 million gates for weight hash. We extrapolated
their performance based on the asymptotic complexities and their
reported per-gate performance for small circuit sizes. Due to the
substantial constants, reports are expected to be underestimated.
Moreover, we measured the memory usage of the prior art (i.e.,
Nova) on circuit sizes up to 100 million gates. We observed that the
memory usage of Nova grows linearly in the circuit size. Based on
this, we expect to achieve 224× less memory overhead for VGG-11.

11

LeNet AlexNet VGG-11
𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 4 𝑁 = 8 𝑁 = 16

Phase 1: Update 0.045 0.082 0.155 3.104 5.587 10.55 7.464 13.43 25.38
Phase 2: Backward 2.232 3.336 5.589 2.288 4.109 8.11 18.28 25.35 42.72
Phase 3: Forward 1.300 2.150 3.816 5.371 8.210 14.03 17.39 30.53 57.78
Phase 4: Evaluation 0.795 1.573 3.127 1.702 2.163 3.084 10.07 17.17 31.35
Total Prover (s) 4.372 7.141 12.68 16.23 20.07 35.88 53.204 86.48 157.6

Table 1: Prover runtime as a function of the batch size 𝑁 when generating sumcheck messages in our PoGD.

LeNet AlexNet VGG-11
𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 4 𝑁 = 8 𝑁 = 16 𝑁 = 4 𝑁 = 8 𝑁 = 16

Commitments 73.37 97.87 146.7 84.5 140.7 253.1 141.4 254.4 480.3
Proof of Agg. 76.69 100.2 152.2 97.50 168.1 305.4 168.2 307.2 585.3
Proof ofV𝑏 68.47 68.75 68.75 89.05 90.01 90.22 90.60 90.87 131.7
Proof of C 4.543 7.480 13.35 16.91 21.42 38.58 53.88 87.83 160.32
Total Prover (s) 223.0 274.9 380.2 287.9 420.23 687.3 454.0 740.3 1357

Sumcheck Proofs 457.7 472.7 487.7 619.1 637.1 656.0 837.6 861.7 886.8
Comm. Openings 366.8 434.2 412.2 388.9 395.9 436.3 424.4 448.3 473.3
Total Proof (KB) 824.5 861.9 899.9 1008 1033 1092 1262 1310 1360

Sumcheck Verifier 40.58 42.02 43.12 54.78 55.58 58.53 74.33 76.75 78.58
Comm. Verifier 19.92 20.81 22.85 21.00 22.14 23.31 22.13 23.31 24.84
Total Verifier (ms) 60.50 63.01 65.97 75.78 77.72 81.84 96.46 100.06 103.12

Table 2: The prover runtime per iteration, proof size, and verifier runtime of Kaizen with batch size 𝑁 .

Prover (s) Proof Size (KB) Verifier (s)

LeNet AlexNet VGG-11 LeNet AlexNet VGG-11 LeNet AlexNet VGG-11
Fractal [21] 326,568 5,225,712 20,902,976 234 267 298 0.020 0.025 0.030
Halo [17] 50,850 813,595 3,254,382 4.86 5.09 5.45 3,970 63,528 254,114
Nova [39] 958 20,940 59,160 9.80 10.1 10.3 546 8,752 35,760
Kaizen 380 687 1,357 900 1092 1360 0.066 0.081 0.103

Table 3: The prover runtime per iteration, proof size, and verifier runtime for Kaizen and generic IVCs given batch size 𝑁 = 16.

21 22 23 24 25 26

28

210

212

214

Batch Size 𝑁

Pr
ov
er

Ti
m
e
(s
)

Nova
Kaizen

21 22 23 24 25 26

24

26

28

210

212

214

Batch Size 𝑁

Pr
ov
er

M
em

or
y
(G
B)

Nova
Kaizen

Figure 3: The prover time (per iteration) and memory overhead of Kaizen and Nova for LeNet.

More on Kaizen vs. Nova.We give a more detailed comparison
between Kaizen and Nova in terms of the prover runtime and
memory usage. Nova offers better prover overhead compared to
other generic IVCs. Specifically, we provide a comparison for the
case of LeNet with batch sizes ranging from 𝑁 = 2 to 64. Results are
reported in Figure 3. As shown, our prover is 2.4-3.7× faster, and
we require 31.9-86.42× less memory overhead. As the batch size
grows, the advantage of Kaizen over Nova becomes more evident.
We note that a larger batch size can also enable the prover to apply
further optimizations by parallelizing both the training and proof
generation computations in practice; e.g., prior work [58] showed
that GKR-style proofs are amenable to high degrees of parallelism.

ACKNOWLEDGMENTS

The work of Kasra Abbaszadeh and Jonathan Katz was supported
by DARPA under Contract No. HR00112020025. The work Dimitrios
Papadopouloswas supportedHongKong RGCunder grant 16200721.
The views, opinions, and/or findings expressed are those of the
authors and should not be interpreted as reflecting the position or
policy of the Department of Defense or the U.S. Government, and
no official endorsement should be inferred.

REFERENCES

[1] 2023. Increasing transparency in AI security. https://security.googleblog.com/
2023/10/increasing-transparency-in-ai-security.html.

12

https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html
https://security.googleblog.com/2023/10/increasing-transparency-in-ai-security.html

[2] 2023. Kaizen. https://github.com/zkPoTs/kaizen.
[3] 2023. Modulus Labs. https://www.modulus.xyz.
[4] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In Advances in Cryptology—Asiacrypt 2016
(LNCS). Springer, 191–219.

[5] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and
Alan Szepieniec. 2020. Design of Symmetric-Key Primitives for Advanced
Cryptographic Protocols. IACR Trans. Symmetric Cryptol. 2020 (2020), 1–45.

[6] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. 2017. Ligero: Lightweight Sublinear Arguments
Without a Trusted Setup. In ACM Conf. Computer and Communications Security
2017. ACM, 2087–2104.

[7] Alexandre Belling, Azam Soleimanian, and Olivier Bégassat. 2023. Recursion
over Public-Coin Interactive Proof Systems; Faster Hash Verification. In ACM
Conf. Computer and Communications Security. ACM.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Fast
Reed-Solomon Interactive Oracle Proofs of Proximity. In Intl. Colloquium on
Automata, Languages, and Programming (ICALP) (LIPIcs, Vol. 107). Schloss
Dagstuhl—Leibniz-Zentrum für Informatik, 14:1–14:17.

[9] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive
Oracle Proofs. In Theory of Cryptography (TCC). Springer, 31–60.

[10] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Scalable
Zero Knowledge via Cycles of Elliptic Curves. In Advances in Cryptology—Crypto
2014. Springer, 276–294.

[11] Josh Benaloh and Michael de Mare. 1994. One-Way Accumulators:
A Decentralized Alternative to Digital Signatures. In Advances in
Cryptology—Eurocrypt ’93, Tor Helleseth (Ed.). Springer, 274–285.

[12] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. 2020. Ligero++: A New
Optimized Sublinear IOP. In ACM Conf. Computer and Communications Security.
ACM, 2025–2038. https://doi.org/10.1145/3372297.3417893

[13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. J. Cryptol. 30, 4
(oct 2017), 989–1066. https://doi.org/10.1007/s00145-016-9241-9

[14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive
Composition and Bootstrapping for SNARKs and Proof-Carrying Data. In
Symposium on Theory of Computing (STOC). ACM, 111–120.

[15] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. 2021. Halo Infinite:
Proof-Carrying Data from Additive Polynomial Commitments. In Advances in
Cryptology—Crypto 2021, Part I. Springer, 649–680.

[16] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. 2021. Sumcheck
Arguments and Their Applications. In Advances in Cryptology—Crypto 2021,
Part I. Springer, 742–773. https://doi.org/10.1007/978-3-030-84242-0_26

[17] Sean Bowe, Jack Grigg, and Daira Hopwood. 2019. Recursive Proof Composition
without a Trusted Setup. Cryptology ePrint Archive, Paper 2019/1021.

[18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions
and More. In IEEE Symposium on Security and Privacy. IEEE, 315–334.

[19] Gian Carlo Cardarilli, Marco Re, and Luca Di Nunzio. 2021. A pseudo-softmax
function for hardware-based high speed image classification. Sci. Reports (2021).

[20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and
Updatable SRS. In Advances in Cryptology—Eurocrypt 2020. Springer, 738–768.

[21] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. 2020. Fractal:
Post-quantum and Transparent Recursive Proofs from Holography. In Advances
in Cryptology—Eurocrypt 2020. Springer, 769–793.

[22] Li Deng. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

[23] Thorsten Eisenhofer, Doreen Riepel, Varun Chandrasekaran, Esha Ghosh, Olga
Ohrimenko, and Nicolas Papernot. 2023. Verifiable and Provably Secure Machine
Unlearning. arXiv:2210.09126

[24] Alessandro Epasto, Mohammad Mahdian, Vahab Mirrokni, and Manolis
Zampetakis. 2020. Optimal Approximation-Smoothness Tradeoffs for Soft-Max
Functions. In Neural Information Proc. Systems (NeurIPS). Curran Associates Inc.

[25] Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A.
Choquette-Choo, Natalie Dullerud, Varun Chandrasekaran, and Nicolas Papernot.
2022. On the Fundamental Limits of Formally (Dis)Proving Robustness in
Proof-of-Learning. https://doi.org/10.48550/ARXIV.2208.03567

[26] Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A.
Choquette-Choo, Natalie Dullerud, Varun Chandrasekaran, and Nicolas Papernot.
2023. Proof-of-Learning is Currently More Broken Than You Think. In European
Symposium on Security and Privacy. IEEE, 797–816.

[27] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021.
ZEN: An Optimizing Compiler for Verifiable, Zero-Knowledge Neural Network
Inferences. Cryptology ePrint Archive, Paper 2021/087.

[28] Amos Fiat and Adi Shamir. 1987. How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology—Crypto’ 86,

Andrew M. Odlyzko (Ed.). Springer, 186–194.
[29] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad

Mahmoody, Guru-Vamsi Policharla, and Mingyuan Wang. 2023. Experimenting
with Zero-Knowledge Proofs of Training. http://ia.cr/2023/1345

[30] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster
Zero-Knowledge for Boolean Circuits. In Proceedings of the 25th USENIX
Conference on Security Symposium (Austin, TX, USA) (SEC’16). USENIX
Association, USA, 1069–1083.

[31] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating
Computation: Interactive Proofs for Muggles. In ACM Symposium on Theory of
Computing. ACM, 113–122.

[32] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S.Wahby.
2021. Brakedown: Linear-Time and Post-Quantum SNARKs for R1CS. Cryptology
ePrint Archive, Paper 2021/1043.

[33] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 519–535.

[34] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
Advances in Cryptology—Eurocrypt 2016. Springer, 305–326.

[35] Melissa Heikkilä. 2022. This Artist is Dominating AI-Generated Art. And He’s
not Happy About It. MIT Technology Review.

[36] Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie
Dullerud, Anvith Thudi, Varun Chandrasekaran, and Nicolas Papernot. 2021.
Proof-of-Learning: Definitions and Practice. In IEEE Symposium on Security and
Privacy. IEEE, 1039–1056.

[37] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size
Commitments to Polynomials and Their Applications. In Advances in
Cryptology—Asiacrypt 2010, Masayuki Abe (Ed.). Springer, 177–194.

[38] Joe Kilian. 1992. A Note on Efficient Zero-Knowledge Proofs and Arguments. In
Symposium on Theory of Computing (STOC). ACM, 723–732.

[39] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova:
Recursive Zero-Knowledge Arguments from Folding Schemes. In Advances in
Cryptology—Crypto 2022. Springer, 359–388.

[40] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n. d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/
cifar.html

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Adv. in Neural
Information Processing Systems, Vol. 25. Curran Associates, Inc.

[42] Yan LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE 86, 11
(1998), 2278–2324. https://doi.org/10.1109/5.726791

[43] Seunghwan Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vCNN:
Verifiable Convolutional Neural Network based on zk-SNARKs.

