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Abstract. The submission of the Triangular Unbalanced Oil and Vinegar (TUOV) digital sig-
nature scheme to the NIST competition in 2023 claims that if the Multivariate Quadratic (MQ)
problem (with suitable parameters) is hard, then the TUOV problem must also be hard. We show
why the proof fails and why the claimed theorem cannot be true in general.

1. Introduction

Triangular Unbalanced Oil and Vinegar (TUOV) is one of the multivariate-based algorithms sub-
mitted to Round 1 of the NIST call for additional digital signature schemes in 2023 [1]. It is
a modification of the well-studied Unbalanced Oil and Vinegar (UOV) digital signature scheme.
Much of the cryptanalysis conducted by the authors in [1] consists of demonstrating the resilience of
the TUOV scheme against standard attacks for UOV, such as Kipnis-Shamir and MinRank attacks.
However, they make the novel claim that the hardness of the MQ problem implies the hardness of
the TUOV problem.

In this note, we discuss the error in their proof of this claim and show why it cannot be true in
general.

Throughout this paper, q denotes a prime power and Fq denotes the field with q elements. We also
let n and m denote positive integers.

2. Background

We first define the general Multivariate Quadratic (MQ) Problem, which is widely used as the basis
for many proposed post-quantum digital signature schemes.

Definition 2.1. An (n, q)-MQ-polynomial f ∈ Fq[x1, · · · , xn] is a quadratic polynomial in n
variables

f(x1, . . . , xn) =

n∑
i=1

n∑
j=1

αi,jxixj +

n∑
i=1

βixi + γ.

It has unique matrix representation as f(x) = x⊤Ax+b⊤x+γ where A ∈ Fn×n
q is upper triangular,

b ∈ Fn
q , and γ ∈ Fq. An (n,m, q)-MQ-map M : Fn

q → Fm
q is an m-tuple of (n, q)-MQ-polynomials

(f (1), . . . , f (m)). We callM random if the coefficients of all f (i) are chosen uniformly at random
from Fq.

Fix a function Setup’(·) that outputs (n,m, q) on input 1κ.
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Definition 2.2. The MQ Problem in relation to Setup’(·) is (t, ϵ)-hard if there exists no algo-
rithm that, given security parameter κ, params = (n,m, q) ← Setup′(1κ) and a random params-

MQ-mapM : Fn
q → Fm

q in relation to params on input y :=M(w) with w
$← Fn

q , outputs w
′ such

thatM(w′) = y with probability no less that ϵ(κ) in processing time t(κ).

We now define Oil and Vinegar (OV) polynomials, which have become a well-known tool in mul-
tivariate cryptography since their introduction by Patarin in 1997 [2]. We follow this with the
definition of TOV polynomials, which are a slight generalization from [1]. These two types of
polynomials form the basis of the TUOV digital signature scheme.

Definition 2.3. Given 1 ≤ m < n, an (n,m)-OV-polynomial f over Fq is an (n, q)-MQ-
polynomial of the restricted form

f(x1, . . . , xn) =
n−m∑
i=1

n∑
j=1

αi,jxixj +
n∑

i=1

βixi + γ.

It thus has unique matrix representation of the form

f(x) = x⊤
[

A(1) A(2)

0m×(n−m) 0m×m

]
x+ b⊤x+ γ,

where A(1) ∈ F(n−m)×(n−m)
q is upper-triangular, A(2) ∈ F(n−m)×m

q , b ∈ Fn
q and γ ∈ Fq.

A slightly larger set of MQ-polynomials was defined in [1] as follows.

Definition 2.4. Given 1 ≤ d < m < n, an (n,m, d)-TOV-polynomial f over Fq is an (n, q)-MQ-
polynomial of the form

n−m+d∑
i=n−m+1

n−m+d∑
j=n−m+1

αi,jxixj +

n−m∑
i=1

n∑
j=1

αi,jxixj +

n∑
i=1

βixi + γ.

