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Abstract. In this paper, we propose a leakage-resilient pseudo-random
number generator (PRNG) design that leverages the rekeying techniques
of the PSV-Enc encryption scheme and the superposition property of the
Superposition-Tweak-Key (STK) framework. The random seed of the
PRNG is divided into two parts; one part is used as an ephemeral key
that changes every two calls to a tweakable block cipher (TBC), and
the other part is used as a static long-term key. Using the superposition
property, we show that it is possible to eliminate observable leakage by
only masking the static key. Thus, our proposal itself can be seen as a su-
perposition of masking and rekeying. We show that our observations can
be used to design an unpredictable-with-leakage PRNG as long as the
static key is protected, and the ephemeral key cannot be attacked with
2 traces. Our construction enjoys better theoretical security arguments
than PSV-Enc; better Time-Data trade-off and leakage assumptions, us-
ing the recently popularized unpredictability with leakage. We verify our
proposal by performing Test Vector Leakage Assessment (TVLA) on an
STK-based TBC (Deoxys-TBC) operated with a fixed key and a dynamic
random tweak. Our results show that while the protection of the static
key is non-trivial, it only requires ≈ 10% overhead for first-order pro-
tection in the most conservative setting, unlike traditional masking that
may require significant overheads of 300% or more.
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1 Introduction

For more than 25 years, side-channel analysis has been at the forefront of cryp-
tology in general, and symmetric key cryptography in particular. While in clas-
sical cryptography the adversary is assumed to interact with the cryptographic
scheme in a black-box way, respecting a set of pre-imposed rules and limita-
tions, side-channel analysis is concerned with adversaries that can observe the
device’s behaviour in action (also known as grey-box model) and make infer-
ences based on physical measurements, such as timing, power or electromag-
netic measurements. One of the most famous examples of this paradigm is the



Differential Power Analysis (DPA) proposed in [KJJ99]. Protecting implemen-
tations against side channel attacks has been a goal for designers for more than
25 years. The most widespread countermeasure against DPA-like attacks is cir-
cuit masking [ISW03], where all the secret and sensitive variables are encoded
using a secret-sharing scheme, and the circuit/software is adjusted to compute
the function over the new representation. This task is far from trivial, as the
designers must make sure that the secret is never unveiled in plain during any
step of the computation. Several models having been proposed over the years
to capture this goal, most notably the probing model [ISW03], which represents
the implementation as a circuit and makes sure that for any adversary that can
observe d wires during any one execution, cannot deduce any sensitive variables,
d is known as the security order of the implementation. It was later shown that
the probing model does not capture the full reality, as combining shares of the
secret may happen in other ways than unveiling the secret in temporary vari-
ables (represented by wires). Different types of glitches have been shown to leak
the secret even if the scheme is secure in the probing model [NRR06], which led
to new security models and many masking schemes attempting to address these
issues [CS20]. These countermeasures may increase the cost of computations by
several orders of magnitude, due to multiple reasons. The cost of masking non-
linear functions grows quadratically with d. Besides, protecting against glitches
requires synchronizing temporary variables in sophisticated ways that slow down
the operation and may require large amounts of random bits.

For these reasons, a new design paradigm emerged known as leakage-resilient
cryptography [DP08,BBC+20]. In this approach, a cryptographic mode of op-
eration is designed such that it may be costly as a black-box design, compared
to classical methods, but is easier to protect against side-channel analysis. The
main approach towards this goal is the so-called levelled implementations, where
the algorithm is divided into two parts: one part uses a long-term secret key,
is heavily protected against side-channel analysis, and the other part uses only
temporary secrets that acts as moving targets for the adversary. This makes DPA
significantly harder as it requires many traces with the same secret. If the heav-
ily protected part is protected against DPA, the adversary can only target the
other part, and since it does not expose long-term secrets, DPA is not possible.
This leaves the adversary with Simple Power Analysis (SPA). SPA refers to at-
tacks that use low trace counts, typically single trace. Besides, SPA is sometimes
used as an umbrella-term that includes all attacks that require a small number
of traces with the same key, but can have extensive modelling/profiling phases,
where the adversary can collect traces from the implementation with their own
key. Template attacks with small number of traces fall into this category. These
(profiled/non-profiled single trace) attacks are much harder to mount, and are
easier to protect against compared to DPA. For software, a cheaper counter-
measure such as shuffling can be used [VCMKS12], while in hardware if the
implementation includes many parallel functionalities, such attacks maybe un-
feasible due to inherent noise (or cost effective noise sources could be easily
deployed).
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Another related countermeasure is fresh rekeying, initially proposed by Med-
wed et al. [MSGR10a] and improved through various methods (see Section 2).
This type of countermeasure assumes the existence of a easier to protect rekeying
function that takes the secret key and a public rekeying parameter and uses it to
generate temporary keys that are only used a small number of times. This rekey-
ing function needs to be easier to protect against DPA than a classical crypto-
graphic mode targeting the same security goal. It can be a leakage-resilient PRF,
such as the GGM scheme [GGM85] or more recently the LR4 scheme [UHIM23].
It has also been shown that it can be a weaker function such as Galois Field
Multiplication [MSGR10a]. Mennink [Men20] formalized the requirement using
Universal Hash Functions (UHFs), where depending on the rekeying scheme, the
rekeying function needs to satisfy a combinatorial security goal.

