
Security Properties of One-Way Key Chains and

Implications for Security Protocols like TLS 1.3

John Preuß Mattsson

Ericsson Research, Stockholm, Sweden
john.mattsson@ericsson.com

Abstract. One-way key chains and ratchets play a vital role in numer-
ous important security protocols such as TLS 1.3, QUIC, Signal, MLS,
EDHOC, and OSCORE. Despite the crucial role they play, very little is
known about their security properties. This paper categorizes and exam-
ines different ratchet constructions, offering a comprehensive overview of
their security. Our analysis reveals notable distinctions between different
types of key chains. Notably, the type of key chain used by TLS 1.3 and
Signal exhibit a significant number of weak keys, an unexpectedly high
rate of key collisions surpassing birthday attack expectations, and a pre-
dictable shrinking key space susceptible to novel Time-Memory Trade-Off
(TMTO) attacks with complexity ≈ N1/4. Consequently, the security
level provided by e.g., TLS 1.3 is significantly lower than anticipated.
To address these concerns, we analyze the aforementioned protocols and
provide numerous concrete recommendations for enhancing their security,
as well as guidance for future security protocol design.

Keywords: TLS 1.3 · QUIC · DTLS 1.3 · Signal · MLS · EDHOC
· OSCORE · Secret-key Cryptography · Key Derivation · Hash Func-
tions · Ratchet · Hash Chain · KDF Chain · Key Chain · One-way
Permutation · Weak Keys · Collisions · Key Space · Stream Cipher ·
TMTO

1 Introduction

Transport Layer Security (TLS) is widely regarded as the most important security
protocol in the information and communications technology industry. Its latest
version, TLS 1.3 [48], has been widely adopted by web services and various
industries. Furthermore, several other crucial protocols, including QUIC [24,57],
EAP-TLS 1.3 [47], DTLS 1.3 [49], DTLS-SRTP [35], and DTLS/SCTP [59,60]
rely on the TLS 1.3 handshake. Recognizing its significance, the US National
Institute of Standards and Technology (NIST) mandates support for TLS 1.3
since January 1, 2024 [36]. TLS-based protocols are increasingly employed to
secure long-lived interfaces in critical infrastructure, such as 5G networks [1].

The Signal protocol [54] enjoys widespread popularity for end-to-end en-
cryption of voice calls and instant messaging. Apart from the Signal messaging
service itself, the Signal protocol is employed by WhatsApp, Meta Messenger, and

2 John Preuß Mattsson

Google Messages. The Signal messaging service is approved for use by the U.S.
Senate and is recommended for the staff at the European Commission, further
solidifying its reputation as a trusted and reliable secure communication solution.

TLS 1.3 and the Signal protocol both leverage symmetric key ratchets to
facilitate efficient rekeying and forward secrecy without Diffie-Hellman. A Key
Derivation Function (KDF) is used to regularly update the current key ki through
the operation ki+1 = KDF(ki, . . .), establishing a sequence of keys k0, k1, k2, . . .
referred to as a key chain. Inspired by Signal and TLS 1.3, several standardized
and standardization-pending protocols, such as MLS [4], EDHOC [50], and
OSCORE [23], incorporate symmetric key ratchets. While DTLS 1.3 and QUIC
employ the same type of chain as TLS 1.3 and Signal, MLS utilizes a counter in
its chain, OSCORE uses a randomized chain, and EDHOC uses an application-
provided context, allowing the application to affect the type of chain. It is
known [29] that the type of hash chains utilized in TLS 1.3 and Signal, in some
aspects, behaves like a set of uniformly sampled keys. However, it was only recently
recognized [45] that ratchets with too small states give rise to notable security
issues. The impact of different chain constructions on the security properties of
the chain and the security protocols employing them remains unknown.

