
A Generalized Distributed RSA Key Generation

ChihYun Chuang1 IHung Hsu1 TingFang Lee2

1AMIS
{chihyun, glen}@maicoin.com

2Division of Biostatistics, NYU Grossman School of Medicine
Ting-Fang.Lee@nyulangone.org

Abstract

In this paper, we propose a novel bi-primality test to determine whether N = pq is the product of two
primes on any RSA modulus in which we relaxed the restriction, p ≡ q ≡ 3 (mod 4), that was assumed in
most of current bi-primality tests. Our bi-primality test is generalized from Lucas primality test to the bi-
prime case. Our test always accepts when p and q are both prime, and otherwise accepts with probability
at most 1/2. In addition, we also prove that the Boneh-Franklin’s bi-primality test accepts composite
with probability at most 1/4 instead of 1/2, if we add an additional condition gcd(N, p + q − 1) = 1.
Moreover, we design a multiparty protocol against of static semi-honest adversaries in the hybrid model
and provide a security proof. We then implement the proposed protocol and run in a single thread on a
laptop which turned out with average 224 seconds execution time, given that N is around 2048-bit.

1 Introduction

The RSA cryptosystem [40] is one of the original and commonly used public-key cryptosystems. In most
applications, two large distinct primes p and q, are initially generated as secrets and the public-key, N = pq,
is the product of the two different primes. However, it may lead to single point of attack. This problem
can be resolved by multi-party computation (abbrev. MPC) which allows participants jointly computing a
function using all parties’ inputs while each party can still keep their own input private. In this scenario,
the MPC technology enables parties to generate public key N without knowing the two primes p and q.
Many cryptographic protocols and primitives such as threshold homomorphics encryption [24,28], time-lock
puzzle [1,33,41], accumulators [5,8,31], and VDFs [7,15,20,29,37,42] need such feature. In particular, when
n parties are given, of which any t < n can be corrupted by an adversary, and we want a secure protocol that
outputs a random and valid RSA modulus N = pq where p, q are primes of a given size, while the adversary
learns nothing but N from the protocol. It is often a challenge to keep p and q private while generating such
modulus.

Two primality tests were widely used to tackle this problem. One is the modified Miller-Rabin primality
test [2, 17] that uses generic MPC methods to generate the prime factors by testing random candidate
numbers individually for primality. It firstly takes two integers, p ≡ 3 (mod 4) and N such that p|N . We
assume p ∈ [2κ1−1, 2κ1] and N ∈ [22κ1−2, 22κ1]. To examine if p is a prime, the test follows the steps:

1. Randomly choose v in ZN .

2. Compute γp = v(p−1)/2 (mod N).

3. If γp ≡ ±1 mod p, then p is a probably prime, else p is a composite number.

However, using MPC technology to efficiently compute γp (mod p) while keeps p private remaining a chal-
lenge. Boneh and Franklin [9] proposed the generalized Miller-Rabin test to avoid computational modular
with secret moduli. It takes two integers p ≡ q ≡ 3 (mod 4) with N = pq. The test proceeds as the following:

1. randomly choose g ∈ ZN with
[g
N

]
= 1.

1

2. Compute g(p−1)(q−1)/4 = γN (mod N).

3. If γN ≡ ±1 (mod N), then N is a Probably bi-prime, else N is not.

4. gcd(N, p+ q − 1) = 11

The disadvantage of this test is that the two inputs, p and q, both need to be primes to pass the test while
the modified Miller-Rabin test can collect qualified primes one at a time.

It is noteworthy that both Miller-Rabin and Boheh-Franklin’s tests can only support the case that
p ≡ q ≡ 3 (mod 4) which allows (p−1)/2 and (p−1)(q−1)/4 to be both odd integers to further simplify the
computation. The Miller-Rabin test, in the worst case, may accept a composite with probability 1/4 [11,39]
while it is known that the average case behavior has an upper bound [16, 17]. The Boneh-Fanklin’s test
always accepts when both p and q are prime, and otherwise accepts with probability at most 1/2; while
there is no known average error [9].

There are two parts of such protocols: a) Prime Candidate Sieving: participants generate potential
biprime N that does not divide by a prime less than a pre-determined integer B; and b) Biprimality testing:
the candidate N is repeatedly tested by a biprimality test. If N is not a biprime, then start over the process.

1.1 Our contribution

Our paper will be focusing on studying the biprimality testing. We illustrate that, in the worst scenario,
the Boneh and Fanklin’s [9] biprimality test accepts a composite with probability 1/4 instead of 1/2 when
assuming gcd(N, p+ q − 1) = 1. More precisely, we have:

Theorem 1 (Revised Boneh-Franklin). Let p ≡ q ≡ 3 (mod 4), gcd
(
pq, (p − 1)(q − 1)

)
= 1, and e :=

(p− 1)(q − 1)/4. Assume that N := pq. Consider a subgroup of Z×
N ,

G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [gN] = 1

}
,

which has a subgroup
BF(N, e) :=

{
g ∈ Z×

N | ge ≡ ±1 (mod N)
}
.

If p, q are both primes, then we have |BF(N, e)| = |G(N)|. For the other cases, we have |BF(N, e)| ≤
|G(N)|/4.

This theorem bypasses the exceptional case in [9, Lemma 2] and improves the efficiency in planning the
computation since the statistical error is down to 4−s after executing the test s times.

As far as we know, the current distributed RSA protocols can only generate the primes p, q with p ≡
q ≡ 3 (mod 4). We relax the restriction to arbitrary odd primes in the distributed RSA protocols through a
generalized Lucas biprimality test (cf. Theorem 4), and prove that the test accepts with probability at most
1/2 when p and q are not both primes. However, in the protocol we provide, there is a leakage of a fixed
number of Jacobi symbols

[
p
D

]
for randomly chosen D ∈ Z×

N . This is because in our protocol, we require

the randomly chosen D to satisfy
[
−D
p

]
= −1. Assuming we need 80 such D, and under the condition

of uniformly random selection of D, we need to perform 344 selections for a probability of 2−80 of failure.
Nevertheless, this quantity is independent of the public key length. Therefore, this drawback can be mitigated
by increasing the length of the public key. According to practical executions, the average quantity of leakage
is approximately 167. In addition, we define a natural functionality for generating RSA key, and design
protocols for distributed generation of RSA moduli that are secure against static semi-honest corruption.
The protocol is statistically secure when assuming access to a functionality for secure multiplication.

We first compare with Boneh-Franklin’s test. Theoretically, their efficiency is slightly better than our
test. We next explain that our protocol is expexted polynomial time. Lastly, implemented our semi-honest
protocol using our biprimality test, for 3 and 4 participants, and the bit length of N 2048, and so on. Details
on the implementation and results can be found in Section 5. The results clearly show that our protocol is
practical assuming honest majority.

1This test can be replaced of by the test [9, Section 4.1] on the group
(
ZN [x]/(x2+1)

)×
/Z×

N . However, its cost is higher [23,
Figure 3.4].

2

Table 1: Comparison of the biprimality tests

Probability of p, q can be
false positive p, q generated
under the restriction separately
worst case

Our Test 1/2 Any primes No
Boneh-Fanklin 1/2 p≡q≡3 (mod 4) No
Boneh-Fanklin* 1/4 p≡q≡3 (mod 4) No
Miller-Rabin 1/4 p≡q≡3 (mod 4) Yes

Boneh-Fanklin*: the Revised Boneh-Fanklin.

1.2 Technical Overview

We follow the blueprint of the protocols in [9], and [13] but replace with our primality testing. Given integers
D and N = pq, we extend the original Lucas primality test to the biprime case, so we study the cardinality
of the set

LPBP(D,N, e) :=

{
(P,Q)

0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, N is lpbp(P,Q)

}
.

Here N is lpbp(P,Q), Lucas pseudo-bi-prime (cf. Definition 2), means that N is not product of two distinct
primes, but can pass the test. The size of this set can determine the difficulty of verifying if N is a bi-prime.
We prove that when N is not square-free, then |LPBP(D,N, e)| ≤ N/3 for all D. If N is square-free and a
product of at least three distinct primes, then |LPBP(D,N, e)| is approximately N for some “unlucky” D,
which indicates that for arbitrary pairs P,Q can pass the test with overwhelming probability. To resolve

this issue, we expand this set to a product space (D,P,Q) with D satisfying
[
−D
p

]
=
[
−D
q

]
= −1 where

[·
·
]

is the Jacobi symbol. Naturally, we would consider D ∈ Z×
N . However, in the security proof, the simulator

might require D to be factorized for processing simulation to avoid the bias of the view of ideal/real world.
It is challenging to factorize D when it is randomly selected large integer. Therefore, the above discussion
suggests us that D should be a prime. By Dirichlet’s theorem on arithmetic progressions (cf. Theorem 2),
we can construct an interval that contains a good portion of such D. The probability of randomly sampling
qualified D is approximately 1/4. Validating if the sampled D is qualified during the sampling process may
leak some information of N . The leakage can be proved that it can be controlled by assuming the hardness
of factoring.

1.3 Related work

Boneh and Franklin [9] first proposed the distributed RSA modulus generation. They provided an efficient
distributed biprime test protocol which can test if N = pq is a biprime without needing to know information
about p and q and is secure in semi-honest model against an honest majority. Frankel, MacKenzie and
Yung [22] improved Boneh and Franklin’s protocol to achieve malicious security in honest majority. Poupard
and Stern [38] then proposed two party malicious secure protocol using OT; however, their protocol can leak
some bits of honest users’ information.

Gilboa [26] revised Boneh and Franklin’s protocol and presented a two party semi-honest protocol. They
also proposed three secure multiplications using OT, homomorphic encryption, and oblivious polynomial
evaluation. Hazay et al. [28] then added zero knowledge into each step of Gilboa’s secure multiplication that
is based on homomorphic encryption to achieve two party malicious security. This was the first dishonest
majority malicious secure protocol without leakage. Frederiksen et al. [23] implement two party protocol
secure in malicious model using Gilboa’s secure multiplication protocol based on OT which they check at
the last step instead of adding zero knowledge proof to each step. This significantly enhanced the efficiency
while allowing slightly leakage in honest party’s input.

Malkin et al. [34] introduced sieving which randomly generate prime candidates and validate those can-
didates using trial division. Chen et al. [13] followed Malkin et al. [34] to incorporate Chinese Reminder
Theorem to enhance the efficiency in generating prime candidates. They then introduce secure multiplication

3

based on homomorphic encryption and semi-honest aggregator such that the protocol is scaleable [14]. The
approach proposed by Guilhem et al. [18] also employs the Chinese Remainder Theorem for sieving. What
distinguishes it from [13] is that they first generate multiplicative sharings and then transform them into
additive sharings through semi-honest multiplication, thereby reducing communication costs.