This work: One of the early symmetric key encryption modes that target lev-
elled implementations is the PSV-Enc scheme proposed in [PSV15]. The scheme
requires a heavily protected key-derivation function that takes as input a key
and a nonce (or random IV) and generates an initial subkey K0 that is used
in the scheme depicted in Figure 1. The PSV-Enc scheme is based on the 2-
PRG construction [SPY13] and in this paper, we will focus on using it as a
Pseudo-Random Number Generator (PRNG), where we assume that a random-
ness source exists that generates a uniformly random initial key K0, and the
scheme in Figure 1 is used as a PRNG. Note that is equivalent to assessing
the outcome of a single query of the original PSV-Enc, with query length qe.
Since each key is used only twice (unless a collision on the subkeys occurs), the
scheme is leakage resilient as long as the underlying Block Cipher (BC) cannot
be attacked with a 2-trace attack. On the other hand, PSV-Enc as a PRNG (the
2-PRG construction) experiences the following limitations:
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Fig. 1. Two blocks of the PRNG used in PSV-Enc.

- As a PRNG, PSV-Enc can only achieve birthday bound security, even in the
black box setting. This is due to the fact that if any two subkeys collide, the
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output string will have a short periodic cycle, and can be easily distinguished
from a random stream of bits. Besides, the PRNG suffers from a Time-
Data trade-off, where the attacker can guess any of the subkeys, and their
advantage is close to one when they make qp offline guesses and observed qe
blocks, such that qeqp ≈ 2n. Both these limitations maybe addressed using
a Tweakable Block Cipher (TBC), rather than a BC, by including a counter
as a tweak in the TBC calls.

- A related limitation is that the BC calls in PSV-Enc do not (and should
not) share a common secret key, making its analysis in the black-box setting
rely on easier ideal cipher model or multi-key analysis of the BC. In terms
of leakage resilience, this makes it harder to use the unpredictability with
leakage assumption, recently introduced in [BGPS21]. This limitation, unlike
the previous one, cannot be addressed using a TBC.

- PSV-Enc is designed such that the subkey size is equal to the block size n.
This means that if we want higher security, or larger input to the PRNG, we
need to not only use a (T)BC with a larger key size, but also with a larger
block size. Another possibility is to use b+1 calls per iteration to generate a
(bn)-bit subkey. However, this increases the cost by a factor of (b+1)/2 and
requires a stronger assumption that the BC is secure against (b + 1)-trace
attacks.

This presents us with a set of research goals to design a new leakage-resilient
PRNG:

- The key size should be decoupled from the block size.
- It should be possible to use the unpredictability with leakage assumption
on the underlying (T)BC to derive the unpredictability with leakage of the
PRNG.

- The design should be realizable using a practical TBC with a very small
performance penalty compared to if it is used in a PSV-Enc-like design.

- The design (in the black-box setting) should only permit much safer Time-
Data trade-offs.

To address these goals, we present the PRNG design in Figure 2. It is similar
to PSV-Enc except that initial key consists of two parts: an n-bit part K0, which
is similar to K0 in PSV-Enc, and a k-bit part Km, which is used as a static key
to an underlying TBC. If we set Km to a known constant, the two designs are
similar. However, by having this static key, we are able to model the TBC as
a standard Tweakable Pseudo-Random Permutation (TPRP) in the black-box
model and an unpredictable-with-leakage TBC. Besides, we are able to improve
the security against Time-Data trade-offs and decouple the size of the input from
the block-size of the TBC, allowing using TBCs with smaller block sizes.

On the other hand, when the reader sees Figure 2, alarm bells should be
ringing: how can this design be implemented without using a heavily protected
TBC? The answer is superposition. Superposition is a concept introduced in the
Superposition-Tweak-Key (STK) framework in [JNP14], where the tweak and
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Fig. 2. The proposed PRNG with STK-based TBCs.

the key are seen as a (cn)-bit string called the tweakey for a small constant c
(typically 2 or 3), and c linear transformations are applied in parallel on each
c-bit section of the tweakey to generate c n-bit sub-tweakeys for each round of
the TBC. Then, these c values are bitwise-XORed to generate the round subkey.
Consider a case where one n-bit section of the tweakey is uniformly random
(with n-bit entropy), then the round keys are also randomly selected with n-bit
entropy. Thus, when a static secret key is added to the random tweak, the infor-
mation from the secret key is perfectly hidden. This means that we do not need
heavy protection of the bulk of TBC, specially the costly SBox operation. What
remains is to protect the part of the key schedule that operates on the static
key against DPA. This is the main goal of the experiments performed in Sec-
tion 4. Several TBCs follow the STK framework, such as Deoxys-TBC [JNPS21]
and Skinny [BJK+16]. In the rest of the paper, we will focus on Deoxys-TBC as
a proof-of-concept.

It worth noting that this is not the first design that uses a static key in a func-
tion that is not heavily protected and claims leakage resilience. ISAP [DEM+17]
uses a similar concept for its rekeying function, which uses a static secret key
but relies on the properties of the underlying Sponge function with a very small
(1-bit) rate to ensure it is hard to perform DPA. Our proposal can be seen in the
same category, where we rely on the superposition property of the underlying
TBC to make a similar claim.

2 Preliminaries

Pseudo-Random Number Generators (PRNGs) A PRNG is a functionG : {0, 1}λ×
N → {0, 1}λ+l that takes as input a short λ-bit input and a natural number l
and returns a λ + l-bit output. Its security ensures that if the input selected
uniformly at random from {0, 1}λ, its output is indistinguishable from a string
selected uniformly at random from {0, 1}λ+l. In other words, let A be an adver-
sary that requests a (λ+ l)-bit string and outputs 0 or 1. Let $ be an oracle that
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when queried with any input returns a string sampled uniformly from {0, 1}λ+l.
Then, we say G is a secure PRNG if for any adversary,

Advprng
G (A)

def
= |Pr[r $←− {0, 1}λ : AG(r,l) ⇒ 1]− Pr[A$(l) ⇒ 1]| ≤ ϵprng

where ϵprng is negligible.