[44] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In Conference on
Operating Systems Design and Implementation. USENIX Association, 583–598.

[45] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero Knowledge
Proofs for Convolutional Neural Network Predictions and Accuracy. In Conf. on
Computer and Communications Security. ACM, 2968–2985.

[46] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic
Methods for Interactive Proof Systems. J. ACM 39, 4 (oct 1992), 859–868.

[47] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology—Crypto ’87. Springer, 369–378.

[48] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Computing 30, 4
(2000), 1253–1298.

[49] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol Framework
for Machine Learning. In Conf. on Computer and Comm. Security. ACM, 35–52.

[50] Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method.
The Annals of Mathematical Statistics 22, 3 (1951), 400 – 407.

[51] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Intl. Conf. on Learning
Representations, ICLR.

[52] D.A. Spielman. 1996. Linear-time Encodable and Decodable Error-Correcting
Codes. IEEE Trans. Information Theory 42, 6 (1996), 1723–1731.

[53] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In
Advances in Cryptology—Crypto 2013. Springer, 71–89.

[54] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In USENIX Security
Symposium. USENIX Association, USA, 601–618.

[55] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge
Imply Time/Space Efficiency. In Theory of Cryptography (TCC). Springer, 1–18.

[56] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. 2018. Doubly-Efficient
zkSNARKs Without Trusted Setup. In IEEE Symposium on Security and Privacy.
IEEE, 926–943. https://doi.org/10.1109/SP.2018.00060

13

https://github.com/zkPoTs/kaizen
https://www.modulus.xyz
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/978-3-030-84242-0_26
https://arxiv.org/abs/2210.09126
https://doi.org/10.48550/ARXIV.2208.03567
http://ia.cr/2023/1345
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/SP.2018.00060

[57] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.
Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications
to Machine Learning. In USENIX Security Symposium. USENIX Association,
501–518.

[58] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. 2022. zkBridge: Trustless
Cross-Chain Bridges Made Practical. In Conf. on Computer and Communications
Security. ACM, 3003–3017.

[59] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover
Computation. In Advances in Cryptology—Crypto 2019. Springer, 733–764.

[60] Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2022. Orion: Zero Knowledge
Proof with Linear Prover Time. In Adv. in Cryptology—Crypto 2022. Springer,
299–328.

[61] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:
Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials
over Any Field. In Conf. on Computer and Comm. Security. ACM, 2986–3001.

[62] Jiaheng Zhang, Tianyi Liu,WeijieWang, Yinuo Zhang, Dawn Song, XiangXie, and
Yupeng Zhang. 2021. Doubly Efficient Interactive Proofs for General Arithmetic
Circuits with Linear Prover Time. In Conf. on Computer and Communications
Security. ACM, 159–177.

[63] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020. Transparent
Polynomial Delegation and Its Applications to Zero Knowledge Proof. In IEEE
Symposium on Security and Privacy. 859–876.

14

A ADDITIONAL PRELIMINARIES

In this section, we provide additional preliminaries, including formal
definitions of arguments, polynomial commitment, protocols of
sumcheck and GKR, and more of an in-detail presentation of the
gradient descent algorithm for neural networks.

A.1 Arguments and Commitments

Argument systems. An argument satisfies completeness if an
honest prover always gets accepted. The scheme satisfies knowledge
soundness if, for any accepted prover, there exists an extractor that
returns the underlying witness having oracle access to the prover.
Zero-knowledge ensures that a simulator can generate a transcript
indistinguishable from a real protocol execution without having
any knowledge of the witness. We use G to represent the setup that
generates public parameters pp.

Definition 1. (Zero-knowledge arguments)Given anNP relation
𝑅 with language 𝐿𝑅 , a zero-knowledge argument of knowledge for
𝑅 is tuple of algorithms (G,P,V) if the following holds.
• Completeness. For every (𝑥,𝑤) ∈ 𝑅 and pp← G(1_),

Pr[⟨P(pp,𝑤),V(pp)⟩(𝑥) = 1] = 1

• Knowledge soundness. For any PPT adversary A, there exist a
PPT extractor algorithm bA such that for any 𝑥 and pp← G(1_),

Pr
[
𝑤 ← bA (pp, 𝑥) : (𝑥,𝑤) ∈ 𝑅

]
≥ Pr [⟨A(pp),V(pp)⟩(𝑥) = 1] − negl(_)

• Zero knowledge. There exists a PPT simulator S such that for
every adversary A, (𝑥,𝑤) ∈ 𝑅, and pp← G(1_),

View(⟨P(pp,𝑤),A(pp, 𝑧)⟩(𝑥)) ≈ SA (𝑥, 𝑧)

An argument system is said to be transparent if the public
parameter pp is simply a uniform random string, i.e., there is no
secret state to generate pp.

Polynomial commitment schemes. The conventional definition
of polynomial commitment promises binding and hiding security
notions. Binding can be considered commitment binding, where a
commitment cannot be opened at two polynomials, or evaluation
binding, where a tuple of a commitment and an evaluation cannot
be opened at two input points. Hiding ensures that the commitment
reveals no information about the polynomial. However, we require
stronger guarantees in this work. We rely on commitments that
satisfy knowledge soundness, a stronger notion than binding, and
zero-knowledge, which implies the hiding property.

Knowledge soundness ensures that an accepted prover must
know the polynomial underlying the commitment and evaluation
proofs. More precisely, for any accepted prover, there is an extractor
that has oracle access to the prover and can extract the underlying
polynomial. This notion implies both the commitment and the
evaluation binding. Zero-knowledge guarantees that commitment
and evaluation proofs reveal no additional information about the
polynomial. Similar to arguments, we provide a simulation-based
definition for zero-knowledge. Trivially, zero-knowledge implies
hiding when the prover honestly generates the commitment.

Definition 2. (Zero-knowledge polynomial commitment)

Given a finite field F and an ℓ-variate polynomial 𝑓 with degree 𝑑 ,
a zero-knowledge polynomial commitment scheme PCS is tuple of
algorithms (KeyGen,Commit,Open,Verify) if the following holds.
• Completeness. For input 𝑥 ∈ F and public parameters pp,

Pr
𝑏 = 1

����� 𝜎 ← Commit(𝑓 , 𝑟, pp);
(𝑦, 𝜋) ← Open(𝑓 , 𝑟, 𝑥, pp);
𝑏 ← Verify(𝜎, 𝑥,𝑦, 𝜋, pp)

• Knowledge soundness. For any PPT adversary A, there exist a
PPT extractor algorithm bA such that given public parameters
pp,

Pr
[
𝑓 ← bA (pp) : 𝑓 (𝑥) = 𝑦

]
≥ Pr

[
(𝜎, 𝑥,𝑦, 𝜋) ← A(pp);
Verify(𝜎, 𝑥,𝑦, 𝜋, pp) = 1

]
− negl(_)

• Zero knowledge. There exists a simulator S such that for every
adversaryA the two following experiments are indistinguishable.

RealA,𝑓 (1_)
(1) pp← KeyGen(1_, ℓ, 𝑑)
(2) 𝜎 ← Commit(𝑓 , 𝑟, pp)
(3) 𝑥 ← A(𝜎, pp)
(4) (𝑦, 𝜋) ← Open(𝑓 , 𝑟, 𝑥, pp)
(5) 𝑏 ← A(𝜎, 𝑥,𝑦, 𝜋, pp)
(6) Return 𝑏

IdealA,S (1_)
(1) (𝜎, pp) ← S(1_, ℓ, 𝑑)
(2) 𝑥 ← A(𝜎, pp)
(3) 𝜋 ← S(𝜎, 𝑥, 𝑓 (𝑥), pp)
(4) 𝑏 ← A(𝜎, 𝑥, 𝑓 (𝑥), 𝜋, pp)
(5) Return 𝑏

In particular, for any A, we have

| Pr[RealA,𝑓 (1_) = 1] − Pr[IdealA,S (1_) = 1] | ≤ negl(_)

A.2 The Sumcheck and GKR Protocols

We present the sumcheck scheme in Protocol 1. Moreover, we
provide details of the GKR interactive proof for layered circuits in
Protocol 2. In our implementation, we use a variant of the GKR
sumcheck-based proof that can support non-layered circuits with
gates having arbitrary fan-in [62].

Theorem 5. [46] Given a finite field F and an ℓ-variate polynomial
𝑓 : Fℓ → F with degree bound 𝑑 , Protocol 1 is an interactive proof
for the statement 𝐻 =

∑
𝑏∈{0,1}ℓ 𝑓 (𝑏) with soundness error 𝑂 (𝑑ℓ|F |).

It uses 𝑂 (ℓ) of interaction, running time of P is 𝑂 ((𝑑 + 1)ℓ), and the
proof size and the running time ofV is 𝑂 (𝑑ℓ).

Theorem 6. [59] Let C : F𝑠𝑖𝑛 → F𝑠𝑜𝑢𝑡 be a depth-𝑑 layered
arithmetic circuit. Protocol 2 is an interactive proof forC with soundness
error 𝑂 (𝑑 · log |𝐶 ||F |). It uses 𝑂 (𝑑 · log |𝐶 |) of interaction and running
time of P is 𝑂 (|𝐶 |). Let 𝑇 be the optimal computation time for all
𝑎𝑑𝑑𝑖 and�𝑚𝑢𝑙𝑡𝑖 . The running time ofV is𝑂 (𝑠𝑖𝑛+𝑠𝑜𝑢𝑡 +𝑑 · log |𝐶 |+𝑇).
For log-space uniform circuits, it is 𝑇 = polylog|𝐶 |.

15

Protocol 1. Sumcheck

The protocol proceeds in ℓ rounds.
(1) In the first round, P sends the polynomial

𝑓1 (𝑥1) :=
∑︁

𝑏2,...,𝑏ℓ ∈{0,1}
𝑓 (𝑥1, 𝑏2, 𝑏3, . . . , 𝑏ℓ)

V checks if 𝐻 = 𝑓1 (0) + 𝑓1 (1) and sends 𝑟1 ← F.
(2) In the 𝑖th round (2 ≤ 𝑖 ≤ ℓ − 1), P sends the polynomial

𝑓𝑖 (𝑥𝑖) :=
∑︁

𝑏𝑖+1,...,𝑏ℓ ∈{0,1}
𝑓 (𝑟1, . . . , 𝑟𝑖−1, 𝑥𝑖 , 𝑏𝑖+1, . . . , 𝑏ℓ)

V checks if 𝑓𝑖−1 (𝑟𝑖−1) = 𝑓𝑖 (0) + 𝑓𝑖 (1) and sends 𝑟𝑖 ← F.
(3) In the ℓth round, P sends the polynomial

𝑓ℓ (𝑥ℓ) = 𝑓 (𝑟1, 𝑟2, . . . , 𝑥ℓ)
V checks if 𝑓ℓ−1 (𝑟ℓ−1) = 𝑓ℓ (0) + 𝑓ℓ (1) . The verifier samples the
final random challenge 𝑟ℓ ∈ F. Given oracle access to 𝑓 , V accepts
if and only if 𝑓ℓ (𝑟ℓ) = 𝑓 (𝑟1, 𝑟2, . . . , 𝑟ℓ) .

A.3 DNNs and Gradient Descent

We consider two possible layers for the underlying neural network:
(i) dense layers, where the linear operation is matrix multiplication;
(ii) convolutional layers, where the linear operation is a convolution.
A linear operation is followed by an activation, which can be ReLU
and tanh for non-output and Softmax for the output layers. In
convolutional layers, the activation is additionally followed by a
average or max pooling. Moreover, a convolutional layer might
include several input and output channels. For instance, if the
input to the layer is an RGB image, it has three channels. In such
cases, weights are convoluted with each input layer and added
together. Each output channel has its own set of weights. We
only consider one input/output channel per layer to simplify the
algorithm description. The computation is presented in Algorithm 1.
In line 20, pad(𝑾𝑇

𝑖,ℓ
) zero-pads𝑾𝑇

𝑖,ℓ
to an specific dimension and

then rotate it for 𝜋 . More precisely, for𝑾𝑖,ℓ of size𝑤 ×𝑤 and 𝑼𝑖,ℓ−1
of size 𝑛 × 𝑛, pad(𝑾𝑇

𝑖,ℓ
) is of size (2𝑤 − 𝑛) × (2𝑤 − 𝑛). In line 24,

𝑮𝑖,𝑙 is the average gradient over the data points in the batch.