On the other hand, Algesheimer et al. [2] proposed a distributed primality test based on Miller–Rabin
primality test that achieves semi-honest security against a dishonest majority. The advantage of such dis-
tributed Miller-Rabin primality test is that it can test if p and q are primes separately instead of needing p
and q pass the test simultaneously like in Boneh-Franklin’s test [9]. This can largely reduce the iterations,
but the cost of each iteration is higher than Boneh-Franklin’s test. Damg̊ard and Mikkelsen [17] utilized the
replicated secret sharing in the case of three parties to improved efficiency, secure in malicious model against
an honest majority in comparison with Algesheimer et al. [2]. Burkhardt at el. [12] proposed a protocol
which followed Damg̊ard and Mikkelsen’s idea and used a different test along with shamir secret sharing.
Their protocol achieved efficient distributed RSA key generation, with more than 3 parties and without
set-up assumptions.

2 Preliminaries

Basic notations. Let P be the set of all primes, N be the nature numbers, and Z be the ring of integers.
For a finite set S, |S| means the cardinality of S. Let ZN be the additive group of order N , and Z×

N be
the multiplicative group in ZN . Moreover, |Z×

N | = ϕ(N), where ϕ is the Euler’s totient function. For an
interval I, we set P(I) := {p ∈ P | p ∈ I}. The greatest common divisor of two positive integers x and

y ∈ N is denoted by gcd(x, y). For an integer N , we denote ϵD(N) to be the Jacobi symbol

[
D

N

]
. For secret

sharings, we adapt the following notation and conventions: [α]β will denote the secure additive sharing of
value α in the integer domain Zβ (i.e. Each of the participants, {Pi}ki=1, has their own secret αi ∈ Zβ such

that
∑k

i=1 αi ≡ α (mod β)).

2.1 Some Mathematical results

In this section, we recall some facts used here. The Chinese remainder theorem asserts that let m = (mj)
ℓ
j=1

be a vector of pairwise-coprime positive integers and a = (aj)
ℓ
j=1 be a vector of numbers such that 0 ≤ aj <

mj for all 1 ≤ j ≤ ℓ. Set M :=
∏ℓ

j=1mj . Then there exists a unique y with 0 ≤ y < M such that the system
y ≡ aj (mod mj) holds for all 1 ≤ j ≤ ℓ.

Given such m and a, we have the following algorithm to find the unique y:

Protocol 1 CRT-Reconstruct

Inputs: Vectors m and a.

Output: The value y satisfying y ≡ aj (mod mj) for all 1 ≤ j ≤ ℓ.

1. Compute M =
∏ℓ

j=1mj .

2. Compute xj :=M/mj and find the inverse bj of xj in Zmj . Output y :=
∑ℓ

j=1 ajbjxj (mod M).

Next, we introduce Dirichlet’s theorem on arithmetic progressions assuming generalized Riemann hy-
pothesis (abbrev. GRH). For a given Dirichlet character χ (mod q) and a complex number s and ℜ(s) > 1,
its L-function is defined by

L(s, χ) :=
∑
n≥1

χ(n)n−s,

which can be extended by analytic continuation to the complex plane.

4

Roughly speaking, GRH says that if L(s, χ) = 0 and ℜ(s) > 0, then ℜ(s) = 1/2 (i.e. all non-trivial roots
are on the line ℜ(s) = 1/2). For two positive integers with gcd(a, q) = 1, let

π(x; q, a) :=
∑

p∈P([2,x))
p≡a (mod q)

1.

The asymptotic formula of π(x; q, a) is given below.

Theorem 2. [35, Corollary 13.8] Suppose that gcd(a, q) = 1. Then for x ≥ 2,

π(x; q, a) =
li(x)

ϕ(q)
+O

(
x1/2 lnx

)
.

Here li(x) :=

∫ x

2

du

lnu
.

Therefore, one has

Corollary 1. Let N = pq be the product of two distinct odd integers such that neither p nor q are perfect
squares, and assume GRH. Then for all x ≥ 2, we have ∑

D∈P([2,x]):[−D
p]=[−D

q]=−1

1

/
 ∑

D∈P([2,x]):
(D,N)=1

1

 = ψ(p, q) +O
(
x−1/2(lnx)2

)
.

Here ψ(p, q) :=

{
1/2, if p = p′k21 and q = p′k22, for some prime p′;

1/4, otherwise.

Proof. When N is given and be a product of two distinct odd integers p, q, Lemma 7 tells us∣∣{a ∈ Z×
N | ϵ−a(p) = −1 and ϵ−a(q) = −1}

∣∣ = ϕ(N) · ψ(p, q).

Then ∑
D∈P([2,x]):[−D

p]=[−D
q]=−1

1

=
∑

t∈Z×
N :[−t

p]=[−t
q]=−1

π(x;N, t)

=ψ(p, q) · li(x) +O
(
x1/2 lnx

)
,

and ∑
D∈P([2,x]):
(D,N)=1

1 = li(x) +O
(
x1/2 lnx

)

The proof is concluded by li(x) = x
ln x +O

(
x

(ln x)2

)
.

We can derive that, given an interval, the size of the set of primes that satisfy any quadratic values are
almost the same.

Corollary 2. Let N =
∏s

i=1 pi be an odd square-free integer, and assume GRH. For all x ≥ 2, and any
ϵi, ϵ

′
i ∈ {−1, 1}, where 1 ≤ i ≤ s, we have∣∣ {p ∈ P([2, x]) |

[
p
pi

]
= ϵi for all 1 ≤ i ≤ s

} ∣∣∣∣ {p ∈ P([2, x]) |
[

p
pi

]
= ϵ′i for all 1 ≤ i ≤ s

} ∣∣
=1 +O

(
x−1/2(lnx)2

)
.

5

Proof. For any {ϵi}si=1, we have∣∣∣∣ {p ∈ P([2, x]) |
[
p

pi

]
= ϵi for all 1 ≤ i ≤ s

} ∣∣∣∣
=

∑
t∈Z×

N :
[

t
pi

]
=ϵi, ∀i

π(x;N, t)

=

 ∑
t∈Z×

N :
[

t
pi

]
=ϵi, ∀i

1

(li(x)

ϕ(N)
+O(x1/2 lnx)

)

=
li(x)

2s
+O(x1/2 lnx).

Below is a fact from group theorem [3, Lemma 2.1].

Lemma 1. Let G be a cyclic group and d an integer. There are exactly gcd(d, |G|) dth-root of 1 in G.

2.2 Lucas pseudo-primes

We introduce Lucas sequence and some results [3]. Let P and Q be integers and D := P 2 − 4Q. The Lucas
sequence (Uk, Vk) that is associated with the parameters P,Q are defined as, for k ≥ 0,{

Uk+2 = PUk+1 −QUk;

Vk+2 = PVk+1 −QVk,

with the initial conditions {
U0 = 0, U1 = 1;

V0 = 2, V1 = P.

It is well known that Up−ϵD(p) ≡ 0 (mod p) for any prime p ∤ 2QD. A composite integer N that is relatively
prime to 2QD and satisfies UN−ϵD(N) ≡ 0 (mod N) is called a Lucas pseudo-prime with respect to P and
Q.

For the Lucas sequence [3, Section 3], (Uk, Vk) associated with P,Q and P 2−4Q ̸= 0, we have the general
formula: for all k ∈ N,

Uk =
αk − βk

α− β
, Vk = αk + βk,

where α, β are two distinct roots of the polynomial x2−Px+Q. Let OD be the ring of integers of a quadratic
field Q(

√
D). If N ∤ 2QD, we set τ := αβ−1. Then we have, for k ∈ N,

N | Uk if and only if τk ≡ 1 (mod NOD),

Given an element u + v
√
D ∈ Q(

√
D), the norm map is given by N(u + v

√
D) = u2 − v2D ∈ Q. When

x ∈ OD, the norm N(x) ∈ Z. Consider the multiplicative group of norm 1 elements denoted by ̂(OD/N
)
in

a free Z/NZ-algebra of rank 2. This group is the image of the set

{x ∈ OD | N(x) ≡ 1 (mod N)}

by the canonical map OD → OD/N.

For completion, we also recall two facts [3, Therorem 3.1 & Proposition 3.2.] about the group ̂(OD/N
)
:

Proposition 1. Let p ∤ 2D be a prime number and r ≥ 1 be an integer. The group ̂(OD/pr
)
is cyclic of the

order pr−1 (p− ϵD(p)) .

6

Proposition 2. Let D be a non-square integer and N :=

s∏
i=1

prii be a positive integer with gcd(N, 2D) = 1.

Then, for all integers P , there exists an integer Q, uniquely determined modulo N , such that P 2 − 4Q ≡
D (mod N). Moreover, the set of integers P such that{

0 ≤ P < N ;

gcd(P 2 −D,N) = gcd(Q,N) = 1,

is in a one-to-one correspondence with the elements τ in ̂(OD/N
)
such that τ − 1 is a units in OD/N .

Moreover, we have

|Z(D,N, e)| :=
∣∣∣∣{(P,Q)

P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, 0 ≤ P,Q < N

}∣∣∣∣
=

s∏
i=1

pri−1
i (pi − ϵD(pi)− 1).

2.3 The Security Model

In this paper, we are interested in static semi-honest adversities. Staticmeans that the adversary is restricted
to choose a set of parties to corrupt before the protocol execution starts and cannot change this set after.
Semi-honest adversaries run the protocol honestly, but try to learn as much as possible from the message
received from other parties. Here, We adapt the definition in [36, Definition 7.5.1] stated as below.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n−ary functionality, where fi(x1, . . . , xn) denotes the i-th el-
ement of f(x1, . . . , xn). For I = {i1, . . . it} ⊂ {1, . . . , n}, we let fI(x1, . . . , xn) denote the subsequence
fi1(x1, . . . , xn), . . . , fit(x1, . . . , xn). Let Π be an n-party protocol for computing f . The view of the i−th
party during an execution of Π on x = (x1, . . . , xn), denoted VIEWΠ

i (x), is (xi, ri,mi1 , . . . ,miℓ), where ri
represents the outcome of the i−th party’s internal coin tosses, and mij represents the j−th message it has

received. For I = {i1, . . . , it}, we let VIEWΠ
I (x) := (I,VIEWΠ

i1(x), . . . , VIEWΠ
it(x)).

Definition 1. We say that Π privately computes f if there exists a probabilistic polynomial-time algorithm,
denoted S, such that for every I ⊆ {1, . . . , n}, it holds that

{(S(I, (xi1 , . . . , xit), fI(x)), f(x))}x∈({0,1}∗)n

c≡{(VIEWΠ
I (x), OUTPUTΠ(x))}x∈({0,1}∗)n .

Here OUTPUTΠ(x) denotes the output sequence of all parties during the execution represented in VIEWΠ
I (x),

and
c≡ is computationally indistinguishable of two distribution ensembles.

3 Two Biprimality Testings

In this section, we will discuss two biprimality tests. Let N = pq be the product of two odd integers. One
is adding the condition, gcd

(
N, (p − 1)(q − 1)

)
, to Boneh-Franklin biprimality test. The probability of the

worst case scenario is reduced from 1/2 to 1/4. The another one is the proposed Lucas biprimality test
that generates N where N is the product of arbitrary two primes. Our goal is to count the number of
pseudo-bi-primes and calculate the proportion of pseudo-bi-prime in various scenarios.

