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Abstract. Fully Homomorphic encryption (FHE) enables the computation of an arbitrary function
over encrypted data without decrypting them. In particular, bootstrapping is a core building block
of FHE which reduces the noise of a ciphertext thereby recovering the computational capability.
This paper introduces a new bootstrapping framework for the Fan-Vercuteren (FV) scheme, called
the functional bootstrapping, providing more generic and advanced functionality than the ordinary
bootstrapping method. More specifically, the functional bootstrapping allows us to evaluate an
arbitrary function while removing the error of an input ciphertext. Therefore, we achieve better
depth consumption and computational complexity as the evaluation of a circuit can be integrated as
part of the functional bootstrapping procedure. In particular, our approach extends the functionality
of FV since it is even applicable to functions between different plaintext spaces.
At the heart of our functional bootstrapping framework is a novel homomorphic Look-Up Table
(LUT) evaluation method where we represent any LUT using only the operations supported by
the FV scheme. Finally, we provide a proof-of-concept implementation and present benchmarks. In
concrete examples, such as delta and sign functions, our functional bootstrapping takes about 46.5s
or 171.4s for 9-bit or 13-bit plaintext modulus, respectively.

1 Introduction

Fully Homomorphic Encryption (FHE) facilitates the evaluation of arbitrary functions on encrypted data
without the need for decryption. It prevents private information from being revealed while evaluating
data within an untrusted environment. The pioneering work on FHE was introduced by Gentry [19],
and subsequent research has focused on leveraging the Learning With Errors (LWE) problem [42] or its
ring variant, the Ring LWE (RLWE) problem [36]. Notable advancements in FHE construction such as
FV [3, 17], GSW [24], BGV [4], TFHE [13], and CKKS [10], have emerged based on these foundational
problems.

In these encryption schemes, a ciphertext accumulates a certain amount of noise and the noise increases
while performing homomorphic operations. Since excessive noise can lead to incorrect decryption results,
managing the noise is critical. While there are several well-known techniques such as the special modulus
technique [23] to mitigate this issue, there exists no known solution to perfectly remove the noise growth
from homomorphic operations. Consequently, to construct the FHE scheme, a procedure to lower the
ciphertext noise is required after a substantial number of operations. Addressing this challenge, the
bootstrapping technique was introduced by Gentry [20] to effectively lower the ciphertext noise and ensure
the integrity of decryption results in the face of noise accumulation in homomorphic evaluation.

The bootstrapping technique involves homomorphically evaluating the decryption circuit to refresh
the ciphertext, a process known for its computational expense due to the lack of straightforward support
for the decryption circuit operations within FHE schemes. To achieve efficient bootstrapping, it becomes
necessary to either implement optimizations for enhanced performance or reconfigure the decryption
circuit for simplification. Notably, numerous studies on CKKS bootstrapping have focused on optimizing
the approximation of the modulus operation within the decryption circuit [5, 32, 33]. For FV schemes,
specific approaches have been undertaken to enhance bootstrapping efficiency. For instance, in the context
of FV schemes, works such as [27, 6, 18] have proposed circuit designs aimed at eliminating certain least
significant digits to reduce noise and thereby improving the overall performance of the circuit. This
paper concentrates on FV bootstrapping, aiming to extend the functionality of preceding bootstrapping
techniques.
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Significant advancements in FV bootstrapping have been observed, with existing works predominantly
emphasizing the reduction of ciphertext noise while preserving the integrity of the message value. There-
fore, when evaluating a high-degree circuit, the primary role of the bootstrapping technique is to facilitate
further computations by diminishing the error. Consequently, bootstrapping is not directly involved in
altering the calculation of the circuit but serves as a means to enable additional operations by minimizing
the error.

On the other hand, prior studies did not take into account the plaintext modulus and have proceeded
with bootstrapping while maintaining this modulus. As a result, all data utilized in the evaluation must
be encrypted using the same plaintext modulus. However, depending on the property of the data such as
data, range, or the number of data, each data may have a suitable parameter for optimal performance.
A proper parameter set tailored to the specific properties of the data can contribute to performance
improvements and allow for more flexible packing within the ciphertext [4]. This adaptability may extend
the usability of the FV scheme, as not all data necessarily needs to be encrypted using the same parameter
set.

1.1 Our Contribution

In this work, we introduce a noble bootstrapping method for FV cryptosystem, called the functional
bootstrapping. This conceptually new bootstrapping technique has two main advantages over the existing
FV bootstrapping algorithms. Firstly, our new bootstrapping method enables us to use different modulus
for the input and output ciphertext. Secondly, an arbitrary univariate function can be evaluated during
our functional bootstrapping without any additional depth consumption, in contrast to the conventional
bootstrapping outputting the identical message to the input ciphertext. As a result, we can achieve a
better performance both in the bootstrapping and the circuit evaluation in the FV scheme. For example,
the complexity of FV bootstrapping is heavily dependent on the size of the prime factor plaintext modulus
of which the bootstrapping is performed, and therefore bootstrapping of a ciphertext with a large prime
modulus was almost infeasible. However, with our innovative bootstrapping method, a smaller plaintext
modulus can be utilized for the bootstrapping procedure and consequently, the complexity of the boot-
strapping can be mitigated. Moreover, recall that any univariate function can be evaluated during our
functional bootstrapping without any additional cost, the complexity of a large-depth circuit evaluation
can be reduced almost for free by integrating the circuit into the bootstrapping itself.

We achieve these aforementioned functionalities from an evaluation algorithm for a general Look-Up
Table (LUT) over the commutative ring Zpr for a prime p. In the existing bootstrapping method of a
ciphertext with initial plaintext modulus p, the ciphertext modulus is firstly reduced into pr for some r > 0
while guaranteeing the correct decryption. Then r−1 erroneous least significant bits (LSB) are iteratively
eliminated. In contrast, our functional bootstrapping process is performed over a plaintext modulus qr

instead of pr. This alteration makes the bootstrapping challenging since the error part cannot be simply
removed by removing the LSB. To resolve this problem, we develop an algorithm which can compute an
arbitrary LUT from Zpr to Zp.

We observe that there are a series of polynomial {ui
j}1<i≤r,0≤j<q, which ‘selectively’ removes the

LSB. Utilizing these polynomials, we can evaluate any LUTs with an iterative manner with respect to
the LSBs of the input message. First, we provide an optimized LUT evaluation method specified for a
simple LUT which has a form of step function. This simple LUT evaluation requires ≈ 16

3

√
r3p key-

switching operations and consumes r log p + log r! depth asymptotically. This result is then generalized
to an arbitrary LUT with a simple linear transformation. Consequently, it is capable of handling widely
used functions that are not readily supported by FHE operations. In this work, we focus on the specific
functions which are delta and sign functions. The adaptation of our algorithm to such functions allows
an efficient computation in scenarios where the underlying functions present challenges within the FHE
framework.

Finally, we implement our noble method for handling the delta and sign functions utilizing an open-
source FHE library, Lattigo [37]. We also provide a benchmark analysis for both functions to assess the
performance of our approach. In addition, we outline various applications where functional bootstrapping
can be effectively employed. These applications demonstrate the practical utility of our approach and
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highlight its potential impact in real-world use cases involving the evaluation of arbitrary functions
within the FHE framework.