Through our comprehensive analysis, we categorize and assess various key
chain constructions, conducting an in-depth exploration of their security proper-
ties. This examination reveals notable distinctions in the number of collisions
occurring within chains, between chains, and between a chain and a random set.
Our findings unveil critical aspects concerning the type of key chain employed for
example in TLS 1.3 and Signal. We identify a substantial presence of weak keys,
an unexpected number of key collisions surpassing birthday attack expectations,
and that the predictable shrinking key space can be exploited in novel Time-
Memory Trade-Off (TMTO) attacks with complexity T = M ≈ N1/4, P ≈ N1/2

and T = M = P ≈ N1/3, where N is the state space. The type of chain used
in MLS has better properties for short chains; however, it provides zero bits of
security against precomputation attacks if the chain length is unbounded. The
chain in MLS is bounded. The new TMTO attacks improve previous work by
Babbage-Golić [3, 19], Biryukov-Shamir [8], and Hong-Kim [22]. Our findings
show that the security issues with the types of key chains employed in TLS 1.3,
Signal, MLS, and EDHOC are considerably worse than suggested by [45]. We
recommend that the type of key chain used in TLS 1.3 and Signal is phased out
in existing protocols and not used in future protocols.

As a result, (D)TLS 1.3, QUIC, Signal, MLS, EDHOC, and OSCORE provide
a significantly lower level of security than anticipated based on their AEAD key
sizes. When used with key update, the popular TLS 1.3 cipher suite CHACHA20_-
POLY1305_SHA256 has a high fraction of weak keys, a key space significantly
smaller than the expected security level, and is vulnerable to a trivial attack that
finds a (key, nonce) collision with time complexity m/2256 where m is number
of key updates. If the number of key updates is unbounded, the security level
against TMTO attacks is one fourth of the state size implying that Signal and
most TLS 1.3 cipher suites only provide ≈ 64 bits of security. Based on the

Security Properties of One-Way Key Chains 3

aforementioned findings, we have developed several concrete recommendations
for Signal, MLS, EDHOC, OSCORE, and protocols based on TLS 1.3. These
recommendations aim to address the identified vulnerabilities and enhance the
security of these and future security protocols. In addition to large states, it is
essential to impose strict limits on the maximum chain length.

One-way key chains have important use cases for messaging applications,
group communication, and constrained environments. The use in general non-
constrained two-party protocols is questionable and goes against established best
practices for long-lived connections [2,33,53]. We stress that one-way key chains
and ratchets should not be seen as general replacements for periodic rekeying
with ephemeral key exchange in long-lived connections.

This work was inspired by and builds upon [45] which explored various
aspects of the key update mechanisms in TLS 1.3 and Signal, demonstrating
their modeling as non-additive synchronous stream ciphers. The introduction
and preliminaries sections significantly borrow, with permission, from [45]. In
Section Sect. 3, we present a comprehensive analysis of the security properties of
one-way key chains and discuss their implications for TLS 1.3 and Signal. Our
results can be summarized as follows:

– In Sect. 3.1, we introduce a systematic categorization of key chains and
propose a novel type of key chain based on one-way permutations.

– Sect. 3.2 demonstrates that both TLS 1.3 and the Signal protocol suffer from
a significant number of weak keys.

– Sect. 3.3 reveals that the number of key collisions in TLS 1.3 and Signal
is considerably higher than expected from the birthday attack, and that
collisions compromise replay protection.

– In Sect. 3.4 and Sect. 3.5 we analyze how fast key space sizes for various
types of key chains shrink, presenting new iterative and explicit formulas.

– Sect. 3.6 describes new single- and multi-connection TMTO attacks for
stream ciphers with predictable shrinking states, akin to the ratchets in TLS
1.3, Signal, and MLS. We derive security requirements for all types of chains,
relating chain state size n, security level λ, and maximum chain length ℓ.

– In Sect. 3.7, we compare the security properties of different types of chains.
– In Sects. 4 and 5, we conduct a more in-depth analysis of TLS 1.3, DTLS 1.3,

QUIC, Signal, MLS, EDHOC, and OSCORE, presenting a comprehensive
set of concrete recommendations for each protocol.