3.1 Revisit Boneh-Franklin Biprimality Testing

We will illustrate another proof of Boneh-Franklin biprimality testing with an additional condition. Let p, q

be two odd positive integers. Assume that N := p · q =

s∏
i=1

prii and e := (p − 1) · (q − 1)/4. We use the

7

following notations: {
e = 2kd, where 2 ∤ d;
pi − 1 = 2kidi for all 1 ≤ i ≤ s, where 2 ∤ di.

In the case of p ≡ q ≡ 3 (mod 4), we have k = 0. For such N, e, we consider

BF(N, e) := {g ∈ Z×
N | ge ≡ ±1 (mod N)},

which is a subgroup of

G(N) :=

{
g ∈ Z×

N

∣∣∣∣ [gN] = 1

}
.

Lemma 2. Given the assumptions in the Theorem 1. Then we have

|BF(N, e)| = 2 ·
s∏

i=1

gcd(d, di).

Proof. Since e =
(p− 1)(q − 1)

4
is odd, we have

|{g ∈ Z×
N | ge ≡ 1 (mod N)}|

=|{g ∈ Z×
N | ge ≡ −1 (mod N)}|

by the bijective map g 7→ −g, which implies that

|BF(N, e)| = 2 · |{g ∈ Z×
N | ge ≡ 1 (mod N)}|.

According to the Chinese Remainder Theorem, we reduce the problem to count the cardinality of BF(prii , e)
which are cyclic groups for all i [30, Theorem 3, Chapter4], since N is odd. Combining this fact and Lemma
1, one has the number of e-th roots of 1 in the group (Z/prii Z)× is

|BF(prii , e)| = gcd(d, pri−1
i (pi − 1)) = gcd(d, di).

The above discussion implies that

|BF(N, e)| = 2 ·
s∏

i=1

gcd(d, di).

Proof of Theorem 1. Note that p ≡ q ≡ 3 (mod 4) implies that k = 0. At first, consider the case p, q are
both primes. Meanwhile, we also have e = d1d2 and k1 = k2 = 1. The proof of this case is complete by the
following equality:

|BF(N, e)| = 2gcd(d, d1) · gcd(d, d2) = 2d1d2 = ϕ(N)/2.

For any N, e, we have

|BF(N, e)| = 2 ·
s∏

i=1

gcd(d, di)

≤2−k1−...−ks+2

(
s∏

i=1

pri−1
i

)−1(
ϕ(N)

2

)
.

Secondly, considering the case p = p1 and q = pr22 , where r2 ≥ 3 because of q ≡ 3 (mod 4), we have

|BF(N, e)| ≤ ϕ(N)
18 . The minimal value 1/4 occurs at the case s = 3 and ri = 1 for all 1 ≤ i ≤ 3. For this

case, because p ≡ q ≡ 3 (mod 4), two elements of the set {p1, p2, p3} are 3 module 4 and one of it is 1 module
4, which gives the bound 2−k1−k2−k3+2 ≤ 2−2. For all s ≥ 4, one has 2−k1−...−ks+2 ≤ 2−2, because si ≥ 1
for all 1 ≤ i ≤ s. This concludes the proof.

8

3.2 A Lucas Biprimality Testing

We generalize the idea of Lucas primality testing to the bi-prime case. As Boneh-Franklin test, our test is
also a distributed biprimality test. In the beginning, we state an analogous congruence condition for verifying
bi-prime as below.

Theorem 3. Let p and q be distinct two primes, and N = pq. Let D be an integer satisfying ϵ−D(p) = −1,
ϵ−D(q) = −1, and e :=

(
p− ϵD(p)

)(
q − ϵD(q)

)
/2. If gcd(N,QD) = 1, then we have

Ue ≡ 0 (mod N). (1)

Proof. According to Chinese Remainder Theorem, we only need to prove that Ue ≡ 0 (mod p). If ϵD(p) = 1,
then the two roots, α and β, of the polynomial x2 − Px + Q both belong to Z×

p . Note that the condition

gcd(N,QD) = 1 implies that αβ ̸= 0 and α ̸= β. Therefore, αe ≡
(
αp−1

)(q−ϵD(q))/2 ≡ 1 (mod p). Similarly,
we also have βe ≡ 1 (mod p), which implies that p | Ue. For the case ϵD(p) = −1, we have that two roots
α, β belong to the quadratic field Fp2 over the finite field Zp. Because the Frobinus map gives us αp = β
and βp = α, we have

αe = α(p(q−ϵD(q))−ϵD(p)(q−ϵD(q)))/2 = (αβ)(q−ϵD(q))/2.

Similarly, we also have βe = (αβ)(q−ϵD(q))/2. Hence, the proof is complete by the equality αe − βe = 0 and
α− β ̸= 0 in Fp2 .

Notice that the condition, ϵ−D(p) = −1 is equivalent to

ϵD(p) = −ϵ−1(p) =

{
1, if p ≡ 3 (mod 4);

−1, if p ≡ 1 (mod 4).
(2)

It implies that the value of ϵD(p) is independent of D.

Definition 2. For convenience, a composite number N with gcd(N, 2QD) = 1 is not the product of two
different primes, and satisfies (1), which is called a Lucas pseudo-bi-prime with respect to P and Q. For
short, we write N is an lpbp(P,Q).

Remark 1. Using the same argument, we have, for any prime p | N ,

Ve = αe + βe =

{
2 mod p, if ϵD(p) = 1;

2 ·Q(N/p)+1 mod p, if ϵD(p) = −1,

which implies that if ϵD(p) = ϵD(q) = 1, then Ve ≡ 2 (mod N). For more general N , taking Q = ±1, then
Ve ≡ 2 (mod N) always holds.

Remark 2. When p ≡ q ≡ 3 (mod 4), one has ϵD(p) = ϵD(q) = 1, which implies that D has square roots
in Z×

N , and αβ−1 ∈ Z×
N for such P,Q. Now, we have the congruence conditions (αβ−1)e ≡ 1 (mod N) and

αe+βe ≡ 2 (mod N), which implies that αe ≡ βe ≡ 1 (mod N). Since α = P+
√
D

2 . Therefore, running over

all D ∈ Z×
N and P ∈ ZN , it motivates to study the group

{g ∈ Z×
N | ge ≡ 1 (mod N)}.

Since e = (p− 1)(q − 1)/2 is an even number, then it is naturally to consider its subgroup

BF(N, e/2) = {g ∈ Z×
N | ge/2 ≡ ±1 (mod N)}.

The above discussion gives us a relation between Lucas pseudo-bi-prime with the Boneh-Franklin’s considering
group.

Next, we sketch the proof of counting the cardinality of the set LPBP(D,N, e), which follows the same
method in [3, Section 4].

9

Proposition 3. Given N = p · q :=

s∏
i

prii , where pi is odd prime for all i. Let D be an integer satisfying

ϵ−D(p) = −1, ϵ−D(q) = −1, and e =
(
p− ϵD(p)

)(
q − ϵD(q)

)
/2. Assume that gcd(N, e) = 1 and set{

e = 2kd, where 2 ∤ d;
pi − ϵD(pi) = 2kidi for all 1 ≤ i ≤ s, where 2 ∤ di.

For such integer D, the size

|LPBP(D,N, e)|

:=

∣∣∣∣{(P,Q)
0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, N is lpbp(P,Q)

}∣∣∣∣
=

s∏
i=1

(2 gcd(d, di)− 1) .

Sketch of Proof. According to the Chinese Remainder Theorem and Proposition 3, we reduce the problem
to compute the cardinality of LPBP(D, prii , e). Proposition 2 implies that LPBP(D, prii , e) equals

{τ ∈ ̂(OD/p
ri
i

)
| 1− τ ∈

(
OD/p

ri
i

)×
, τe = 1}.

The number of e-th roots of 1 in the group ̂(OD/p
ri
i

)
is given by

gcd(e, pri−1
i (pi − ϵD(pi))) = 2 gcd(d, di).

Meanwhile, if 1− τ ̸∈
(
OD/p

ri
i

)×
with τ ∈ ̂(OD/p

ri
i

)
then τ ≡ 1 (mod prii). Hence, we derive

LPBP(D, prii , e) = 2 gcd(d, di)− 1.

Remark 3. Proposition 3 also gives another proof of Theorem 3 which makes an extra assumption (N, e) = 1.
Assume p ̸= q are both prime. Then the definition of e gives us

4d = 2k1+k2d1d2,

which implies that k1 = k2 = 1 and d = d1d2. Using Proposition 2 and similar argument in Proposition 3,
one has ∣∣∣∣{(P,Q)

0 ≤ P,Q < N,P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, N satisfies (1)

}∣∣∣∣
=

s∏
i=1

(2 gcd(d, di)− 1) = (2d1 − 1)(2d2 − 1)

= |Z(D,N, e)|,

which implies the desired result.

Corollary 3. The notations and assumptions are given in the Proposition 2 and Proposition 3.

1. If 4 | pi − ϵD(pi). Then

|LPBP(D, prii , e)| ≤
|Z(D, prii , e)|

2
.

2. Let p be the smallest prime such that p2 | N . Then

|LPBP(D,N, e)| ≤ |Z(D,N, e)|
p

≤ N

p
.

10

Proof. The proof is completed by observing the pi part of Z(D,N, e) and LPBP. That is

pri−1
i (pi − ϵD(pi)− 1) = pri−1

i

(
2kidi − 1

)
≥2 · pri−1

i · (2ki−1 gcd(d, di)− 1).

When N is square-free and product of at least three primes, Proposition 3 implies that LPBP(D,N, e) =
N is likely to happen. To tackle this challenge, according to Corollary 3, we maybe consider to change the
value of ϵD(pi) by selecting different values of D in order to satisfy 4 | pi− ϵD(pi) with fixing the value ϵD(p)
and ϵD(q). Based on this observation, we extend the original LPBP to

LPBP(x,N, e) :=
⋃

D∈P([2,x]),
ϵ−D(p)=ϵ−D(q)=−1

LPBP(D,N, e)

=

(D,P,Q)∈P([2,x])×ZN×Z×
N

ϵ−D(p)=−1,ϵ−D(q)=−1,

P2−4Q=D (mod N),

N is lpbp(P,Q)

Proposition 3 implies that ∣∣LPBP(x,N, e)∣∣

=
∑

D∈P([2,x]),
ϵ−D(p)=ϵ−D(q)=−1

s∏
i=1

(
2 gcd(d, di)− 1

)
. (3)

On the other hand,

|Z(x,N, e)|

:=

∣∣∣∣∣∣∣∣
(D,P,Q)∈P([2,x])×ZN×Z×

N

ϵ−D(p)=−1,ϵ−D(q)=−1,

P2−4Q=D (mod N)

∣∣∣∣∣∣∣∣

=
∑

D∈P([2,x]),
ϵ−D(p)=ϵ−D(q)=−1

|Z(D,N, e)|. (4)

Now, we arrive at the Lucas biprimary test as below.