1.2 Related Works

Liu et al. [35] recently improved the amortized bootstrapping of the TFHE scheme via the FV boot-
strapping. Their method includes a very limited form of functional bootstrapping. In a nutshell, they
utilized a ‘fake’ plaintext modulus of large size to encode a binary message in finite field Z3 to evaluate
arbitrary binary gates with an addition and a bootstrapping [16]. Concurrently, Okada et al. suggested
a TFHE-style functional bootstrapping in the FV scheme in [39] in a similar setting of leveraging a fake
plaintext modulus. Their main idea is to perform a blind rotation over the exponent of the roots of unity,
instead of the monomial. However, the functionality of these works is limited, since they only support a
small modulus, or suffer from a high computational cost.

The homomorphic evaluation of the sign/delta function using the FV scheme is well studied in various
previous researches, to realize comparison operation or SQL query homomorphically. Cheon et al. [11, 12]
utilized a bivariate polynomial interpolation in order to compare two (large) integers. This approach is
further refined by Tan et al. [43] by leveraging the finite field structure in order to compare the input
integers digit-wise. On the other hand, a univariate polynomial based on the interpolation approach is
also proposed in [38]. Later, Kim et al. [31] improved this method by encoding a large integer into a finite
field GF (pd) and leveraging the Frobenius automorphism in order to evaluate a polynomial, thus not
consuming modulus from homomorphic multiplications. Iliashenko and Zucca [29] achieved a significant
speedup of both these two approaches, by observing that we can make the coefficient vector of the
interpolation polynomials sparse.

Fig. 1: Concept of functional bootstrapping.
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2 Background

2.1 Notation

We denote the ring of integers of the 2N -th cyclotomic field for some power of two N by R = Z[X]/Φ2N (X) =
Z[X]/(XN + 1), and the residue ring of R modulo an integer Q > 0 by RQ = ZQ[X]/(XN + 1). We use
Z ∩ (−Q/2, Q/2] as a representative of ZQ, and denote by [a]Q the reduction of a modulo Q. Through-
out the paper, we write x ← D to represent that x is sampled from the distribution D. We denote the
uniform distribution over a finite set S by U(S). For σ > 0, Dσ denotes a distribution over R sampling
N coefficients independently from the discrete Gaussian distribution of variance σ2 and χ as a key dis-
tribution. We also use ar−1ar−2 . . . a0 to denote the base-p representation of a ∈ Zpr where ai ∈ Zp,
i.e., a =

∑r−1
i=0 aip

i.

2.2 The FV Scheme and Bootstrapping

The FV scheme supports addition and multiplication over integers. A plaintext space is Rp = Zp[X]/(XN+
1) where p is a modulus of the plaintext space. A ciphertext consists of two polynomials from a ring
RQ = ZQ[X]/(XN + 1).

We make use of gadget decompositon, which is a commonly used technique in lattice-based HE cryp-
tosystems for noise reduction [1, 9, 26]. For a modulus Q, real B > 0, and any a ∈ RQ, the gadget
decomposition h : RQ → Rt and the gadget vector g = (g0, g1, . . . , gt−1) ∈ Rt

Q satisfy following equation
where b = (b0, b1, . . . , bt−1)← h(a):∑

0≤i<t

bi · gi = a (mod Q) and ∥b∥∞ ≤ B.

A detailed description of FV scheme is given in the below.

• FV.Setup(1λ): Set the ring degree N , the plaintext modulus p, the ciphertext modulus Q, the key
distribution χ over R, and the error parameter σ. Choose a gadget decomposition h : RQ → Rℓ with a
gadget vector g ∈ Rℓ

Q. Output the parameter set pp = (m, p,Q, χ, σ, h,g).

• FV.KeyGen: Sample s ← χ, a ← U(RQ) and e ← Dσ. Set the secret and public keys as sk = s and
pk = (b, a) ∈ R2

Q where b = −s · a + e (mod Q). Sample k1 ← U(Rℓ
Q) and e ← Dℓ

σ, and set the
relinearization key as rlk = (k0,k1) ∈ Rℓ×2

Q where k0 = −s · k1 + e+ s2 · g (mod Q).

• FV.Encode(m): Let k be the biggest power of two such that 2k|p − 1. Then, given a message vector
m ∈ Zk

p, return a plaintext µ = σ−1(m) where σ : µ 7→ (µ mod XN/k − ζ2i+1)0≤i<k) for 2k-th root of
unity ζ modulo p.

• FV.Decode(µ): Given µ ∈ Rp, return m = σ(µ).

• FV.Enc(pk;µ): Sample w ← χ and e0, e1 ← Dσ. Given an encoding µ ∈ Rp, output the ciphertext
ct = w · pk+ (∆ · µ+ e0, e1) (mod Q), for ∆ = ⌊Q/p⌉.

• FV.Dec(sk; ct): Given a ciphertext ct = (c0, c1) ∈ R2
Q and associated secret key {sk}, return µ =

⌊(p/Q) · (c0 + c1 · s)⌉ (mod p).

• FV.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ R2
Q, output ctadd = ct+ ct′ (mod Q).

• FV.Mult(rlk; ct, ct′): Given two ciphertexts ct = (c0, c1), ct′ = (c′0, c
′
1) ∈ R2

Q and the relinearization key
rlk, let (d0, d1, d2) = ⌊(p/Q) · ct⊗ ct′⌉ such that d0 = ⌊(p/Q) · c0c′0⌉ (mod Q), d1 = ⌊(p/Q) · (c0c′1 + c′0c1)⌉
(mod Q), and d2 = ⌊(p/Q) · c1c′1⌉ (mod Q). Output the ciphertext ctmul = (d0, d1)+(⟨h(d2),k0⟩ , ⟨h(d2),k1⟩)
(mod Q).

The bootstrapping for the FV scheme is conducted in a similar manner to the bootstrapping of
the BGV scheme [27, 6]. It consists of four steps which are modulus switching, homomorphic inverse
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Discrete Fourier Transfromation (iDFT), polynomial evaluation (digit extraction), and homomorphic
Discrete Fourier Transfromation (DFT). These procedures are essentially homomorphic evaluations of
the decryption circuit.

Firstly, the input ciphertext is converted in order to make the decryption circuit as compact as possible.
Then, iDFT is performed homomorphically to move the coefficients to the slots but with erroneous lower
bits, which are removed during the polynomial evaluation, or so-called digit extraction procedure. Finally,
we perform DFT homomorphically on the input ciphertext to move the coefficients back to the slots.

Among the above steps, the polynomial evaluation for digit extraction is the main bottleneck of
FV/BGV bootstrapping. This procedure involves removing a certain number of least significant digits
in base p where the plaintext modulus is the power of prime p. Let w ∈ Zpr be an input of the digit
extraction algorithm which can be represented as follows:

w =

r∑
i=0

wip
i (wi ∈ Zp)

To achieve the functionality of digit extraction, previous methodologies calculate wi,j of where the least
significant digit is wi, and the next j least significant digits are all zeros. The goal is to remove v < r least
significant digits by subtracting w0,r−1, w1,r−2, . . . , wv−1,r−v from the input w. In the work presented
in [27], a lifting polynomial was a crucial building block. This polynomial outputs wi,j+1 for an input
wi,j and iterates lifting polynomial j times to obtain wi,j .