It has a unique matrix representation as

f(x) = x⊤

 A(1) A(2d1) A(2d2)

0d×(n−m) A(4d1) 0d×(m−d)

0(m−d)×(n−m) 0(m−d)×d 0(m−d)×(m−d)

x+ b⊤x+ γ

where A(1) ∈ F(n−m)×(n−m)
q and A(4d1) ∈ Fd×d

q are upper-triangular, A(2d1) ∈ F(n−m)×d
q , A(2d2) ∈

F(n−m)×(m−d)
q , b ∈ Fn

q and γ ∈ Fq.

In essence, TOV-polynomials are a slight generalization of OV-polynomials, in which more non-zero
entries are permitted in the matrices representing the quadratic part. The MQ-maps used in [1]
are instead TUOV-maps, as follows.

Definition 2.5. Given 1 ≤ m1 < m2 < m < n, a TUOV central map in relation to params =
(n,m,m1,m2, q) is a function F : Fn

q → Fm
q sending x 7→ F(x) = (f1(x), . . . , fm(x))⊤, where

fk is an


(n,m1)−OV-polynomial, if k ∈ [m1]

(n,m, k −m1)− TOV-polynomial, if k ∈ [m2] \ [m1]

(n,m−m2 +m1 − 1)−OV-polynomial, if k ∈ [m] \ [m2].
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A TUOV map in relation to params = (n,m,m1,m2, q) is P = S ◦ F ◦ T : Fn
q → Fm

q where
S : Fm

q → Fm
q and T : Fn

q → Fn
q are invertible affine transformations and F : Fn

q → Fm
q is a TUOV

central map in relation to params. We call P random if the coefficients of the polynomials fi in
F as well as the affine transformations S and T are chosen uniformly at random.

Fix Setup(·) that outputs params = (n,m,m1,m2, q) on input 1κ.

Definition 2.6. The TUOV problem in relation to Setup(·) is (t, ϵ)-hard if there exists no
algorithm that, given params and a random TUOV map P : Fn

q → Fm
q in relation to params, on

input z = P(w) with w
$← Fn

q , outputs w
′ such that P(w′) = z with probability no less than ϵ(κ)

in processing time t(κ).

The security of the TUOV signature scheme is conjecturally based on the hardness of the TUOV
problem.

3. Invalidity of the Security Reduction

The authors of [1] claim that, under certain parameters, the MQ problem reduces to the TUOV
problem. Their precise statement is as follows.

Assertion 3.1. [1, Theorem 1] Given Setup(·) that ouputs

params = (n =
1

2
m2,m,m1 =

1

2
m,m2 =

3

4
m, q)

on input 1κ and its restriction Setup’ that outputs

params’ = (n =
1

2
m2,m, q),

if the MQ problem in relation to Setup’(·) is (t, ϵ)-hard, then the TUOV problem in relation to
Setup(·) is (t, ϵ)-hard.

We disprove Assertion 3.1 here by demonstrating where the proof in [1] fails, and in the next section
show why such a claim cannot be true.

To prove their claim, they must show how an arbitrary (n = 1
2m

2,m, q)-MQ map M can be

efficiently transformed into a (n = 1
2m

2,m,m1 = 1
2m,m2 = 3

4m, q)-TUOV central map. More
precisely, they must find an invertible affine transformation Q : Fn

q → Fn
q such that F :=M◦ Q

is a TUOV central map. Since the only structural restrictions on a TUOV central map come from
the quadratic terms, it suffices to specify Q based on its transformation on only the quadratic part
of polynomials inM, as it can be applied on the linear terms without affecting the specifications
of a TUOV central map.

They consider the matrix representation of the quadratic part of the k-th polynomial fk inM,

Mk =

[
M

(1)
k M

(2)
k

0m×(n−m) M
(4)
k

]
,

where M
(1)
k ∈ F(n−m)×(n−m)

q and M
(4)
k ∈ Fm×m

q are upper triangular and M
(2)
k ∈ F(n−m)×m

q .
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Then, they consider the matrix representation of an arbitrary invertible affine transformation Q :
Fn
q → Fn

q of the form

Q =

[
Q(1) Q(2)

0m×(n−m) Im

]
.