Theorem 4. Let N = pq be the product two distinct odd integers p, q, and assume GRH. Set e = 1
2

(
p +

ϵ−1(p)

)(
q + ϵ−1(q)

)
. Assume that gcd

(
N, e

)
= 1. Then for any x ≥ 2, we have

∣∣LPBP(x,N, e)∣∣
|Z(x,N, e)|

≤ max

{
1

2
,
4

13
+O

(
(lnx)2√

x

)}
.

Proof. The case N is not square-free. The second inequality of Corollary 3, and equations (3), (4) imply
that the upper bound of the consider quotient is 1

3 .

The case N =

s∏
i=1

pi is square-free with p =

k−1∏
i=1

pi and q =

s∏
i=k

pi. Let

S(x, ϵ1, . . . , ϵk−1; ϵk, . . . , ϵs)

:=
∣∣{D∈P([2,x]):

[
−D
pi

]
=ϵi,∀i∈{1,...,s}

}∣∣,

11

where ϵi ∈ {−1, 1} for all i. Suppose s = 3. Without loss of generality, we assume p = p1 and q = p2p3.
Since ϵ−D(p2p3) = −1, one has

|LPBP(x,N, e)|

=S(x,−1;1,−1)

3∏

i=1

(
2 gcd(di, d)− 1

) (5)

+S(x,−1;−1,1)

3∏

i=1

(
2 gcd(di, d)− 1

), (6)

and
∣∣∣∣∣∣∣∣
(D,P,Q)∈P([2,x])×ZN×Z×

N

[−D
p]=[−D

q]=−1,

P2−4Q=D (mod N)

∣∣∣∣∣∣∣∣.

=S(x,−1;1,−1)

3∏

i=1

(
2kidi − 1

) (7)

+S(x,−1;−1,1)

3∏

i=1

(
2kidi − 1

). (8)

It is easy to see that only one of pi − ϵD(pi) is divided by 4 (i.e. ki ≥ 2). According to Corollary 3, there are
two such cases. The Case 1: (5) ≤ (7)/2 and (6) ≤ (8)/2 or the Case 22: (5) ≤ (7) and (6) ≤ (8)/4. Then
we have

(5) + (6)

(7) + (8)
≤

(5)+(6)

2
(
(5)+(6)

) = 1
2 , for Case 1;

(5)+(6)
(5)+4(6) =

2
5 +O

(
(ln x)2√

x

)
, for Case 2.

The last estimation of the Case 2 comes from Corollary 2. For s ≥ 4, the proof is similar. The upper bound

is still 1/2 and the second largest is 4
13 +O

(
(lnx)2√

x

)
. More details can be found in subsection A.2.

Remark 4. For x ≥ q, the bound of the error term for π(x; q, a) with gcd(a, q) = 1 is given by
(

1
8πϕ(q) +

1
6π

)√
x lnx+

(0.184 ln q + 12969.946)
√
x [21]. Applying this bound, we can deduce that the lower bound of x such that

4

13
+O

(
(lnx)2√

x

)
<

1

2
.

Remark 5. If we consider D ∈ Z×
N , then we use the same argument as the above theorem, which gives the

upper bound is exactly 1/2.

Remark 6. If we relax GRH, this theorem still holds. However, the error term O

(
(lnx)2√

x

)
should be

replaced by a suitable error function, which depends on the asymptotic formula of Dirichlet’s theorem on
arithmetic progressions.

4 A Protocol of Distributed Generation of RSA Moduli

4.1 The Distributed Biprime-Sampling

A common way in sampling biprime is to uniformly random select p and q from the set of primes in a
given range. However, the efficiency of sampling according to this uniform biprime distribution is poor in

2In fact, this case does not exist, because it violates ϵ−D(q) = −1.

12

a multiparty computation context. Most previous works chose other distributions instead such as 1) Boneh
and Fanklin [9] considered a generation given by using a private distributed computation the n participants
compute N = (p1 + . . .+ pn)(q1 + . . .+ qn) and hope N is not divisible by any prime less than some bound
B. The running time is expected polynomial; and 2) Chen et al. [13] considered another modulus-sampling
functionality called CRT-Sample, which runs in strict polynomial-time. Conditioning on success, the out-
puts of two distributions are statistically indistinguishable. Chen et al.’s method demonstrates superior
computational complexity for computing N compared to the former, which involves direct computation of
N followed by trial division. Instead, the latter utilizes the Chinese Remainder Theorem to obtain N , which
is co-prime to small prime numbers.

To illustrate our modified biprime-sampling functionality, we first introduce the definitions in Chen et
al. [13, Definition 3.3-3.5, 4.3].

Definition 3 (Primorial Number). The ith primorial number is defined to be the product of the first i prime
numbers.

Definition 4 ((κ1, n)-Near-Primorial Vector). Let ℓ be the largest number such that the ℓth primorial number
is less than 2κ1−logn, and let m be a vector of length ℓ such that m1 = 2 and m2, . . . ,mℓ are the odd factors
of the ℓth primorial number, in ascending order. m is the unique (κ1, n)-near-primorial vector.

Definition 5 ((κ1, n)-Compatible Parameter Set). Let ℓ′ be the smallest number such that the ℓ′th primorial
number is larger than 22κ1 , and let m be a vector of length ℓ′ such that m1 = 2 and m2, . . . ,m

′
ℓ are the odd

factors of the ℓ′th primorial number, in ascending order. (m, ℓ′, ℓ,M) is the (κ1, n)-Compatible Parameter

Set if ℓ < ℓ′ and (m1,m2, . . . ,mℓ) is the (κ1, n)-Near-primorial vector, and M =

ℓ∏
i=1

mi.

Definition 6 (m-Coprimality). Let m be a vector of integers. An integer x is m-coprime if and only if it
is not divisible by any mi for all 1 ≤ i ≤ |m|. Here |m| is the length of the vector m.

Both protocols of Chen et al. and Boneh et al. only need a few modifications to apply the ideal
functionality, Functionality 1. We display Chen et al.’s protocol, and use similar sampling method with
theirs. Comparing to their method, our sampled p and q can be arbitrary odd numbers. In addition, our
protocol may seem to provide extra information of p, q (mod 4), but it is actually not since the information
is known in Chen et al.’s protocol.

Functionality 1 FSamplePrime(κ1, n,B)

Inputs: Each party Pi has input ⊥.

Outputs: Uniformly sample integer pi, qi ∈ [0, 2κ1−logn) for i ∈ {1, . . . , n} such that

• p1 ≡ q1 ≡ 1 (mod 2);

• 2 | pi and 2 | qi, for all 2 ≤ i ≤ n;

• for any p′ ∈ P([2, B]), p′ ∤ N , where p :=

n∑
i=1

pi, q :=

n∑
i=1

qi, and N = pq.

Each party receives
(N, [p]N , [q]N , {pi (mod 4), qi (mod 4)}ni=1).

The probability of randomly sampling a prime from [0, 2κ1−logn) is low which costs a lot of computation
time of our protocol. A way to improve this is that each party locally perform division on N to ensure p
and q do not divide by the primes within a trial division bound B. We then execute biprime test to the rest
of N . DeBruijn [10] demonstrated the correlation between the probability that p is a prime and the trial
division bound B is

Pr(p ∈ P| trial division up to B) ∼ 2.57

(
lnB

κ1

)
.

13

Here the notation ∼ is asymptotically equivalent.
As Boneh-Franklin [9, Lemma 2.1] and Chen et al. [13, Lemma 3.7] results, the knolwedge of n−1 integer

shares of the factors p and q does not give the adversary any meaningful advantage in factoring biprimes from
the distribution of Functionality 1. Applying the same argument in [9, Lemma 2.1], we have an analogous
result by replacing the condition p ≡ q ≡ 3 (mod 4) to p ≡ q ≡ 1 (mod 2).

Lemma 3. Let Z(2)
N be the set of RSA moduli N = pq that can be output by Functionality 1 with n < logN .

Suppose there exists a polynomial time algorithm A that given a random N ∈ Z(2)
N chosen from the distribution

of Functionality 1 and the shares (pi, qi) of n−1 parties, factors N with probability at least 1/nd. Then there
exists an expected polynomial time algorithm B that factors 1/4k3nd (resp. 1/4k3nd − negl(κ1)) the integers

in Z(2)
N .

We now introduce a realization against semi-honest adversaries of Functionality 1. The protocol is to

build a series of congruence equations x ≡ ak (mod mk) where ak satisfies gcd(ak,mk) = 1. When

ℓ∏
k=1

mk

reaches a pre-determined bits, we construct x such that gcd(x,mk) = 1 for all 1 ≤ k ≤ ℓ through Chinese
Reminder Theorem. p and q can be obtained by repeating the process twice. To calculate N = pq, we
expand the congruence linear system mk′ such that x ≡ p (mod mk′) and x ≡ q (mod mk′) for ℓ < k′ ≤ ℓ′

until N <

ℓ′∏
k=1

mk.

The following protocol is a sub-protocol in [13, Protocol 4.4] and the proof is given in Theorem 4.5.

Protocol 2 CRT-Sample (κ1, n)

Inputs: Each party has input ⊥.

Outputs: pi, qi, {pi (mod 4), qi (mod 4)}ni=1, and N .

1. Let (m, ℓ′, ℓ,M) be the (κ1, n)-Compatible parameter set. For each party Pi samples{
pi,1 = qi,1 = 1 if i = 1;

pi,1 = qi,1 = 0 if 2 ≤ i ≤ n,

0 ≤ pi,j , qi,j < mj for all 2 ≤ j ≤ ℓ.

2. Each party performs Functionality 7 to obtain Ni,j such that

n∑
i=1

Ni,j =

(
n∑

i=1

pi,j

)(
n∑

i=1

qi,j

)
(mod mj),

for all 2 ≤ j ≤ ℓ.

3. Pi broadcasts Ni,j for all 2 ≤ j ≤ ℓ and locally checks
∑n

i=1Ni,j ̸≡ 0 (mod mj) for all 2 ≤ j ≤ ℓ. Let
J := {2 ≤ j ≤ ℓ|

∑n
i=1Ni,j ≡ 0 (mod mj)}.

• For j′ ∈ J: discard pi,j′ and qi,j′ , and repeat steps 1 and 2 to reselect pi,j′ and qi,j′ until∑n
i=1Ni,j′ ̸≡ 0 (mod mj).

• For j ∈ {2, 3, . . . ℓ} \ J: keep pi,j and qi,j .

4. Each party compute the lifting pi, qi such that pi ≡ pi,j (mod mj), and qi ≡ qi,j (mod mj) for all
1 ≤ j ≤ ℓ. Computes for ℓ + 1 ≤ j ≤ ℓ′, pi,j := pi (mod mj) and qi,j := qi (mod mj). Perform the
Functionality 7 to obtain Ni,j such that

n∑
i=1

Ni,j :=

(
n∑

i=1

pi,j

)(
n∑

i=1

qi,j

)
(mod mj),

for all ℓ+ 1 ≤ j ≤ ℓ′, and broadcasts Ni,j for ℓ+ 1 ≤ j ≤ ℓ′ and pi (mod 4), qi (mod 4).

