
The impact of data-heavy, post-quantum TLS 1.3
on the Time-To-Last-Byte of real-world connections

Panos Kampanakis
Amazon Web Services
kpanos@amazon.com

Will Childs-Klein
Amazon Web Services
childw@amazon.com

Abstract—It has been shown that post-quantum key exchange
and authentication with ML-KEM and ML-DSA, NIST’s post-
quantum algorithm picks, will have an impact on TLS 1.3
performance used in the Web or other applications. Studies so
far have focused on the overhead of quantum-resistant algorithms
on TLS time-to-first-byte (handshake time). Although these works
have been important in quantifying the slowdown in connection
establishment, they do not capture the full picture regarding
real-world TLS 1.3 connections which carry sizable amounts of
data. Intuitively, the introduction of an extra 10KB of ML-KEM
and ML-DSA exchanges in the connection negotiation will inflate
the connection establishment time proportionally more than it
will increase the total connection time of a Web connection
carrying 200KB of data. In this work, we quantify the impact
of ML-KEM and ML-DSA on typical TLS 1.3 connections
which transfer a few hundreds of KB from the server to the
client. We study the slowdown in the time-to-last-byte of post-
quantum connections under normal network conditions and in
more unstable environments with high packet delay variability
and loss probabilities. We show that the impact of ML-KEM
and ML-DSA on the TLS 1.3 time-to-last-byte under stable
network conditions is lower than the impact on the handshake and
diminishes as the transferred data increases. The time-to-last-byte
increase stays below 5% for high-bandwidth, stable networks. It
goes from 32% increase of the handshake time to under 15%
increase of the time-to-last-byte when transferring 50KiB of data
or more under low-bandwidth, stable network conditions. Even
when congestion control affects connection establishment, the
additional slowdown drops below 10% as the connection data
increases to 200KiB. We also show that connections in lossy or
volatile networks could see higher impact from post-quantum
handshakes, but these connections’ time-to-last-byte degradation
still drops as the transferred data increases. Finally, we show
that such connections are already significantly slow and volatile
regardless of the TLS handshake.

I. INTRODUCTION

It is imperative for today’s digital communications to be
properly secured and for data to be protected. One widely
used protocol which establishes such secure communication
channels is TLS. TLS 1.3 [32], the latest TLS version, is used
to negotiate and establish secure channels which encrypt and
authenticate all exchanged data between a client and server,
authenticate peer identities, and protect communication from

active and passive attackers. TLS 1.3 is used in numerous
applications like Web, e-banking, streaming, and more.

TLS runs over TCP. TLS 1.3 was designed for security
and speed. In its most typical use, it can start encrypting data
from the server to the client after two round-trips (RTT), one
for the TCP handshake and one for the TLS 1.3 key exchange
and authentication between client and server. Figure 1 shows a
typical, simplified TLS 1.3 handshake from [32]. The protocol
offers some even faster options that can send data after only
the TCP handshake which are less commonly used. Even in
the general case, sending data after two RTTs enables fast
communications.

Most TLS 1.3 message exchanges today are small in size.
The key exchange ClientHello and ServerHello mes-
sages carrying (Elliptic Curve) Diffie-Hellman ((EC)DH) pub-
lic keys are just a few hundreds of bytes. The largest messages
are the Certificate and the CertificateVerify
which carry a certificate chain and a signature of the TLS
transcript in order for the client to authenticate the server. The
Certificate and the CertificateVerify amount to
a few (2-5) KB when using RSA2048 or even less when using
ECDSA certificates. Thus, the TLS 1.3 handshake amounts to
just a few KB of data or a few packets. If the key exchange,
Certificate, and CertificateVerify message sizes
were to grow significantly, handshake speed would be im-
pacted. There have been a lot of works which study the impact
of larger key exchange and authentication messages in TLS
1.3. Most of these stem from the recent industry interest in
migrating to quantum-resistant algorithms.

A concern for asymmetric cryptographic algorithms used
today, including in TLS 1.3, is quantum computing. A
cryptanalytically-relevant quantum computer (CRQC), if it
were to become a reality, could implement quantum algorithms
that would break (EC)DH key exchange and RSA or ECDSA
signatures used in TLS. That is the reason why academia
and industry have been working on new algorithms which are
not known to be vulnerable against quantum algorithms. The
US National Institute of Standards and Technology (NIST)
has been working on standardizing some of these algorithms
in its Post-Quantum (PQ) Project [27]. At the end of the
Project’s Round 3, it published new post-quantum algorithm
draft standards [25], [24], [26] which include ML-KEM [25]
as a Key Encapsulation Mechanism (KEM) for key exchange,
ML-DSA [24] as the preferred, general-use signature scheme,
and SLH-DSA [26] as a hash-based signature. FN-DSA will be
the third signature to be published later. ML-KEM and ML-
DSA are the general-use schemes which offer good perfor-

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-2-1
https://dx.doi.org/10.14722/madweb.2024.23010
www.ndss-symposium.org



Fig. 1. A typical TLS 1.3 handshake [32] with application data flowing after two RTTs, one for the TCP handshake and one for the TLS key exchange and
authentication. “{}” indicates encrypted messages protected using keys derived from the key exchange.

Parameter Quantum-
Resistant

Public Key
(KB)

Ciphertext /
Signature (KB)

ECDH P-384 ✗ 0.05 0.05
ML-KEM-512 ✓ 0.8 0.8
ML-KEM-768 ✓ 1.2 1.1

ML-KEM-1024 ✓ 1.6 1.6

ECDSA P-384 ✗ 0.05 0.1
RSA-3072 ✗ 0.4 0.4

ML-DSA-44 ✓ 1.3 2.4
ML-DSA-65 ✓ 2 3.3
ML-DSA-87 ✓ 1,6 4.6

TABLE I. ECDH, RSA, ECDSA, ML-KEM AND ML-DSA PUBLIC
KEY, CIPHERTEXT AND SIGNATURE SIZES.

mance and relatively small key, ciphertext and signature sizes.
They each offer three security levels: ML-KEM-512, ML-
KEM-768, ML-KEM-1024 and ML-DSA-44, ML-DSA-65,
ML-DSA-87 respectively. Table I shows the respective sizes
for each parameter against the classical equivalents for ECDH,
RSA, and ECDSA and demonstrates that using the quantum-
resistant schemes in TLS 1.3 would significantly increase
the ClientHello, ServerHello, Certificate, and
CertificateVerify messages in a TLS 1.3 handshake.

A lot of works have been investigating the impact of new
post-quantum algorithms on TLS 1.3 [20], [21], [19], [29],
[35], [34], [3], [36]. Essentially all of these studies compared
the TLS 1.3 handshake time of classical key exchanges and
authentication against post-quantum ones and used it as an
indication of the degradation the new algorithms will bring
to TLS connections. Most post-quantum key exchanges in
these works used post-quantum hybrid (PQ-hybrid) key ex-
changes which combine classical ECDH with a quantum-
resistant KEM. This methodology ensures that if there is an
unknown issue with the new KEM, the classical key exchange
still ensures the security of the shared secret.