Then the quadratic part of the k-th polynomial ofM◦Q has matrix representation

Q⊤MkQ =

[
Q(1)⊤M

(1)
k Q(1) Q(1⊤M

(1)
k Q(2) +Q(1)⊤M

(2)
k

Q(2)⊤M
(1)
k Q(1) Q(2)⊤M

(1)
k Q(2) +Q(2)⊤M

(2)
k +M

(4)
k

]
.

In [1], the authors had the incorrect expression Q(2)⊤M
(1)
k Q(1) +Q(2)⊤M

(2)
k +M

(4)
k in the bottom

right block instead. We will now evaluate the impact of this error on the remainder of their proof.

Since they want this to represent the k-th polynomial in a TUOV central map, Ak = Q⊤MkQ
should have the form

[
A

(1)
k A

(2)
k

0m1×(n−m1) 0m1×m1

]
, k ∈ [m1] A

(1)
k A

(2d1)
k A

(2d2)
k

0d×(n−m) A
(4d1)
k 0d×(m−d)

0(m−d)×(n−m) 0(m−d)×d 0(m−d)×(m−d)

 , k ∈ [m2] \ [m1] and d = k −m1[
A

(1)
k A

(2)
k

0l×(n−l) 0l×l

]
, k ∈ [m] \ [m2] and l = m−m2 +m1 − 1.

In the TUOV specification, the error in the bottom right block of Q⊤MkQ led to the belief that if
the entries of Q(1) were fixed, then the system to solve would become linear in the entries of Q(2)

[1]. With our correction, we see that even after fixing the entries of Q(1), the resulting system that

needs to be solved is quadratic in the entries of Q(2).

After fixing the entries of Q(1) as in [1], the resulting quadratic system in the entries of the (n −
m) × m matrix Q(2) has (n − m)m ≈ 1

2m
3 variables and approximately 11

24m
3 equations. The

number of equations is determined by counting the number of equations arising from the matrix
representation of the quadratic part of each polynomial fk depending on its desired form after the
transformation, and summing for k ∈ [m]. The full details of this can be found in [1]. Thus, we have
taken a (12m

2,m, q)-MQ problem, and transformed it into a presumably larger (12m
3, 1124m

3, q)-MQ
problem, which we cannot solve efficiently for large m.

4. Conclusions

We conclude by demonstrating why such a transformation from MQ to TUOV cannot exist in
general, and discussing the security of the TUOV digital signature scheme beyond the invalid
reduction.

Lemma 4.1. An invertible affine transformation Q : Fn
q → Fn

q such thatM◦Q is a TUOV central
map does not exist for a general (n,m, q)-MQ mapM.

Proof. Observe that if Q is invertible and Q is its matrix representation of its linear part, then
det(Q) ̸= 0. Let Mk be the matrix representation of the quadratic part of of the k-th polynomial fk
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of the MQ mapM and Ak the matrix representation of the quadratic part of the k-th polynomial
of an arbitrary TUOV central map. SupposeM◦Q is a TUOV central map. Then for all k ∈ [m],

det(Ak) = det(Q⊤MkQ) = (det(Q))2det(Mk),

However, det(Ak)=0 for all k since all matrices in a TUOV central map have a row of zeroes. This
implies that det(Mk) is equal to 0 for all k ∈ [m], which is not true in general. □

Thus, the security reduction of the TUOV submission to the NIST competition is not valid. How-
ever, this does not necessarily imply that the scheme is insecure. The security analysis of UOV-
based digital signature schemes is usually comprised of analysis of several known attacks, such as the
Kipnis-Shamir and MinRank attacks, applied to the proposed scheme. The authors of [1] provide
a robust security analysis based on these known attacks and choose their parameters accordingly,
which seems to imply that TUOV is as secure as standard UOV.
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