14

5. Each party reconstructs a new N by Protocol 1 such that N ≡
∑n

i=1Ni,j (mod mj) for all 1 ≤ j ≤ ℓ′.

This output N of protocol satisfies gcd(N, pi) = 1 for all 1 ≤ i ≤ ℓ. which might deviate from B in
Functionality 1. If B < pℓ, then N naturally meets the requirements of Functionality 1. When B > pℓ, one
can check all primes p′, pℓ < p′ < B, do not divide N , since everyone receives N after executing the protocol.
Therefore, the requirements of Functionality 1 can be fulfilled through the calculation of the last party.

4.2 Distributed Lucas Biprimality Testing

We will design the distributed testing protocol based on the Lucas biprimality test theorem. The biprimality
testing functionality is described as follows:

Functionality 2 FLucasBiprime(x, n, κ2, κ3)

Inputs: Each party Pi has public numbers N = pq, p (mod 4), q (mod 4), and shares [p]N and [q]N .

Outputs: Sample prime numbers Dj ∈ [2, x] such that ϵ−Dj (N) = 1 until there are κ3 values of Dj for which
ϵ−Dj (p) = −1. Let κ′ be the total trial attempts. If κ′ > κ2, then output “overleak” and halt. Else if p, q are

both primes, each party Pi receives
(
1, {Dj}κ

′

j=1, {ϵ−Dj (p)}κ
′

j=1,
)
. Otherwise, each party Pi receives

(
0, {pi, qi}ni=1

)
.

This functionality is expected polynomial time, because of Dirichlet Theorem. More precisely, randomly
sample D in P([2, x]) has almost a 1/4 chance of obtaining the desired D (cf. Corollary 1).

We design a protocol to realize Functionality 2. According to Theorem 4, we need to find D that
satisfies ϵ−D(p) = ϵ−D(q) = −1 (cf. Functionality 3) without leaking p and q. Next, to validate (αβ−1)e ≡
1 (mod NOD), parties decide P,Q together that satisfy P 2 − 4Q ≡ D (mod N) where α and β are roots of
x2−Px+Q. We introduce shuffle method to allow n participants calculate (αβ−1)e together while achieving
n− 1 privacy. According to Theorem 4, if either p or q is a composite number, there is at most a 1

2 chance
of passing the test. After κ3 iterations, the probability that N is not a biprime is at most 1

2κ3
. Lastly, the

security proof can be found in Theorem 6.

Protocol 3 Lucas Biprimality test(x, n, κ2, κ3)

Inputs: Each party Pi has odd integers [p]N , [q]N , p (mod 4), q (mod 4), and N .

Outputs:
Start with κ′ = κ′′ = 0, parties repeat the following steps until κ′′ = κ3:

1. Parties set κ′ := κ′ + 1. Once κ′ > κ2, then output “overleak” and halt.

2. Parties agree on random primes Dκ′ from the set {D ∈ P([2, x]) | ϵ−D(N) = 1}.

3. Parties send (N, [p]N , p (mod 4), Dκ′) to Functionality 3 to obtain ϵ−Dκ′ (p). If ϵ−Dκ′ (p) = −1, then

3.1 agree on a random Pκ′ ∈ Z×
N . Compute Qκ′ := (P 2

κ′ − Dκ′)/4 ∈ ZN . If gcd(N,Qκ′) ̸= 1 then
broadcasts pi, qi and return (0, {pi, qi}ni=1).

3.2 Each party computes ϵDκ′ (p) = −ϵ−1(p) and ϵDκ′ (q) = −ϵ−1(q).

Set y1 := (αβ−1)(N−p1ϵD
κ′ (q)−q1ϵD

κ′ (p)+ϵD
κ′ (N))/2 ∈ (ODκ′/N)× and yi := (αβ−1)(−piϵD

κ′ (q)−qiϵD
κ′ (p))/2 ∈

(ODκ′/N)× for all 2 ≤ i ≤ n, where α and β are two roots of the polynomial x2 − Pκ′x + Qκ′ .
Each party sends yi to Functionality 5 to obtain uκ′ . They then check uκ′ ≡ 1 (mod NODκ′). If
the check fails then broadcasts pi, qi and return (0, {pi, qi}ni=1).

3.3 set κ′′ := κ′′ + 1.

If all κ3 iterations pass, output (1, {Dj}κ
′

j=1, {ϵ−Dj
(p)}κ′

j=1).

The definition of the Legendre symbol functionality in the above protocol is given as below.

15

Functionality 3 FLeg(x, n)

Inputs: Each party Pi has, shares pi, p (mod 4), and a prime D ∈ [2, x] with gcd(D, p) = 1, where

p :=

n∑
i=1

pi.

Outputs: Each party Pi receives the value ϵ−D(p).

Let D be a prime number. In order to realization above functionality for computing quadratic symbol
ϵp(D) with hiding p, we adapt the similar strategy appearing in [27, Figure 7]. Specifically, all parties agree
on a random s ∈ Z×

D, and then compute the values s2p together. Finally, all parties can compute ϵs2p(D)
by themselves. The security proof will given in Theorem 7.

Protocol 4 Legendre symbol πLeg(x, n)

Inputs: Each party Pi has pi, p (mod 4), and a prime number D ∈ [2, x] with gcd(D, p) = 1, where

p :=

n∑
i=1

pi.

Outputs: ϵ−D(p).

1. Each party randomly sample si ∈ ZD sends (si, si, D) to functionality 7 to obtain [s2]D.

2. Each party sends ([s2]D, pi (mod D), D) to functionality 7 to obtain [s2p]D.

3. Each party open [s2p]D. If gcd(s2p,D) ̸= 1, then restart to the step 1. Otherwise, outputs{
−ϵs2p(D), if p ≡ 3 (mod 4) and D ≡ 1 (mod 4);

ϵs2p(D), otherwise.

4.3 Distributed generation of RSA moduli

In this section, we introduce the major work in this study, the functionality of RSA moduli and its realization.

Functionality 4 FRSAGen(x, κ1, κ2, κ3, n)

Inputs: Each party Pi input ⊥.

Outputs: Each party Pi uniformly samples pi, qi ∈ [0, 2κ1−logn) such that

• p1 ≡ q1 ≡ 1 (mod 2);

• pi ≡ qi ≡ 0 (mod 2), for all 2 ≤ i ≤ n.

Set p :=

n∑
i=1

pi, q :=

n∑
i=1

qi, N = pq and e = (p + ϵ−1(p))(q + ϵ−1(q))/2 (ref. (2)). Sample prime numbers

Dj ∈ [2, x] such that ϵ−Dj
(N) = 1 until there are κ3 values of Dj for which ϵ−Dj

(p) = −1. Let κ′ be the total
trial attempts. If κ′ > κ2, then output “overleak” and halt. Else if p, q are both primes, each party Pi receives(
1, {Dj}κ

′

j=1, {ϵ−Dj (p)}κ
′

j=1, pi, qi, {pi (mod 4), qi (mod 4)}ni=1, N
)
. Otherwise, each party Pi receives

(
0, {pi, qi}ni=1

)
.

In this functionality, we need to find D such that ϵ−D(p) = −1. Lemma 6 suggests that there are very
rare p such that it is a square number, which implies that sampling such D is efficient. Next, a collection of

the values for quadratic symbols
{
ϵ−Dj (p) = ϵj

}κ′

j=1
with the restriction ϵ−Dj (N) = 1 for all 1 ≤ j ≤ κ′ will

be calculated for all public information Dj . When κ′ is less than a fixed number κ2, we believe that this
information reveal knowledge about p or q, which is negligible. Note that given the information of p (mod 4)

16

and Dj , one can efficiently compute ϵp(Dj) form ϵ−Dj (p). Naively, for these {Dj}κ
′

j=1 and an interval [2, x],
one has ∣∣∣∣ {p ∈ P | p ∈ [2, x], ϵp(Dj) = ϵj for all 1 ≤ j ≤ κ′}

∣∣∣∣
=

x

2κ′ lnx
+O

(√
x lnx

)
≥ x

2κ2 lnx
+O

(√
x lnx

)
.

It implies that if x is large enough and κ2 is fixed, then the leakage seems to be controllable. In fact, one
has

Lemma 4. Let N = pq be the product of two different primes and κ2 be a positive integer. Suppose there
exists a polynomial time algorithm A that given 1) randomly sampling Dj are prime with ϵ−Dj (N) = 1 for
all 1 ≤ j ≤ κ2; and 2) ϵp(Dj) = ϵj for all 1 ≤ j ≤ κ2, factors N . Then there exists a polynomial time
algorithm B that factors N .

Proof. Given any {ϵj}κ2
j=1 with {ϵp(Dj) = ϵj}κ2

j=1, we can use the algorithm A to factor N , which is repeated

at most 2κ2 due to a total of 2κ2 possibilities for {ϵp(Dj) = ϵj}κ2

j=1 with arbitrary ϵj ∈ {−1, 1}.

Our protocol concept involves initially executing a sieve to obtain candidates for [p]N , [q]N , and N = pq
in a way that ensures N is not divisible by any prime less than or equal to mℓ. Next, in order to perform
the Lucas biprimality test κ3 times, we first check whether gcd(N, ϵ−1(p)q + ϵ−1(q)p− ϵ−1(N)) = 1. If the
checking succeeds κ3 times, then the generation is successful. Otherwise, each party discloses their initially
chosen pi and qi. During the execution of the κ3 Lucas biprimality tests, we also check that the total count
of computed ϵ−Dj

(p) does not exceed the threshold of κ2. If it does, each party reveals pi and qi.

Protocol 5 Distributed Biprime Sampling πRSAGen(x, κ1, κ2, κ3, n)

Inputs: Each party inputs ⊥.

Outputs:

1. Let m be the (κ1, n)-near-primorial vector andmℓ be the last element of m. Each party performs Func-
tionality 1 with parameter (κ1, n,mℓ) to obtain [p]N , [q]N , N , {pi (mod 4)}ni=1, and {qi (mod 4)}ni=1.

2. Each party sends (N, p (mod 4), q (mod 4), [p]N , [q]N) to Functionality 6 to obtain b. If b ̸= 1 then
each party broadcasts pi, qi and outputs (0, {pi, qi}ni=1).

3. Each party sequentially performs Functionality 2 with parameter(x, n, κ2, κ3):

• If the output is ”overleak”, then outputs ”overleak” and halt.

• If the output is (0, {pi, qi}ni=1), then output (0, {pi, qi}ni=1).

• If the output is (1, {Dj}κ
′

j=1, {ϵ−Dj
(p)}κ′

j=1), each party outputs (1, {Dj}κ
′

j=1, {ϵ−Dj
(p)}κ′

j=1, [p]N ,
[q]N , {pi (mod 4), qi (mod 4)}ni=1, N).