Tweakable Block Ciphers (TBC) and their Security Models A function Ẽ : K ×
T × {0, 1}n → {0, 1}n is called a TBC is for each pair (K,T ) ∈ K × T , Ẽ
acts a permutation over {0, 1}n. If T = Φ (the empty set), then Ẽ is simply a
block cipher. The most widely used security notion of TBCs, commonly referred
to as the standard model, is the indistinguishability from tweakable random
permutations; given a key K selected uniformly at random, then for each T ∈ T ,
Ẽ is indistinguishable from a random permutation. In this case, we say Ẽ behaves
as a TPRP. Let Π̃ be a family of |T | permutations selected uniformly at random
and indexed by T ∈ T , then for an adversary A,

Advtprp

Ẽ
(A)

def
= |Pr[K $←− K : AẼ(K,·,·) ⇒ 1]− Pr[AΠ̃ ⇒ 1]|.

and for all adversaries that can make q queries and run in time at most t,

Advtprp

Ẽ
(q, t)

def
= max

A
Advtprp

Ẽ
(A).

Another security notion of TBCs is the ideal cipher model (ICM). The ICM
states that a TBC Ẽ behaves as a random permutation for all possible key-
tweak pairs.

Rekeying: A rekeying scheme (in our context, inspired by [Men20]) is a scheme
that uses a (T)BC and targets the protection of the secret key against side-
channel attacks by separating encryption into two functionalities: a subkey gen-
eration function that takes as input the master key and a public parameter
R to generates a subkey S. A block encryption function takes the subkey S
and encrypts the message. The subkey generation function does not need to be
cryptographically strong but needs to be protected against side-channel analysis
like differential power analysis (DPA). The block encryption needs to provide
TPRP security but only needs to be protected against simple power analysis
(SPA). This concept was introduced in the context of block ciphers by Medwed
et al. [MSGR10b] and has since been one of the bedrocks of leakage-resilient
symmetric key cryptography [DEMM14,DKM+16,BKP+18,BGP+19,GIK+22].
It has been adopted in some industrial applications [nxp]. A few years ago, Men-
nink [Men20] showed that in terms of its syntax and security goal, a rekeying
scheme is not different from a TBC. What matters is how it is designed and how
efficient it is to implement it in a secure fashion against side-channel attacks.

The Superposition Tweakay (STK) Construction: Jean et al. [JNP14] introduced
the tweakey framework for designing adhoc TBC and its variant, the STK con-
struction, specifically for AES-like designs. It was used to design the Deoxys-
TBC [JNPS21]. Let Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n be a TBC, such
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that (k+t) is a multiple of n, i.e. (k+t) = cn where c is a small constant integer.
A tweakey is constructed by concatenating the key and tweak, i.e. TK = K∥T .
TK is divided into c blocks of n bits, each. During each round of the cipher, the
c blocks are XORed together to generate the round key, then the round function
is applied. Simultaneously, d parallel linear transforms are applied in parallel to
the c blocks of the key. A single round of a TBC built using the STK framework
is described in Algorithm 5.

3 An Unpredictable PRNG from Unpredictable TBCs

Consider a rekeying scheme R̃ : {0, 1}k×{0, 1}t×{0, 1}n → {0, 1}n, where k = λ
and qe = ⌈l/n⌉, t ≥ log2(qe+1). Then, we can define a PRNG as in Algorithm 1.
It is easy to see that if R̃ is a secure TPRP, each loop calls the function with a
unique tweak. Hence, for any adversary A against the PRNG that runs in time
at most t, there is a TPRP adversary B that makes qe queries and runs in time
O(t+ qe), such that

ϵprng ≤ Adv
tprp

R̃
(B).

By observing that the rekeying scheme is used in counter-in-tweak mode
(the tweak is a counter), this opens up different possibilities for building efficient
designs. A popular design paradigm has started with the PSV-Enc proposed
in [PSV15]. The design is depicted in Figure 1. The design makes calls to an
ideal cipher. During each iteration, a call is made to the ideal cipher to ”incre-
ment” the ephemeral key, while a second call is made (with a different constant
TBC plaintext) to generate a block of the output. In practice, the initial key is
generated from a master secret key using a key generation function. However,
this is beyond the scope of the PRNG itself. This design has inspired many
leakage-resilient designs, such as TEDT [BGP+19] and Romulus-T [GIK+22]. On
the other hand, it suffers from two limitations:

1. It forces λ ≤ n, where n is the block size of the TBC.
2. It can only achieve birthday bound security, due to collisions between the

TBC keys and the possibility of the adversary to guess one of these keys.
While this can be easily captured from an analysis of PSV-Enc as a PRNG.
It is also captured in the analysis in [PSV15, Lemma (4)], where the security
of PSV-Enc used for l-block encryption is l× ϵ1 where ϵ1 is the advantage of
performing l single block encryptions. The single-block encryption security
is related to a term denoted as ϵ2−sim in [PSV15, Lemma (2)] which is (in
simple terms) the security of the BC against adversaries that can observe 2
traces per key. This is capped (from ideal cipher security with random keys)
to

σ2

2n
+

σqp
2n

,

where σ is the number of keys used and qp is the number of offline queries
made to the ideal cipher. In the PRNG setting we are concerned with, we
generate one message with q blocks. Thus, applying the bound in [PSV15]
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would only lead to less than birthday bound security. However, in the black-
box setting, a dedicated analysis may reclaim birthday bound security but
not more.