The handshake time measured in previous studies can
be seen as one less round-trip than the Time-To-First-Byte
(TTFB) which corresponds to the time the application takes
until it can start sending data over the secure tunnel. These
comparisons were useful to quantify the overhead of each new
algorithm introduced to the handshake. TLS 1.3 handshake
time was the right metric to identify the best performing
quantum-resistant schemes and how much overhead they were
adding to classical handshakes. Previous analyses, showed that
ML-KEM and ML-DSA or FN-DSA were the best performing
KEM and signatures respectively. Unfortunately, the previously
measured handshake performance degradation ignores the data
transfer time over the secure connection which, together with
the handshake time, is the total delay before the application
can start processing data. As we now have reached a small set
of quantum-resistant KEMs and signatures to be standardized
(NIST Round 3), it is time to consider a metric which could
more accurately capture the total impact of the new algorithms
on the applications running over TLS 1.3. That metric is the
total time from the connection start to the end of the data
transfer, or Time-To-Last-Byte (TTLB).

Google’s PageSpeed Insights [12] uses a set of metrics to
measure the user experience and webpage performance. The
First Contentful Paint (FCP), Largest Contentful Paint (LCP),
First Input Delay (FID), Interaction to Next Paint (INP), Total
Blocking Time (TBT), and Cumulative Layout Shift (CLS)
metrics include this work’s TTLB along with other client-side,
browser application-specific execution delays. The PageSpeed
Insights TTFB metric measures the total time up to the point
the first byte of data makes it to the client. So, PageSpeed
Insights TTFB is like this work’s TLS handshake time with
additional network delays like DNS lookup, redirect, service
worker startup, and request-response time.

2



As an example, the TTLB of a Web connection would
correspond to the time from the connection initiation to the
load event which fires after all the contents of an HTML
page have been loaded. Arguably, the time from the connection
initiation to an DOMContentLoaded event could also be
used as a performance metric. A DOMContentLoaded event
fires when the HTML page has been loaded without waiting
for stylesheets, images, and subframes. For the purposes of our
experiments we chose to use TTLB as a general metric for use-
cases that go beyond the Web. Some applications could start
processing data before the whole content has been transferred
which means that these applications could use part of the
TTLB as a performance benchmark.

How much TTLB slowdown introduced by a TLS algo-
rithm change is acceptable highly depends on the application.
[1] reported that 100ms affects customer conversion rates in
retail sites and 2-3 extra seconds drive users away. Google’s
PageSpeed Insights [12] categorizes TTFBs <800ms as Good
and >1.8s as Poor. Browsers like Chrome and Firefox, on the
other hand, include performance regression tests for various
page load tests for any new code changes. Chrome states that
if you are a developer who “makes a change that regresses
measured performance, you will be required to fix it or
revert” [7]. They also offer an exception process for justified
performance regressions. The Firefox performance sheriffing
process triggers an alert when the performance regressions
increase is ≥2% [11]. We can’t tell with certainty what slow-
downs are acceptable for all use-cases. Different applications
will certainly be more forgiving than others.

In this manuscript, we analyze the impact of ML-KEM-
768 and ML-DSA-44 or ML-DSA-65 on the TTLB of real-
world TLS 1.3 connections which transfer hundreds of KB
of data under fast, slow, stable and unstable networks. The
rest of this document is organized as follows: Section I-A
summarizes the new contributions of this work. Section II
describes related work on the topic of post-quantum TLS 1.3
performance. Section III goes over our experimental setup and
our testing methodology, Section IV presents the results and
analysis of our experiments and Section V concludes the paper
and summarizes future work.

A. Our Contributions

This work makes a few new contributions on the topic of
TLS 1.3 performance with data-heavy handshakes:

1) It introduces the TTLB as a more accurate metric for
the impact of new post-quantum TLS 1.3 handshakes
on real-world TLS connections. Intuitively, the more
data a connection transfers, the less impactful post-
quantum handshake message sizes will be.

2) It experimentally shows that the impact of heavy post-
quantum handshakes diminishes as the amount of
data transferred over the tunnel increases.

3) It experimentally evaluates the impact of ML-KEM-
768 and ML-DSA-44 or ML-DSA-65 in TLS 1.3
connections using TTLB under different network con-
ditions and shows that although the handshake slow-
down is higher under adverse network conditions,
the overall connection time is less sensitive to such
conditions. The TTLB impact in fast, stable networks

remains below 5%. Slow, stable connections see their
TTLB drop from 32% to <10% when transferring
100KiB of data or more. Even TCP related congestion
control slowdowns are amortized to <5% when the
transferred data goes to 200KiB.

4) It experimentally shows that under unstable or lossy
conditions where the impact of ML-KEM-768 and
ML-DSA-44 or ML-DSA-65 on the TLS 1.3 hand-
shake is high, the absolute time of classical TLS
1.3 handshakes is already suffering and showing
high volatility. Put differently, the new data-heavy
TLS handshakes will not be “the deal breaker” for
connections in unstable or lossy networks.

II. RELATED WORK

There have been many works which evaluate the impact of
NIST quantum-resistant algorithms on TLS 1.3. All of these
studies look into the impact introduced by the increased key
exchange and authentication information exchanged and the
CPU overhead. Early experimental deployments by Google and
Cloudflare [20], [21], [19] showed that new KEMs can perform
well under normal conditions but there will be more volatility
and higher impact at the tails of these connection distributions.
They also observed that network middleboxes can sometimes
cause failures for larger TLS 1.3 keyshares. Another early
experimental study [29] showed that large keys and signatures
affect the TLS 1.3 handshake more, especially at the 90-th
percentile under higher network loss probabilities. An intuitive
explanation for this is that more packets in the handshake
means higher total loss probability, resulting in handshake
slowdown. The authors also showed that the impact of data-
heavy KEMs and signatures on webpage load time diminishes
as the size of the webpage increases. Load time is a metric
similar to the TTLB, but it may include application-specific
delays the cryptographic algorithms are not responsible for.

[34], on the other hand, evaluated the combination of
post-quantum hybrid key exchanges and post-quantum signa-
tures in TLS 1.3 and SSH. It showed that well-performing
quantum-resistant KEMs and signature schemes can be used in
the protocols without significantly degrading their handshake
performance. The authors also observed that large or CPU-
intensive quantum-resistant schemes have higher impact on the
handshake and explored tweaking the TCP initial congestion
window initcwnd to speed it up.

Other works focused solely on authentication. [35] showed
that data or CPU-heavy post-quantum signatures slow down
the TLS 1.3 handshake and could even introduce an extra
RTT due to the TCP initcwnd. Sikeridis et al. proposed
using different algorithms throughout the certificate chain in
order to control the size and speed of the handshake. [30]
explored the same premise; combining different signatures in
the certificate chain to trim the chain size and showed promis-
ing results Subsequently, Cloudflare experimentally tested [3]
various TLS 1.3 certificate chain sizes and showed that for
their traffic profiles, more than 9-10KB of authentication data
from the server will slow down the handshake more than 10-
20% at high percentiles. To address the quantum-resistant TLS
authentication data size issue, various works have proposed to
slim it down [17], [33]. Similar concepts have been proposed

3



in the IETF for cutting down the authentication data size [16],
[4], [15].