We employ some related functionalities and protocols in the rest of this section. The functionality below
is to ensure that participants can learn

∏
i yi without revealing their own yi.

Functionality 5 FShuffle(n)

Inputs: Each party Pi has yi in a finite group G.

Outputs: Each party Pi receives y :=

n∏
i=1

yi ∈ G.

The following protocol [4] is n − 1 privacy that realize the above functionality. Each party splits their
own input yi into n− 1 partitions and randomly send one share to other parties to avoid revealing their own

17

input yi. Every party will calculate the product of all obtained shares
∏

i zi and publish it. Eventually, we
have

∏n
i=1 zi =

∏n
i=1 yi.

Protocol 6 Shuffle(n)

Inputs: Each party Pi has yi ∈ (OD/N)×.

Outputs:

n∏
i=1

yi ∈ (OD/N)×.

1. Each party Pi randomly chooses xi,j ∈ (OD/N)× for all 1 ≤ j ≤ n such that

n∏
j=1

xi,j = 1 (i.e. randomly

chooses xi,j for 1 ≤ j ≤ n−1 and x−1
i,n :=

∏n−1
j=1 xi,j). Set yi,1 := xi,1 ·yi and yi,j := xi,j for all 2 ≤ j ≤ n.

Send yi,j to the party Pj for all 1 ≤ j ̸= i ≤ n.

2. Each party Pi computes zi :=

n∏
j=1

yj,i. Broadcast zi to the other party Pj .

3. Outputs z :=

n∏
i=1

zi.

This functionality allows participants to calculate gcd(N, e) without learning e := (p+ϵ−1(p))(q+ϵ−1(q)).

Functionality 6 FGCD(n)

Inputs: Each party Pi has N = pq, p (mod 4), q (mod 4) and shares [p]N and [q]N .

Outputs: Each party Pi receives gcd
(
N, (p+ ϵ−1(p))(q + ϵ−1(q))

)
.

To confirm whether gcd
(
N, pϵ−1(q) + qϵ−1(p) + ϵ−1(N)

)
equals 1 without revealing [p]N and [q]N , each

party first generates a random mask [r]N in ZN . They then use functionality to calculate [t]N := [r ·(
pϵ−1(q) + qϵ−1(p) + ϵ−1(N)

)
]N . After revealing t, each participant can locally calculate gcd(N, t).

Protocol 7 GCD test(n)

Inputs: Each party Pi has N = pq, p (mod 4), q (mod 4) and shares [p]N and [q]N .

Outputs: Each party Pi receives gcd
(
N, (p+ ϵ−1(p))(q + ϵ−1(q))

)
.

1. Party Pi sets zi to be {
piϵ−1(q) + qiϵ−1(p) + ϵ−1(N), if i = 1;

piϵ−1(q) + qiϵ−1(p), if 2 ≤ i ≤ n.

Each party randomly generates ri ∈ ZN . Send (zi, ri, N) to Functionality 7 to obtain [t]N .

2. Each party opens [t]N and outputs gcd(N, t).

The functionality describes that each party Pi has two shares, xi and yi, the functionality outputs zi
where [z]N = [xy]N and assigns to Pi.

Functionality 7 Modular Multiplication(n)

Inputs: Each party Pi has shares [x]N , [y]N and N .

Outputs: Each party has shares of [z]N = [x · y]N , with uniformly random zi ∈ ZN for all 1 ≤ i ≤ n.

18

4.4 Security Proofs

Theorem 5. The Protocol 5 is securely compute functionality FRSAGen in the FLucasBiprime,FGCD,FSamplePrime-
hybrid model in the presence of static semi-honest adversary corrupt up to n− 1 parties.

Proof. Let P∗ be the set of corrupt parties. We show that a simulator S can be constructed for simulating
the transcript of Protocol 5. If S is given input (P∗,⊥, (0, {pi, qi}ni=1))

3, then S knows all of pi and qi such
that S can simply follow the protocol. Additionally, we do not consider the event that S is given input
(P∗,⊥, “overleak”). By Corollary 1, the probability that each Dj results in ϵ−Dj

(p) = −1 is 1
2 . We can

choose an appropriate κ2 based on κ3 to ensure that the Functionality 4 outputs “overleak” with a negligible
probability. When S is given input

(P∗,⊥, (1, {Dj}κ
′

j=1, {ϵ−Dj
(p)}κ

′

j=1, {pi, qi}i∈P∗ , {pi (mod 4), qi (mod 4)}ni=1, N)).

The adversary S outputs

(P∗,⊥, N, {pi, qi}i∈P∗ , {pi (mod 4), qi (mod 4)}ni=1, 1, (1, {Dj}κ
′

j=1, {ϵ−Dj (p)}κ
′

j=1)).

The output distribution of S is identical with the joint distribution {viewπRSAGen

P∗ (⊥),FRSAGen(⊥)}.

Theorem 6. The input to Pi is given as (N, p (mod 4), q (mod 4), [p]N , [q]N). Let e = 1
2

(
p+ ϵ−1(p)

)(
q+

ϵ−1(q)

)
. If gcd

(
N, e

)
= 1 and assuming GRH, then the Protocol 3 securely computes the functionality

FLucasBiprime in the FShuffle,FLeg-hybrid model in the presence of static semi-honest adversary corrupt up to
n− 1 parties.

Proof. Let P∗ be the set of corrupt parties. We show that a simulator S can be constructed for simulating
the transcript of Protocol 3. Similar to Theorem 5, we do not consider the event that S is given input

(P∗, N, {pi, qi}i∈P∗ , p (mod 4), q (mod 4), “overleak”).

If the input of S is
(P∗, N, {pi, qi}i∈P∗ , p (mod 4), q (mod 4), 0, {pi, qi}ni=1),

then S only needs to follow the honest parties’ strategy to simulate the view of the protocol. We only need
to show that the input {pi, qi}ni=1 passes Protocol 3 with a negligible probability. Since the Functionality 2
outputs (0, {pi, qi}ni=1), p and q are not both prime. Theorem 4 tells us that the probability of {pi, qi}ni=1

passing the protocol is not greater than

max

{
1

2κ3
,

(
4

13
+O

((lnx)2√
x

))κ3
}
,

which is negligible. Therefore, we consider the case S is given the input

(P∗, N, {pi, qi}i∈P∗ , p (mod 4), q (mod 4), 1, {Dj}κ
′

j=1, {ϵ−Dj
(p)}κ

′

j=1).

1: For all j satisfying ϵ−Dj
(p) = −1, S randomly samples Pj ∈ Z∗

N .

2: The adversary S outputs

(P∗, N, {pi, qi}i∈P∗ , p (mod 4), q (mod 4), T1, . . . , Tκ′).

Here Tj := (Dj , ϵ−Dj
(p), Pj , 1) if ϵ−Dj

(p) = −1. Otherwise, Tj := (Dj , ϵ−Dj
(p)) for 1 ≤ j ≤ κ′.

3In Definition 1, the second part of the simulator’s input represents the input from corrupt parties, denoted as ⊥ in FRSAGen.

19

We need to explain that, in this case, randomly selecting Pj will not make Protocol 3 output (0, {pi, qi}ni=1).

Since the output of FLucasBiprime is (1, {Dj}κ
′

j=1, {ϵ−Dj (p)}κ
′

j=1). We know that p and q are both prime. By
Theorem 3, we have uj ≡ 1 (mod N) for all iterations, regardless of the value of Pj,ℓ, where uj is the value
generated by step 3.2 of Protocol 3. Moreover, because Pj ∈ Z×

N is random and both p and q are prime, we
have

P[gcd(Qj , N) ̸= 1] = P[(P 2
j −Dj)/4 ∈ (ZN \ Z×

N)]

≤ N − (p− 1)(q − 1)

N/2
=

2(p+ q − 1)

N

is negligible. Therefore, the joint distribution of the outputs generated by S and FLucasBiprime and the joint
distribution of the view and output of an execution Protocol 3 are indistinguishable.

Theorem 7. The Protocol 4 is securely compute functionality FLeg in FModMul-hybrid model in the presence
of static semi-honest adversary corrupt up to n− 1 parties.

Proof. We construct the simulator S to simulate the transcript of πLeg. Suppose S is given input (P∗, {pi}i∈P∗ , p
(mod 4), D, ϵ−D(p)).

1: S uniformly samples s ∈ Z×
D and si ∈ ZD for i ∈ {1, . . . , n} such that

∑n
i=1 si ≡ s (mod D).

2: S uniformly samples s′i ∈ ZD for i ∈ {1, . . . , n} such that
∑n

i=1 s
′
i ≡ s2 (mod D).

3: S uniformly samples r ∈ Z×
D such that ϵr(D) =

{
−ϵ−D(p), if p ≡ 3 (mod 4) and D ≡ 1 (mod 4)

ϵ−D(p), otherwise.

4: S uniformly samples ri ∈ ZD for i ∈ {1, . . . , n} such that
∑n

i=1 ri ≡ r (mod D).

5: S outputs

({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ ,

{ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

Because FLeg is a deterministic function, we only need to prove

{S
(
P∗, {pi}i∈P∗ , p (mod 4), D, ϵ−D(p)

)
}

c≡{viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}

for any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n − 1, {pi ≥ 0}ni=1 and D ∈ P([a, b]). In the beginning, fixed any {pi}ni=1

and D, we claim that the output of

S
(
P∗, {pi}i∈P∗ , p (mod 4), D, ϵ−D(p)

)
and the view of

πLegP∗ (P∗, {pi}i∈P∗ , p (mod 4), D)

are identical. Observe that
ϵp(D) = ϵD(p) · (−1)

p−1
2

D−1
2

= ϵ−D(p) · ϵ−1(p) · (−1)
p−1
2

D−1
2

= ϵ−D(p) · (−1)
p−1
2 · (−1)

p−1
2

D−1
2

implies that ϵp(D) = ϵr(D). The facts D is a prime, and s is uniformly randomly chosen from Z×
D give us

the identical distribution between {s2p | s ∈ Z×
D} with {r | r ∈ Z×

D}. Due to |P∗| < n, the si, s
′
i in the

view
πLeg

P∗ (P∗, N, {pi}i∈P∗ , p (mod 4), D) and S
(
P∗, N, {pi}i∈P∗ , p (mod 4), D, ϵ−D(p)

)
are both independently

20

and uniformly distributed in ZD. We conclude that for any P∗ ⊆ {1, . . . , n}, |P∗| ≤ n − 1, {pi}ni=1, and
D ∈ P([2, x])

{S
(
P∗, {pi}i∈P∗ , p (mod 4), D, ϵ−D(p)

)
}

≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ ,

{ri}i∈P∗ , {ri}i∈{1,...,n}\P∗)

≡({pi}i∈P∗ , p (mod 4), D, {si}i∈P∗ , {s′i}i∈P∗ ,

{s2pi}i∈P∗ , {s2pi}i∈{1,...,n}\P∗)

≡{viewπLeg

P∗ (P∗, {pi}i∈P∗ , p (mod 4), D)}.