Subsequent optimizations have been applied to the bootstrapping of the FV scheme, as outlined in
further works such as [6, 18]. These optimizations primarily focus on modifying the digit extraction
algorithm for improved efficiency. In contrast to the method presented in [27], which applies the lifting
polynomial iteratively j times to evaluate wi,j , the approach in [6] introduces efficient polynomials known
as digit extraction polynomials, or lowest digit removal polynomials. It possesses a lower degree than
the lifting polynomial used in previous methodologies, leading to enhanced bootstrapping performance.
Moreover, with the digit extraction polynomial, there is no need to compute wi,k for all 0 ≤ k ≤ r− i− 1
to evaluate wi,r−i−1. This optimization reduces the computational load by computing only the necessary
wi,j terms, thereby improving the overall efficiency of the digit extraction process during bootstrapping.

In the work presented in [18], additional optimizations are introduced to enhance the digit removal
procedure during bootstrapping. These optimizations leverage the properties of polyfunctions, resulting
in a more efficient process. For example, the complexity of the digit extraction polynomial process is
reduced by incorporating null polynomials. The authors also exploit the properties of even or odd functions
depending on the value of the prime modulus p. Specifically, when p = 2, the digit extraction polynomials
are designed to take advantage of the even function property. Similarly, when p is an odd prime, the
polynomials capitalize on the odd function property. These tailored approaches enhance the evaluation
of digit extraction polynomials, taking into account the specific characteristics of the polyfunctions.

In [6], the authors also introduce an optimized version of the bootstrapping for FV/BGV scheme
named the slim mode. The slim mode is designed to reduce the number of digit extraction by applying
batching isomorphism. Unlike the original bootstrapping, it performs homomorphic iDFT before modulus
switching to batch the messages into a single polynomial. Consequently, it makes the bootstrapping about
d times faster where d is the multiplicative order of p in Z×

m. The slim mode bootstrapping procedure is
provided in Fig. 2 and we only consider the slim mode bootstrapping in our work. More details for each
phase of the slim bootstrapping are following:

• Homomorphic DFT Given an FV ciphertext ct which encrypts a message vector in Zk
p, return the

product between DFT matrix (over Zp) and ct.

•Modulus switching Using the scale-invariant property of FV ciphertext (c0, c1), we change the cipher-
text modulus to pr to obtain an FV encryption (c′0, c

′
1) ∈ R2

pr . In FV, we can simply switch the modulus
by scaling and rounding for each component of the ciphertext, i.e., c′i = ⌊pr/Q · ci⌉. Then, we output
(⌊Q/pr⌉ · c′0, ⌊Q/pr⌉ · c′1) ∈ R2

Q for some large ciphertext modulus Q. Note that this resulting ciphertext

is essentially an encryption of M(X) · pr−1 + e(X) ∈ Rpr for some error polynomial e with ∥e∥∞ < pr−1

2 .
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Enc(m0, . . . ,mk−1)

↓ Homomorphic DFT

Enc
(
M(X) := m0 +m1X

d · · ·+mk−1X
(k−1)d

)
↓ Modulus switching

Enc
(
M(X) · pr−v + e(X)

)
↓ Homomorphic iDFT

Enc
(
m0 · pr−v + e0, . . . ,mk−1 · pr−v + ek−1

)
↓ Digit Extraction

Enc(m0, . . . ,mk−1)

Fig. 2: Pipeline for the FV slim bootstrapping

• Homomorphic iDFT Given an FV ciphertext ct encrypting the messages in Zpr , return the product
between iDFT matrix (over Zpr ) and ct.

• Digit Extraction Finally, we homomorphically extract the highest digit of the base p representation of
the message. To realize this, we leverage the lifting polynomials {Fi} and the digit extraction polynomials
{Gi}. A i-th lifting polynomial Fi is a polynomial defined over Zpi

such that Fi(x ·pj+y) = y (mod pj+1)
for any 0 < j < i, 0 ≤ x < pi−j and 0 ≤ y < p. A i-th digit extraction polynomial Gi is a polynomial
defined over Zpi

such that Gi(x · p+ y) = y (mod pi) for any 0 ≤ x < pi−1 and 0 < y < p. We note that
Gi is essentially equivalent to an iterative composition of Fi for i times. Now we can erase the lower bits
iteratively by evaluating these polynomials and homomorphically dividing the plaintext by p. We will
introduce the details in the later sections.

3 Functional Bootstrapping for FV

Bootstrapping is a technique employed to reduce the noise of a ciphertext, allowing a user to perform
unlimited number of computations without compromising the privacy of the underlying message. In
order to perform a large depth circuit, bootstrapping is almost unavoidable. However, in the existing
works, bootstrapping is typically utilized as a black-box technique to reduce the noise bound, not directly
influencing the performance of the circuit evaluation. In other words, the bootstrapping and the circuit
evaluation were independent in the existing framework. We stress that there exists an opportunity for
improvement of the circuit evaluation by strategically integrate the bootstrapping into the circuit itself.

In this section, we introduce a noble bootstrapping framework for the FV cryptosystem, called the
functional bootstrapping, which provides a general functionality from the previous bootstrapping. To be
precise, we integrate FV bootstrapping and function evaluation into a single procedure without any
additional cost. From doing so, the overall circuit depth and complexity can be mitigated, since we can
save time and depths from further evaluations after the bootstrapping.

Our new bootstrapping framework generalizes the functionality of the bootstrapping in two direc-
tions. First, it has a capability to evaluate an arbitrary function while reducing the noise of ciphertexts,
unlike the conventional bootstrapping methods. Second, the class of the functions we can evaluate is
now even broader. For example, our new method also supports an evaluation of the function between
different domains (i.e., message spaces with distinct plaintext modulus). This innovative approach holds
the potential to enhance the overall performance of evaluations conducted on encrypted data, presenting
a paradigm shift from traditional bootstrapping methodologies.

In the following subsections, we present an entire pipeline of functional bootstrapping and how to
evaluate an arbitrary function possible between different spaces. Thereby the output plaintext modulus
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does not have to be identical to the input plaintext modulus. Furthermore, we also provide an overview
of LUT evaluation corresponding to the arbitrary function.

3.1 Pipeline of the Functional Bootstrapping

Fig. 3: Pipeline of the functional bootstrapping.

Let p and q be the input and output plaintext modulus, and Qin and Q be the input and output
ciphertext modulus, respectively. We also denote N , k, and d as the ring dimension, the number of the
slots, and the multiplicative order of p, respectively, (i.e., k · d = N). Then, the goal of the functional
bootstrapping is to evaluate an arbitrary function f : Zp 7→ Zq while bootstrapping an encryption of a
message vector m⃗ = (mi)0≤i<k ∈ Zk

p. Note that we aim to evaluate the function on the message, not
on the coefficients, we choose to use the pipeline of the slim mode bootstrapping [6] because its digit
extraction is performed on the messages rather than the coefficients as in the conventional bootstrapping
algorithm. The overall pipeline of the functional bootstrapping is given in Figure 3, which consists of the
following four steps. Here, r is a constant which will be determined in the later sections.