[5] and [22] evaluated post-quantum algorithms for TLS in
constrained environments and showed that although promising,
they would introduce performance degradation for some con-
strained use-cases.

More recently, other studies [14] have confirmed the results
in previous works. [10] experimentally evaluated the NIST
Round 3 algorithm picks’ CPU performance and their impact
on the mean TLS handshake time. The results were in-line
with previous studies but did not investigate the higher latency
percentiles. [36] demonstrated that well-performing KEMs and
signatures lead to mean TLS handshakes times which are close
to classical TLS 1.3 handshakes even under lossy network
conditions. Sosnowski et al. did not investigate higher latency
percentiles which would have seen higher impact by the post-
quantum handshakes.

NIST National Cybersecurity Center of Excellence’s (NC-
COE) Post-quantum Migration Project [23] recently published
a report draft [28] which confirms some of the results of the
aforementioned studies and points out the need for evaluating
the TTLB as a performance metric. The NIST NCCOE report
also includes results of the impact of PQ KEMs and signatures
on QUIC [37], a widely-used transport protocol for the Web
which leverages TLS 1.3 for session establishment. It shows
that QUIC congestion control, amplification protection, and
packet pacing can introduce significant slowdowns to a QUIC
handshake. Finally, [18] discussed some potential challenges
and changes needed to address issues introduced by the new
post-quantum algorithms. It also proposed the time-to-last-byte
performance metric. Full-disclosure, one co-author of [28] and
[18] which propose the use of the TTLB metric is also a co-
author of this manuscript.

III. EXPERIMENTS

We designed our experiments to simulate various network
conditions and measure the handshake and TTLB of the TLS
1.3 connection. The handshake allows us to compare our
results with existing studies. The TTLB represents a more
realistic measurement of impact of data-heavy key exchange
and authentication on TLS 1.3 connections. Both the hand-
shake and TTLB in our measurements included the initial TCP
handshake time (one round-trip). For example, a typical TLS
1.3 handshake time is equivalent to the TTLB of a 0-Byte data
transfer which amounts to two RTTs under normal network
conditions. We felt that including the TCP handshake time
was a more accurate measurement of the time it takes for an
application to start sending or receiving data over the secure
connection. The amount of data transferred in our experiments
consisted of typical client-server scenarios where the client
makes a small request and the server responds with hundreds
of Kilobytes of data. We did not test client-to-server transfers;
their performance can be extrapolated from the server-to-client
experimental results below.

The testing methodology we used follows the same ra-
tionale as in [29, §3]. We used Linux namespaces in a
Ubuntu 22.04 virtual machine instance. The namespaces
were interconnected using virtual ethernet interfaces.
The “network” between the namespaces was emulated using

Fig. 2. The experimental setup between the client and server Linux
namespaces and netem-emulated network conditions. Each scenario in-
cluded 1000 TLS 1.3 connections for different data size downloads from the
server. The collected data per connection included the connection TTLB and
various packet statistics.

Linux kernel’s netem utility which can introduce variable net-
work delay, interface bandwidth, and packet loss probabilities
between the client and server. The Ubuntu 22.04 EC2 instance
was a t2.medium (2x64-bit Intel(R) Xeon(R) CPU E5-2686
v4 @ 2.30GHz, 4GB RAM) in the AWS Cloud. Figure 2
summarizes the setup.

Our experiments included sevaral parameters:
➜ Key exchange mechanism. That was classical ECDH
with curve P256 for the classical connections or PQ-hybrid
with ECDH using P256 and ML-KEM-768 for the quantum-
resistant ones.
➜ Certificate chain size from the server. That was set to a typ-
ical 2.5KB (on the wire) classical chain, a medium simulated
ML-DSA-44 post-quantum chain (8KB on the wire), and a
large (16KB on the wire) simulated ML-DSA-65 chain. These
certificate chains were constructed using RSA, not ML-DSA
certificates, as there was no ML-DSA support in our testing
toolset at the time of our experiments. The 8KB chain was only
used to compare our results with previous studies. The reason
we picked 16KB for the post-quantum chain is to investigate
if ML-DSA certificates would significantly affect the total
connection time. A typical TLS 1.3 handshake today (with a
certificate chain of one end-entity, one intermediate Certificate
Authority (CA), and one Root CA cert) includes three Signed
Certificate Timestamps, one CertificateVerify and two
X.509 signatures and two public keys.That would amount to
∼14 and ∼19KB of “TLS 1.3 authentication data” on the
wire for ML-DSA-44 and ML-DSA-65 respectively. If we
used one of the simple approaches [17], [16], [15] proposed
to slim down the authentication data from the server by
omitting the intermediate CA certificate, the “authentication
data” on the wire would become ∼11 and ∼14KB respectively.
With ML-DSA-87, it would be even higher (∼20KB). So,
we picked an inflated certificate chain which amounted to
16KB on the wire as a representative “TLS authentication data”
size with ML-DSA-44 or ML-DSA-65 certificates. This value
slightly exceeds the default TCP initcwnd of 10 times the
Maximum Segment Size (MSS) [8] and the critical 9-10KB
size identified as a performance turning point for TLS 1.3 Web
connections in [3], so it is a good representative size to test
with. We did not test Mutual TLS connections with large client
PQ chains; their performance can be extrapolated from the
regular TLS authentication results below.

Note that due to their high compute performance (exceed-

4



ing or equivalent to their classical counterparts), ML-KEM
and ML-DSA’s impact on the TLS 1.3 handshake will mostly
come from their larger public key and signature sizes. That has
been proven in previous works [35], [30], [36] and is generally
confirmed by our testing.
➜ TCP initcwnd. As this value could introduce an extra
round-trip for the large certificate chains [35], [34], we picked
initial window values of 10 or 20 times the server’s MSS. The
former was only used when evaluating the impact of the extra
RTT due to TCP congestion control to the total connection
time. The latter was enough to eliminate the RTT so we can
investigate other experimental parameters.
➜ Network delay between client and server. That was set to 35,
70, or 200ms. These RTTs do not represent typical datacenter
round-trips, which tend to be much smaller. Packet size MTUs
are typically much higher in datacenter environments, so we
chose to not consider such scenarios where post-quantum key,
ciphertext, and signature sizes will all fit in larger frames
and connections will complete much faster. 35ms is a typical
RTT for today’s Internet where services are often localized.
We chose 200ms as the RTT to emulate constrained cellular
networks or long distance connections. Based on [9, §V],
200ms would be the RTT for LTE-M cellular networks for
distances of 15Km. According to [39, §4.4], 4G and 5G mobile
network round-trips can vary between 40-120ms for up to
2.5Km distances. For our “volatile network” condition tests we
used netem to generate a Paretonormal-distributed net-
work delay distribution with a mean of 35 or 70ms and jitter of
35/4 or 70/4 ms respectively. These were designed to emulate
highly volatile network conditions with high variability.
➜ Bandwidth between client and server. That was set to 1Mbps
or 1Gbps. 1Gbps is typical “fast” bandwidth for modern
networks. 1Mbps was chosen to emulate more constrained
environments, legacy, or cellular networks. Based on [9, §V],
1-2Mbps would be the bandwidth for LTE-M cellular networks
for distances up to 20Km. According to [39, §5.2], 4G and
5G mobile network speeds vary from 10-200Mbps or higher
depending on TCP congestion control.
➜ Loss probability per packet. This was set to uncorrelated
0, 1, 3, 5 or 10% . The higher loss probabilities would be for
more unstable network conditions. We chose 10% to emulate
an LTE-M cellular network for up to a distance of 15Km [9,
§V]. According to [39, §4.1], 4G and 5G mobile network loss
can vary between 0-4%.
➜ Data size transferred from the server to the client. That
was set to 0, 50, 100, 200 or 300 Kibibytes (KiB, i.e. 210