5 Implementation, Benchmarks, and Evaluation

Our experiment consists of two parts:

• Sieve: Utilize CRT Sampling to generate two candidates p and q, and obtain N . We then verify
that all primes that are smaller than B can not divide N . The MPC multiplication were using the
secret-sharing that was proposed by Gennaro et al. [25, Figure 2] assuming the honest majority.

• Lucas biprimality test: The parameters of Lucas sequence, P,D, were both generated by a assigned
party according to the protocol. Verifying the congruence condition of the Lucas biprimality test is
similar to checking the condition of the quotient ring OD/N in the protocol.

Lucas sequence is a recursive sequence, the general term Uk can also be obtained through matrices
operation. [

Uk

Uk+1

]
=

[
0 1

−Q P

]k [
0
1

]
for all k ≥ 0

We then verify Ue ≡ 0 (mod N) (cf. (1)). However, matrices operation is less efficient than operating in
OD. To optimize, we use sliding window method to calculate exponential in OD/N , since it is faster than
m−ary method [32] in most scenarios4. We also optimized trial division less than B following the steps: 1)

we obtain a product of multiple primes K :=
∏ℓ

i=1 pi and K ≤ 264; and 2) we next check if pi | x where
x := N (mod K) to detect if pi | N . This approach aggregates calculating the congruence of ℓ integers into
calculating congruence of one large integer and ℓ integers that are less than 64 bits.

Effective. Chen et al. [13] has pointed out that CRT Sampling is an polynomial-time algorithm. We will
focus on explaining that the proposed Lucas Biprimairy testing is expected polynomial-time algorithm. Two
major factors will impact our effectiveness. One is to find a primeD such that ϵ−D(p) = −1 and ϵ−D(q) = −1.
To overcome this, we can use an integer that passed certain times of Miller-Rabin test. Theorem 2 illustrates
that the probability of D meets the conditions is 1/4 when the bit length of D is large enough. To reduce
the information leakage of ϵ−D(p), we can verify ϵ−D(N) = 1, and then verify ϵ−D(p) = −1 or ϵ−D(q) = −1,
since N and D are both public. The advantage is the information leakage of testing ϵ−D(p) can be reduce
to half.

Assume that we need to collect k different D such that ϵ−D(p) = −1 and ϵ−D(N) = 1 to achieve the error
bound of 2−k. Therefore, we can estimate how many κ2 are needed through

∑κ2

i=k

(
κ2

i

)
/2κ2 . For example,

if k = 80 and κ2 = 344, the probability of generating a qualified D while total number of sampled D is less
than 80 is 2−80. In practice, we can set up an upper bound for κ2 and restart the protocol when the leaking
exceeds the upper bound.

The another one is that, given D, how difficult it is to find P,Q to meet the conditions P 2 − 4Q =
D (mod N) and gcd(Q,N) = 1. By Proposition 2, we know that there is great probability of obtaining P,Q
that meet the conditions. Moreover, we have

4We also try to implement the algorithm in [19], but it is still slower than the sliding window method.

21

Lemma 5. Let 0 < γ < 1 be a real number. If N =
∏s

i=1 p
ri
i is m-coprime with p

pk+1

k+1 > N2/(1−γ), where
|m| = k and pk+1 is the k + 1-th prime number. Then∣∣∣∣{(P,Q)

P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, 0 ≤ P,Q < N

}∣∣∣∣
N

> γ.

Proof. If N is m-coprime, then the upper bound of s is
lnN

ln pk+1
. By Proposition 2, we have, for any N ,

∣∣∣∣{(P,Q)
P 2 − 4Q = D (mod N),
gcd(Q,N) = 1, 0 ≤ P,Q < N

}∣∣∣∣
N

≥
s∏

i=1

pi − 2

pi
≥ 1−

s∑
i=1

2

pi
≥ 1− 2 lnN

pk+1 ln pk+1
≥ γ.

Fixing the bit-length of N , we can observe from Lemma 5 that when we can ensure that N is not divisible
by many prime numbers, i.e., when pk+1 is larger, α becomes larger. From Table 2, it is evident that N
produced by Protocol 2 allows for γ > 0.4.

κ1 k + 1 pk+1 γ

1024 132 751 ≈ 0.43

1536 183 1097 ≈ 0.45

Table 2: The number of γ when N is sampled from protocol 2. Recall that the size of the number N is 2κ1
bits.

Comparison. In the scenario that N = pq with p ≡ q ≡ 3 (mod 4), Boneh et al’s biprimary testing has
better efficiency. The reasons are: 1) They only need to find a g that satisfies ϵg(N) = 1. We need to first
get a prime number D such that ϵ−D(N) = 1 and ϵ−D(p) = −1, and second to randomly select P that
meets gcd(P 2 − D,N) = 1. 2) The validation in Boneh et al.’s test is more effective since they only need
to compute one exponential of g module N . However, we validate in a 2-rank ZN module. 3) In the worst
scenario, Boneh et al.’s test accepts a composite with probability 1/4 and our test is 1/2. In order to achieve
the same error bound, we need to double the iterations.

Our method has no restrictions to p, q. Therefore, we only benchmarked an implementation of our (semi-
honest) protocol under different parameters, κ1, κ2, κ3, n, and B, in a single-threaded on an Apple M2 and
16GB LPDDR5 of RAM in the 13-inch (2022) macbook pro. The results are as following:

Time Average
Average Worst Best no. of D

2048 bits
n=3 224s 988s 8s 161
n=4 396s 1443s 7s 167

Average no. of D: the average number of D generated; B=9013; κ2=200, κ3=80;
the bit length of D is 80.

Average no. of D means the average the number of κ′′ in Protocol 5. As our claim, if we want to obtain
80 desired ϵ−D(p) satisfying ϵ−D(N) = 1, we need to produce about 160.

22

We fix the value of κ2 which limits the iterations of calculating ϵ−D(p) where D is a prime number. To
boost the efficiency, we replace the interval [2, x] with [280, 281]. Given any N = pq and p, q are non-square,
the experiment results suggests that, if we select D from a small interval and fix the value of κ2, the efficiency
can be enhanced and the security can be guaranteed.

6 Future work

There are two directions of potential future work. Firstly, we provided the protocol against static semi-
honest adversaries in this paper. Development of protocols against malicious adversary is needed. The other
direction is to optimize the efficiency. Good bounds on the average case behavior of our test (or Boneh-
Franklin test) is important to discover. For instance, for each successfully executing Miller-Rabin protocol,
the probability that p is prime is high when p is random and large [16]. If such bound of our test is known,
the iterations can be largely reduced.

References

[1] A. Abadi, D. Ristea, and S. J. Murdoch. Delegated time-lock puzzle. arXiv preprint arXiv:2308.01280,
2023.

[2] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a shared secret with
application to the generation of shared safe - prime products. In M. Yung, editor, Advances in Cryptology
— CRYPTO 2002, pages 417 – 432. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[3] F. Arnault. The rabin-monier theorem for lucas pseudoprimes. Math. Comput., 66:869–881, 04 1997.

[4] J. Benaloh. Secret sharing homomorphisms: keeping shares of a secret secret. volume LNCS 263, pages
251–260, 01 1987.

[5] J. Benaloh, M. de Mare, and O.-W. Accumulators. A decentralized alternative to digital signatures. In
Advances in Cryptology-Proceedings of Eurocrypt, volume 93.

[6] V. Bonde and J. M. Siktar. On the combinatorics of placing balls into ordered bins, 2021.

[7] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In Annual international
cryptology conference, pages 757–788. Springer, 2018.

[8] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with applications to iops and
stateless blockchains. In Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part I 39, pages 561–586.
Springer, 2019.

[9] D. Boneh and M. Franklin. Efficient generation of shared rsa keys. Journal of the ACM, 48, 12 2001.

[10] N. Bruijn, de. On the number of uncancelled elements in the sieve of eratosthenes. Proceedings of the
Koninklijke Nederlandse Akademie van Wetenschappen: Series A: Mathematical Sciences, 53(5-6):803–
812, 1950.

[11] J. Buhler and P. Stevenhagen. Algorithmic number theory. Lattices, number fields, curves and cryptog-
raphy. Reprint of the 2008 hardback ed. 01 2011.

[12] J. Burkhardt, I. Damg̊ard, T. Frederiksen, S. Ghosh, and C. Orlandi. Improved distributed rsa key
generation using the miller-rabin test. Cryptology ePrint Archive, 2023.

[13] M. Chen, J. Doerner, Y. Kondi, E. Lee, S. Rosefield, A. Shelat, and R. Cohen. Multiparty generation
of an rsa modulus. Journal of Cryptology, 35, 04 2022.

23

[14] M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Micciancio, T. Riviere, A. Shelat, M. Venkitasubrama-
niam, and R. Wang. Diogenes: Lightweight scalable rsa modulus generation with a dishonest majority.
In 2021 IEEE Symposium on Security and Privacy (SP), pages 590–607. IEEE, 2021.

[15] P. Chvojka. Private coin verifiable delay function. Cryptology ePrint Archive, 2023.

[16] I. Damg̊ard, P. Landrock, and C. Pomerance. Average case error estimates for the strong probable
prime test. Mathematics of Computation - Math. Comput., 61:177–177, 09 1993.

[17] I. Damg̊ard and G. Mikkelsen. Efficient, robust and constant-round distributed rsa key generation.
pages 183–200, 02 2010.

[18] C. Delpech de Saint Guilhem, E. Makri, D. Rotaru, and T. Tanguy. The return of eratosthenes: Secure
generation of rsa moduli using distributed sieving. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pages 594–609, 2021.

[19] C. Doche and L. Habsieger. A tree-based approach for computing double-base chains. pages 433–446,
06 2008.

[20] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. Continuous verifiable delay functions. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 125–154.
Springer, 2020.

[21] A.-M. Ernvall-Hytönen and N. Palojärvi. Explicit bound for the number of primes in arithmetic progres-
sions assuming the generalized riemann hypothesis. Mathematics of Computation, 91(335):1317–1365,
May 2022.

[22] Y. Frankel, P. D. MacKenzie, and M. Yung. Robust efficient distributed rsa-key generation. In Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing, pages 663–672, 1998.

[23] T. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas. Fast Distributed RSA Key Generation for Semi-
honest and Malicious Adversaries: 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19–23, 2018, Proceedings, Part II, pages 331–361. 07 2018.

[24] O. Friedman, A. Marmor, D. Mutzari, Y. C. Scaly, Y. Spiizer, and A. Yanai. Tiresias: Large scale,
maliciously secure threshold paillier. Cryptology ePrint Archive, 2023.

[25] R. Gennaro and M. Rabin. Simplified vss and fast-track multiparty computations with applications to
threshold cryptography. Proc. of 17th PODC, 06 1998.

[26] N. Gilboa. Two party rsa key generation. In Annual International Cryptology Conference, pages 116–
129. Springer, 1999.