– Appendices A and B analyze collisions between multiple key chains and
propose a construction to expand the state space of ρ-, ξ-, and ω-chains.

2 Preliminaries

2.1 Signal Protocol and the Symmetric-Key Ratchet

The following is a summary of Section 2.1 in [45]. For more detailed information,
refer to [7, 13,45] or the Signal technical specification [54]. The Signal protocol
utilizes a chain of 256-bit keys k0, k1, k2, . . . derived from the initial chain key

4 John Preuß Mattsson

k0 to secure all future messages transmitted in a single direction until the Diffie-
Hellman ratchet is used again. The decision on when to use the Diffie-Hellman
ratchet to derive a new initial chain key k0 is implementation-specific. Each
message i is encrypted using a 256-bit message key Ki, which is used only
once. Before transmitting each message, both the chain key and the message
key undergo updates using the symmetric-key ratchet, as outlined in [54]. The
message key Ki and the next chain key ki+1 are computed as

Ki = KDF(ki, label1, "", ns) ,

ki+1 = KDF(ki, label2, "", n) ,
(1)

where "" is an empty context. The only state retained between iterations is the
chain key. While the Signal specification does not enforce a specific KDF or labels,
it recommends HMAC-SHA2 with label1 = 0x01 and label2 = 0x02. Regardless
of the chosen algorithms, both the size of the chain keys n and the size of the
message keys ns are always 256 bits. The Signal Protocol does not mandate any
specific Authenticated Encryption with Associated Data (AEAD) algorithm but
recommends AES-256-CBC with HMAC-SHA2. It suggests deriving a 32-byte
encryption key, a 32-byte authentication key, and a 16-byte IV from the message
key. Signal does not explicitly state the intended security level λ, but the length of
the encryption key can typically be seen as the intended security level. Therefore,

n = ns = λ = 256 . (2)

2.2 TLS 1.3 and the Key Update Mechanism

The following is a summary of Section 2.2 in [45]. For more detailed information,
refer to [45] or the TLS 1.3 specification [48]. In TLS 1.3, a chain of n-bit keys
k0, k1, k2, . . . is derived from the initial traffic secret k0. This key chain is used
by the record protocol to protect all messages sent in one direction over the
connection. The size of the traffic secrets is the output size n of the hash function
in the selected cipher suite. Table 1 provides a list of the initial cipher suites.

After the handshake is complete, it is possible to update the traffic secret
using a key update mechanism. The next traffic secret ki+1 is computed using a
KDF based on HKDF-Expand [31] as

ki+1 = KDF(ki, "traffic upd", "", n) . (3)

The only state retained between iterations is the traffic secret. From the traffic
secret ki, the AEAD key Ki and the initialization vector IVi are derived as

Ki = KDF(ki, "key", "", ns) ,

IVi = KDF(ki, "iv", "", niv) .
(4)

For each record, the AEAD nonce is calculated by XORing IVi with the record
sequence number. The size of the key Ki depends on the AEAD key length ns

specified in the chosen cipher suite, which may not be equal to n as in the Signal

Security Properties of One-Way Key Chains 5

Table 1. The five initial cipher suites in TLS 1.3 [48]. The importance of the difference
and the ratio between the key update state size n and the security level λ is explained
in Sect. 3. niv is the size of the IV.

Cipher suite n λ = ns niv n − λ n/λ

AES_128_GCM_SHA256 256 128 96 128 2.0
AES_256_GCM_SHA384 384 256 96 128 1.5
CHACHA20_POLY1305_SHA256 256 256 96 0 1.0
AES_128_CCM_SHA256 256 128 96 128 2.0
AES_128_CCM_8_SHA256 256 128 96 128 2.0

Protocol. The nonce size niv is fixed at 96 bits for all the cipher suites listed
in Table 1. The sequence number is initially set to zero, incremented for each
message, and reset to zero every time the key update mechanism is used.