bytes). [13] shows that the average webpage transfers upwards
of 2MB of data over 10-11 connections which amounts to
150-200KB per connection. Additionally, TLS connections to
cloud services transfer highly variable sizes of data from the
server depending on the use-case. The transfer sizes commonly
surveyed start from 30-50KB from the server and can reach
hundreds of Kilobytes sent over ∼5-100 requests reusing the
same connection. So, we chose 0-Byte transfers to measure
handshake and 50, 100, 200, 300KiB to measure the TTLB
for real-world connections which transfer sizable, but not very
large, amounts of data. We expect that the impact of the
PQ-hybrid ML-KEM / ML-DSA handshakes on higher size
transfers will be significantly minimized.

We used s2n-tls [2], AWS’ open-source implementation
of TLS, for our experiments [6]. All our tested scenarios

ran 1000 serial connections between the client and server.
For each scenario, we calculated the 50-th, 75-th and 90-
th percentile of the TTLB or handshake times. Google’s
PageSpeed Insights [12] considers the 75-th as appropriate to
cover the majority of user experiences. We added the 90-th
percentile to include even more of the tail-end of the device
and network conditions.

IV. RESULTS AND ANALYSIS

Our experiments implemented the methodology described
in Section III. Our goals were to:
➥ Evaluate the RTT impact introduced by TCP congestion
control with large certificate chains. We wanted to quantify
how much the RTT impact is amortized over the amount of
data sent by the server.
➥ Compare our experimental results against other studies
to confirm that our experiments align previous work and its
results.
➥ Assess the impact of the PQ-hybrid handshake on the TTLB
and confirm or debunk the intuition that a few extra KB of
handshake data would be unnoticeable in the total connection
time especially for stable, non-lossy networks.
➥ Evaluate the impact of the PQ handshakes on the total
connection time in fast, slow, stable, unstable, or volatile net-
work conditions. We wanted to isolate each testing scenario so
we focus on each use-case separately. Sometimes aggregating
many traffic profiles in one experiment can hide specific traffic
profile behaviors in the aggregate percentiles.

A. Impact on the TLS 1.3 handshake

We first investigated the impact of the new post-quantum
algorithms on the TLS 1.3 handshake. We wanted to confirm
that our testing methodology leads to the same results as in
previous studies. We looked into the impact of the new algo-
rithms with both default [8] and increased TCP initcwnd.

1) TCP initcwnd=10: The impact of the initcwnd
has already been analyzed in other works [35], [34]. In sum-
mary, if the server Certificate+CertificateVerify
message sizes exceed the initcwnd, the server has to wait
for a TCP ACK after sending initcwnd of data. Given the
size of ML-DSA-44 and 65, this could happen for servers using
the default [8] initcwnd=10MSS.

We tested initcwnd=10MSS to evaluate if the cost of an
extra round-trip diminishes as connections transfer more data.
Figure 3 shows the TLS 1.3 handshake time for connections
with various loss probabilities at 1Gbps bandwidth and 35ms
RTT. Figure 3a and Figure 3b show that the “authentication
data”-heavy connections (16KB ML-DSA chain) include an
extra round-trip for low loss probabilities which makes them
significantly slower. These results are in-line with previous
works [35], [34]. Figure 3c shows that as the loss probability
increases, the volatility and unpredictability of these connec-
tions can sometimes even lead to slower classical handshakes.
Re-running our experiments for the 5% loss scenario produced
volatile results. Note that the handshake time for all of these
lossy handshakes are significantly (6-8×) slower than the
classical one with 0% loss at ∼76ms. This indicates that lossy
networks in themselves have a substantial impact on handshake
times.

5



(a) Loss probability=0% (b) Loss probability=1% (c) Loss probability=5%

Fig. 3. TLS 1.3 handshake time (ms) for classical and PQ connections and different loss probabilities (%). Bandwidth=1Gbps. RTT=35ms. TCP initcwnd=10.

(a) Handshake time (ms)
t

(b) TTLB % increase between classical (P256, 2.5KB chain) & PQ
(P256+MLKEM768, 16KB chain)

Fig. 4. TLS 1.3 performance for classical and PQ TLS 1.3 connections, different percentiles, and transferred data sizes from the server. Loss probability=0%.
Bandwidth=1Gbps. RTT=35ms. TCP initcwnd=10.

We then collected the TLS 1.3 performance for the same
connections for different data sizes transferred from the server
(Figure 4). Figure 4a shows the 50-th, 75-th, 90-th percentiles
for the TLS handshake time for the classical and post-quantum
connections for 0% loss probability, 1Gbps bandwidth and
35ms RTT. We see that all connection latencies are roughly
aligned, except for the post-quantum connections with the large
16KB chain. These connections include an extra round-trip
due to TCP congestion control’s interaction with the large
certificates. Figure 4b shows the TTLB % increase between
the classical (P256 key exchange, 2.5KB chain) and the PQ
connection (P256+MLKEM768 key exchange, 16KB chain)
for different application data transfer sizes at each percentile.
We see the extra RTT at 0KiB, but it gets amortized as the
server data increases and the % increase goes to zero when
the RTTs are the same at 200KiB. The slowdown disappears
because the TCP congestion window grows to complete the
200KiB transfer. Sending the 16KB certificate chain in the
handshake increases the congestion window early and leads to
the same amount of RTTs for the classical and post-quantum
connections. Depending on the size of that data, the classical
connection could be one RTT faster or not. At higher loss
probabilities, higher latency percentiles would naturally be
more volatile than what we measured at 0% loss.

In summary, using the default TCP initcwnd=10 with
data-heavy TLS 1.3 authentication would slow down the
handshakes by one RTT. The slowdown diminishes as the
data transfer size increases and could drop to zero depending
on how the TCP window aligns with the data size.

2) TCP initcwnd=20: Content providers today often in-
crease their TCP initcwnd to speed up connections [31]. For

example, [3] discusses how Cloudflare uses initcwnd=30.
This would prevent the extra round trip introduced by TCP
congestion control due to ML-DSA authentication as shown
in in Section IV-A1.

In Figure 5, we tested the classical (P256 key exchange,
2.5KB chain) and post-quantum (P256+MLKEM768 key ex-
change, 8KB and 16KB cert chain) TLS 1.3 handshakes for
a 35 and 70ms RTT under 1Gbps bandwidth and various loss
probabilities. We wanted to see if our results would match
previous studies. Figure 5a and Figure 5b show the handshake
times for all percentiles for 35 and 70ms RTTs respectively at
0% loss probability. We can see that the the post-quantum
handshakes are slightly slower than the classical ones but
only by a few milliseconds. These results match previous
works [35], [30], [36].