The designs of TEDT and Romulus-T aim to solve the second limitation by
achieving beyond birthday bound security, using extra counters and nonce. How-
ever, this requires extra assumptions, such as nonce-respecting adversaries or
limited nonce-misuse, and is outside the scope and syntax of PRNGs. On the
other hand, the first limitation is inherent in the design strategy. We can, con-
ceptually, use λ > n if the TBC supports k > n. However, this would require
generating k+n bits in each iteration, which would increase the number of calls
to the TBC per iteration to at least 3 calls, which would also mean a stronger
security model.

Another difference between our set-up and the set-up from [PSV15] and
follow-up works is that in [PSV15] a full query either leaks or does not leak, but
in our set-up, there is only one long query, and we are looking at the unpre-
dictability of the next block, given the leakage from all the previous blocks have
been observed.

This leads to an interesting research question:

Can we design a PSV-like PRNG with only two calls per block that
takes more than n-bit input and does not suffer from a significant
Time-Data trade-off security degradation like PSV-Enc?

In Figure 2, we propose a variant of PSV-Enc, which instead of using a cipher
with n-bit key, it uses a TBC with n-bit tweak and k-bit key. The construction
is a natural extension of PSV-Enc, where the ideal cipher is replaced by a TPRP.
However, the interesting challenge is how to implement it without heavily pro-
tecting it, while maintaining some form of leakage-resilience. In this case, we
can view the PRNG construction as having λ = (n + k), where a k-bit part
is fixed for all blocks, while an n-bit part is ephemeral in the same manner as
PSV-Enc. Of course, this is not leakage-resilient in general except when the TBC
is heavily protected, since Km is fixed, which goes against the motivation of
PSV-Enc. However, we will show that the synergy between Figure 2 and the
STK design paradigm allows for a very efficient solution that does not require
heavy protection of the TBC.

In the remainder of this section, we will focus on the black-box security of
the proposed PRNG.
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Algorithm 1 A framework for
building PRNGs from rekeying
schemes.

1: K
$←− {0, 1}λ

2: X ← ε
3: for i ∈ {1, . . . q} do

4: C ← R̃(K, i, 0n)
5: X ← X∥C
6: end for
7: return X

Algorithm 2 Our proposed
PRNG from TBCs.

1: (Km, K0)
$←− {0, 1}k × {0, 1}n

2: X ← ε
3: for i ∈ {1, . . . q} do

4: C ← Ẽ
Ki−1
Km

(Pb)

5: Ki ← Ẽ
Ki−1
Km

(Pa)

6: X ← X∥C
7: end for
8: return X

Theorem 1. Let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a TBC and let
G : {0, 1}k+n → ({0, 1}n)∗ be the PRNG given in Algorithm 2. Then, for any
adversary A against G that generates q blocks and runs in time t, there exists
an adversary B against Ẽ, such that,

Adv
prng
G (A) ≤ Adv

tprp

Ẽ
(B) +

q2 + q

2n
,

where B makes 2q TBC calls and runs in time t
′
= O(t+ q).

Proof. In the first step of the proof, we replace Ẽ with an ideal TBC Π̃, we call
this Game 1, where E1 is the event that the adversary wins according to the
PRNG game definition in Section 2. Then, we define Game 2 as the game that
terminates if for an index i > 0, with tweak Ki, there exists an index 0 ≤ j < i,
such that Ki = Kj . E2 that the adversary wins according to the PRNG game
definition in Section 2. Using the hybrid argument,

|Pr[E2]− Pr[E1]| ≤
q∑

i=1

i

2n
≤ q2

2n
.

Next, we define Game 3 where we replace Π̃ with a random function F̃ with
the same domain and range. In this case, we can see that each tweak Ki is used
at most twice, and Games 2 and 3 can only be distinguished if for any index i,
F̃ (Ki, Pa) = F̃ (Ki, Pb), which can happen with probability 1/2n. Thus,

|Pr[E3]− Pr[E2]| ≤
q∑

i=1

1

2n
=

q

2n
.

Finally, Game 3 is indistinguishable from an ideal PRNG. Thus,

Pr[E3] = 0.

The bound follows from adding the transition probabilities.
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3.1 Unpredictability of the Next Block: A leakage resiliency target
for PRNGs

Unpredictability as a leakage resiliency target for TBCs was discussed in [BGPS21].
The adversary observes a certain number of evaluations of the TBC with chosen
plaintexts with their corresponding leakages3, then wins if they can predict the
outcome of a new evaluation of the TBC that has not been observed before. Un-
predictability as a target for leakage-resilient symmetric-key cryptography is a
well-established topic that dates earlier than [BGPS21], and has been discussed
in multiple works [DS09,DJS19]. We follow the definition of [BGPS21] since it
is the most mature for TBCs. In this section, we recall the definition of unpre-
dictability with leakage given in [BGPS21], and propose the unpredictability of
the next block as a security goal for PRNGs. Then, we show that if Ẽ is un-
predictable with leakage, then our PRNG achieves unpredictability of the next
block. The definition below is adapted from [BGPS21], removing the inverse
function and adapting notation.

Definition 1. A TBC Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n with a leak-
age function LEval is (ql, qc, t, ϵupl1)-unpredictable with forward leakage if for any
(ql, qc, t)-adversary A, we have

Advupl1

Ẽ
(A) ≤ ϵupl1,

where the UPL1 game is defined in Algorithm 3, and A makes at most qc con-
struction queries with leakage, such that each tweak is repeated at most twice,
and ql modelling queries with leakage to the modelling oracle L.

Berti et al. [BGPS21] define modelling queries as queries made to the TBC
with chosen plaintext and chosen key to model the leakage function. They are
meant to capture attacks such as template attacks. They are similar to primitive
queries in the ideal cipher model.