B OUR POGD PROTOCOL

In this section, we present the complete PoGD scheme in Protocol 3.
Moreover, we formally prove the security of the protocol. We note
that the sumcheck runs on the linear operations in step (4) of phase
2 and step (2) of phase 3 and can be merged together. Parties can
combine evaluations �̃�𝑖,ℓ (𝑟 (3)2,𝑻𝑖,ℓ

) and �̃�𝑖,ℓ (𝑟 (1)3,𝑻𝑖,ℓ
) and then invoke the

sumcheck protocol on the combined evaluation. Similarly, scalings
in step (6) of phase 2 and step (2) of phase 3 can be merged together.

Proof of Theorem 1. Following the completeness ofGKR, SumMat,
and SumConv, and PCS completeness of PoGD is immediate.We first
show a negligible bound soundness error with a phase-by-phase
analyze. Suppose that the prover sends some𝑾∗

𝑖,ℓ
≠𝑾𝑖,ℓ .

P1: For 𝑖 = 1 to 𝐿, following the Schwartz-Zipple lemma and the
soundness of GKR, we have �̃�∗

𝑖,ℓ
(𝑟out,𝑾𝑖,ℓ

) ≠ �̃�𝑖,ℓ (𝑟out,𝑾𝑖,ℓ
) with

high probability unless: (i) �̃�∗
𝑖−1,ℓ (𝑟1,𝑾𝑖−1,ℓ) ≠ �̃�𝑖−1,ℓ (𝑟1,𝑾𝑖−1,ℓ),

which proceeds to phase 4; (ii) 𝑮∗
𝑖,ℓ
(𝑟1,𝑮𝑖,ℓ

) ≠ 𝑮𝑖,ℓ (𝑟1,𝑮𝑖,ℓ
), which

proceeds to phase 2.

Algorithm 1 Mini-Batch Gradient Descent

Input: Weights {𝑾𝑖−1,ℓ }𝐿𝑗=1 and Batch 𝑩𝑖−1

Output: Updated weights {𝑾𝑖,ℓ }𝐿𝑗=1
Forward pass:
Let 𝑼𝑖,0 be the concatenation of input features included in 𝑩𝑖−1

1: for ℓ = 1 to 𝐿 do

2: if the ℓ-th layer is dense then
3: 𝑻𝑖,ℓ ←𝑾𝑖−1,ℓ · 𝑼𝑖,ℓ−1
4: 𝑼𝑖,ℓ ← actℓ (𝑻𝑖,ℓ) ⊲ actℓ ∈ {ReLU, tanh, Softmax}
5: else if the ℓ-th layer is convolution then

6: 𝑻𝑖,ℓ ←𝑾𝑖−1,ℓ ∗ 𝑼𝑖,ℓ−1
7: 𝑸𝑖,ℓ ← actℓ (𝑻𝑖,ℓ) ⊲ actℓ ∈ {ReLU, tanh, Softmax}
8: 𝑼𝑖,ℓ ← poolℓ (𝑸𝑖,ℓ) ⊲ poolℓ ∈ {MaxPool,AvgPool}
9: end if

10: end for

Backward pass:
Let 𝑹𝑖,𝐿+1 = 𝜕L(𝑼𝑖,𝐿, 𝑌𝑖)/𝜕𝑈𝑖,𝐿 , s.t. 𝑌𝑖 includes labels in 𝑩𝑖−1

11: for ℓ = 𝐿 to 1 do
12: if the ℓ-th layer is dense then
13: 𝑻 ′

𝑖,ℓ
= 𝜕𝑼𝑖,ℓ/𝜕𝑻𝑖,ℓ = 𝜕actℓ (𝑻𝑖,ℓ)/𝜕𝑻𝑖,ℓ

14: 𝑮𝑖,ℓ = (𝑹𝑖,ℓ+1 ◦ 𝑻 ′𝑖,ℓ) · 𝑼
𝑇
𝑖,ℓ−1

15: 𝑹𝑖,ℓ =𝑾𝑇
𝑖−1,ℓ · (𝑹𝑖,ℓ+1 ◦ 𝑻

′
𝑖,ℓ
)

16: else if the ℓ-th layer is convolution then

17: 𝑸 ′
𝑖,ℓ

= 𝜕𝑼𝑖,ℓ/𝜕𝑸𝑖,ℓ = 𝜕poolℓ (𝑸𝑖,ℓ)/𝜕𝑸𝑖,ℓ

18: 𝑻 ′
𝑖,ℓ

= 𝜕𝑼𝑖,ℓ/𝜕𝑻𝑖,ℓ = 𝑸 ′
𝑖,ℓ
◦ (𝜕actℓ (𝑻𝑖,ℓ)/𝜕𝑻𝑖,ℓ)

19: 𝑮𝑖,ℓ = (𝑹𝑖,ℓ+1 ◦ 𝑻 ′𝑖,ℓ) ∗ 𝑼𝑖,ℓ−1
20: 𝑹𝑖,ℓ = pad(𝑾𝑇

𝑖−1,ℓ) ∗ (𝑹𝑖,ℓ+1 ◦ 𝑻
′
𝑖,ℓ
) ⊲ If ℓ ≠ 1

21: end if

22: end for

Update weights:
23: for ℓ = 1 to 𝐿 do

24: 𝑾𝑖,𝑙 =𝑾𝑖−1,𝑙 − [· 𝑮𝑖,𝑙 ⊲ [is the learning rate
25: end for

P2: Suppose that case (ii) is occurred in phase 1 and there exists
at least one ℓ such that 𝑮∗

𝑖,ℓ
(𝑟1,𝑮𝑖,ℓ

) ≠ 𝑮𝑖,ℓ (𝑟1,𝑮𝑖,ℓ
). Following

the soundness of GKR, SumMat, and SumConv, there are three
possible cases can occur: (i) �̃�∗

𝑖−1,ℓ (𝑟2,𝑾𝑖−1,ℓ) ≠ �̃�𝑖−1,ℓ (𝑟2,𝑾𝑖−1,ℓ),�AUX∗𝑖,ℓ (𝑟2,AUX𝑖,ℓ
) ≠ �AUX𝑖,ℓ (𝑟2,AUX𝑖,ℓ

), or for the data batch
𝑩∗
𝑖,ℓ
(𝑟2,𝑩𝑖,ℓ

) ≠ 𝑩𝑖,ℓ (𝑟2,𝑩𝑖,ℓ
), which proceeds to phase 4; The next

case is (ii) 𝑹∗
𝑖,ℓ+1 (𝑟2,𝑹𝑖,ℓ+1) ≠ 𝑹𝑖,ℓ+1 (𝑟2,𝑹𝑖,ℓ+1), proceeding to the

next layer; (iii) 𝑼 ∗
𝑖,ℓ
(𝑟2,𝑼𝑖,ℓ

) ≠ 𝑼𝑖,ℓ (𝑟2,𝑼𝑖,ℓ
), proceeding to phase 3.

P3: Suppose (iii) occurs in phase 2 and there exists at least one
ℓ such that 𝑼 ∗

𝑖,ℓ
(𝑟2,𝑼𝑖,ℓ

) ≠ 𝑼𝑖,ℓ (𝑟2,𝑼𝑖,ℓ
). Following the soundness

of GKR and SumMat, and SumConv, there are two possible cases:
(i) �̃�∗

𝑖−1,ℓ (𝑟3,𝑾𝑖,ℓ
) ≠ �̃�𝑖−1,ℓ (𝑟3,𝑾𝑖,ℓ

), 𝑩∗
𝑖,ℓ
(𝑟3,𝑩𝑖,ℓ

) ≠ 𝑩𝑖,ℓ (𝑟3,𝑩𝑖,ℓ
), or�AUX∗𝑖,ℓ (𝑟3,AUX𝑖,ℓ

) ≠ �AUX𝑖,ℓ (𝑟3,AUX𝑖,ℓ
), which proceeds phase 4;

(ii) 𝑼 ∗
𝑖,ℓ−1 (𝑟3,𝑼𝑖,ℓ−1) ≠ 𝑼𝑖,ℓ−1 (𝑟3,𝑼𝑖,ℓ−1), which proceeds to the next

iteration, i.e., ℓ − 1-th layer.

16

Protocol 2. GKR

Let F be a finite field and C : F𝑠𝑖𝑛 → F𝑠𝑜𝑢𝑡 be a layered arithmetic circuit of depth 𝑑 . P wants to convince V that C(in) = out, where in is the input
given by V and out is the output sent to V . Without loss of generality, we pad 𝑠𝑖𝑛 and 𝑠𝑜𝑢𝑡 to powers of 2. The protocol proceeds as follows.
(1) V picks a random 𝑧 ∈ F and sends it to P. Both parties P and V compute �̃�0 (𝑧) , where �̃�0 is the multilinear extension of array out.
(2) P and V invoke a sumcheck protocol on

�̃�0 (𝑧) =
∑︁

𝑥,𝑦∈{0,1}𝑠1

˜𝑎𝑑𝑑0 (𝑧, 𝑥, 𝑦) .
(
�̃�1 (𝑥) + �̃�1 (𝑦)

)
+ ˜𝑚𝑢𝑙𝑡0 (𝑧, 𝑥, 𝑦) .�̃�1 (𝑥) .�̃�1 (𝑦)

At the end of the protocol, V receives two evaluations �̃�1 (𝑢 (1)) , �̃�1 (𝑣 (1)) . V computes ˜𝑎𝑑𝑑0 (𝑧,𝑢 (1) , 𝑣 (1)) and ˜𝑚𝑢𝑙𝑡0 (𝑧,𝑢 (1) , 𝑣 (1)) and checks that
˜𝑎𝑑𝑑0 (𝑧,𝑢 (1) , 𝑣 (1))

(
�̃�1 (𝑢 (1)) + �̃�1 (𝑣 (1))

)
+ ˜𝑚𝑢𝑙𝑡0 (𝑧,𝑢 (1) , 𝑣 (1)) .�̃�1 (𝑢 (1)) .�̃�1 (𝑣 (1)) equals to the last message of sumcheck.

(3) For 𝑖 = 1, 2, . . . , 𝑑 :
• V picks two random 𝛼 (𝑖) and 𝛽 (𝑖) and send them to P.
• P and V invoke a sumcheck protocol on

𝛼 (𝑖)�̃�𝑖 (𝑢 (𝑖)) + 𝛽 (𝑖)�̃�𝑖 (𝑣 (𝑖)) =
∑

𝑥,𝑦∈{0,1}𝑠𝑖+1
(
𝛼 (𝑖) ˜𝑎𝑑𝑑𝑖 (𝑢 (𝑖) , 𝑥, 𝑦) + 𝛽 (𝑖) ˜𝑎𝑑𝑑𝑖 (𝑣 (𝑖) , 𝑥, 𝑦)

)
.

(
�̃�𝑖+1 (𝑥) + �̃�𝑖+1 (𝑦)

)
+
(
𝛼 (𝑖) ˜𝑚𝑢𝑙𝑡𝑖 (𝑢 (𝑖) , 𝑥, 𝑦) + 𝛽 (𝑖) ˜𝑚𝑢𝑙𝑡𝑖 (𝑣 (𝑖) , 𝑥, 𝑦)

)
.�̃�𝑖+1 (𝑥) .�̃�𝑖+1 (𝑦)

At the end of the protocol, V receives two evaluations �̃�𝑖+1 (𝑢 (𝑖+1)) , �̃�𝑖+1 (𝑣 (𝑖+1)) . V computes the following and if it does not equal to the last message
of the sumcheck, returns 0.(

𝛼 (𝑖) ˜𝑎𝑑𝑑𝑖 (𝑢 (𝑖) ,𝑢 (𝑖+1) , 𝑣 (𝑖+1)) + 𝛽 (𝑖) ˜𝑎𝑑𝑑𝑖 (𝑣 (𝑖) ,𝑢 (𝑖+1) , 𝑣 (𝑖+1))
)
.