• Homomorphic DFT Given FV encryption of a message vector (mi)0≤i<k where mi ∈ Zp (0 ≤ i < k),
we first perform DFT homomorphically to obtain encryption of the plaintext M(X) := m0 +m1X

d · · ·+
mk−1X

(k−1)d.

• Modulus switching For the input ciphertext ct = (c0, c1) ∈ R2
Qin

which is an encryption of the
plaintext M(X), convert the ciphertext modulus to qr and obtain a new ciphertext ct′ = (c′0, c

′
1) ∈ R2

qr .
Output ct∗ = (c∗0, c

∗
1) ∈ R2

Q, an encryption of a plaintext ⌊qr/p⌉ ·M(X) + e(X), where the plaintext
modulus and ciphertext modulus are qr and Q, respectively.

•Homomorphic iDFT We perform iDFT homomorphically and obtain an FV encryption of the message
vector (⌊qr/p⌉·mi+ei)0≤i<k of plaintext modulus qr. Here, ei is (i·d)-th coefficient of the error polynomial
e(X) for 0 ≤ i < k.

• LUT Evaluation For the input ciphertext ct ∈ R2
qr , return the ciphertext ct′ ∈ R2

q which encrypting
the operation result of the function f , i.e., an encryption of the message vector (f(mi))0≤i<k.
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Compared to the existing bootstrapping (slim) method summarized in Figure 2, homomoprhic DFT
and iDFT proceed in a similar way as existing version and some distinctions arise in the following
two steps: (1) modulus switching, and (2) LUT evaluation. Our new method extends the functionality
compared to the previous bootstrapping approach from these phases.

During the modulus switching phase, we convert the ciphertext modulus into qr and generate an
errorness ciphertext ct∗ with a large ciphertext modulus Q. This ciphertext is an encryption of ⌊qr/p⌉·m+e
which belongs to the new message space Zqr . It ensures that the ciphertext is now compatible with the
new modulus qr. During this modulus switching, a single input message corresponds to multiple values
in the converted message space. When there is an operation (proceeded in LUT evaluation) that can be
carried out to have the same value for these multiple values, the output ciphertext is an encryption with
converted message space which has a different plaintext modulus. For example, if there is an operation
to have the identical value as an input for several values corresponding to the input, our bootstrapping is
the same as the existing bootstrapping and the only difference is that the plaintext modulus has changed.

On the other hand, to evaluate an arbitrary function, multiple values corresponds to a single message
should have resulted in the same value after the functional bootstrapping. Therefore, we need to evaluate
LUT from Zqr to Zq that satisfies the consistency of the output for consecutive values associated with a
single input. More detailed descriptions are provided in the following subsections.

3.2 Modulus Switching

During the functional bootstrapping procedure, we scale the input ciphertext as long as the decryp-
tion is valid in order to make the decryption circuit as compact as possible. Let ct = (c0, c1) ∈ R2

Qin

is an encryption of a message vector m⃗ ∈ Zk
p. Then, since FV is a scale-invariant HE scheme, ct′ =

(⌊qr/Qin · c0⌉ , ⌊qr/Qin · c1⌉) ∈ R2
qr is a valid encryption of m⃗ as long as qr is sufficiently large to accom-

modate the rounding error, regardless the initial ciphertext modulus Qin.
Now, recall that we aim to remove the erroneous lower bits of the plaintext homomorphically in the

remaining steps of the bootstrapping, this new ciphertext ct′ is needed to be homomorphically decrypted
under the plaintext modulus qr. This can be achieved simply multiplying a constant ⌊Q/qr⌉ where
Q >> p, qr is the output ciphertext modulus. In other words, let ct∗ := ⌊Q/qr⌉ · ct′ is an encryption of
the plaintext c′0 + c′1 · s (mod q)r where ct′ = (c′0, c

′
1). We describe the exact algorithm in Alg. 1.

Algorithm 1 Modulus Switching

Input: A ciphertext ct = (c0, c1) ∈ R2
Qin

Output: A ciphertext ct∗ = (c∗0, c
∗
1) ∈ R2

Q

1: (c′0, c
′
1)← (⌊qr/Qin · c0⌉ , ⌊qr/Qin · c1⌉) ∈ R2

qr

2: (c∗0, c
∗
1)← (⌊Q/qr⌉ · c′0, ⌊Q/qr⌉ · c′1) ∈ R2

Q

3: Return ct∗ = (c∗0, c
∗
1) ∈ R2

Q

After the modulus switching, we obtain c′0 + c′1 = ⌊qr/p⌉ · M(X) + e′(X) ∈ Rqr where M is the
plaintext of the input ciphertext ct′ and ∥e′∥∞ is small. To guarantee the correct decryption after the
modulus switching, we require ∥e′∥∞ < qr/2p. As long as such condition is fulfilled, we stress that it
is very important to choose the parameter qr as small as possible to optimize the performance of the
bootstrapping itself. Therefore, we investigate the probabilistic bound of e′ thoroughly below.

The noise e′ is a sum of two errors, e and ernd where e is the error of the input ciphertext and
ernd is the rounding error obtained from the dividing-and-rounding. Assume that noise from the input
ciphertext is smaller than qr/4p, it is sufficient to bound the rounding error by qr/4p to guarantee the
correct decryption. In other words, for ernd = e0rnd + e1rnd · s where

eirnd =
qr

Qin
· ci −

⌊
qr

Qin
· ci

⌉
(i = 0, 1).
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From the RLWE assumption, the coefficients of c0 and c1 is indistinguishable from uniformly sampled
random numbers over ZQin

. In practical scenarios, it is common to assume that the secret key s is
uniformly sampled from the ternary set {−1, 0, 1} with a hamming weight ∥s∥1. Hence, each coefficient
of the error polynomial e can be considered as a sum of ∥s∥1 + 1 uniformly distributed variables over
[−0.5, 0.5]. In prior works, the worst case bound ∥s∥1 + 1 is leveraged to estimate the rounding error
bound [6].

We tighten this bound using a probabilistic bound as proposed in the works on CKKS bootstrapping [2,
32]. Lee et al. [32] pointed out that the sum of h uniformly distributed variables essentially follows
the Irwin-Hall distribution, and can be bounded by 1.81

√
h with failure probability less than 2−15 [2].

Therefore, in a heuristic approach, we can refine the bound of the size of the coefficients of ernd as follows:

∥ernd∥∞ ≤ 1.81
√

1 + ∥s∥1.