Algorithm 3 TBC Unpredictability with Leakage Game

1: Initialize :

2: K
$←− {0, 1}k

3: L ← ϕ
4: for X ∈ {0, 1}n do
5: T [X]← 0
6: end for

7: Enc(M,T ) :
8: if T [T ] = 2 then
9: return ⊥
10: end if
11: T [T ]← T [T ] + 1

12: C ← ẼT
K(M)

13: le ← LEval(M,T ;K)
14: L ← L ∪ {(M,T,C)}
15: return (C, le)

16: Finalize :
17: (M,T,C)← AL,Enc

18: if (M,T,C) ∈ L then
19: return 0
20: else if C = ẼT

K(M) then
21: return 1
22: else
23: return 0
24: end if

As discussed earlier and studied in [Men20], a rekeying scheme is nothing
but a TBC with special implementation properties. Thus, consider a rekeying

3 [BGPS21] discusses strong unpredictability, which also allows chosen ciphertext
queries. However, this is not needed for our construction.
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scheme that is (ql, qe, t, ϵupl1)-unpredictable as the building block of Algorithm 1.
Algorithm 4 describes a security game where an adversary A makes a single
query to the PRNG in Algorithm 1 with output k + ln, observing the output
string and the associated leakage, and tries to guess the next n bits. It is easy to
see that if the rekeying scheme is (ql, qe, t

′
, ϵupl1)-unpredictable, then the PRNG

is (ql, q, t, ϵupl1)-next-block-unpredictable, where t
′
= O(t+ q).

Algorithm 4 PRNG Unpredictability of the Next Block with Leakage Game

1: Initialize :

2: K
$←− {0, 1}k

3: PRNG(q) :
4: X ← ε
5: lp ← ϕ
6: for i ∈ {1, . . . , q} do

7: X ← X∥R̃(K, i, 0n)
8: lp ← lp ∪ {LR(K, i, 0n)}
9: end for
10: return (X, lp)

11: Finalize :
12: C ← AL,PRNG

13: if C = R̃(K, q + 1, 0n)
then

14: return 1
15: else
16: return 0
17: end if

Definition 2. We say the PRNG G in Algorithm 1 with associated leakage func-
tion is (ql, q, t, ϵprng−upl1)-unpredictable if for any (ql, qe, t)-adversary A, we have

Advprng−upl1
G (A) ≤ ϵprng−upl1,

where Advprng−upl1
G (A) is the advantage that for any 0 ≤ i ≤ q, A observes the

first in bits and predicts the next n bits.

Theorem 2. Given a rekeying scheme R̃ that is (ql, qe, t
′
, ϵupl1)-unpredictable, a

PRNG that is defined according to Algorithm 1 is (ql, qe, t, qeϵupl1)-unpredictable

where t
′
= O(t+ qe).

Proof. The proof follows from simple hybrid argument where the adversary calls
Finalize in Algorithm 4 after observing each block and the associated leakage,
and wins if the function returns 1 at any call. Since the rekeying scheme is
(ql, qe, t

′
, ϵupl1)-unpredictable, then at any time Finalize is called, the advantage

is at most ϵupl1, the function is called at most qe times. t
′
= O(t + qe) since

the time taken an adversary against the rekeying scheme is bounded by at most
the time needed by the adversary against the PRNG in addition to a constant
overhead per query.

Theorem 3. Let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n be a TBC and
let G : {0, 1}k+n → ({0, 1}n)∗ be the PRNG given in Algorithm 2. If Ẽ is
(ql, 2qe, t

′
, ϵupl1)-unpredictable, G is (ql, qe, t, ϵprng−upl1)-unpredictable, where

ϵprng−upl1 ≤ qeϵupl1 +
q2e
2n

and t
′
= O(t+ qe).

11



Proof. First, we define a hybrid game that terminates if for an index i > 0, with
tweak Ki, there exists an index 0 ≤ j < i, such that Ki = Kj . This is analyzed in
Game 2 of the proof of Theorem 1. Otherwise, we notice that the TBC is never
called with the same tweak twice. Using the hybrid argument in Theorem 2, we
get the full bound.

Theorem 3 can be understood as follows: if Ẽ is secure against key recovery,
with Km as the key, and secure against 2-trace attacks trying to leak any Ki,
then the PRNG remains unpredictable (up to birthday bound). The rest of the
paper is dedicated to reaching a lightweight realization of Algorithm 2 when
ql = 0, i.e. for non-profiled attacks. This is done as a proof of concept, since the
protection against profiled attacks with low number of traces, such as SPA and
template attacks, are usually cheaper than non-profiled attacks. For instance,
Simple Power Analysis (SPA) and template attacks may be made harder using
cheaper countermeasures such as hiding and shuffling. That being said, we note
that both our proposed design and PSV-Enc equally require protection against
template and SPA-like attacks.

Comparison to PSV-Enc: Algorithm 2 can clearly be more costly than PSV-Enc.
For instance, it has a static key that needs to be protected. For a general TBC,
this means heavy protection of the full TBC. Luckily, as we shall see in Section 4,
the cost of protecting the static key in STK TBCs is minimal. On the other hand,
PSV-Enc suffers from the security bound qeqp/2

n, since its black-box security is
in the ideal cipher model and the adversary can guess one of the keys by making
qp queries to the primitive and qe queries to PSV-Enc, such that qpqe ≈ 2n. It
also restricts the key size to n, making it harder to use TBCs with small block
but large tweakey. For instance, consider Algorithm 2 with a TBC with 128-bit
tweakey and 64-bit block, and an adversary that successfully guesses the static
part of the key Km, the adversary can recover one of the ephemeral keys with
qpqe ≈ 264. Since the probability of guessing Km is 2−64, the adversary needs
qpqe ≈ 2128 and qp ≥ 264 to get a close to 1 advantage of guessing a full key. If
qe is limited to 232 blocks, then qp can go up to 296. These attacks are captured
in Theorem 1 by the computational term of the TPRP security. On the other
hand, PSV-Enc with a 64-bit cipher would only tolerate qp ≈ 232 in this case,
which is far from secure.