Figure 5c shows the handshake time % increase for each
percentile for the aggregate measurements (all RTTs, and all
loss probabilities 0, 1, 3, 5%). They show the % handshake
time increase between the classical and the post-quantum hand-
shakes. We observe that the latter ones are slower especially at
the 90-th percentile. Intuitively, as these handshakes send more
packets, network packet loss would affect them more. Note
that we expected the 8KB chain to be affected significantly
less than the 16KB one which is not reflected in these results.

Generally, the results in Figure 5c did not match the
findings in [3] which combined various traffic profiles. [3]
showed that the handshake time was affected <10% at the
90-th percentile for <10KB chains which was not the case
in our experiments. We believe this inconsistency was due to
the high network bandwidth (1 Gbps) of our traffic profile
which was likely higher than traffic profiles measured in [3].

6



(a) Handshake time (ms).
RTT=35ms.
Loss probability=0%

(b) Handshake time (ms).
RTT=70ms.
Loss probability=0%

(c) Handshake time % increase.
RTT=35, 70ms
Loss probability=0, 1, 3, 5%

Fig. 5. TLS 1.3 handshake for classical and PQ connections and different loss probabilities (%). Bandwidth=1Gbps. RTT=35, 70ms. TCP initcwnd=20.

(a) Loss probability=0% (b) Loss probability=3% (c) Loss probability=10%

Fig. 6. TLS 1.3 handshake time (ms) for classical and PQ connections and different loss probabilities (%). Bandwidth=1Mbps. RTT=35ms. TCP initcwnd=20.

Fig. 7. TLS 1.3 handshake time % increase between classical & PQ TLS
1.3 connections. Bandwidth=1Mbps. Loss probability=0, 1, 3, 10%. RTT=35,
200ms. TCP initcwnd=20.

To test that theory, we experimented with a lower bandwidth
of 1Mbps to represent constrained networks. Figure 6 shows
the classical (P256 key exchange, 2.5KB chain) and post-
quantum (P256+MLKEM768 key exchange, 8KB and 16KB
chain) handshake time for different loss probabilities at 1Mbps
bandwidth and 35ms RTT. We can see that a slower network
shows more relative slowdown for the 16KB chain than the
8KB one, especially for low loss probabilities. Intuitively, with
slower network speeds, the transfer time for 8-10KB of post-
quantum handshake data will be more noticeable. At higher
loss probabilities, the slowdown is less pronounced due to the
instability of these connections.

To confirm the volatility of the handshake time at higher
loss probabilities, we plotted the Cumulative Distribution
Function (CDF) of the TLS 1.3 handshake time at 1Mbps

Fig. 8. Classical (P256, 2.5KB chain) & PQ (P256+MLKEM768) TLS 1.3
handshake time (ms) Cumulative Distribution Function (CDF) for different
certificate chain sizes. 35ms RTT. TCP initcwnd=20.

bandwidth and 35ms RTT. Figure 8 shows that the classical
and post-quantum handshakes have little volatility at 0% loss,
but at 5% they start to increase after 50% of the sample. We
notice that the classical handshakes are less volatile at 5%
loss, but not significantly compared to the PQ ones with 8KB
or 16KB chains.

Figure 7 shows the percentiles of the aggregate datasets
collected for 1Mbps bandwidth, 0, 1, 3, 10% loss probability,
and 35ms and 200ms RTT. 1Mbps, 200ms RTT with 10% loss
probability could correspond to LTE-M cellular networks for
up to 15Km distances [9, §V]. We can see that the 16KB chain
is almost twice slower than the 8KB chain. Generally, this
matches the results in [3]. Without knowing the specific traffic
profiles of experiments in [3], we estimate that they included
a mix of fast, slow, stable and unstable connections. Naturally,
below (Section IV-B) we investigate the TTLB beyond the

7



(a) TTLB (ms)
t

(b) TTLB % increase between classical (P256, 2.5KB chain) & PQ
(P256+MLKEM768, 16KB chain)

Fig. 9. TTLB for classical and PQ TLS 1.3 connections at 0% loss probability. Bandwidth=1Gbps. RTT=35ms. TCP initcwnd=20.

handshake for TLS 1.3 connections under different network
conditions.

In summary, under “fast and stable” network conditions and
a high TCP initcwnd, a few more KB in the handshake
will not slow it down significantly. The slowdown will be
more noticeable in slower networks especially with large
ML-DSA size certificate authentication.

As a note specifically about cellular networks, TCP itself
has been shown to affect network performance similarly to
how new PQ algorithms will affect it. For example, [38]
proposed bandwidth probing in LTE instead of TCP’s slow-
start to improve TCP performance. Such changes are not
straightforward to deploy on the Internet. TCP, TLS, and other
fundamental protocols are likely to remain universal regardless
of their use-case.

B. Impact on the TLS 1.3 Connection

After investigating the impact of data-heavy cryptographic
algorithms on the TLS 1.3 handshake and confirming ob-
servations in previous works, we proceeded with evaluating
the impact on the total connection time (TTLB) for common
connection data sizes on the Internet today. For the rest of this
document, we use TCP initcwnd=20 as we already showed
(Section IV-A1) that if congestion control interferes with these
connections, we can assume some slowdown (one RTT) which
drops as the connection data increases.

1) Under “good” network conditions: We initially focused
on the TTLB under “good” network conditions at high speeds
and low loss probabilities. Figure 9 shows the TTLB for
classical (P256 key exchange, 2.5KB cert chain) and post-
quantum (P256+MLKEM768 key exchange, 16KB chain) TLS
1.3 connections carrying 0-200KiB of data from the server, at
1Gbps bandwidth, 0% loss, 35ms RTT. In Figure 9a, we can
see that under ideal conditions, the TTLBs for all connections
are almost identical. Similarly, Figure 9b shows the TTLB
% increase of the post-quantum connection over the classical
one for all percentiles. We can observe that although the
slowdown is low (∼3%) at 0KiB from the server (equivalent
to the handshake), it drops even more (∼1%) as the data from
the server increases. At the 90-th percentile the slowdown is
slightly lower. These slowdowns would also be considered
low for some online retail users and certain browser require-
ments [1], [7], [11]. The results generally match [29, §5.2]

which demonstrated that as the downloaded data increases,
data-heavy key exchanges end up leading to similar load times.

In summary, under “fast and stable” network conditions, a
data-heavy (ML-KEM, ML-DSA) TLS 1.3 handshake will
not impact the TTLB for most common connections that
transfer tens of KBs of data.

2) Under low bandwidth network conditions: Sec-
tion IV-A2 discussed TLS handshake performance in low
bandwidth networks and showed that it can be significantly
slower depending on the size of the handshake. We now look
into the overall impact (TTLB) on real-world, low-bandwidth
connections.