Therefore, substituting this back to the error bound ∥ernd∥∞ ≤ qr/4p, we can obtain the following bound
for the plaintext modulus qr for LUT evaluation, as follows.

qr > 7.24p ·
√

1 + ∥s∥1 (1)

3.3 LUT Evaluation

Now we briefly convey the basic idea of the LUT evaluation method of ours. In our functional bootstrap-
ping pipeline, we evaluate the LUT on the input message residing in the commutative ring Zqr using
the polynomials in order to obtain the result in the finite field Zq. However, evaluation of an arbitrary
function over Zqr is generally a challenging task since only a small number of functions have polynomial
representations. Therefore, in order to evaluate an arbitrary function, we leverage a similar idea to the
digit extraction algorithm. Roughly speaking, we iteratively evaluate the polynomial while dividing the
message homomorphically to evaluate the arbitrary function.

As will be explained in the next section, we take advantage of certain polynomials with a special
property. To be precise, these polynomials ‘selectively’ remove the LSB, compared to the digit extraction
polynomials which extract the LSB regardless of the value of LSB. With these (selectively) polynomials
removing LSB, we can construct a homomorphic selector which iteratively operates on the LSB. A detailed
description of this algorithm will be given in the next section.

4 Evaluation of look-up tables

Before we elaborate on the details of our LUT evlauation algorithm, let us discuss the homomorphic
division by q over the commutative ring Zqr . Generally, division by q is not a well-defined operation since
it is a zero divisor. However, in the context of FV cryptosystem, if the message in Zqr is a multiple of
q, it can be homomorphically divided by simply changing the plaintext modulus to qr−1. Note that the
resulting message will not be an element of the modulo ring Zqr , but an element of Zqr−1 . To put it in
another way, it is essentially a change of the base ring while dividing the input by q. In the later sections,
we will abuse the notation of regular division for this operation. i.e., , for x ∈ Zqr , a multiple of q, x/q
denotes the ring element x/q ∈ Zqr−1 .

Now, suppose that we are given an arbitrary LUT F : Zqr 7→ Zq for a prime q. Then, evaluating F
is ultimately obtaining qr−1 · F (m) ∈ Zqr for the input message m as discussed above. Hence, if there
exists a polynomial representation of this function qr−1F (x), the LUT can be evaluated directly through
a single polynomial evaluation. However, only a small number of LUTs can be evaluated in such a way,
since most of the functions defined over the commutative ring Zqr are not functions with polynomial
representations, so-called the polyfunctions. For example, even LUT for digit extraction does not have
an explicit polynomial representation. Therefore, we utilize the homomorphic division by q between the
polynomial evaluations similar to the conventional bootstrapping method. By adopting such approach,
we can finally evaluate an arbitrary LUT. A detailed explanation will be given later in this section.
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In Sec. 4.1, we provide useful lemmas on the polyfunctions and investigate the structure of the poly-
nomials in Zqℓ for some positive integer ℓ. We utilize these results to construct a noble LUT evaluation
method for the functional bootstrapping in Sec. 4.2. Finally, we select certain widely-used functions, the
delta and the sign function, to apply our functional bootstrapping method to evaluate them while boot-
strapping in Sec. 4.3. For a better readability, we will use the unsigned representation for the integers
over the commutative ring Zqℓ in the following subsections.

4.1 Polyfunctions over Zqℓ

We introduce a necessary and sufficient condition for polyfunctions over Zqℓ , established by Guha and
Dukkipati [25].

Proposition 1 ([25]). If a function f over Zqℓ can be represented with a linear combination of the
following functions, then f is a polyfunction.

1. uℓ
0(x) =

{
0 for q ∤ x
x for q | x

2. uℓ
i(x), i-th shift of uℓ

0(x), i.e., uℓ
i(x) = uℓ

0(x− i) (0 ≤ i < q)

3. j-th powers of uℓ
i(x), i.e.,

(
uℓ
i(x)

)j
=

{
0 for q ∤ x
xj for q | x

(0 ≤ i < q, 0 ≤ j < ℓ)

Note that in our notation uℓ
i(x), i is an index for shifting while it was the exponent related to the

output in [25]. We substitute it as an exponent j described in the third item and we also unify the
expression of ui(x) (in [25]) which is divided into two cases where i = 0 and 1 ≤ i ≤ ℓ − 1 by changing
the bound of the exponent j.

The implication of proposition 1 is that if a function f is a polyfunction, then restricting its domain to
the congruence class of i modulo q is a polynomial with degree at most ℓ for any 0 ≤ i < q. A very simple
example will be the digit extraction polynomials {Gi} which are commonly utilized in the state-of-the-
art bootstrapping methods for FV/BGV scheme. In a nutshell, i-th digit extraction polynomial Gi is a
polynomial which satisfies Gi(x) = [x]q (mod qi) for any x ∈ Z. Observe that Gi over Zqi is essentially a
constant function at any congruence class of j modulo q, since Gi(j + q · x) = j regardless the value of x.

Now let us discuss the properties of the polynomial representation of polyfunctions and how they can
be obtained. We first introduce the definition of the Smarandache function.

Definition 1 (Smarandache function). The Smarandache function µ(·) is defined as µ(x) = min{i ∈
N : x | i!}.

It is easy to show that µ(qℓ) ≤ qℓ since the number of multiples of q is equal to or more than
ℓ in successive pℓ integers. Therefore, we use qℓ as the upper bound of µ(qℓ) in the later sections.
i.e., µ(qℓ) = O(qℓ). Interestingly, it is known that any polyfunctions over Zqℓ can be represented with a
polynomial with degree less than µ(qℓ). We state it more formally below in Lem. 1.

Lemma 1 ([30]). If f : Zqℓ 7→ Zqℓ is a polyfunction, there exists a polynomial representation of f with
degree smaller than µ(qℓ).

In [18], the authors mentioned an efficient method to find such a ‘compact’ polynomial representation
using the Newton interpolation. It is essentially a direct adoption of the divided difference method, which
is a common interpolation technique in numerical analysis.
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4.2 Our Method

In this subsection, we investigate the details of our noble LUT evaluation technique. In our LUT evaluation
algorithm, we leverage the basis polynomials ui

j . Observe that ui
j is always a multiple of q, we can

homomorphically divide the output by q. For the input x, ui
j(x)/q is (x − j)/q only if x = j (mod q)

and zero if x ̸= j (mod q). Here, note that (x − j)/q is essentially ‘upper i − 1 digits of x’, this can be
regarded as a homomorphic selector of the upper digit based on the last digit, in base-q representation.
From this observation, we deduce that (u1

jr−1
)0

(
u2
jr−2

(
. . . ur−1

j1

(
ur
j0
(x)/q

)
/q . . .

)
/q
)

is a function which

is zero except for one point x = jr−1 . . . j0 for jr−1 ̸= 0. (Note that jr−1 should not be zero, otherwise it
will always return one regardless of the input. To cover the case jr−1 = 0, we can simply add a constant
to the input to make the most significant bit (MSB) nonzero.) Therefore, an arbitrary LUT can be
homomorphically computed by evaluating this polynomial for every possible combination of jr−1, . . . , j0,
multiply the LUT value and add them altogether.

Fig. 4: The shape of LUT in functional bootstrapping. The dots denotes the function values at each
integer points.