Based on this, while we focus our proof-of-concept in the rest of the paper
on Deoxys-TBC, we believe our proposed scheme has much broader design space,
and can be used with TBCs such as Skinny-64-128 or Skinny-64-192.

3.2 Comparison to BBB Secure PSV-Enc-like Encryption

As discussed earlier, TEDT and Romulus-T aim to make PSV-Enc-like construc-
tions BBB secure using large tweaks. In particular, TEDT replaces the constants
Pa and Pb with two counters. This prevents the formation of short periodic cy-
cles, in case two of the keys collide. It also includes a random tweak T : Since
TEDT is an Authenticated Encryption with Associated Data (AEAD) scheme, T
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is the authentication tag generated using a PRF MAC. However, in our PRNG
set-up, this tag does not affect the security as it is can be treated as a public
constant. Romulus-T goes a step further where the counters are included as part
of the tweak, which improves the security bounds slightly. These ideas do not
help at least one of the aspects of the problem we are trying to solve. Namely, it
is still not possible to use the unpredicatbility with leakage assumption proposed
in [BGPS21], since this assumption requires a secret TPRP-style TBC, and not
an ideal cipher which these schemes use. One the other hand, these ideas can
be used in conjunction with our proposal. In such a combined construction, the
TBC has larger tweak space and the tweak is appended by a public counter
and two public constants. This makes sure that even if two keys collide, all the
tweakeys are unique. This improves the black-box security to

ϵprng ≤ Adv
tprp

Ẽ
(2qe, t).

However, when it comes to unpredictability with leakage, things are more subtle.
If we want to maintain that the adversary can only observe two traces for the
same ephemeral key, key collisions still affect the security. However, we could
relax the assumption to n traces instead of two, and rely on bounding the prob-
ability of getting a multi-collision of size > n. This would again remove the
birthday-bound term, but make the unpredictability assumption stronger and
the analysis more involved. Since our goal is to introduce the possibility of using
unpredictability assumptions with a static key to build leakage-resilient PRNGs,
we leave a dedicated analysis of its BBB security with leakage as future-work.

We also note that the techniques proposed by Chen et al. [CLMP21] can
be used to generalize the PSV-Enc/2-PRG construction to have higher security
using a block cipher with 2n-bit key and n-bit blocks, and 3 calls to the block
cipher per output block. However, this approach is less efficient than ours as it
requires three calls to the block cipher, while we only need two. One may argue
that these calls are to a block cipher and not a TBC, which makes them cheaper,
but this is not necessarily true in practice, as the difference in cost between a
BC with 2n-bit key and a TBC with n-bit key and n-bit tweak is minimal, and
does not offset the cost of a full extra call. For instance, AES-256 requires 16
AES rounds, while Deoxys-128-256 requires 14 AES rounds and the total size
of the key and tweak is 2n bits. In many cases, the same TBC is used as the
block cipher, which makes such approach significantly more expensive than ours.
Besides, the approach of Chen et al. still does not satisfy our goal of using the
unpredictability assumption.

4 Lightweight Realization of Algorithm 2 Using the STK
Framework

Consider an instance of the STK framework with n-bit block and (2n)-bit tweakey.
A single round of the construction is described in Algorithm 5. L0 and L1 are
two different linear transforms that satisfy certain security properties of the STK
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construction. What we observe is that if one of the tweakey components, say T1,
is fixed, and the other component T0 is selected uniformly at random, then the
round key Kri has a uniform distribution, and the same applies for the output
S. However, during one execution, the round keys are not independent (since
T0 is used in all the rounds up to a linear transformation). If the TBC consists
of r rounds, then T0 (up to different linear transformations) is used r times. It
is a common assumption that if the implementation is protected against SPA
with a small number of traces, and T0 is used only in a small number of calls,
then it cannot be recovered by an adversary. Hence, the only target for SCA in
Algorithm 5 is T1, which needs to be masked.

Algorithm 5 A single round
of the STK framework.
1: T0, T1

n←− T
2: T0 ← L0(T0)
3: T1 ← L1(T1)
4: Kri

← T0 ⊕ T1

5: S ← Rri
(S)⊕Kri

Algorithm 6 A secure imple-
mentation single round of the
STK framework.
1: T0, A1, B1

n←− T
2: T0 ← L0(T0)
3: A1 ← L1(A1)
4: B1 ← L1(B1)
5: Kri

← T0 ⊕ A1

6: Kri
← Kri

⊕ B1

7: S ← Rri
(S)⊕Kri

Algorithm 6 adopts this idea. During a call to the TBC, we consider |T | =
3n, and divide it into 3 components (or shares). Each of the three components
appears indistinguishable from a block selected uniformly at random, except
that at lines 3 and 4, A1 ⊕B1 = T1. Kri in line 6 is an unmasked version of the
round key. However, since A1 is first added to T0, which is sampled uniformly,
then the adversary observing Kri gains no more information than the adversary
observing T0.

4.1 Application to Deoxys-TBC with unprotected round function

Theoretically while we show that the key unmasking is done securely, in prac-
tice, similar to masking schemes, it does require careful implementation on the
device. In the following section, we describe a series of experiments that applies
this design strategy in practice. These experiments are conducted on modified
versions of the reference implementation of the Deoxys-TBC [JNPS21].