Figure 10 shows the % increase of the TTLB between
the classical (P256 key exchange, 2.5KB chain) & PQ
(P256+MLKEM768 key exchange, 16KB chain) TLS 1.3
connections carrying 0-200KiB of data from the server for
each percentile at 1Mbps bandwidth, 200ms RTT and 0,
3, 10% loss probability. We modeled this as a typical low
bandwidth network with “some instability”. 1Mbps, 200ms
RTT with 10% loss probability could correspond to LTE-
M cellular networks for up to 15Km distances [9, §V]. We
can see that at low loss probabilities (Figure 10a), all three
percentiles are almost identical. The TTLB increase is high
(∼33%) at 0KiB from the server. This is equivalent to just
the TLS handshake increase shown in Figure 6a. As the
data size from the server increases, the TTLB increase drops
to ∼6% because the handshake data size is amortized over
the connection. As the loss probability increases, we notice
volatility in the TTLBs. At 3% loss (Figure 10b), we observe
that the percentiles converge between 10-20%. Note that as
the loss probability increases the volatility of the experimental
measurements go up. This is also the case for the handshake
in Figure 8.

Figure 10c shows that at 10% loss, the TTLB increase
settles between 20-30% for all percentiles. The same experi-
ments for 35ms RTT produced similar results. Although, 20-
30% increase may seem high, we note that re-running the
experiments could sometimes lead to smaller or higher per-
centile increases because of the general “network instability”
of the scenario. Also, bear in mind that classical connection
percentile TTLBs for 200KiB from the server at 200ms RTT
and 10% loss were [4644, 7093, 10178]ms, whereas their post-
quantum connection equivalents were [6010, 8883, 12378]ms.

8



(a) Loss probability=0% (b) Loss probability=3% (c) Loss probability=10%

Fig. 10. TTLB % increase between classical (P256, 2.5KB chain) & PQ (P256+MLKEM768, 16KB chain) TLS 1.3 connections for different loss probabilities
(%). Bandwidth=1Mbps. RTT=200ms. TCP initcwnd=20.

At 0% loss they were [2364, 2364, 2364]ms. So, although the
percentiles increased by 20-30% in the post-quantum connec-
tions compared to the classical ones, the classical connections
are already impaired (by 97-331%) due to network loss. An
extra 20-30% is not likely to be impactful in an already highly-
degraded connection time.

We also wanted to confirm that the TTLB increase would
continue its downward trend for higher data transfers from
the server as observed in Figure 10. To achieve that, we ran
the experiments for 300KiB of server data for 35 and 200ms
RTTs. Table II summarizes the results. We can see that the
TTLB increase remains under 10% for low loss probabilities.
It increases for higher loss rates but stays within 10-20%
even at the 90-th percentile. Note that, as with the 200KiB
case, a packet loss rate of 10% had already introduced 37%,
71%, 115% total connection slowdown for the 50-th, 75-th
and 90-th percentiles respectively when the RTT was 35ms.
The equivalent slowdowns with an RTT of 200ms were 170%,
292%, and 423%. So, even the 90-th percentile PQ TTLB
slowdown in the table is minimal compared to the slowdown
already introduced by the network’s “lossiness”.

RTT (ms) Loss probability (%) Percentiles
50-th 75-th 90-th

35

0 5.09 5.09 5.08
1 5.09 5.08 4.27
3 5.10 5.01 5.79
10 13.69 16.51 15.82

200

0 4.31 4.31 4.31
1 4.31 5.28 5.47
3 6.19 11.73 12.98
10 20.81 14.90 8.03

TABLE II. TTLB % INCREASE BETWEEN CLASSICAL (P256, 2.5KB
CHAIN) & PQ (P256+MLKEM768, 16KB CHAIN) TLS 1.3

CONNECTIONS TRANSFERRING 300KIB FROM THE SERVER FOR
DIFFERENT LOSS PROBABILITIES (%) AND RTTS. BANDWIDTH=1MBPS.

TCP INITCWND=20.

In summary, low bandwidth TLS 1.3 connections will see
some impact by post-quantum algorithms on the total con-
nection time. This impact decreases as the transferred data
increases. Low bandwidth connections in lossy conditions
will be affected more, especially at higher percentiles, but
the impact on total connection time will be more moderate
than on the handshake alone. We should also not disregard
that lossy, low bandwidth connections which transfer sizable
amounts of data have already been slowed down by the
network conditions much more than by the data-heavy
algorithms.

3) Under unstable network conditions: After evaluating
stable and fast, and low bandwidth networks, we wanted to
investigate more unstable network conditions to assess if data-
heavy handshakes would be more impactful on their TTLB.
Our intuition was that an unstable network would see more
impact when carrying more data in the handshake, but that it
may not be noticeable when transferring sizable amounts of
application data over the connection. We experimented with
different loss probabilities and delay distributions to confirm
or debunk this theory.

Figure 11 shows the TTLB for classical (P256 key ex-
change, 2.5KB chain) and post-quantum (P256+MLKEM768
key exchange, 8KB or 16KB chain) TLS 1.3 connections
carrying 0-200KiB of data from the server for various loss
probabilities at 1Gbps bandwidth and 35ms RTT. At 1%
loss probability (Figure 11a), we see that the 50-th and 75-
th percentiles overlap for all testing scenarios. The TTLB
naturally increases as the transferred data size increases. The
90-th percentile presents some differentiation as the network
instability affects the 16KB cert chain connections more than
the 8KB one. The 2.5KB chain connections are also faster
than the 8KB ones. So, at 1% loss, we do not see significant
difference between classical and post-quantum connections
except for the 90-th percentile where the ML-DSA certificates
impose a 0-10% extra slowdown. As the loss probability
increases (Figures 11b and 11c), we see more volatility in
the TTLB % increase of the post-quantum connections over
the classical ones. We see that the post-quantum connections
converge to a 10-20% increase although they start higher for
the handshake itself (0KiB). We also note that the measured
times at higher loss rates demonstrated high fluctuations. Re-
running the experiments could skew the results one way or the
other. We note that even the classical connections are already
significantly impaired at high loss probabilities which means
that a 20% worst-case slowdown introduced due to to the

9



(a) TTLB (ms).
Loss probability=1%.

(b) TTLB % increase between 2.5 & 16KB chain.
Loss probability=3%.

(c) TTLB % increase between 2.5 & 16KB chain.
Loss probability=5%.

Fig. 11. TTLB for (P256 key exchange, 2.5KB chain) and post-quantum (P256+MLKEM768 key exchange, 16KB chain) TLS 1.3 connections and different
loss probabilities (%). Bandwidth=1Gbps. RTT=35ms. TCP initcwnd=20.

(a) Loss probability=0% (b) Loss probability=1% (c) Loss probability=5%

Fig. 12. TTLB % increase between classical (P256, 2.5KB chain) & PQ (P256+MLKEM768, 16KB chain) TLS 1.3 connections for different loss probabilities
(%) under “volatile network” conditions. Bandwidth=1Gbps. RTT=35ms. TCP initcwnd=20.

Fig. 13. TTLB CDF for classical TLS 1.3 connections. 200KiB from the
server. 1Gbps bandwidth. 35ms RTT.TCP initcwnd=20.

data-heavy handshake will not be detrimental. For example,
the classical 200KiB connection TTLB percentiles went to
[544, 806, 1332]ms at 5% loss from [275, 295, 313]ms at
0% which is a drastic slowdown. The equivalent post-quantum
percentiles were [624, 967, 1500]ms. So, the PQ slowdown is
less noticeable compared to one introduced by the network
loss probability for the classical connections.