(
�̃�𝑖+1 (𝑢 (𝑖+1)) + �̃�𝑖+1 (𝑣 (𝑖+1))

)
+
(
𝛼 (𝑖) ˜𝑚𝑢𝑙𝑡𝑖 (𝑢 (𝑖) ,𝑢 (𝑖+1) , 𝑣 (𝑖+1)) + 𝛽 (𝑖) ˜𝑚𝑢𝑙𝑡𝑖 (𝑣 (𝑖) ,𝑢 (𝑖+1) , 𝑣 (𝑖+1))

)
.�̃�𝑖+1 (𝑢 (𝑖+1)) .�̃�𝑖+1 (𝑣 (𝑖+1))

(4) At the input layer 𝑑 , V has two claims �̃�𝑑 (𝑢 (𝑑)) and �̃�𝑑 (𝑣 (𝑑)) . As V has access to the input in, it is possible to directly compute �̃�𝑑 and evaluate it at
two points 𝑢𝑑 and 𝑣𝑑 . If claims are correct, V returns 1, otherwise returns 0.

P4: Suppose that the case (i) in phases one, two, or three has
caused an error, proceeding to this phase. Then, following the
soundness of the evaluation reduction sumcheck and also the
Schwartz-Zipple lemma, either �̃�∗

𝑖−1 (𝑟in,𝑾𝑖−1) ≠ �̃�𝑖−1 (𝑟in,𝑾𝑖−1),
𝑩∗
𝑖
(𝑟in,𝑩𝑖

) ≠ 𝑩𝑖 (𝑟in,𝑩𝑖
), or �AUX∗𝑖 (𝑟in,AUX𝑖

) ≠ �AUX𝑖 (𝑟in,AUX𝑖
).

Any of these cases causeV to return reject based the soundness
of the underlying polynomial commitment scheme PCS.

Knowledge soundness follows immediately from the above. As
PCS is knowledge sound, the extractor of the PoGD scheme can
invoke the extractor of PCS to get witnesses committed to by
the prover �̃�∗

𝑖
, �̃�∗

𝑖−1, 𝑩
∗
𝑖−1, and �AUX∗𝑖 . As PoGD is sound, they

are satisfying. Moreover, as GKR, SumMat, SumConv, and PCS are
zero-knowledge, the simulator of PoGD can invoke the simulators of
these building blocks to generate proof messages and commitments
indistinguishable from a real PoGD protocol execution.

C COMMITMENT AGGREGATION SCHEME

In this section, we first provide a formal definition of a polynomial
commitment aggregation scheme.We then present our construction
in Protocol 4 and sketch the security proof. An aggregation scheme
consists of a prover P and a verifier algorithm V such that on
input a set of commitment/evaluation instances {(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1
the protocol ends with an aggregated instance (𝜎∗, 𝑥∗, 𝑦∗). Each
instance input (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) includes a commitment 𝜎𝑖 to a polynomial
𝑓𝑖 , which is supposed to satisfy 𝑦𝑖 = 𝑓𝑖 (𝑥𝑖). Similarly, 𝜎∗ is a
commitment to a polynomial 𝑓 ∗ with evaluation 𝑦∗ = 𝑓 ∗ (𝑥∗). As
the witness, the prover holds input polynomials {𝑓𝑖 } and their
corresponding commitment randomnesses. In the end, the prover
gets the output polynomial 𝑓 ∗ and its commitment randomness.

If one can substantiate that the aggregated instance (𝜎∗, 𝑥∗, 𝑦∗)
is satisfied, we can conclude that input instances (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) are also
satisfied if the aggregation verifier has returned accept. Furthermore,
aggregation messages should not reveal any information about each
input polynomial 𝑓𝑖 other than its evaluation points (𝑥𝑖 , 𝑦𝑖). We
next present the security notions more formally.

Definition 3. (Zero-knowledge aggregation scheme) Given a
knowledge sound zero-knowledge polynomial commitment PCS
with parameters pp, an aggregation schemeAGG = (P,V) satisfies:
• Completeness. Given satisfying instances 𝑆 = {(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1
with witness𝑊 = {(𝑓𝑖 , 𝑟𝑖)}𝑘𝑖=1, the following probability is 1.

Pr

𝑏0 ∧ 𝑏1 = 1

�������
(𝜎∗, 𝑥∗, 𝑦∗), (𝑓 ∗, 𝑟∗), 𝜋0 ← P(𝑆,𝑊 , pp);

𝑏0 ←V(𝑆, (𝜎∗, 𝑥∗, 𝑦∗), 𝜋0, pp);
(𝑦∗, 𝜋1) ← PCS.Open(𝑓 ∗, 𝑟∗, 𝑥∗, pp);
𝑏1 ← PCS.Verify(𝜎∗, 𝑥∗, 𝑦∗, 𝜋1, pp);

• Knowledge soundness. For any PPT adversary prover A, there
exist a PPT extractor algorithm bA such that

Pr
[

{(𝑓𝑖 , 𝑟𝑖)}𝑘𝑖=1, (𝑓
∗, 𝑟∗) ← bA (pp) :

𝑓 ∗ (𝑥∗) = 𝑦∗ ∧ 𝑓𝑖 (𝑥𝑖) = 𝑦𝑖 ∀𝑖 ∈ [𝑘]

]
≥ Pr

{(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1, (𝜎

∗, 𝑥∗, 𝑦∗), 𝜋0, 𝜋1 ← A(pp);
V({(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1, (𝜎

∗, 𝑥∗, 𝑦∗), 𝜋0, pp) = 1;
PCS.Verify(𝜎∗, 𝑥∗, 𝑦∗, 𝜋1, pp) = 1;

 − negl(_)
• Zero knowledge. Given a set of tuples 𝐹 = {{(𝑓𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1,
where each 𝑓𝑖 is a polynomial with evaluation 𝑓𝑖 (𝑥𝑖) = 𝑦𝑖 , there
exists a simulatorS such that given oracle access to the algorithms
of PCS, for every adversary distinguisher A the following two
ideal world and real world experiments are indistinguishable.

17

Protocol 3. Proof of Gradient Descent Protocol

Parameters: Let GKR be the Virgo++ [62] implementation of a a generic GKR-style zero-knowledge proof system, , SumMat be the zero-knowledge sublinear
sumcheck protocol for matrix multiplication [53], and SumConv be the zero-knowledge sublinear sumcheck protocol for convolution [45]. Furthermore, let
PCS = (KeyGen,Commit,Open,Verify) be the Orion [60] polynomial commitment scheme with public parameters pp. Suppose that the model has 𝐿 layers.

Initialization: On inputs weights𝑾𝑖−1 = {𝑾𝑖−1,ℓ }𝐿ℓ=1 and a batch 𝑩𝑖−1, P runs gradient descent (cf. Algorithm 1) to evaluate outputs 𝑼𝑖 = {𝑼𝑖,ℓ }𝐿ℓ=1,
gradients 𝑮𝑖 = {𝑮𝑖,ℓ }𝐿ℓ=1 and 𝑹𝑖 = {𝑹𝑖,ℓ }𝐿ℓ=1, weights𝑾𝑖 = {𝑾𝑖,ℓ }𝐿ℓ=1, and auxiliary inputs AUX𝑖 = {AUX𝑖,ℓ }𝐿ℓ=1. P sends V the commitments 𝜎𝑊𝑖

←
PCS.Commit(𝑾𝑖 , 𝑟𝑊𝑖

) , 𝜎𝑊𝑖−1 ← PCS.Commit(𝑾𝑖−1, 𝑟𝑊𝑖−1) , 𝜎𝐵𝑖−1 ← PCS.Commit(𝑩𝑖−1, 𝑟𝐵𝑖−1) , and 𝜎AUX𝑖 ← PCS.Commit(�AUX𝑖 , 𝑟AUX𝑖) .

Phase 1: Proof of update. For ℓ = 1 to 𝐿 do the following steps.

(1) V samples 𝑟out,𝑾𝑖,ℓ
and request the evaluation𝑾𝑖,ℓ (𝑟out,𝑾𝑖,ℓ

) .

(2) Having𝑾𝑖,ℓ (𝑟out,𝑾𝑖,ℓ
) , parties run GKR on𝑾𝑖,ℓ =𝑾𝑖−1,ℓ − [· 𝑮𝑖,ℓ , which ends with evaluations𝑾𝑖−1,ℓ (𝑟1,𝑾𝑖−1,ℓ) , 𝑮𝑖,ℓ (𝑟1,𝑮𝑖,ℓ

) .

Phase 2: Proof of backward pass. For ℓ = 1 to 𝐿 do the following steps.

(1) Having 𝑮𝑖,ℓ (𝑟1,𝑮𝑖,ℓ
) from phase 1, parties run SumConv on 𝑮𝑖,ℓ = (𝑹𝑖,ℓ+1 ◦ 𝑻 ′𝑖,ℓ) ∗ 𝑼𝑖,ℓ−1 if the ℓ layer is convolutional or otherwise SumMat on

𝑮𝑖,ℓ = (𝑹𝑖,ℓ+1 ◦𝑻 ′𝑖,ℓ) ·𝑼𝑇
𝑖,ℓ−1 if the layer is dense. At the end of the run, parties receive evaluations 𝑻

′
𝑖,ℓ+1 (𝑟 (1)2,𝑻 ′𝑖,ℓ+1

) , 𝑼𝑖,ℓ (𝑟 (1)2,𝑼𝑖,ℓ
) , and 𝑹𝑖,ℓ+1 (𝑟 (1)2,𝑹𝑖,ℓ+1

) .

(2) For ℓ ≠ 1, having 𝑹𝑖,ℓ (𝑟2,𝑹𝑖,ℓ) from the previous iteration, parties run SumConv on 𝑹𝑖,ℓ = pad(𝑾𝑇
𝑖−1,ℓ) ∗ (𝑹𝑖,ℓ+1 ◦ 𝑻 ′𝑖,ℓ) if the layer if convolutional or

SumMat on 𝑹𝑖,ℓ =𝑾𝑇
𝑖−1,ℓ · (𝑹𝑖,ℓ+1 ◦ 𝑻 ′𝑖,ℓ) if the layer is dense, ending with evaluations 𝑹𝑖,ℓ+1 (𝑟 (2)2,𝑹𝑖,ℓ+1

) ,𝑾𝑖−1,ℓ (𝑟 (2)2,𝑾𝑖−1,ℓ
) , and 𝑻 ′𝑖,ℓ+1 (𝑟 (2)2,𝑻 ′𝑖,ℓ+1

) .

(3) Parties combine evaluations𝑻 ′𝑖,ℓ+1 (𝑟 (1)2,𝑹𝑖,ℓ+1
) and𝑻 ′𝑖,ℓ (𝑟 (2)2,𝑻 ′𝑖,ℓ

) , by running an evaluation reduction sumcheck, i.e., Equation (5). Having the combination,
parties run GKR on 𝑻 ′

𝑖,ℓ
= 𝑸′

𝑖,ℓ
◦ (𝜕actℓ (𝑻𝑖,ℓ)/𝜕𝑻𝑖,ℓ) followed by another run on 𝑸′

𝑖,ℓ
= 𝜕poolℓ (actℓ (𝑻𝑖,ℓ))/𝜕actℓ (𝑻𝑖,ℓ) if the layer is convolutional

or otherwise son 𝑻 ′
𝑖,ℓ

= 𝜕𝑼𝑖,ℓ /𝜕𝑻𝑖,ℓ = 𝜕actℓ (𝑻𝑖,ℓ)/𝜕𝑻𝑖,ℓ if the layer is dense. At the end, parties receive evaluations 𝑻𝑖,ℓ (𝑟 (3)2,𝑻𝑖,ℓ
) and �AUX𝑖,ℓ (𝑟 (3)2,AUX𝑖,ℓ

) .