Measurement setup Our measurement setup to validate the secure unmask-
ing of the round key consists of the Chipwhisperer CW308 UFO platform with
STM32F303 as the target board. The STM32F303RCT6 is an ARM Cortex-M4
CPU with 256KB flash, 48KB SRAM and 72MHz operating frequency. The de-
vice is programmed with a C implementation of Deoxys-TBC, compiled with
arm-none-eabi-gcc compiler using -O3 optimization level. In the software im-
plementation the entire round subtweakeys are computed upfront and stored,
and the cipher round functions are called after, as seen in the power trace from
Figure 3. The clock and communication to the target device is handled by the
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Fig. 3. Deoxys-TBC power trace showing subtweakey generation and cipher rounds

Chipwhisperer Husky capture device. The target device runs at 44 MHz and the
power measurement of the device is captured using the LeCroy WavePro 404
oscilloscope at a sampling frequency of 250MS/s. We employed the Test Vector
Leakage Assessment (TVLA) method [GJJR11] to validate the leakages during
key unmasking.

Deoxys TBC designs We analyzed four different implementations of the De-
oxys-TBC. They are summarized in the Table 1 along with the expected security
goals and the experimental results. For the unprotected Deoxys-TBC instance
(Deoxys-TBC-ORIG) with 384-bit tweakey, we used the reference C implemen-
tation [JNPS21]. As discussed in Section 3, the first 128 bits of the tweakey
component is the static key Km while the second 128 bits is the ephemeral key
Ki. The third component is not used and is set to 0, but it can be dedicated
to the counter in a higher level construction. In other words, the 384-bit key
is assigned as: Km∥Ki∥0128. For the protected Deoxys-TBC instance (Deoxys-
TBC-P) with 384-bit tweakey the first 128 bits of the tweakey are masked, the
second 128-bit component is selected uniformly at random. If the masked key is
Ka

m∥Kb
m, then the protected implementation takes Ka

m∥Kb
m∥Ki∥0128.

With the protected Deoxys-TBC-P design, during the key TVLA, we observed
leakages in multiple rounds of the round key generation function. To understand
the root-cause we generated the assembly code for the roundkey generation func-
tion and after analyzing it we concluded that the observed leakages were poten-
tially due to micro-architectural and transient glitches (resulting from compiler
optimizations) that invalidate our assumptions on masking. To address these
micro-architectural leakages for the current platform, we improved the Deoxys-
TBC-P design by pre-charging the CPU user registers with random values before
each round of the tweak key generation (Deoxys-TBC-P-RP). This pre-charging
had a 4.01% overhead for the round key generation and 1.24% increase for the
overall cipher. Similarly, we also tested a secure design where the sub-parts of the
tweaks that is XOR-ed during the secure unmasking are handled in a random
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Implementation Description Security Goal Result

Deoxys-TBC-ORIG Reference implementation
provided with [JNPS21]

Leakage in the key
schedule

PASS

Deoxys-TBC-P One of the 128-bit com-
ponents of the tweakey is
masked according to Algo-
rithm 6

No 1st order leakage FAIL

Deoxys-TBC-P-RP Similar to Deoxys-TBC-P
but the CPU registers are
randomly pre-charged

No 1st order leakage PASS

Deoxys-TBC-P-SH Similar to Deoxys-TBC-P
but the operations used to
compute the round keys are
randomly shuffled

No 1st order leakage PASS

Table 1. Tested implementations with their security goals

shuffled order (Deoxys-TBC-P-SH). This countermeasure resulted in a 34.82%
overhead for the round key generation and 10.62% overhead for the overall ci-
pher. This shuffling Deoxys-TBC-P-SH design, while comparatively slower, should
be secure and should eliminate any potential micro-architectural leakages, simi-
lar to the one discussed above, on any platform. We used an LFSR to generate
the randomness for the Deoxys-TBC-P-RP and Deoxys-TBC-P-SH designs. This
is done as an example, and in a real-world implementation a secure random
source should be used. It is expected that a practical system would have its own
randomness source.

We also performed two types of TVLA:

- Plaintext TVLA: We fix Km and acquire traces using fixed vs. random plain-
text. In our construction, the plaintext is a public constant, so plaintext leak-
age bears little value to our analysis. However, this was done to verify the
soundness of our approach: when one of the tweakey components is changing
randomly, the round function should not leak.

- Key TVLA: In this case, we fix the plaintext and acquire two sets of traces,
one with Km fixed to a single value and one with Km changing randomly.
This is done to make sure that the key schedule does not experience 1st order
leakage and that we can detect glitches and micro-architectural leakage.

We have also performed TVLA without changing Ki to make sure that our
set-up can detect leaky implementations.

Experimental results Figure 4 shows the plaintext TVLA leakage for the
Deoxys-TBC-ORIG implementation, with 1,000 traces when the tweak is fixed.
And Figure 5 shows the plaintext TVLA leakage with 1 million traces, when the
tweak is selected uniformly at random. The random tweak with the unprotected
design eliminates the plaintext TVLA leakages from the cipher rounds.
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We also performed key TVLA for the Deoxys-TBC-ORIG implementation
with 1,000 traces with a fixed tweak and with random tweak, respectively.
As expected, for the unprotected design the round key generation function
shows TVLA leakages with t-values over the 4.5 bound as shown in Figure 6.