In TLS 1.3, a single AEAD key Ki is typically used to protect many record
protocol messages. The key update mechanism is recommended to be employed
before reaching a specific limit defined by the cipher suite (e.g., every 224.5 records
for AES-GCM). Therefore, in connections with a large amount of data transfer,
frequent key updates are expected. TLS 1.3 does not impose any restrictions on
the number of key updates that can occur. DTLS 1.3 [49] and QUIC [24, 57],
which are based on TLS 1.3, also use the TLS 1.3 handshake and cipher suites.
While HTTP/2 [56] uses TLS, HTTP/3 [9] uses QUIC. QUIC does not impose
any limitations on the number of key updates. However, DTLS 1.3 restricts the
number of key updates to 248. TLS 1.3, DTLS 1.3, and QUIC do not explicitly
state the intended security level λ, but the length ns of the AEAD key can
typically be seen as the intended security level.

2.3 Definition of Weak Keys

A good definition of weak keys is provided in [61], and the following is a summary
of its main points. Weak keys are those that induce undesirable behavior in a
cryptographic function. Typically, weak keys constitute a minuscule fraction of
the entire key space, meaning that if keys are randomly generated, the likelihood
of encountering a weak key and compromising security is very low. Nevertheless,
it is considered highly desirable for a cryptographic function to possess no weak
keys. In a cryptographic function with no weak keys, all keys within its key
space are equally strong, resulting in a homogenous key space. The pursuit of
homogeneity is a fundamental objective in cryptographic design. Conversely, a
significant presence of weak keys is considered a severe flaw in any design.

6 John Preuß Mattsson

3 Our Results

3.1 Classification of Key Chains

Different types of key chains k0, k1, . . . , km−1 have not been systematically cate-
gorized and analyzed previously. In this work, we define and analyze four types of
key chains, which we name ρ-, ξ-, ω-, and π-chains. These chains are derived from
one-way random mappings and permutations. In the literature, chains like this
are known by many names such as hash chains, rainbow chains, key chains, KDF
chains, one-way chains, ratchets, and Markov chains with uniform transition
probabilities. N = 2n is the state space of the chain.

ρ-chain. A chain where the same random mapping H() is used in all iterations

ki+1 = H(ki) . (5)

This is a deterministic chain, commonly referred to as a hash chain. This type of
chain is used in TLS 1.3 [48], Signal [54], EDHOC [50], Pollard’s rho algorithm
[44], and Hellman’s TMTO attack [21]. The name ρ comes from the fact that this
type of chain eventually ends up in a repetitive cycle. Many aspects of ρ-chains
are described in [18,22,29,37]. A ρ-chain can be implemented with a KDF

ki+1 = KDF(ki, label, context, n) , (6)

using a fixed context. Both TLS 1.3 and Signal utilize an empty context.

ξ-chain. A chain where a different random mapping Hi() is used in each iteration

ki+1 = Hi(ki) . (7)

This is a deterministic chain, commonly known as a rainbow chain. This type of
chain is used in rainbow tables [42], MLS [4], EDHOC [50], and is also described
in [11]. We use the name ξ as the character looks like a rainbow table with three
layers. A ξ-chain can be implemented by including a counter i in the context

ki+1 = KDF(ki, label, i, n) . (8)

ω-chain. A chain where a randomly chosen random mapping Hri
() is used in

each iteration
ki+1 = Hri(ki) . (9)

This is a randomized chain sampled from a set of chains. It can be seen as a
randomized rainbow chain, or a chain using universal hashing. This type of chain
is used in EDHOC [50], OSCORE [23], and is described in [28,30,43]. As this is a
randomized chain, different instantiations with the same initial key k0 will result
in different chains. We use the name ω as the key space size can be described by
the omega function, see Sect. 3.5. An ω-chain can be implemented by including
a new random value ri in each context

ki+1 = KDF(ki, label, ri, n) . (10)