(4) Having 𝑻𝑖,ℓ (𝑟 (3)2,𝑻𝑖,ℓ
) , parties tun SumConv on 𝑻𝑖,ℓ =𝑾𝑖−1,ℓ ∗ 𝑼𝑖,ℓ−1 if the layer is convolution or SumMat on 𝑻𝑖,ℓ =𝑾𝑖−1,ℓ · 𝑼𝑖,ℓ−1 if the layer is dense.

At the end, parties received evaluations 𝑼𝑖,ℓ−1 (𝑟 (4)2,𝑼𝑖,ℓ−1
) and𝑾𝑖−1,ℓ (𝑟 (4)2,𝑾𝑖−1,ℓ

) . For ℓ = 1, 𝑼𝑖,0 (𝑟 (4)2,𝑼𝑖,0
) is viewed as 𝑩𝑖−1 (𝑟 (4)2,𝑩𝑖−1

) .

(5) For ℓ = 𝐿, parties combine 𝑹𝑖,𝐿+1 (𝑟 (1)2,𝑹𝑖,𝐿+1
) and 𝑹𝑖,𝐿+1 (𝑟 (2)2,𝑹𝑖,𝐿+1

) by an evaluation reduction sumcheck. Having the combinations, parties run GKR on

𝑹𝑖,𝐿+1 = 𝜕L(𝑼𝑖,𝐿, 𝑌𝑖)/𝜕𝑼𝑖,𝐿 . At the end, parties receive evaluations 𝑩𝑖−1 (𝑟 (5)2,𝑩𝑖−1
) , 𝑼𝑖,𝐿 (𝑟 (5)2,𝑼𝑖,𝐿

) , and �AUX𝑖,ℓ (𝑟 (5)2,AUX𝑖,ℓ
) .

(6) Consistency checks and scalings are proved by running sumchecks on Equation (3) and Equation (4), which ends with several evaluations of auxiliary
inputs �AUX𝑖,ℓ . The evaluations are combined together into a single evaluation �AUX𝑖,ℓ (𝑟 (6)2,AUX𝑖,ℓ

) .

(7) For ℓ = 𝐿, evaluations of𝑾𝑖−1,ℓ , 𝑩𝑖−1,𝑼𝑖,ℓ , �AUX𝑖,ℓ , from steps 1-5, are combined into𝑾𝑖−1,ℓ (𝑟2,𝑾𝑖−1,ℓ) ,𝑼𝑖,ℓ (𝑟2,𝑼𝑖,ℓ
) , 𝑩𝑖−1 (𝑟2,𝑩𝑖−1) , �AUX𝑖,ℓ (𝑟2,AUX𝑖,ℓ) .

Phase 3: Proof of forward pass. For ℓ = 𝐿 to 1 do the following steps.

(1) Let 𝑼𝑖,𝐿 (𝑟3,𝑼𝑖,𝐿
) = 𝑼𝑖,𝐿 (𝑟2,𝑼𝑖,𝐿

) . Parties combine 𝑼𝑖,ℓ (𝑟3,𝑼𝑖,ℓ
) received from the previous iteration (if ℓ ≠ 𝐿) and 𝑼𝑖,ℓ−1 (𝑟2,𝑼𝑖,ℓ−1) from phase 2. Having

the combined evaluation, parties run GKR on 𝑼𝑖,ℓ = poolℓ (𝑸𝑖,ℓ) followed by another run on 𝑸𝑖,ℓ = actℓ (𝑻𝑖,ℓ) if the layer is convolutional or on
𝑼𝑖,ℓ = actℓ (𝑻𝑖,ℓ) if the layer is dense, ending with 𝑻𝑖,ℓ (𝑟 (1)3,𝑻𝑖,ℓ

) and �AUX𝑖,ℓ (𝑟 (1)3,AUX𝑖,ℓ
) .

(2) Having 𝑻𝑖,ℓ (𝑟 (1)3,𝑻𝑖,ℓ
) , parties run SumConv on 𝑻𝑖,ℓ = 𝑾𝑖−1,ℓ ∗ 𝑼𝑖,ℓ−1 or SumMat on 𝑻𝑖,ℓ = 𝑾𝑖−1,ℓ𝑼𝑖,ℓ−1. At the end, parties receive evaluations

𝑾𝑖−1,ℓ (𝑟3,𝑾𝑖,ℓ
) and 𝑼𝑖,ℓ−1 (𝑟3,𝑼𝑖,ℓ−1) . If 𝑖 = 1, 𝑼𝑖,0 (𝑟3,𝑼𝑖,0) is viewed as 𝑩𝑖−1,ℓ (𝑟3,𝑩𝑖−1,ℓ) . For consistency checks and scalings, parties run sumchecks

on Equation (3) and Equation (4), ending with several evaluations combined together and with �AUX𝑖,ℓ (𝑟 (1)3,AUX𝑖,ℓ
) into �AUX𝑖,ℓ (𝑟3,AUX𝑖,ℓ) .

Phase 4: Proof of evaluation reduction.

(1) Parties combine received evaluations of form 𝑾𝑖−1,ℓ (𝑟1,𝑾𝑖−1,ℓ) , 𝑾𝑖−1,ℓ (𝑟2,𝑾𝑖−1,ℓ) , and 𝑾𝑖−1,ℓ (𝑟3,𝑾𝑖−1,ℓ) into a single evaluation 𝑾𝑖−1 (𝑟in,𝑾𝑖−1) ,
evaluations of form 𝑩𝑖−1,ℓ (𝑟2,𝑩𝑖−1,ℓ) , 𝑩𝑖−1,ℓ (𝑟3,𝑩𝑖−1,ℓ) into a single evaluation 𝑩𝑖−1 (𝑟in,𝑩𝑖−1) and evaluations of form �AUX𝑖,ℓ (𝑟1,AUX𝑖,ℓ) ,�AUX𝑖,ℓ (𝑟2,AUX𝑖,ℓ) , and �AUX𝑖,ℓ (𝑟3,AUX𝑖,ℓ) into a single evaluation �AUX𝑖 (𝑟in,AUX𝑖) . The final combined evaluations can be verified by
invoking the evaluation opening algorithm of the commitment scheme PCS.Open(𝑾𝑖 , 𝑟𝑊𝑖

, 𝑟in,AUX𝑖 , pp) , PCS.Open(𝑾𝑖−1, 𝑟𝑊𝑖−1 , 𝑟in,𝑾𝑖−1 , pp) ,
PCS.Open(𝑩𝑖−1, 𝑟𝐵𝑖−1 , 𝑟in,𝑩𝑖−1 , pp) , and PCS.Open(�AUX𝑖 , 𝑟AUX𝑖 , 𝑟in,AUX𝑖 , pp) or applying the aggregation in the recursive setting (cf. Section 6).

18

Protocol 4. Polynomial Commitment Aggregation

Parameters: Let PCS = (KeyGen,Commit,Open,Verify) be the Orion [60] polynomial commitment scheme with public parameters pp. Let 𝑓1, 𝑓2, . . . , 𝑓𝑘
be ℓ-variate polynomials with variable-degree 𝑑 , each has an evaluation 𝑦𝑖 = 𝑓𝑖 (𝑥𝑖) and committed to by 𝜎𝑖 with randomness 𝑟𝑖 . 𝑴𝑖 denotes coefficients of
𝑓𝑖 parsed as a square matrix and 𝑪𝑖,1,𝑪𝑖,2 denote the associated encoded matrices generated during the Orion commitment procedure (cf. Section 5.2).

Phase 1: Evaluation Aggregation

(1) P and V interpolate a polynomial 𝐿 : F→ Fℓ such that 𝐿 (𝑖) = 𝑥𝑖 .

(2) ∀𝑖 = 1 to 𝑘 , P samples random univariate polynomials ℎ𝑖,1 . . . , ℎ𝑖,ℓ , each of degree 𝑑ℓ , sets ℎ𝑖 (𝑧1, . . . , 𝑧ℓ) ← ℎ𝑖,1 (𝑧1) + · · · + ℎ𝑖,ℓ (𝑧ℓ) , and sends
𝑣𝑖 ← ℎ𝑖 (𝑥𝑖) and 𝜎′𝑖 ← PCS.Commit(ℎ𝑖 , 𝑟 ′𝑖 , pp) . 𝑴′𝑖 denotes the coefficient matrix of ℎ𝑖 and 𝑪′

𝑖,1,𝑪
′
𝑖,2 denote the associated encoded matrices.

(3) ∀𝑖 = 1 to 𝑘 , V responds with a random challenge 𝛽𝑖 .

(4) ∀𝑖 = 1 to 𝑘 , P sends the polynomial 𝑔𝑖 ← (𝑓𝑖 + 𝛽𝑖ℎ𝑖) ◦ 𝐿.
(5) ∀𝑖 = 1 to 𝑘 , V checks whether 𝑔𝑖 (𝑖) = 𝑦𝑖 + 𝛽𝑖 𝑣𝑖 and responds with random challenges 𝛼𝑖 and 𝑟 .

(6) Parties compute 𝑔← ∑𝑘
𝑖=1 𝛼𝑖𝑔𝑖 and return 𝑥

∗ = 𝐿 (𝑟) , and 𝑦∗ = 𝑔 (𝑟) as output evaluation points.

(7) P computes the output witness polynomial 𝑓 ∗ =
∑𝑘

𝑖=1 𝛼𝑖 𝑓𝑖 + 𝛼𝑖𝛽𝑖ℎ𝑖 .

Phase 2: Commitment Aggregation

(1) P sends 𝜎∗ ← PCS.Commit(𝑓 ∗, 𝑟 ∗, pp) . 𝑴∗ denotes the coefficient matrix of 𝑓 ∗ and 𝑪∗1 ,𝑪
∗
2 denote the associated encoded matrices.

(2) V randomly samples and sends ta subset of indices 𝐼 of size 𝑡 ∈ Θ(_) .
(3) ∀𝑖 = 1 to 𝑘 , ∀idx ∈ 𝐼 , P sends 𝑠∗ = 𝑪∗2 [idx], 𝑠𝑖 = 𝑪𝑖,2 [idx], and 𝑠′𝑖 = 𝑪′

𝑖,2 [idx] with their corresponding Merkle proofs.

(4) ∀𝑖 = 1 to 𝑘 , ∀idx ∈ 𝐼 , V whether 𝑠∗ =
∑𝑘

𝑖=1 𝛼𝑖𝑠𝑖 + 𝛼𝑖𝛽𝑖𝑠′𝑖 and the received Merkle proofs are valid.

(5) The verifier returns (𝜎∗, 𝑥∗, 𝑦∗) as the aggregate instances, the prover returns (𝜎∗, 𝑥∗, 𝑦∗), (𝑓 ∗, 𝑟 ∗) as the aggregated instance/witness tuple.