Fig. 4. Plaintext TVLA: Deoxys-TBC-
ORIG with fixed tweak, 1000 traces

Fig. 5. Plaintext TVLA: Deoxys-TBC-
ORIG with random tweak, 1 million
traces

Fig. 6. Key TVLA: Deoxys-TBC-ORIG
with random tweak, 1000 traces

Fig. 7. Key TVLA: Deoxys-TBC-P sub-
tweakey generation with random tweak,
10000 traces

For the protected Deoxys-TBC-P design as discussed in algorithm 6 and in sec-
tion 4, the masked key gets securely unmasked during the subtweakey generation.
When the tweak is fixed, the key TVLA shows leakage, as expected, when the
shares are combined. With a random tweak the design is expected be secure
for key TVLA, but we observed leakage, as shown in Figure 7. By generat-
ing and analyzing the assembly instructions of this implementations, we at-
tributed the leakage to transient glitches and micro-architectural leakage, which
understandably are more probable during our secure unmasking operation. We
studied the register pre-charging (Deoxys-TBC-P-RP) and shuffled order XOR
(Deoxys-TBC-P-SH) designs to eliminate such platform dependent leakages. Fig-
ure 8 and Figure 9 shows the key TVLA with a random tweak for the De-
oxys-TBC-P-RP and Deoxys-TBC-P-SH designs, respectively. Both the protected
designs show no leakage and are secure against the key TVLA with 1 million
traces. We refer to the supplementary materials for a full list of TVLA graphs.
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Fig. 8. Key TVLA: Deoxys-TBC-P-RP
with random tweak, register pre-charge, 1
million traces

Fig. 9. Key TVLA: Deoxys-TBC-P-SH
with random tweak, secure shuffled oper-
ations, 1 million traces

Table 2 summarises the total time taken by the target for the round key gener-
ation and the full cipher operation, at 44MHz, for all the four implementations
discussed in the section 4.1. It is to be noted that for Deoxys-TBC-P-RP and De-
oxys-TBC-P-SH implementations, the time measured is inclusive of randomness
generation required for register pre-charging and for creating the shuffle buffer.

For reference, a first-order masked AES-128 [ans] implementation requires
1375.38 µs on the same platform. It is to be noted that the Deoxys-TBC-ORIG
implementation used for the work is the reference implementation without any
modifications and hence it can be optimized further.

Algorithm Roundkey generation Deoxys-TBC
(µs) (µs)

Deoxys-TBC-ORIG 213.71 798.96

Deoxys-TBC-P 263.42 850.11

Deoxys-TBC-P-RP 273.99 860.68

Deoxys-TBC-P-SH 355.15 940.41
Table 2. Time needed for the round key generation and the full cipher execution of
different implementations.

5 Conclusions

In this paper, we studied a new PRNG construction inspired by the PSV-Enc con-
struction and leveraging the superposition property of STK-based ciphers. We
have provided theoretical analysis of our construction both as a black-box PRNG
and as an unpredictable-with-leakage PRNG, based on the unpredictability-
with-leakage assumption for TBCs, popularized in [BGPS21]. We have also pro-
vided experimental proof-of-concept results using TVLA on Deoxys-TBC showing
that the cost of eliminating first-order observable leakage in our proposal ranges
from ≈ 1− 10%.
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Applications The proposed PRNG can be used in any setting where a leakage-
resilient PRNG is needed and that the protocol can maintain a 2k+n-bit state,
where 2k bits are the masked static key Km and n bits are the ephemeral key
Ki. It was shown in [IKMP20] that STK-based TBCs allow maintaining a static
key at no additional (storage) cost beyond the implementation of the TBC itself,
due to the properties of the tweakey schedule. Note that we require k to be a
multiple of n so that the security arguments on the STK framework hold and
that the mask is refreshed after each TBC call. Two notable applications come
to mind:

- Stream ciphers: we can use our construction to build a leakage-resilient
stream cipher with (Km,K0) as the initial key. We note that using a leakage-
resilient PRNG as a stream cipher requires care of decryption leakage and/or
authentication, as discussed in details in [BGP+19,BBC+20].

- Subkey generation: we can use our construction as a stateful subkey genera-
tion function in a bigger scheme. For example, it can be used as the rekeying
function in the rekeying-based ΘCB mode proposed by Mennink in [Men20].

Future Work Several natural follow-up research directions can arise from our
work:

- Evaluating our PRNG with a small-block TBC, e.g., Skinny-64-192.
- Evaluating the cost of implementing this PRNG in hardware. While our
software experiments show that the cost of implementation is extremely
cheap (5% ∼ 18% overhead), it also shows that it is not trivial. Hardware
may present a new set of challenges that we may need to study.

- Designing a complete AEAD scheme using our PRNG as an underlying prim-
itive, either as the encryption part using levelled implementations, or as the
subkey generation function for a rekeying-based AEAD.

- Security analysis of our scheme combined with tweak counters and nonce
using the unpredictability with leakage assumption, or another BBB-secure
variant.
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Fig. 10. Plaintext TVLA: Deoxys-TBC-ORIG with fixed tweak, 1000 traces

Fig. 11. Plaintext TVLA: Deoxys-TBC-ORIG with random tweak, 1000 traces

Fig. 12. Plaintext TVLA: Deoxys-TBC-ORIG with random tweak, 1 million traces
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Fig. 13. Key TVLA: Deoxys-TBC-ORIG with fixed tweak, 1000 traces

Fig. 14. Key TVLA: Deoxys-TBC-ORIG with random tweak, 1000 traces

Fig. 15. Key TVLA: Deoxys-TBC-P subtweakey generation with fixed tweak, 1000
traces

Fig. 16. Key TVLA: Deoxys-TBC-P subtweakey generation with random tweak,
10000 traces
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Fig. 17. Key TVLA: Deoxys-TBC-P-RP with random tweak, register pre-charge, 1
million traces

Fig. 18. Key TVLA: Deoxys-TBC-P-SH with random tweak, secure shuffled opera-
tions, 1 million traces
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