Security Properties of One-Way Key Chains 7

π-chain. A chain where the same one-way permutation π() is used in all
iterations.

ki+1 = π(ki) . (11)

This is a deterministic chain using a one-way permutation. We only consider
permutations with no small cycles. Known constructions for one-way permutations
involve the discrete logarithm problem in finite fields or elliptic curves. The elliptic
curve construction in [27] can be used to construct permutation groups of size
2p+2, where p is a prime. In [20] is it shown how [27] can be extended to construct
a one-way permutation with a large minimum cycle length like e.g., 2128. We
assume that the minimum cycle length is selected to exceed the maximum chain
length, ensuring the absence of collisions within the π-chains. To our knowledge
the idea to use one-way permutations for key chains is novel.

Connections and Instances. Concerning the deterministic ρ-, ξ-, and π-chains,
our assumption is that each protocol instance, known as a connection in TLS
1.3, uses the same context and mapping or permutation in each iteration of the
key chains. This implies that the same initial k0 always leads to the same chain.
The randomized ω-chain will, with very high probability, lead to different chains
even if two protocol instances happen to use the same initial k0.

In our analysis, we will explore both single-connection attacks, which target a
single key chain, and multi-connection attacks, which target multiple key chains.
This approach aligns with attacks on stream cipher instances [3, 8, 19]. The
multi-connection attacks compromise at least one of the connections. The single-
connection attacks in this paper find, on average, the last half of the keys in the
connection. Consequently, these attacks are single-key attacks on the final key in
the chain. In security protocols like TLS 1.3, where each connection can involve a
large number of linked keys, compromising a single key leads to the compromise
of multiple keys and the single-key security of a key is the multi-key security
of all the previous keys in the chain. Thus, the distinction between single-key
(single-user) and multi-key (multi-user) attacks is not very meaningful.

Chain Behavior. A finite key chain k0, k1, . . . , km−1 behaves in three different
ways as shown in Fig. 1. A chain without any collision ki = kj behaves as shown in
Fig. 1a. A π-chain will never have any collisions. ρ-chains, ξ-chains, and ω-chains
may have one or more collisions. A collision ki = kj in a ρ-chain results in a
repetitive cycle where ki+d = kj+d for d ≥ 0, as shown in Fig. 1b. ξ-chains and
ω-chains will always recover from a collision as shown in Fig. 1c. ξ-chains and
ω-chains do not have any repetitive cycles.

3.2 Collisions, Repetitive Cycles, and Weak Keys in ρ-chains

A ρ-chain k0, k1, . . . , km−1 where ki+1 = H(ki), such as the chain of traffic secrets
in TLS 1.3 or the chain keys in Signal, can only behave in two ways, either the
chain has a collision ki = kj , resulting in a repetitive cycle and more collisions, or

8 John Preuß Mattsson

k0 k1 k2 k3 k4 k5 k6 k7

k0 k1 k2 k3 k4 = k6 = k8 = …

k5 = k7 = k9 = …

k0 k1 k2 k3 k4

k6

k5 = k7 k8 k9

(a)

(b)

(c)

Fig. 1. Examples of the three possible behaviors of a key chain: (a) a ρ-, ξ-, ω-, or
π-chain without any collision, (b) a ρ-chain from a weak key k0 which enters into a
repetitive cycle, and (c) a ξ- or ω-chain that rebounds from a collision without entering
a repetitive cycle. The cycle length 2 is just an example.

the chain has no collision and no repetitive cycle. In TLS 1.3 each collision leads
to many (key, nonce) collisions for the AEAD which may break confidentiality,
integrity, availability, and replay protection. As a repetitive cycle is undesirable
and makes the chain have a large number of collisions, an initial key k0 that
results in a repetitive cycle is to be considered weak according to the definition in
Sect. 2.3. We call a key k0 m-weak if the ρ-chain k0, k1, . . . , km−1 has a repetitive
cycle. A m-weak key is also m′-weak for all m′ > m. ξ-, ω-, and π-chains do not
have any repetitive cycles.