RealA,𝐹 (1_, pp)
(1) ∀𝑖 ∈ {1, 2, . . . , 𝑘}, 𝜎𝑖 ← PCS.Commit(𝑓𝑖 , 𝑟𝑖 , pp)
(2) Let 𝑆 = {(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1 and𝑊 = {(𝑓𝑖 , 𝑟𝑖)}𝑘𝑖=1.
(3) (𝜎∗, 𝑥∗, 𝑦∗), (𝑓 ∗, 𝑟∗), 𝜋0 ← P(𝑆,𝑊 , pp)
(4) (𝑦∗, 𝜋1) ← PCS.Open(𝑓 ∗, 𝑟∗, 𝑥∗, pp);
(5) 𝑏 ← A(𝑆, (𝜎∗, 𝑥∗, 𝑦∗), 𝜋0, 𝜋1, pp)
(6) Return 𝑏

IdealA,S (1_, pp)
(1) 𝑆 = {(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖)}𝑘𝑖=1, (𝜎

∗, 𝑥∗, 𝑦∗), 𝜋0, 𝜋1 ← S(1_, pp)
(2) 𝑏 ← A(𝑆, (𝜎∗, 𝑥∗, 𝑦∗), 𝜋0, 𝜋1, pp)
(3) Return 𝑏

In particular, for any A, we have

| Pr[RealA,𝐹 (1_, pp) = 1] − Pr[IdealA,S (1_, pp) = 1] | ≤ negl(_)

Proof of Theorem 2. Completeness is followed immediately. The
soundness proof proceeds in two steps. First, we must prove the
soundness with respect to commitment aggregation, i.e., if we can
prove the well-formedness of 𝜎∗, the verifier is convinced that
each 𝜎𝑖 is well-formed, and the linear combination relation holds.
Second, we should prove the soundness with respect to evaluation
aggregation, i.e., if a prover can substantiate (𝜎∗, 𝑥∗, 𝑦∗) is satisfied,
the verifier is convinced that ∀𝑖 : (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) is satisfied.

Consider the case of commitment aggregation. Let 𝛿 be the
distance of the underlying code. First, suppose that the linear
combination relation holds. Assume there exists some 𝜎𝑖 or 𝜎 ′𝑖 ,
which is not well-formed, i.e., there exists a 𝑐th column of 𝑪𝑖,2 or
𝑪 ′
𝑖,2, which is not a valid codeword. Then, over the choice of random

challenges 𝛼𝑖 and 𝛽𝑖 , the 𝒄th column of 𝑪2 is not a valid codeword
with overwhelming probability [32, Claim 1], which yields 𝜎∗ to be
not well-formed. Similarly, if there exist an 𝑟 th row of 𝑪𝑖,1 or 𝑪 ′𝑖,1,
which is not code-word, it would cause the 𝑟 th row of 𝑪1 to be an
invalid code-word, yielding the verifier to return reject during the
well-formedness check of 𝜎∗. We should then show that the verifier
returns reject if the linear combination does not hold. Suppose
that this case occurs, and we have 𝑴∗ = 𝑴 + ∑𝑖 𝛼𝑖𝑴𝑖 + 𝛼𝑖𝛽𝑖𝑴 ′𝑖 ,
where 𝑴 is a non-zero matrix, i.e., there exist an index (idx𝑟 , idx𝑐)
such that 𝑴 [idx𝑟 , idx𝑐] ≠ 0. If they apply the row-wise encoding,
we have 𝑪∗1 = 𝑪1 +

∑
𝑖 𝛼𝑖𝑪𝑖,1 + 𝛼𝑖𝛽𝑖𝑪 ′𝑖,1, where the row 𝑪1 [idx𝑟 , :]

has at least 𝛿 non-zero entries. Then, if we apply the column-wise
encoding, we have 𝑪∗2 = 𝑪2+

∑
𝑖 𝛼𝑖𝑪𝑖,2+𝛼𝑖𝛽𝑖𝑪 ′𝑖,2, where 𝑪2 includes

𝛿2 non-zero entries. In other words, the two-step application of
the encoding scheme propagates the inconsistency through the
matrix. Let 𝛾 = 𝛿

𝑝 , be the relative distance of the code, where 𝑝 is
the codeword size. By opening Θ(_) entries, all opened values are
zero with a negligible probability of at most (1 − 𝛾2)Θ(_) .

Then, for the case of evaluation aggregation, suppose that we
have ∃𝑖 : 𝑓𝑖 (𝑥𝑖) ≠ 𝑦𝑖 . If the prover sends a correct𝑔𝑖 = (𝑓𝑖 +𝛽𝑖ℎ𝑖) ◦𝐿,
then with overwhelming probability over the choice of the 𝛽𝑖 , we
should have 𝑦𝑖 + 𝛽𝑖𝑣𝑖 ≠ 𝑔𝑖 (𝑖), and the verifier aborts. Therefore, the
prover must send some 𝑔𝑖 ≠ (𝑓𝑖 + 𝛽𝑖ℎ𝑖) ◦ 𝐿 to pass the verification.
However, with overwhelming probability over the choice of the 𝛼𝑖 ,

𝑔 =
∑︁
𝑖

𝛼𝑖𝑔𝑖 ≠
∑︁
𝑖

𝛼𝑖 (𝑓𝑖 + 𝛽𝑖ℎ𝑖) ◦ 𝐿 = 𝑓 ◦ 𝐿

where 𝑓 =
∑𝑘
𝑖=1 𝛼𝑖 𝑓𝑖 + 𝛼𝑖𝛽𝑖ℎ𝑖 . The Schwartz-Zippel lemma then

implies (𝑓 ◦ 𝐿) (𝑟) ≠ 𝑔(𝑟) except with negligible probability.
19

Knowledge soundness follows immediately from the above. Our
aggregation scheme requires the prover to give the verifier oracle
access to matrices 𝑪∗2 , 𝑪𝑖,2, and 𝑪 ′

𝑖,2 by their Merkle root. It is well
known that for such Merkle-based oracle accesses, one can build a
straight-line extractor to extract the witness committed to by its
Merkle root [9, 48]. Once matrices are extracted, we can recover
coefficients by running the decoding procedure first to columns
and then to rows of each matrix.

Zero knowledge holds since each polynomial ℎ𝑖, 𝑗 is uniformly
sampled from the set of polynomials in F[𝑋] of degree 𝑑ℓ . The
simulator S first samples random polynomials {ℎ∗

𝑖, 𝑗
}𝑘,ℓ
𝑖=1, 𝑗=1, and

sets ℎ∗
𝑖
(𝑧1, . . . , 𝑧ℓ) = ℎ∗

𝑖,1 (𝑧1) + · · · + ℎ
∗
𝑖,ℓ
(𝑧ℓ). Then, S commits to

each ℎ∗
𝑖
and the sends 𝜎 ′∗

𝑖
and the evaluation 𝑣∗

𝑖
= ℎ∗

𝑖
(𝑥) to A. As

ℎ∗
𝑖, 𝑗

in the ideal world and ℎ𝑖, 𝑗 in the real world both are sampled
uniformly from the same distribution, they are indistinguishable,
and hence, polynomials ℎ∗

𝑖
and ℎ𝑖 and the evaluations 𝑣𝑖 and 𝑣∗𝑖 are

indistinguishable. Moreover, as PCS is zero-knowledge 𝜎 ′
𝑖
and 𝜎 ′∗

𝑖

are indistinguishable. S then samples input polynomials {𝑓 ∗
𝑖
}𝑘
𝑖=1

such that 𝑓 ∗
𝑖
(𝑥𝑖) = 𝑦𝑖 and sends 𝜎∗

𝑖
, a commitment to 𝑓 ∗

𝑖
to the

verifier, which is indistinguishable from𝜎𝑖 .S also sends polynomials
𝑔∗
𝑖

= (𝑓 ∗
𝑖
+ 𝛽𝑖ℎ

∗
𝑖
) ◦ 𝐿. We note that each 𝑓𝑖 ◦ 𝐿 is a univariate

polynomial from the set F[𝑋] of degree at most 𝑑𝑘ℓ , and ℎ𝑖 ◦ 𝐿 is
also a univariate polynomial over the field with the same degree.
Therefore, each coefficient of the polynomial 𝑓𝑖 ◦ 𝐿, and hence 𝑔𝑖 ,
is masked by a coefficient of ℎ𝑖 ◦ 𝐿. Then, as masks ℎ∗

𝑖
and ℎ𝑖 are

indistinguishable, thus 𝑔∗
𝑖
and 𝑔𝑖 are also indistinguishable.

D RECURSIVE SUMCHECK FRAMEWORK

In this section, we present our recursive sumcheck framework in
Protocol 5 and sketch its security proof.

Proof of Theorem 3. For completeness, consider a satisfying tuple
(𝑖 − 1, 𝑧0, 𝑧𝑖−1, 𝜋𝑖−1), i.e., we have V(𝑖 − 1, 𝑧0, 𝑧𝑖−1, 𝜋𝑖−1, pp) = 1.
Given𝜔𝑖−1, wemust show that the the updated instance (𝑖, 𝑧0, 𝑧𝑖 , 𝜋𝑖),
returned by the prover is also satisfying.P executes the 𝑖th iteration
and generates 𝜋𝑖 = (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1). First,
as V(𝑖 − 1, 𝑧0, 𝑧𝑖−1, 𝜋𝑖−1, pp) = 1, the verification steps, and in
turn, the entire computation of F𝐴 is completed successfully. 𝜋𝑖,𝐺
is generated by GKR.P and the sumcheck protocol, and 𝜋𝑖,𝐴 is
generated by AGG.P. If the iteration is a final iteration 𝜋𝑖,𝐸 is
generated byPCS.P as an opening to agg𝑖+1, otherwise it is returned
by AGG.P as a witness to agg𝑖+1. Moreover, wp𝑖+1 is the combined
predicate evaluation by applying evaluation reduction sumcheck.
Following the completeness of the GKR scheme, the sumcheck
protocol, AGG proof messages 𝜋𝑖,𝐺 and 𝜋𝑖,𝐴 are satisfying. The
completeness of AGG or PCS ensures that 𝜋𝑖,𝐸 is also satisfying.
The correctness ofwp𝑖+1 follows the completeness of the sumcheck
protocol. Therefore, the 𝑖th proof 𝜋𝑖 is satisfying.

For knowledge soundness, let bAGG be the extractor of AGG. The
adversary A returns a satisfying tuple (𝑖, 𝑧0, 𝑧𝑖 , 𝜋𝑖), i.e., we have
V(𝑖, 𝑧0, 𝑧𝑖 , 𝜋𝑖 , pp) = 1. We must construct an efficient extractor b
that can extract witnesses that correctly satisfy F for the entire
computation. We show inductively that for all 𝑗 = 𝑖 − 1 to 1, b can
construct b (𝑗) that outputs 𝑧 𝑗 and𝜔 𝑗 . For the base case, i.e., 𝑗 = 𝑖−1,
recall that 𝜋𝑖 = (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1). As 𝜋𝑖,𝐴 is
a valid proof for agg𝑖+1, by running bAGG, b (𝑖−1) can extract the

vector 𝒖𝑖 = 𝑖 | |𝑧0 | |𝑧𝑖−1 | |𝜔𝑖−1 | |𝜋𝑖−1, which is committed to by 𝜎𝑖 .
Therefore, 𝑧𝑖−1 and 𝜔𝑖−1 are extracted. Soundness of GKR, PCS,
AGG, and the protocol sumcheck implies that the extracted inputs
𝒖𝑖 , so 𝑧𝑖−1 and 𝜔𝑖−1 are satisfying and 𝑧𝑖 = F (𝑧𝑖−1, 𝜔𝑖−1). For the
case 𝑗 < 𝑖−1, b (𝑗) runs b (𝑗+1) to extract 𝒖 𝑗+1 = 𝑗 +1| |𝑧0 | |𝑧 𝑗 | |𝜔 𝑗 | |𝜋 𝑗 .
As 𝒖 𝑗+1 is satisfying, proof messages in 𝜋 𝑗 , including 𝜋 𝑗,𝐴 are valid.
By running bAGG, b (𝑗) can then extract 𝒖 𝑗 and get 𝑧 𝑗−1 and 𝜔 𝑗−1.
This completes the recursive construction of b from bAGG.

We prove zero-knowledge with respect to the final verifier. In
particular, we construct a simulator S that can generate proof
messages commitments indistinguishable from the real proofs and
commitments. In particular, S samples a random initial input 𝑧0
and auxiliary inputs {𝜔 𝑗 }𝑖−1𝑗=0. With access to the F , S executes
the IVC prover algorithm 𝑖 iterations. At the end, S returns the
final tuple (𝑖, 𝑧0, 𝑧𝑖 , 𝜋𝑖). If the instantiations of GKR, PCS, AGG,
and the sumcheck protocol satisfy zero-knowledge, proof messages
and commitments included in 𝜋𝑖 reveals no additional information
about the private auxiliary inputs {𝜔 𝑗 }𝑖−1𝑗=0.