However, this general method suffers from a high computational cost and makes functional bootstrap-
ping almost infeasible. In this work, we focus on optimizing a more specific case of LUT that is used in
functional bootstrapping. After the modulus switch in the bootstrapping procedure, the input message m
is associated with multiple values ⌊qr/p⌉ ·m+ e where −qr/2p ≤ e ≤ qr/2p. As ⌊qr/p⌉ ·m is a fixed value
for each m, ⌊qr/p⌉ ·m+ e are consecutive values in the integer domain. Since these values originate from
a single input, the output of the LUT evaluation of the functional bootstrapping should be identical for
all of these values. Consequently, the consistency in the output for consecutively associated values from a
single input implies the LUT seems like a step function, regardless of the nature of the target function, as
shown in Figure 4. From this fact, we devise a fast and optimized LUT evaluation method for our noble
functional bootstrapping.

Step function We first commence by covering the LUT which has a form of step function, which is the
most basic case of the step function-style LUT. Let the LUT F : Zqr 7→ Zq is defined as follows,

F (x) =

{
0 if x < B

1 otherwise
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for some bound B ∈ Zqr . Without loss of generality, we suppose that B ≥ qr−1 since F ′(x) := 1−F (x−B)
is essentially another step function with bound qr −B ≥ qr−1.

Now, let br−1br−2 . . . b0 be the base q representation of B. Observe that if the LSB of the input x is
smaller than b0, the LUT F returns 0 if and only if its upper r − 1 bits are less than br−1 . . . b2(b1 + 1)
and returns 1 otherwise. On the other hand, if the LSB of the input x is equal or bigger than b0, the LUT
F returns 0 if and only if its upper r − 1 bits are less than br−1 . . . b2b1, and 1 otherwise. Therefore, we
can evaluate the LUT F by dividing it into two sub-LUT’s F r−1

1 , F r−1
2 : Zqr−1 7→ Zq, defined as follows:

F r−1
1 =

{
0 if x < br−1 . . . (b1 + 1)

1 otherwise
,

F r−1
2 =

{
0 if x < br−1 . . . b1

1 otherwise
.

From this relation, we stress that the LUT F can be computed utilizing the polynomials ur
i and

evaluation of sub-LUTs F r−1
1 and F r−1

2 . Observe that ur
i (x)/q outputs the upper r− 1 bits if the LSB of

x is i, and zero otherwise for any input x. Subsequently, for any value x with LSB i, we can obtain F (x)
by evaluating F r−1

1 (ur
i /q) if i < b0 and F r−1

2 (ur
i /q) if b0 ≤ i. Recall that we assumed that B ≥ qr−1,

new bounds br−1 . . . (b1 + 1) and br−1 . . . b1 are strictly bigger than zero, and thus F r−1
1 (0) = F r−1

2 (0) =
0. Hence, the LUT F can be evaluated by computing the sum of F r−1

1 (ur
i (x)/q) (0 ≤ i < b0) and

F r−1
2 (ur

i (x)/q) (b0 ≤ i < q). Since we essentially evaluate the two identical LUTs for the cases 0 ≤ i < b0
and b0 ≤ i < q respectively, the sum of LUTs can be integrated as follows.

F (x) = F r−1
1

 ∑
0≤i<b0

ur
i (x)/q

+ F r−1
2

 ∑
b0≤i<q

ur
i (x)/q


Now, it remains to evaluate two sub-LUTs F r−1

1 and F r−1
2 . We remark that F r−1

1 and F r−1
2 are again

step function over Zpr−1 with bounds B1 := br−1 . . . b2(b1 + 1) and B2 := br−1 . . . b2b1. Hence, they can
also be divided into sub-LUTs analogously. In a similar way that F r−1

1 and F r−1
2 do not contain any

information on the LSB b0 in them, the sub-LUTs of F r−1
1 and F r−1

2 are also independent from the LSB
b1+1 and b1, of the bounds B1 and B2, respectively. As B1 and B2 only differ by the LSB, the sub-LUTs
of F r−1

1 and F r−1
2 should be identical. Let us denote them by F r−2

1 and F r−2
2 . Then, they are defined as

follows:

F r−2
1 =

{
0 if x < br−1 . . . (b2 + 1)

1 otherwise

F r−2
2 =

{
0 if x < br−1 . . . b2

1 otherwise
.

Analogous to the evaluation of F , F r−1
1 and F r−1

2 can be evaluated in a recursive manner. For a better
readability, let us denote by x1 :=

∑
0≤i<b0

ur
i (x)/q and x2 :=

∑
b0≤i<q u

r
i (x)/q. Then, it follows that

F (x) = F r−2
1

 ∑
0≤i≤b1

ur−1
i (x1)/q +

∑
0≤i<b1

ur−1
i (x2)/q


+ F r−2

2

 ∑
b1<i<q

ur−1
i (x1)/q +

∑
b1≤i<q

ur−1
i (x2)/q


since F r−2

1 (0) = F r−2
2 (0) = 0 due to the condition B ≥ qr−1.

Note that the input for the same LUTs are integrated and hence it only requires the evaluation of four
polynomials

∑
0≤i≤b1

ur−1
i (x1)/q,

∑
0≤i<b1

ur−1
i (x2)/q,

∑
b1<i<q u

r−1
i (x1)/q and

∑
b1≤i<q u

r−1
i (x2)/q, and
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LUTs F r−2
1 and F r−2

2 over Zqr−2 . These LUTs F r−2
1 and F r−2

2 can be iteratively computed via four poly-
nomial evaluations and two LUT evaluations in the smaller dimension, in a similar manner. (Note that
the condition B ≥ qr−1 plays an important role here, making the value of the LUT zero for the zero
input.) Subsequently, at the end of the iteration, it remains to evaluate two LUTs F 1

1 and F 1
2 over Zq,

defined as follows.

F 1
1 =

{
0 if x < br−1 + 1

1 otherwise

F 1
2 =

{
0 if x < br−1

1 otherwise
.

We stress that any function over Zq is a polyfunction, both of them have polynomial representations
with integer coefficients and each LUT can be evaluated with one polynomial evaluation. From these
recurrence relations, we can devise an algorithm for step function evaluation. Below, the exact algorithm
based on this approach is presented in Alg. 2.

Algorithm 2 Polynomial evaluation for step function
Input: An input x ∈ Zqr , LUT F of a step function with bound B.
Output: F (x) ∈ Zq

1: parse B = br−1br−2 . . . b0 in digit q representation.
2: x1, x2 ← 0 ∈ Zqr , x ∈ Zqr

3: for i = 0; i < r − 1; i+ = 1 do
4: x1 ←

∑
0≤j≤bi

ur−i
j (x1) +

∑
0≤j<bi

ur−i
j (x2) (mod qr−i)

5: x2 ←
∑

bi<j<q u
r−i
j (x1) +

∑
bi≤j<q u

r−i
j (x2) (mod qr−i)

6: x1, x2 ← x1/q ∈ Zqr−i−1 , x2/q ∈ Zqr−i−1

7: end for
8: Return F 1

1 (x1) + F 1
2 (x2) ∈ Zq

Depth and Time complexity Analysis Now we analyze the depth consumption and the time com-
plexity of our method. For the time complexity, we consider the number of multiplication (key-switching)
which takes a large portion of the computations time in the functional bootstrapping. We remark that
they are solely dependent on the degree of the polynomials utilized during the evaluation. It is known
that any polynomial of degree d can be evaluated with 2

√
d non-scalar multiplications while consuming

⌈log d⌉ levels, utilizing the Paterson-Stockmeyer algorithm [21, 41]. Based on this fact, we conduct the
time complexity and the depth consumption analysis for our method.