All our experiments so far have shown that as the network
loss probability increases, the handshake and TTLB times
fluctuate more which can sometimes end up making the
classical connections worse than we expect compared to the
post-quantum ones. We attribute that to the randomness of
packet loss which can skew the percentiles one way or another.
In order to confirm that, we plotted the CDF for the classical
TLS 1.3 connection TTLB carrying 200KiB from the server at
1Gbps bandwidth and 35ms RTT. Figure 13 shows that at 0%

loss the TTLB remains pretty stable, but it starts to increase
after 50% of the sample at 1% loss. At 3% and 5% loss the
TTLB starts to increase even earlier. That explains the volatile
TTLB times we have observed throughout our experiments
at the 90-th percentile with higher loss probabilities and they
match similar observations with the handshake (Figure 8).

Our last set of experiments introduced variable net-
work delays between the client and the server. We used
Paretonormal-distributed network delay with a mean of
35 or 70ms and jitter of 35/4 or 70/4 ms respectively. These
were chosen to emulate highly volatile network conditions.
Figure 12 shows the TTLB % increase between classical (P256
key exchange, 2.5KB chain) & PQ (P256+MLKEM768 key
exchange, 16KB chain) TLS 1.3 connections for different loss
probabilities (%) and data sizes transferred from the server.
We can see that the post-quantum connection TTLB increase
starts higher at 0KiB server data and drops to 4-5% for
0% loss and 10-20% for higher loss probabilities. As with
previous experiments, the percentiles were more volatile at
higher the loss probabilities, but overall the results show that
even under “volatile network conditions” the TTLB drops to
as the transferred data increases.

We also wanted to confirm that the TTLB increase
for higher data transfers from the server would continue
its downward trend observed in Figure 12. We ran the
Paretonormal-distributed network delay experiments for
300KiB of server data. Table III summarizes the results. We
can see that the TTLB increase remains under 10% for low loss
probabilities. It goes up for higher loss probabilities but stays
within 10-20% even at the 90-th percentile. In some cases, the
high instability makes the post-quantum total connection time

10



RTT (ms) Loss probability (%) Percentiles
50-th 75-th 90-th

35

0 -8.45 -8.90 -8.12
1 -7.03 3.97 4.39
3 -2.81 -0.97 -1.23
5 8.713 7.96 14.51

70

0 -5.89 -7.61 -8.25
1 -6.33 -8.18 -4.58
3 2.27 0.94 7.05
5 9.06 8.67 5.00

TABLE III. TTLB % INCREASE BETWEEN CLASSICAL (P256, 2.5KB
CHAIN) & PQ TLS 1.3 (P256+MLKEM768, 16KB CHAIN)

CONNECTIONS TRANSFERRING 300KIB FROM THE SERVER FOR
DIFFERENT LOSS PROBABILITIES (%) UNDER “UNSTABLE NETWORK”

CONDITIONS. BANDWIDTH=1GBPS. TCP INITCWND=20.

Fig. 14. TTLB CDF for PQ TLS 1.3 connections. 200KiB from the server.
35ms RTT. TCP initcwnd=20.

slightly faster that the classical one (negative % in the table).
As with the 200KiB case, the network “instability” had already
introduced [133, 246, 336]% and [129, 210, 307]% total
classical connection slowdown for the 50-th, 75-th and 90-th
percentiles for 35 and 70ms RTTs respectively. Additionally,
we noticed volatility when re-running the experiments for all
measurements (even for the classical TLS connections) due to
variable delay distribution.

To observe the volatility of the TTLB for all “unstable
network conditions” in our experiments (higher network loss
probabilities, Paretonormal-distributed network delay), we
plotted the PQ TLS 1.3 connection (P256+MLKEM768, 16KB
chain) for 200KiB from the server, 35ms RTT and different
bandwidth and loss probabilities. Figure 14 shows that at 0%
loss, fast 1Gbps or slower 1Mbps networks lead to pretty
stable TTLB times. As we observed in Section IV-B2, the
1Mbps connections are slower due to low bandwidth. Note that
under all types of unstable conditions (1Gbps and 5% loss,
1Mbps and 10% loss, Paretonormal-distributed network
delay), the TTLB increases very early in the experimental mea-
surement sample which demonstrates that the total connection
times are highly unstable.

In summary, we saw that the impact of data-heavy hand-
shakes on the total connection time is lower than on the
handshake itself under lossy conditions or unstable net-
work delays. The impact drops as the transferred data size
increases, but adverse network conditions introduce high
volatility on all connections. Also, notably, high network
instability affects the TTLB of connections that transfer
sizable amounts of data so much that the additional slow-
down introduced by data-heavy handshakes does not make
noticeable difference.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, this work demonstrated that the practical
impact of data-heavy, post-quantum algorithms on TLS 1.3
connections is lower than the impact on the handshake itself.
Low-loss, low- or high-bandwidth connections will see little
impact from post-quantum handshakes when transferring siz-
able amounts of data. The more data the connection transfers,
the lower the impact. We also showed that under unstable
conditions with higher loss rates or high-variability delays, al-
though the impact of PQ handshakes could vary, it stays within
certain limits and drops as the total transferred data increases.
Additionally, we saw that unstable connections inherently
provide poor completion times; a small latency increase due to
post-quantum handshakes would not render them less usable
than before. This does not mean that trimming down the
handshake data is undesirable, especially if little application
data is sent relative to the size of the handshake messages, but a
few extra KB will not be noticeable in connections transferring
hundreds of KB or more. Connections that transfer <10-20KB
of data will probably be more impacted by the new data-heavy
handshakes.

In the future, it would be worthwhile to run experiments
with actual ML-DSA certificates and use actual TLS 1.3 traffic
profiles observed in real-world networks. These could include
mobile networks, Web traffic in different use-cases like mobile
device browsing, Internet browsing, social media or cloud ap-
plications and more. Such experiments would give us a better
idea about the TTLB of these applications being noticeable or
not. It would also be worth testing real-world QUIC connection
traffic profiles (which use TLS 1.3 underneath) under different
network conditions to confirm if the post-quantum algorithm
impact on their TTLB will be any different.

VI. ACKNOWLEDGEMENT

The authors would like to thank Eric Crocket and Steven
Collison from AWS for their valuable feedback.

REFERENCES

[1] Akamai, “Akamai Online Retail Performance Report:
Milliseconds Are Critical.” [Online]. Available:
https://www.akamai.com/newsroom/press-release/akamai-releases-
spring-2017-state-of-online-retail-performance-report

[2] AWS, “s2n-tls.” [Online]. Available: https://github.com/aws/s2n-tls
[3] C. Bas Westerbaan, “Sizing Up Post-Quantum Signatures,” Nov.