E PROOF OF TRAINING

In this section, we first define zero-knowledge proof-of-training.
We then present the Kaizen construction in Protocol 6.

E.1 Definition

A zero-knowledge proof-of-training must satisfy completeness,
knowledge soundness, and zero-knowledge defined formally as
below. Let C be the training circuit defined in Section 7.2.

Definition 4. (Zero-Knowledge Proof-of-Training) A tuple of
(KeyGen,DataCom,WeiCom,BatchOpen, Prove,Verify) is a zkPoT
if the following hold. Let pp← KeyGen(1_).
• Completeness.Given a datasetD, 𝜌D ← DataCom(D, pp, 𝑟𝜌D),
𝑾0 and𝑾𝑖−1 with commitments 𝜎𝑊0 ←WeiCom(𝑾0, 𝑟𝜎𝑊0

, pp)
and 𝜎𝑊𝑖−1 ← WeiCom(𝑾𝑖−1, 𝑟𝜎𝑊𝑖−1

, pp), respectively, the and
opening𝑩𝑖−1, 𝑝𝑩𝑖−1 ← BatchOpen(D, 𝑟𝜌D , 𝑖, pp), and a satisfying
proof 𝜋𝑖−1 the following equals to 1. Let 𝑡𝑖 = (𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖−1).

Pr

𝑏 = 1

�������
𝑾𝑖 , 𝜋𝑖 ← Prove(𝑡𝑖 ,𝑾𝑖−1,𝑩𝑖−1, 𝑝𝑩𝑖−1 , 𝜋𝑖−1, pp);

𝑾𝑖 ← C(𝑾𝑖−1,𝑩𝑖−1, (𝑖, 𝜌D ,𝒑𝑩𝑖−1));
𝜎𝑊𝑖
←WeiCom(𝑾𝑖 , 𝑟𝜎𝑊𝑖

, pp);
𝑏 ← Verify(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖 , pp);

• Knowledge Soundness. For any adversary A, there exists an
extractor bA such that the following holds.

Pr

{𝑩𝑘 , 𝑝𝑩𝑘
,𝑾𝑘 }𝑖𝑘=0 ← bA (pp) :

∀𝑘 ∈ {1, . . . , 𝑘} :𝑾𝑘 = C(𝑾𝑘−1,𝑩𝑘−1, 𝑘, 𝜌D ,𝒑𝑩𝑘−1);
𝜎𝑊𝑖

= WeiCom(𝑾𝑖 , 𝑟𝜎𝑊𝑖
, pp);𝜎𝑊0 = WeiCom(𝑾0, 𝑟𝜎𝑊0

, pp);

≥ Pr

[
𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖 ← A(pp) :
Verify(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖 , pp) = 1

]
− negl(_)

• Zero knowledge. There exists a simulator S, having oracle access
to C, such that for every adversaryA, iteration counter 𝑖 , dataset
D with a commitment 𝜌D , initial weights𝑾0, batches of data
points and openings {(𝑩𝑘 , 𝑝𝑘)}𝑖𝑘=0 satisfying the circuit C, the
two following experiments Real, Ideal are indistinguishable.

20

Protocol 5. Recursive Sumcheck Framework

Parameters: Let PCS = (KeyGen,Commit,Open,Verify) be the Orion [60] commitment with public parameters pp, AGG = (Prove,Verify) the
non-interactive aggregation scheme (cf. Protocol 4), and GKR = (Prove,Verify) be a generic GKR-style non-interactive zero-knowledge proof. Hashes are
instantiated with MiMC-p/p [4]. Let F be the iteration function, 𝑧0 an initial input, 𝜋0 a trivially satisfying proof, and 𝜔𝑖−1 the 𝑖th auxiliary input.

𝑧𝑖 , 𝜋𝑖 ← P(𝑖, 𝑧0, 𝑧𝑖−1, 𝜔𝑖−1, 𝜋𝑖−1, pp) :

(1) Parse 𝜋𝑖−1 as (𝜋𝑖−1,𝐺 , 𝜋𝑖−1,𝐴, 𝜋𝑖−1,𝐸 , agg𝑖−1,wp𝑖−1, agg𝑖 ,wp𝑖) , where 𝜋𝑖−1,𝐺 is sumcheck and 𝜋𝑖−1,𝐴 is aggregation messages, agg𝑖−1 and agg𝑖 are
the last and updated input aggregation instances, wp𝑖−1 and wp𝑖 are the last and updated wiring predicate aggregations, and 𝜋𝑖−1,𝐸 is a witness to agg𝑖 .

(2) Compute the augmented iteration function 𝑖, 𝑧0, 𝑧𝑖 , agg𝑖 ,wp𝑖 ← F𝐴 (𝑖, 𝑧0, 𝑧𝑖−1, 𝜔𝑖−1, 𝜋𝑖−1 \ {𝜋𝑖−1,𝐸 }) as follows:
(2.1) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages 𝜋𝑖−1,𝐺 and aggregation proof messages 𝜋𝑖−1,𝐴 .

(2.2) On input 𝑖 − 1, 𝑧0, 𝑧𝑖−1, agg𝑖−1,wp𝑖−1, run GKR.V and the sumcheck protocol verifier to verify sumcheck messages 𝜋𝑖−1,𝐺 . The verification must
end with an input commitment/evaluation instance (𝜎𝑖−1, 𝑥𝑖−1, 𝑦𝑖−1) and the updated predicate aggregation wp𝑖 .

(2.3) On input agg𝑖−1, agg𝑖 , (𝜎𝑖−1, 𝑥𝑖−1, 𝑦𝑖−1) , run AGG.V to verify aggregation messages 𝜋𝑖−1,𝐴 .

(2.4) If verification steps (2.1)-(2.3) passes, compute 𝑧𝑖 ← F(𝑧𝑖−1, 𝜔𝑖−1) , and return 𝑖, 𝑧0, 𝑧𝑖 , agg𝑖 ,wp𝑖 .
(3) Evaluate a commitment 𝜎𝑖 to the inputs of the running F𝐴 , i.e., given 𝒖𝑖 = 𝑖 | |𝑧0 | |𝑧𝑖−1 | |𝜔𝑖−1 | |𝜋𝑖−1 \ {𝜋𝑖−1,𝐸 }, we have 𝜎𝑖 ← PCS.Commit(𝑢𝑖 , 𝑟𝑖 , pp) .
(4) Generate sumcheck messages for the running F𝐴 execution by applying hash sumcheck, i.e., sumchecks on Equation (6), to hash evaluations and GKR.P

to other components. Combine wiring predicate evaluations into single one wp𝑖+1 and also the evaluations of 𝑢𝑖 into (𝑥𝑖 , 𝑦𝑖) by applying evaluation
reduction sumchecks, i.e., running the sumcheck protocol on Equation (5). Include sumcheck messages as well as wp𝑖+1 and (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) in 𝜋𝑖,𝐺 .

(5) On input instances agg𝑖 , (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) and witnesses 𝜋𝑖−1,𝐸 , (𝑢𝑖 , 𝑟𝑖) , run AGG.P, which ends with agg𝑖+1. Include aggregation messages in 𝜋𝑖,𝐴 .

(6) If the running iteration is the final iteration, run PCS.Open and include evaluation opening proofs otherwise the witnesses for agg𝑖+1 in 𝜋𝑖,𝐸 .

(7) Let 𝜋𝑖 ← (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1) , and return 𝑧𝑖 , 𝜋𝑖 .

{0, 1} ← V(𝑖, 𝑧0, 𝑧𝑖 , 𝜋𝑖 , pp) :

(1) Parse 𝜋𝑖 as (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1) .
(2) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages 𝜋𝑖,𝐺 and aggregation proof messages 𝜋𝑖,𝐴 .

(3) On input 𝑖, 𝑧0, 𝑧𝑖 , agg𝑖 ,wp𝑖 run GKR.V and the sumcheck protocol verifier on messages 𝜋𝑖,𝐺 , which ends with (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) and wp𝑖+1. Having access
to wiring predicates, verify wp𝑖+1 directly. On input agg𝑖+1, agg𝑖 , (𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) run AGG.V to verify messages 𝜋𝑖,𝐴 . If it is the final iteration, run
PCS.Verify(agg𝑖+1, 𝜋𝑖,𝐸 , pp) . Otherwise, check whether 𝜋𝑖,𝐸 is a valid opening witness to agg𝑖+1.

Let INP be a set, including the dataset, initial weights, batches
with their satisfying openings generated by BatchOpen.

RealA,INP (𝑖, pp)
(1) 𝜌D ← DataCom(D, pp, 𝜌D)
(2) 𝜎𝑊0 ←WeiCom(𝑾0, 𝑟𝜎𝑊0

, pp)
(3) ∀𝑘 , given 𝑡𝑘 = (𝑘, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑘−1):

(3.1)𝑾𝑘 , 𝜋𝑘 ← Prove(𝑡𝑘 ,𝑾𝑘−1,𝑩𝑘−1, 𝑝𝑩𝑘−1 , 𝜋𝑘−1, pp)
(3.2) 𝜎𝑊𝑘

←WeiCom(𝑾𝑘 , 𝑟𝜎𝑊𝑘
, pp)

(4) 𝑏 ← A(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖
, 𝜋𝑖 , pp)

(5) Return 𝑏

IdealA,S (𝑖, pp)
(1) 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖 ← S(pp), given oracle access to C
(2) 𝑏 ← A(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖 , pp)
(3) Return 𝑏

In particular, for any instance 𝑡𝑖 and adversaryA we have

| Pr[RealA,INP (𝑖, pp) = 1] − Pr[IdealA,S (𝑖, pp) = 1] | ≤ negl(_)

E.2 Construction

We present the Kaizen construction in Protocol 6. As Kaizen is
basically a concrete instantiation of Protocol 5, we extend the
recursion protocol to describe the prover and verifier of Kaizen.

Also, we sketch the security proof, which follows the same approach
as the security proof, presented in Appendix D.

Proof of Theorem 4. For completeness, consider a satisfying
instance/proof such that Verify(𝑖 − 1, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖−1 , 𝜋𝑖−1, pp) = 1.
Given weights 𝑾𝑖−1 and batch 𝑩𝑖−1 ⊆ D with opening 𝑝𝑩𝑖−1 ,
we show that the updated instance, (𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

) and proof
𝜋𝑖 should be satisfying. P executes the 𝑖th iteration and generates
𝜋𝑖 = (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1). Note that as we have
Verify(𝑖 − 1, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖−1 , 𝜋𝑖−1, pp) = 1, the verification steps of
F𝐴 are completed successfully. Furthermore, the completeness of
the Merkle tree ensures that the computation C is also completed
successfully. Then, 𝜋𝑖,𝐺 is generated by GKR.P, PoGD.P, and the
sumcheck protocol, and 𝜋𝑖,𝐴 is generated by AGG.P. If the iteration
is a final iteration 𝜋𝑖,𝐸 is generated by PCS.P, otherwise, by AGG.P
as an opening orwitness to agg𝑖+1. Moreover,wp𝑖+1 is the combined
predicate evaluation by applying evaluation reduction sumcheck.
Following the completeness of GKR, PoGD, the sumcheck protocol,
and AGG, the messages included in 𝜋𝑖,𝐺 and 𝜋𝑖,𝐴 are satisfying.
The completeness of AGG or PCS in the case of the final iteration,
ensures that 𝜋𝑖,𝐸 is satisfying. Moreover, the correctness of wp𝑖+1
follows the completeness of the sumcheck protocol.