In the i-th iteration, four polynomials over Zqr−i is evaluated. As every polynomial over Zqr−i has
degree at most µ(qr−i) ≈ q(r − i) by Lemma 1, their evaluation requires ≈ 4 · 2

√
q(r − i) = 8

√
q(r − i)

key-switching operations and ≈ log(qr) levels of depth consumption. Hence, during r iterations of the
algorithm, we perform

∑r−1
i=0 8

√
q(r − i) ≈ 16

3

√
r3q key-switching operations and consume

∑r−1
i=0 log(q(r−

i)) = r log q + log r! multiplicative depths.

Optimization Our method can be optimized under certain circumstances. If bi = 0 for some 0 ≤ i < r,
the polynomial

∑
0≤j<bi

ur−i
j (x1) is essentially zero and thus its evaluation can be skipped. Moreover,

if B has consecutive ℓ zeros in the LSB, i.e., b0 = b1 = · · · = bℓ−1 = 0, x1 is essentially zero for ℓ
iterations. In this case, only one polynomial evaluation and two polynomial evaluations are necessitated
at the beginning and in each iteration of the algorithm, respectively.

We also remark that there exists a time-depth trade-off for our LUT evaluation as well. Our method
essentially compares each digit of the bound and the input, it can be realized as a multivariate function
over Zq with digits of the input message as variables. Note that each digit can be obtained while consuming
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i · log q during the digit extraction algorithm of the conventional FV bootstrapping, the multivariate
polynomial can be evaluated with output depth (r + 1) log q. This depth asymptotically improves the
depth consumption of the aforementioned method, while its asymptotic time complexity is increased.

Evaluation of arbitrary LUT The evaluation of step function can be naturally extended to the case of
LUT with multiple intervals. Naïvely, we can decompose a LUT with k intervals into a linear combination
of k step functions. In particular, let the LUT with k intervals is defined as follows:

F (x) =



α1 if x < B1

α2 if B1 ≤ x < B2

...

αk−1 if Bk−2 ≤ x < Bk−1

αk otherwise

Then, we can represent it as F (x) = α1+
∑k−1

i=1 (αi+1−αi)Fi(x) such that Fi(x), step function, is defined
as follows:

Fi(x) =

{
0 if x < Bi

1 otherwise
for 1 ≤ i < k

Hence, we have the capability to evaluate an arbitrary step function during functional bootstrapping.
However, employing naïve approach entails performing k time-consuming evaluation of k step functions.
We remark that the time complexity can be mitigated by constructing a recurrence relation akin to the
step function case. Specifically, we categorize the cases based on the LSB of the given bounds B1, . . . , Bk−1.
Nonetheless, this approach involves an exhaustive classification of edge cases, given the existence of
k · (k − 1)! = k! possible orderings of the LSB of the input value and k − 1 bounds. While it reduces the
number of polynomials evaluated throughout the LUT evaluation, this classification should be considered
carefully. Therefore, for better scalability, it is advisable to use the naïve method except for certain
use-cases demand optimization.

4.3 Concrete Examples: Delta & Sign Functions

In this section, we apply our functional bootstrapping technique to some selected functions, namely delta
and sign function. The delta function is a special function that returns 1 when the input is zero and 0
for other cases. To put it in a functional form,

Delta(x) =

{
1 if x = 0

0 otherwise

After modulus switching from qr to Q in the modulus switching phase, the ciphertext can be regarded as
an encryption of ⌊qr/p⌉ ·m+ e where −qr/2p ≤ e < qr/2p, as discussed in the beginning of this section.
Therefore, the evaluated LUT during the functional bootstrapping of the delta function should be

F (x) =


0 if x < −qr/2p
1 if − qr/2p ≤ x < qr/2p

0 otherwise.

Even though the function F seems like a LUT , we can convert it into a step function case by shifting
a domain. Since the message space of FV is (−p/2, p/2] for the plaintext modulus p, the delta function
is converted to the following function when we substitute the input x to x− ⌊p/2⌉:

Delta(x) =

{
0 if x < p− 1

1 otherwise
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Then, the LUT F is also changed as follows:

F (x) =

{
0 if x < qr − qr/2p

1 otherwise

As evaluating a functional bootstrapping with a LUT with three intervals takes more complexity than a
step function, we can reduce the complexity by transforming the delta function as we mentioned above.
We can exploit the delta function to extract items with the same attribute as the target value. A more
detailed scenario is described in the next section.

Another useful function is a sign function which returns -1 when the input is negative and 1 for other
cases. It also has various ways to utilize this function. For example, The sign function is the main building
block of comparison which is a sign value of subtraction of two inputs and the comparison is a useful
function used in several applications such as decision trees, sorting algorithms, or SQL queries in the
database.

The sign function is a typical step function that can be written as follows:

Sign(x) =

{
−1 if x < 0

1 otherwise

Similar to the delta function, the LUT F from Zqr to Z is as following:

F (x) =

{
−1 if x < −qr/2p
1 otherwise

As both LUTs have the same form as the step function, we can easily compute them during the
functional bootstrapping according to the Algorithm 2. Note that the depth and time complexity are
asymptotically the same with analysis in Section 4.2 since the evaluation process is not different from the
Algorithm 2. As a result, it requires

∑r−1
i=0 8

√
q(r − i) ≈ 16

3

√
r3q key-switching operations and consumes∑r−1

i=0 log(q(r− i)) = r log q+ log r! depths. In the following section, a concrete performance of these two
functions are provided under an appropriate parameter set.

5 Experiments & Applications

Employing the functional bootstrapping algorithm, specifically tailored for the delta and sign functions,
we present a proof-of-concept level implementation within the context of the FV scheme.

We apply functional bootstrapping to address specific functions within practical applications, notably
in the domains of PSI [8, 7, 15] or circuit PSI [28], and PIR [14, 40, 22]. Remark that the delta and sign
functions described in Section 4 have extensive utility in real-world scenarios.

The subsequent sections present a comprehensive benchmark analysis of the performance of functional
bootstrapping and introduce its efficacy in addressing the specified functions within the FV scheme.
Additionally, we present practical use cases and demonstrate the utilization of functional bootstrapping.

5.1 Implementation

We provide a proof-of-concept implementation of our LUT evaluation for the delta and sign functions. We
implemented our method in Lattigo v5 [37]. All experiments were performed on a machine with Intel(R)
Xeon(R) Platinum 8268 @ 2.90GHz CPU and 192GB RAM running Ubuntu 20.04.2 LTS. We used two
ring dimensions N = 215 and N = 216, which are commonly used for an evaluation of a circuit with a
sufficiently large depth such as bootstrapping. Each parameter set (p, q, r, ||s||1) satisfies the condition
of equation 1 to guarantee the low bootstrapping failure probability and achieves an estimated security
level of ≥128-bits. Table. 1 summarizes the parameter set that we used in the implementation.