Number of Weak Keys. While it is infeasible to calculate the exact number
of short repetitive cycles and weak keys for a specific hash function, the expected
number of m-weak keys can be approximated based on the assumption that the
hash function H() is a random mapping of the N = 2n elements in the key space.
As shown by Knuth [29], ρ-chains behave like a set of uniformly sampled keys
in the sense that the collision probability is the same. The reason is that if the
chain does not have a collision, we can model each successive ki as randomly
chosen from N . As the probability that the chain does not have a collision is the
same as in the birthday attack, the probability that the chain has a collision is
also the same, and we can use birthday attack formulas to calculate the collision
probability. The probability of a collision among the first m keys in a ρ-chains is
therefore

1 −
m−1∏
i=0

N − i

N
≈ 1 − e−m2/2N ≈ m2

2N
, (12)

Security Properties of One-Way Key Chains 9

where the approximation 1 − e−m2/2N is valid when m ≪ N and the approxima-
tion m2/2N is valid when m ≪ N1/2. The expected fraction of m-weak keys in
ρ-chains is therefore

≈ m2/2N , (13)
and the expected number of m-weak keys is ≈ m2/2. The expected fraction of
keys k0 leading to ξ- and ω-chains with at least one collision is also ≈ m2/2N .
The expected number of keys ki in a ρ-chain colliding with one or more other
keys in the chain is

≈ m3/2N . (14)
π-chains do not have any collisions.

As stated in Sect. 2.3, it is considered highly desirable for a cryptographic
function to possess no weak keys. If weak keys exist, the likelihood of encoun-
tering a weak key and compromising security should be very low. A reasonable
requirement for λ-bit security is that the expected fraction Eq. (13) of weak keys
is smaller than 2−λ, which implies that for ρ-chains

n ≥ λ + 2ℓ − 1 , (15)

where 2ℓ is that largest possible length of the key chain, i.e., m ≤ 2ℓ. But note
that this is not an attack complexity.

Impact on TLS 1.3 and Signal. TLS 1.3 currently defines two hash functions,
SHA-256 and SHA-384 with n equal to 256 and 384, respectively. In Signal, n is
always equal to 256. The expected number and fraction of m-weak keys in TLS
1.3 and Signal are presented in Table 2. If key update is used with ChaCha20
in TLS 1.3 the probability of a weak key is m2/2257. The other TLS 1.3 cipher
suites listed in Table 1 fulfill Eq. (15) as long as m ≤ 264.5.

Table 2. Expected number and fraction of m-weak keys when using ρ-chains in a key
space of size N = 2n

n = 256 n = 384

Number Fraction Number Fraction

2-weak 21 2−255 21 2−383

22-weak 23 2−253 23 2−381

24-weak 27 2−249 27 2−377

28-weak 215 2−241 215 2−369

216-weak 231 2−225 231 2−353

232-weak 263 2−193 263 2−321

248-weak 295 2−161 295 2−289

264-weak 2127 2−129 2127 2−257

10 John Preuß Mattsson

3.3 The More Keys the Merrier Collisions in ρ-chains

Without key updates in TLS 1.3 there is a single traffic secret k0 and therefore
a single AEAD key K0 per connection. With a single AEAD key, there is zero
chance for key collision and replay inside the connection, and the best general
key recovery attack is brute force. This attack has data and memory complexities
D = M = O(1) and time complexity N .