For knowledge soundness, let bAGG be the extractor of AGG.
The adversary A returns a satisfying tuple (𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖),
i.e., we have Verify(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖

, 𝜋𝑖 , pp) = 1. We must construct
21

Protocol 6. Kaizen Zero-Knowledge Proof-of-Training

Parameters: Let PCS = (KeyGen,Commit,Open,Verify) be the Orion [60] commitment with public parameters pp, AGG = (Prove,Verify) the
non-interactive aggregation scheme (cf. Protocol 4), PoGD = (Prove,Verify) the non-interactive zero-knowledge proof of gradient descent (cf. Protocol 3),
and GKR be a non-interactive zero-knowledge generic GKR-style sumcheck-based proof system [62]. Let D be the dataset,𝑾0 be an initial weights, C be the
training iteration circuit as defined in Section 7.2. Let 𝜋0 be a trivially satisfying proof.

Basic procedures: KeyGen samples public parameters of the commitment scheme by running PCS.KeyGen, DataCom generates a commitment 𝜌D to
the dataset D by returning its Merkle root.WeiCom commits the multilinear extension of weights by apply PCS.Commit, and BatchOpen generates an
opening proof for a batch 𝑩, consistent with the permutation hard-coded in C, by returning Merkle paths of each point included in the batch.

𝑾𝑖 , 𝜋𝑖 ← Prove(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖−1 ,𝑾𝑖−1,𝑩𝑖−1, 𝑝𝑩𝑖−1 , 𝜋𝑖−1, pp) :

(1) Parse 𝜋𝑖−1 as (𝜋𝑖−1,𝐺 , 𝜋𝑖−1,𝐴, 𝜋𝑖−1,𝐸 , agg𝑖−1,wp𝑖−1, agg𝑖 ,wp𝑖) , where 𝜋𝑖−1,𝐺 is sumcheck and 𝜋𝑖−1,𝐴 is aggregation messages, agg𝑖−1 and agg𝑖 are
the last and updated input aggregation instances, wp𝑖−1 and wp𝑖 are the last and updated wiring predicate aggregations, and 𝜋𝑖−1,𝐸 is a witness to agg𝑖 .

(2) Compute the augmented iteration function 𝑖, 𝜌D , 𝜎𝑊0 ,𝑾𝑖 , agg𝑖 ,wp𝑖 ← F𝐴 (𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖−1 ,𝑾𝑖−1,𝑩𝑖−1, 𝑝𝑩𝑖−1 , 𝜋𝑖−1 \ {𝜋𝑖−1,𝐸 }) as follows.
(a) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages 𝜋𝑖−1,𝐺 and aggregation proof messages 𝜋𝑖−1,𝐴 .

(b) On input 𝑖 − 1, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖−1 , agg𝑖−1,wp𝑖−1, verify sumcheck messages 𝜋𝑖−1,𝐺 by running GKR.V , PoGD.V , and the sumcheck verifier. The
verification ends with several commitment-evaluation instances of form {(𝜎𝑖−1, 𝑗 , 𝑥𝑖−1, 𝑗 , 𝑦𝑖−1, 𝑗) } 𝑗 and the updated predicate aggregation wp𝑖 ,
where each 𝜎𝑖−1, 𝑗 is a commitment to either𝑾𝑖−2, 𝑩𝑖−2, gradient descent auxiliary inputs �AUX𝑖−1, or other inputs, which we denote them by
𝑢𝑖−1 = 𝑖 − 1 | |𝜌D | |𝜎𝑊0 | |𝜎𝑊𝑖−2 | |𝑝𝑩𝑖−2 | |𝜋𝑖−2. Moreover, 𝜎𝑖−1, 𝑗 can be a commitment to𝑾𝑖−1, which should be the same as 𝜎𝑊𝑖−1 .

(c) On input agg𝑖−1, {(𝜎𝑖−1, 𝑗 , 𝑥𝑖−1, 𝑗 , 𝑦𝑖−1, 𝑗) } 𝑗 , verify aggregation messages 𝜋𝑖−1,𝐴 by running AGG.V . The verification ends with the updated
aggregation instances agg𝑖 ; note that each type of polynomials, i.e., either𝑾 , 𝑩, �AUX, or 𝑢, are aggregated independently.

(d) Compute𝑾𝑖 = C(𝑾𝑖−1,𝑩𝑖−1, (𝑖, 𝜌D , 𝒑𝑩𝑖−1)) , and return 𝑖, 𝜌D , 𝜎𝑊0 ,𝑾𝑖 , agg𝑖 ,wp𝑖 .

(3) Generate commitments 𝜎𝑖,0 ← PCS.Commit(𝑾𝑖 , 𝑟𝜎𝑊𝑖
, pp) , 𝜎𝑖,1 ← PCS.Commit(𝑩𝑖−1, 𝑟𝜎𝐵𝑖−1 , pp) , 𝜎𝑖,2 ← PCS.Commit(�AUX𝑖 , 𝑟𝜎AUX𝑖

, pp) ,
where AUX𝑖 is the auxiliary inputs of the running gradient descent iteration, and 𝜎𝑖,3 ← PCS.Commit(�̃�𝑖 , 𝑟𝜎𝒖𝑖 , pp) . Let 𝜎𝑖,4 = 𝜎𝑊𝑖−1 .

(4) Generate sumcheck messages for the running F𝐴 execution by applying hash sumcheck, i.e., sumchecks on Equation (6), to hash evaluations, PoGD.P to
the gradient descent computation, and GKR.P to any other components. Moreover, combine received wiring predicate evaluations into wp𝑖+1 by applying
evaluation reduction sumcheck, i.e., sumcheck on Equation (5). Similarly, combine all evaluations of 𝑢𝑖 . Include sumcheck messages, commitments
generated in step (3), and evaluations required for sumcheck messages in 𝜋𝑖,𝐺 .

(5) On input agg𝑖 , {(𝜎𝑖 , 𝑥𝑖 , 𝑦𝑖) } 𝑗 with witnesses𝑾𝑖 ,𝑾𝑖−1, 𝑩𝑖−1, �AUX𝑖 , or �̃�𝑖 , and 𝜋𝑖−1,𝐸 , run AGG.P to get agg𝑖+1. Include messages in 𝜋𝑖,𝐴 .

(6) If the running iteration is the final iteration, run PCS.Open and include evaluation opening proofs otherwise the witnesses for agg𝑖+1 in 𝜋𝑖,𝐸 .

(7) Return𝑾𝑖 , 𝜋𝑖 ← (𝜋𝑖−1,𝐺 , 𝜋𝑖−1,𝐴, 𝜋𝑖−1,𝐸 , agg𝑖−1,wp𝑖−1, agg𝑖 ,wp𝑖) .

{0, 1} ← Verify(𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖
, 𝜋𝑖 , pp) :

(1) Parse 𝜋𝑖 as (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1) .
(2) Evaluate Fiat-Shamir and Merkle hashes required for verification of sumcheck proof messages 𝜋𝑖,𝐺 and aggregation proof messages 𝜋𝑖,𝐴 .

(3) On input 𝑖, 𝜌D , 𝜎𝑊0 , 𝜎𝑊𝑖
, run GKR.V , PoGD.V , and sumcheck verifier to verify sumcheck messages 𝜋𝑖,𝐺 , yielding {(𝜎𝑖−1, 𝑗 , 𝑥𝑖−1, 𝑗 , 𝑦𝑖−1, 𝑗) } 𝑗 and

wp𝑖+1 at the end. Having access to wiring predicates, verify wp𝑖+1 directly. Moreover, run AGG.V on input agg𝑖 , {(𝜎𝑖−1, 𝑗 , 𝑥𝑖−1, 𝑗 , 𝑦𝑖−1, 𝑗) } 𝑗 to verify
aggregation messages 𝜋𝑖,𝐴 , yielding agg𝑖+1 at the end. If the 𝑖th iteration is the final iteration, run PCS.Verify(agg𝑖+1, 𝜋𝑖,𝐸) . Otherwise, check whether
𝜋𝑖,𝐸 is a valid opening witness to agg𝑖+1.

an extractor b that can extract witnesses that satisfy C iterations.
Inductively, for 𝑗 = 𝑖 − 1 to 1, b runs b (𝑗) outputting the 𝑗 th witness.
Consider 𝑗 = 𝑖−1, s.t. 𝜋𝑖 = (𝜋𝑖,𝐺 , 𝜋𝑖,𝐴, 𝜋𝑖,𝐸 , agg𝑖 ,wp𝑖 , agg𝑖+1,wp𝑖+1).
As 𝜋𝑖,𝐸 is a valid opening to agg𝑖+1, by running bAGG, b (𝑖−1) can
extract weights𝑾𝑖 ,𝑾𝑖−1, batch𝑩𝑖−1, and 𝑝𝑩𝑖−1 such that the iteration
circuit satisfies𝑾𝑖 = C(𝑾𝑖−1,𝑩𝑖−1, (𝑗, 𝜌,𝒑𝑩𝑖−1)) and also we have
𝜎𝑊𝑖

= WeiCom(𝑾0, 𝑟𝜎𝑊𝑖
, pp). This Follows the soundness of GKR,

PCS, AGG, and the sumcheck protocol as well as binding of the
Merkle tree. Moreover, b (𝑖−1) can extract the inputs of the iteration,
i.e., 𝒖𝑖 = 𝑖 | |𝜌D | |𝜎𝑊0 | |𝜎𝑊𝑖−1 | |𝑝𝑩𝑖−1 | |𝜋𝑖−1. For the case 𝑗 < 𝑖 − 1, b (𝑗)
runs b (𝑗+1) to extract 𝒖 𝑗+1 = 𝑗 + 1, including proof messages in 𝜋 𝑗 ,
so in turn, including 𝜋 𝑗,𝐸 . By running bAGG, we can then extract
𝑾𝑖 ,𝑾𝑖−1, batch 𝑩𝑖−1, 𝑝𝑩𝑖−1 , and 𝒖 𝑗 as before. Finally, by running
b (1) , which in turn runs previous extractors b (2) , . . . , b (𝑖−1) , b can

output all witnesses for the entire computation, i.e., intermediate
model weights and all data points used in training iterations.

We prove zero knowledge with respect to the final verifier.
S samples a random dataset D∗ and commits to it by a Merkle
root. As Merkle commitments are hiding, the root returned by
S is indistinguishable from 𝜌 . Also, S samples initial weights
𝑾∗0 . With access to the C, S executes the prover algorithm on
weights and satisfying batches for 𝑖 iterations. At the end S returns
the final proof messages and commitments to 𝜎𝑊 ∗

0
and 𝜎𝑊 ∗

𝑖
. As

PCS, AGG are zero-knowledge, commitments 𝜎𝑊 ∗
0
, 𝜎𝑊 ∗

𝑖
, and other

commitments included in the proof, e.g., aggregated commitment,
with their openings are indistinguishable from real commitments.
Moreover, as AGG, PoGD, GKR, and the sumcheck protocol are
zero-knowledge, 𝜋∗

𝑖
is also indistinguishable for a real proof.

22

	Abstract
	1 Introduction
	1.1 Prior Work and Limitations
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Proofs, Arguments, and Commitments
	2.2 GKR-Based Zero-Knowledge Arguments
	2.3 Deep Neural Networks and Training

	3 Technical Overview
	3.1 Sumcheck Proofs for Gradient Descent
	3.2 Recursive Composition of Sumcheck Proofs
	3.3 Constructing a zkPoT

	4 Proofs of Gradient Descent
	4.1 Handling Fixed-Point Operations
	4.2 Our PoGD Design

	5 Aggregatable Commitment Schemes
	5.1 Aggregating Evaluations
	5.2 Aggregating Commitments

	6 Recursive Sumcheck Proofs
	7 Zero-Knowledge Proof of Training
	7.1 Definition
	7.2 Implementing a zkPoT for DNNs

	8 Implementation and Evaluation
	8.1 Performance of Our Constructions
	8.2 Comparison to Generic IVCs

	References
	A Additional Preliminaries
	A.1 Arguments and Commitments
	A.2 The Sumcheck and GKR Protocols
	A.3 DNNs and Gradient Descent

	B Our PoGD Protocol
	C Commitment Aggregation Scheme
	D Recursive Sumcheck Framework
	E Proof of Training
	E.1 Definition
	E.2 Construction