2021. [Online]. Available: https://blog.cloudflare.com/sizing-up-post-
quantum-signatures/

[4] D. Benjamin, D. O’Brien, and B. Westerbaan, “Merkle Tree
Certificates for TLS,” Internet Engineering Task Force, Internet-Draft
draft-davidben-tls-merkle-tree-certs-01, Sep. 2023, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/draft-davidben-tls-
merkle-tree-certs/01/

11



[5] K. Bürstinghaus-Steinbach, C. Krauß, R. Niederhagen, and
M. Schneider, “Post-quantum tls on embedded systems: Integrating
and evaluating kyber and sphincs+ with mbed tls,” in Proceedings of
the 15th ACM Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 841–852. [Online]. Available:
https://doi.org/10.1145/3320269.3384725

[6] W. Childs-Klein, “s2n-tls pq-tls-benchmark.” [Online]. Available:
https://github.com/WillChilds-Klein/pq-tls-benchmark/tree/fixed-cert

[7] Chromium, “Core Principles.” [Online]. Available:
https://www.chromium.org/developers/core-principles/

[8] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing
TCP’s Initial Window,” RFC 6928, Apr. 2013. [Online]. Available:
https://www.rfc-editor.org/info/rfc6928

[9] S. Dawaliby, A. Bradai, and Y. Pousset, “In depth performance evalu-
ation of lte-m for m2m communications,” in 2016 IEEE 12th Interna-
tional Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), 2016, pp. 1–8.

[10] R. Döring and M. Geitz, “Post-quantum cryptography in use: Empirical
analysis of the tls handshake performance,” in NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium, 2022, pp.
1–5.

[11] Firefox, “Performance Sheriffing.” [Online]. Available: https://firefox-
source-docs.mozilla.org/testing/perfdocs/perf-sheriffing.html

[12] Google, “PageSpeed Insights .” [Online]. Available:
https://developers.google.com/speed/docs/insights

[13] http archive, “Report: State of the Web,”
https://httparchive.org/reports/state-of-the-web.

[14] T. Iraklis, K. Limniotis, and N. Kolokotronis, “Evaluating the perfor-
mance of post-quantum secure algorithms in the TLS protocol,” Journal
of Surveillance, Security and Safety, vol. 3, no. 3, pp. 101–27, 2022.

[15] D. Jackson, “Abridged Compression for WebPKI Certificates,”
Internet Engineering Task Force, Internet-Draft draft-ietf-tls-cert-
abridge-00, Sep. 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/00/

[16] P. Kampanakis, C. Bytheway, B. Westerbaan, and M. Thomson, “Sup-
pressing CA Certificates in TLS 1.3,” Internet Engineering Task Force,
Internet-Draft draft-kampanakis-tls-scas-latest-03, Jan. 2023, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-
kampanakis-tls-scas-latest/03/

[17] P. Kampanakis and M. Kallitsis, “Faster post-quantum TLS handshakes
without intermediate CA certificates,” in Cyber Security, Cryptology,
and Machine Learning, S. Dolev, J. Katz, and A. Meisels, Eds. Cham:
Springer International Publishing, 2022, pp. 337–355.

[18] P. Kampanakis and T. Lepoint, “Vision paper: Do we need to change
some things?” in Security Standardisation Research, F. Günther and
J. Hesse, Eds. Cham: Springer Nature Switzerland, 2023, pp. 78–102.

[19] L. V. Kris Kwiatkowski, “The TLS Post-Quantum Experiment,”
Oct. 2020. [Online]. Available: https://blog.cloudflare.com/the-tls-post-
quantum-experiment/

[20] A. Langley, “CECPQ1 results,” Nov. 2016. [Online]. Available:
https://www.imperialviolet.org/2016/11/28/cecpq1.html

[21] ——, “CECPQ2,” Dec. 2018. [Online]. Available:
https://www.imperialviolet.org/2018/12/12/cecpq2.html

[22] D. Marchsreiter and J. Sepúlveda, “Hybrid post-quantum enhanced tls
1.3 on embedded devices,” in 2022 25th Euromicro Conference on
Digital System Design (DSD), 2022, pp. 905–912.

[23] NIST, “Migration to Post-Quantum Cryptography.” [Online].
Available: https://www.nccoe.nist.gov/crypto-agility-considerations-
migrating-post-quantum-cryptographic-algorithms

[24] ——, “Module-Lattice-Based Digital Sig-
nature Standard.” [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf

[25] ——, “Module-Lattice-based Key-Encapsulation
Mechanism Standard.” [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf

[26] ——, “Stateless Hash-Based Digital Sig-
nature Standard.” [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.ipd.pdf

[27] ——, “NIST PQ project,” Feb. 2022. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography

[28] NIST NCCOE PQC Migration Project, “NIST
SPECIAL PUBLICATION 1800-38C Draft.” [Online].
Available: https://www.nccoe.nist.gov/sites/default/files/2023-12/pqc-
migration-nist-sp-1800-38c-preliminary-draft.pdf

[29] C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking post-quantum
cryptography in tls,” in Post-Quantum Cryptography, J. Ding and J.-
P. Tillich, Eds. Cham: Springer International Publishing, 2020, pp.
72–91.

[30] S. Paul, Y. Kuzovkova, N. Lahr, and R. Niederhagen, “Mixed certificate
chains for the transition to post-quantum authentication in tls 1.3,” in
Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 727–740. [Online].
Available: https://doi.org/10.1145/3488932.3497755

[31] C. Planet, “Initcwnd settings of major CDN providers,” Feb.
2017, https://www.cdnplanet.com/blog/initcwnd-settings-major-cdn-
providers/.

[32] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” RFC 8446, Aug. 2018. [Online]. Available: https://rfc-
editor.org/rfc/rfc8446

[33] D. Sikeridis, S. Huntley, D. Ott, and M. Devetsikiotis, “Intermediate
certificate suppression in post-quantum tls: An approximate
membership querying approach,” in Proceedings of the 18th
International Conference on Emerging Networking EXperiments
and Technologies, ser. CoNEXT ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 35–42. [Online].
Available: https://doi.org/10.1145/3555050.3569127

[34] D. Sikeridis, P. Kampanakis, and M. Devetsikiotis, “Assessing the
overhead of post-quantum cryptography in TLS 1.3 and SSH,” in Pro-
ceedings of the 16th International Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 149âC“156.

[35] ——, “Post-quantum Authentication in TLS 1.3: A performance
study,” in 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/post-quantum-
authentication-in-tls-1-3-a-performance-study/

[36] M. Sosnowski, F. Wiedner, E. Hauser, L. Steger, D. Schoinianakis,
S. Gallenmüller, and G. Carle, “The performance of post-quantum tls
1.3,” in Companion of the 19th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT 2023. New
York, NY, USA: Association for Computing Machinery, 2023, p.
19–27. [Online]. Available: https://doi.org/10.1145/3624354.3630585

[37] M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC 9001,
May 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc9001

[38] X. Xie, X. Zhang, and S. Zhu, “Accelerating Mobile Web Loading
Using Cellular Link Information,” in Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 427–439. [Online]. Available:
https://doi.org/10.1145/3081333.3081367

[39] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu, and
H. Ma, “Understanding Operational 5G: A First Measurement Study on
Its Coverage, Performance and Energy Consumption,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
479–494. [Online]. Available: https://doi.org/10.1145/3387514.3405882

12