16 D. Lee et al.

ID p q r ∥s∥1 N logPQ

I ≤ 700 17 4 256 215 840
II ≤ 12000 17 5 256 216 1700

Table 1: Parameter set for the implementation. p, q denote the input and output plaintext modulus,
respectively.

In Lattigo, the choice of the plaintext modulus is confined to a power-of-two NTT-friendly prime
number with moderate size. Such a limitation causes unexpected behavior of the existing baseline algo-
rithms in the Lattigo library. Therefore, we implemented several (unoptimized) algorithms such as the
Paterson-Stockmeyer polynomial evaluation algorithm, matrix multiplication, encoding and decoding.
Due to such a reason, we believe that there still is room for further optimization in our code. An illus-
trative example is the application of the lazy polynomial Baby-Step Giant-Step (BSGS) algorithm [34],
which holds the promise of minimizing the relinearization operations during polynomial evaluation. In
addition, we recognize the opportunity to enhance the time complexity of polynomial evaluation from a
sublinear to a logarithmic scale through the utilization of the polynomial evaluation technique proposed
by Okada et al. [39]. We expect that these potential optimizations will refine the efficiency and overall
performance of our code.

5.2 Benchmarks

We present experimental results derived from our implementation of the functional bootstrapping method.
The execution time associated with functional bootstrapping is presented in Table 2. As described in
Section 4.3, the LUTs employed for the computation of delta and sign functions exhibit identical charac-
teristics, sharing the same number of intervals and the ranges within those intervals. The only difference
is the output values of each interval. Consequently, the evaluation time for the functional bootstrapping
with both functions remains consistent. During the measurement of elapsed time, we constrained the
dataset size to ensure that the data could be efficiently packed within a single ciphertext. Note that the
initial plaintext modulus p, correlated with the number of messages packable in the ciphertext, does not
affect the execution time within the scope of our experimental setup.

ID Elapsed Time BTS Remaining Levels

I 46.5 sec ≈ 595 bits ≈ 44 levels
II 171.4 sec ≈ 840 bits ≈ 104 levels

Table 2: Evaluation time, noise consumption of functional bootstrapping (BTS), and remaining level after
functional bootstrapping for delta/sign function

In addition, Table 2 also shows the noise consumption and remaining level, resulting from it, of
the functional bootstrapping. The ring dimension N affects the magnitude of noise generated during
homomorphic evaluation, with a parameter set featuring N = 216 leading to a greater bit consumption
during the bootstrapping process. In addition, we calculate the remaining level in the situation where the
plaintext modulus is q which is smaller than p. Therefore, the remaining noise level is markedly higher
in comparison to situations where the modulus remains p.

5.3 Applications

The application of functional bootstrapping with delta or sign functions holds significant potential in
various real-world scenarios. One prominent example is Circuit-based Private Set Intersection (Circuit
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PSI) protocol [28], which is a generalization of the plain PSI. PSI is a 2PC protocol that computes the
intersection X ∩ Y of private sets X and Y of each participating party, without leaking any information
on X and Y rather than the intersection. The functionality of Circuit PSI is essentially the same, while
a function is evaluated over the intersection privately instead of just computing the intersection.

To realize this Circuit PSI in HE-based PSI protocols, evaluation of delta function is necessary, since
the output is zero if the item is contained in the intersection X ∩ Y , and a random non-zero integer
otherwise in the current HE-based PSI protocols [8, 7, 15]. However, a naïve evaluation of the delta
function is almost infeasible, since it requires an evaluation of a polynomial with a size of the plaintext
which is typically large in these settings moreover, the remaining level after the PSI protocol is low
and thus it requires a bootstrapping. We stress that our functional bootstrapping can be utilized, by
proceeding the functional bootstrapping with delta function evaluation.

<Database ‘DB’>

User ID Age . . . Grade

1545 25 . . . 5
2418 43 . . . 3
197 16 . . . 5
1886 37 . . . 4

Query: SELECT GRADE FROM ‘DB’ WHERE ID=1886
→ For each row, return “delta(ID - 1886) * GRADE”

Fig. 5: PIR example for the functional bootstrapping

A PIR [14, 40, 22] is another application scenario of how functional bootstrapping can be effectively
employed. In a PIR setting, a user seeks to retrieve specific information from a server without disclosing
the identity of the item being retrieved. If we apply HE to achieve this functionality, it requires an equality
check that can be facilitated through the utilization of the delta function.

Consider the scenario depicted in Figure 5, where the goal is to extract attributes (e.g., Grade) of
entities with a certain index from the database. The process involves subtracting a value of certain index
from each row and selecting entities for which the result is zero. By using the delta function, we can
transform these results into 1 when the subtraction is zero and 0 for others. Subsequently, obtaining
attributes for specific indexes becomes straightforward by multiplying the delta function result with the
corresponding attribute values. This application underscores the versatility of functional bootstrapping
in privacy-preserving information retrieval scenarios.

Moreover, when we evaluate these queries, functional bootstrapping may enhance the flexibility of the
computation. In the previous bootstrapping method, all messages needed to be encrypted with the same
plaintext modulus since there were no operations that changed the plaintext modulus. However, different
data may have different domains (ranges) and there are appropriate parameters for encrypting each of
them. For instance, as the range of ‘User ID’ is much wider than ‘Grade’ in Figure 5, we can encrypt
the latter data with a smaller plaintext modulus and it might improve both time and space complexity
during the overall circuit evaluation.

6 Conclusion & Future Works

In this paper, we introduce a new bootstrapping method called the functional bootstrapping which
generalizes the existing bootstrapping techniques for FV scheme. It extends the functionality of the
bootstrapping by allowing us to perform an arbitrary function during the bootstrapping, without any
additional depth consumption than the bootstrapping depth. As a result, the consumed depth and the
computational complexity of a large depth circuit can be mitigated asymptotpically. It also gives more
flexibility in the parameter selection by allowing us the plaintext modulus conversion.
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It is achieved by a development of a new algorithm to evaluate the arbitrary look-up tables over the
commutative ring Zpℓ . An optimized LUT evaluation algorithm for a specific class of LUT, namely the
step-function, is also proposed. In addition, we demonstrate its application in handling a special functions
like delta and sign functions. We implement this approach using the open-source FHE library, Lattigo [37]
and provide benchmark analyses.

It is worth noting that our method can also be applied to the bootstrapping for BGV cryptosystem, or
even CKKS cryptosystem. Recall that in our LUT evaluation method, the input message does not need
to be structured. In other words, our method can be utilized for any kind of packing method as long as we
choose the correct parameter. Although similar to the discussion given in [6], we expect that the functional
bootstrapping for BGV ciphertext will be asymptotically worse than the functional bootstrapping for FV
ciphertext due to the rounding error bound and limited choice of p and q. We believe that optimizing our
functional bootstrapping framework for these cases can be an interesting research topic in the future.
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