[27] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. Smart. Mpc-friendly symmetric key primitives.
pages 430–443, 10 2016.

[28] C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, and A. A. Nicolosi. Efficient rsa key generation and
threshold paillier in the two-party setting. Journal of Cryptology, 32:265–323, 2019.

[29] C. Hoffmann, P. Hubáček, C. Kamath, and T. Krňák. (verifiable) delay functions from lucas sequences.
Cryptology ePrint Archive, 2023.

[30] K. Ireland and M. I. Rosen. A classical introduction to modern number theory, volume 84. Springer
Science & Business Media, 01 1990.

[31] W. I. Khedr, H. M. Khater, and E. R. Mohamed. Cryptographic accumulator-based scheme for critical
data integrity verification in cloud storage. IEEE Access, 7:65635–65651, 2019.

[32] C. Koc. Analysis of sliding window techniques for exponentiation. Computers & Mathematics with
Applications, 30:17–24, 11 1995.

24

[33] G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and applications. In Annual
International Cryptology Conference, pages 620–649. Springer, 2019.

[34] M. Malkin, T. D. Wu, and D. Boneh. Experimenting with shared generation of rsa keys. In NDSS,
1999.

[35] H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory I: Classical Theory. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2006.

[36] G. Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press,
USA, 1st edition, 2009.

[37] K. Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical computer science
conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[38] G. Poupard and J. Stern. Generation of shared rsa keys by two parties. In Advances in Cryptol-
ogy—ASIACRYPT’98: International Conference on the Theory and Application of Cryptology and In-
formation Security Beijing, China, October 18–22, 1998 Proceedings, pages 11–24. Springer, 1998.

[39] M. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128–138, 02
1980.

[40] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 26:96–99, 01 1983.

[41] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. 1996.

[42] B. Wesolowski. Efficient verifiable delay functions. In Advances in Cryptology–EUROCRYPT 2019:
38th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38, pages 379–407. Springer, 2019.

A Appendix

A.1 Some math results

The following lemma explains that each participant randomly samples pi ∈ [0,M] ∩ Z then the probability
of
∑n

i=1 pi, which is square, is very low.

Lemma 6. Let n be a fixed integer and {Xi}ni=1 be a collection of independent and identically distributed
random variables from a discrete uniform distribution on {0, 1, . . . ,M}. Then

[
√
nM]∑

k=0

P(X1 + . . .+Xn = k2)

<
n(
√
n+ 1)

(
n
[n2]
)

(n− 1)!

1√
M

+O(1).

Here
(·
·
)
is the binomial coefficient.

Proof. Note that the number of the set [6, Theorem 8]

Ak :=

{
(x1, ..., xn) | xi ∈ [0,M] and

n∑
i=1

xi = k

}
,

which is a Balls-into-Bins problem, is

Bk :=

n∑
t=1

(−1)t
(
n

t

)(
k − t(M + 1) + n− 1

n− 1

)
.

25

Here the binomial coefficient stands for 0 if the upper index is less than the lower index, and the Stirling’s
formula says that lnn! = n lnn+ n+O(lnn). Then we have

|Bk| <n
(
n[
n
2

])(nM + n− 1

n− 1

)

=
n
(

n
[n2]
)

(n− 1)!
(nM + n− 1)n−1 +O(1).

The number of
∑nM

i=1 Ai = (M + 1)n, the desired result comes from the above estimation and the following
inequality

[
√
Mr]∑

k=0

P(X1 + . . .+Xn = k2) <
(
√
Mn+ 1)|Bk|
(M + 1)n

.

Given a prime number p and an integer x ∈ N, we set ordp(x) := r with pr | x and pr+1 ∤ x.

Lemma 7. Assume that neither r nor q are perfect square. Then∣∣∣∣ {D ∈ Z×
rq :

[
−D
r

]
= −1,

[
−D
q

]
= −1

} ∣∣∣∣
=

{
ϕ(rq)/2, if r = pk21 and q = pk22, for some prime p;
ϕ(rq)

4 , otherwise .

Proof. Note that for fixing ϵ1, ϵ2 ∈ {1,−1},∣∣∣∣ {D ∈ Z×
pordp(rq) :

[
−D

pordp(r)

]
= ϵ1,

[
−D

pordp(q)

]
= ϵ2

} ∣∣∣∣ (9)

=

{
ϕ(pordp(rq)), if 2 | ordp(r) and 2 | ordp(q),
ϕ(pordp(rq))

2 , otherwise .

We only prove that the case 2 ∤ ordp(r) and 2 ∤ ordp(q), because the others are straightforward. For
x ∈ Z×

pordp(rq) , we can write it as x0 + x1p + x2p
2 + + xkp

k, where k = ordp(r) + ordp(q) − 1, x0 ∈ Z×
p ,

and xi ∈ Zp for all 1 ≤ i ≤ k. Observe that x0 is a quadratic residue of Zp if and only if x belongs to the
consider set (9). Therefore, in this case, we have∣∣∣∣ {D ∈ Z×

pordp(rq) :

[
−D

pordp(r)

]
= ϵ1,

[
−D

pordp(q)

]
= ϵ2

} ∣∣∣∣
=

∣∣∣∣ {D ∈ Z×
pordp(rq) :

[
−D
p

]
= ϵ1

} ∣∣∣∣(i.e. ϵ1 should equal ϵ2)

=
ϕ(pordp(rq))

2
.

Now, we assume that the p is the only one prime factor of r and q with ordp(r), ordp(q) odd (i.e. r = pk21
and q = pk22). In this case, except for the prime factor of p, the other prime factors p̂ of r and q contribute
the cardinality ϕ(p̂ordp̂(rq)), which gives us the desired result ϕ(rq)/2.

For the remainder case, there exists two primes p′ ̸= p with p | r and p′ | q such that ordp′(q), and

ordp(r) both odd. For the other prime p̂|rq, the quadratic value
[
−D
p̂

]
can be arbitrary, because we can

choose suitable yp, yp′ with −D ≡ yp (mod p) and −D ≡ yp′ (mod p′) such that
[−D

r

]
= −1, and

[
−D
q

]
= 1.

Therefore, the cardinality of the p′ (resp. p) part of q (resp. r) is ϕ(p′
ordp′ (q))/2 (resp. ϕ(pordp(r))/2), and

the other prime p̂ gives ϕ(p̂ordp̂(rq)). Combining the above discussion, the proof is complete.

26

A.2 Proof of Theorem 4 for the case s ≥ 4

We now consider the case N =

s∏
i=1

pi is square-free with s ≥ 4, p =

k−1∏
i=1

pi and q =

s∏
i=k

pi.

Let (a1, . . . , as) ∈ {1,−1}s be the sequence such that ai ≡ pi (mod 4) for all 1 ≤ i ≤ s. Note that for
any D′ such that ϵ−D′(p) = ϵ−D′(q) = −1, by (2) we have

ϵD′(p) =

k−1∏
i=1

ϵD′(pi) =

1, if

k−1∏
i=1

ai = −1;

−1, if

k−1∏
i=1

ai = 1.

The above equality implies

k−1∏
i=1

ϵD′(pi) = −
k−1∏
i=1

ai. Similarly we have

s∏
i=k

ϵD′(pi) = −
s∏

i=k

ai. Consider the

sets

B :=

{
(ϵ1,...,ϵs)∈{±1}s

∣∣∣∣ k−1∏
i=1

ϵi = −
k−1∏
i=1

ai,

s∏
i=k

ϵi = −
s∏

i=k

ai

}
,

and S(D, ϵ1, . . . , ϵs) to be

{D ∈ P([2, x]) : ϵD(pi) = ϵi, ∀i ∈ {1, . . . , s}} ,

where ϵi ∈ {−1, 1} for all i. One has

|LPBP(x,N, e)|

=
∑
b∈B

|S(x,b)|

s∏

i=1

(
2 gcd(di, d)− 1

), (10)

and

|Z(x,N, e)| .

=
∑
b∈B

|S (x,b) |

(
s∏

i=1

(
2kidi − 1

))

≥
∑
b∈B

|S (x,b) |

(
s∏

i=1

(
2ki gcd(di, d)− 1

))
. (11)

Therefore, we need to know under what conditions ki will be larger than 1. Note that{
ki ≥ 2, if ai = ϵi;

ki = 1, if ai = −ϵi.

Now, we divide the proof into cases depending on the parity of k − 1 and s− k + 1.
Case 1: k − 1 or s− k + 1 is even.
Without loss of generality, we assume k − 1 is even. We have (−a1, . . . ,−ak−1,−a′k, . . . ,−a′s) ̸∈ B for any
(−a′k, . . . ,−a′s) ∈ {±1}s−k−1 since

k−1∏
i=1

(−ai) = (−1)k−1
k−1∏
i=1

ai ̸= −
(k−1∏

i=1

ai
)
.

27

Therefore, for any b = (ϵ1, . . . , ϵs) ∈ B, there exists 1 ≤ i′ ≤ k − 1 such that ai′ = ϵi′ (and hence ki′ ≥ 2)
and

|S (x,b) |

(
s∏

i=1

(
2ki gcd(di, d)− 1

))

≥ 2 · |S (x,b) |

(
s∏

i=1

(
2 gcd(di, d)− 1

))
.

Therefore, we obtain ∣∣LPBP(x,N, e)∣∣
|Z(x,N, e)|

≤ 1

2
.

Case 2: k − 1 is odd and s− k + 1 is odd.
Let b′ := (−a1, . . . ,−ak−1,−ak, . . . ,−as) ∈ B. For any b ∈ B \ {b′}, there exist 1 ≤ i′, i′′ ≤ k − 1 or
k ≤ i′, i′′ ≤ s such that ai′ = ϵi′ and ai′′ = ϵi′′ , we have

|S (x,b) |

(
s∏

i=1

(
2ki gcd(di, d)− 1

))

≥ 4 · |S (x,b) |

(
s∏

i=1

(
2 gcd(di, d)− 1

))
,

which implies that

|Z(x,N, e)|

≥ 4
∑

b∈B\{b′}

|S (x,b) |

(
s∏

i=1

(
2 gcd(di, d)− 1

))

+ |S (x,b′) |

(
s∏

i=1

(
2 gcd(di, d)− 1

))
. (12)

We can observe that the size of set B increases with the increase in s, so we only need to consider the
case where s = 4. Taking s = 4 and with out loss of generality, assume k − 1 = 1. We have B \ {b′} =
{(−a1,−a2, a3, a4), (−a1, a2,−a3, a4), (−a1, a2, a3,−a4)} and b′ = (−a1,−a2,−a3,−a4).

We conclude that: ∣∣LPBP(x,N, e)∣∣
|Z(x,N, e)|

≤ 1 + 1 + 1 + 1

4 + 4 + 4 + 1
+O

(
(lnx)2√

x

)
=

4

13
+O

(
(lnx)2√

x

)
.

The second inequality is derived from Corollary 2 and equations (11) and (12).

28