Collisions in the Beginning of a ρ-chain. Key update was introduced in
TLS 1.3 to meet confidentiality key usage limits and to achieve forward secrecy.
While this is achieved, it is known that the large number of keys also decrease
the security properties of the connection by introducing a risk of key collisions.
As given by Eq. (12), the probability of a collision among the first v ≤ m ≪ N1/2

keys k0, k1, . . . , kv−1 in a ρ-chain is

pf ≈ v2/2N . (16)

Assuming that ≈ log2 v bits of the first v plaintexts encrypted with a specific
sequence number are known, an attacker can find a (key, nonce) collision with
data and memory D = M = v and expected work v using e.g., a hash table.
False positives can be rejected with work v. The number of false positives can
be lowered by using more bits of known plaintext. The time complexity of the
attack is

Tf = v/pf = 2N/v , (17)
which has minimum value 2N/m when v = m. If AES-CBC is used (as is
recommended in Signal) the prefixes of the plaintexts need to be identical. Partly
identical plaintexts are likely to happen in practice even if the attacker cannot
choose the plaintexts, see e.g., Sect. 3.4 of [45]. This attack is possible in ρ-, ξ-,
and ω-chains. We will now show that a much more efficient novel collision attack
is possible in ρ-chains.

Collisions in the End of a ρ-chain. As a cycle in a ρ-chain leads to collisions
in the rest of the chain, the probability of a collision among the last v keys
is significantly higher than v2/2N . If any of the m keys are on a repetitive
cycle of length less than or equal to v − 1, there will be a collision also in the
last v keys. For i ≤ v − 1, the probability that key ki is the first key on a
repetitive cycle of length ≤ v − 1 is ≈ (1 − i2/2N) · i/N ≈ i/N . For i ≥ v − 1,
the probability that key ki is the first key on a repetitive cycle of length ≤ v − 1
is ≈ (1 − i2/2N) · (v − 1)/N ≈ (v − 1)/N . The total probability for a collision
among the last v keys is

Theorem 1. The probability of a collision among the last v ≤ m ≪ N1/2 keys

km−v, km−v+1, . . . , km−1 in a ρ-chain is

pe =
v−1∑
i=0

i

N
+

m−1∑
i=v

v − 1
N

≈ m(v − 1)
N

. (18)

Security Properties of One-Way Key Chains 11

The probability of collision among the last v keys is significantly higher than the
probability of collision among the first v keys. Assuming that ≈ log2 v bits of
the last v plaintexts encrypted with a specific sequence number are known, an
attacker can find a (key, nonce) collision with data and memory D = M = v and
expected work v using e.g., a hash table. The time complexity of the attack is

Te = v

pe
= v

v − 1
N

m
. (19)

The data and memory complexities can be minimized by choosing a small v
without affecting the time complexity much. With a small v ≫ 1 the time
complexity in Eq. (19) is N/m, which is half of the previously best-known time
complexity in Eq. (17) and the data and memory complexities are v instead of m.
The security level is λ = n − ℓ and a strict requirement for λ-bit security with
ρ-chains is that

n ≥ λ + ℓ , (20)

where 2ℓ is that largest possible length of the key chain, i.e., m ≤ 2ℓ.

Impact on TLS 1.3 and Signal. As a collision leads to a repetitive cycle,
all future keys will be collisions, and it is likely that ≈ m/2 past keys are also
collisions. If AES-GCM is used, the confidentiality and integrity of the application
data protected with the colliding keys are lost. Even if the integrity is not lost in
the sense that the attacker can perform impersonation or substitution forgeries,
the replay protection is lost in TLS 1.3 as the attacker can replay old ciphertexts
with the same sequence number. A replayed record likely breaks integrity and
depending on the application broken integrity might affect availability and
confidentiality. A collision in DTLS 1.3 and QUIC also very likely breaks replay
protection as only the least significant 1–2 bits of the variable counting the
number of key updates in used in the associated data.

Without key update, ChaCha20 in TLS 1.3 is believed to have 256-bit
confidentiality even if 296 encryption queries have been done [38]. If key update
is used with m ≤ 2ℓ, ChaCha20 only offer 256 − ℓ bits of security against the
above attack. The security of the other cipher suites are not affected as long
as m ≤ 2128. The same attack apply to Signal where the chain key size n and
message key size ns are both always equal to 256.

3.4 Shrinking Key Space from Key Update

Let Sm be the set of m-iterate image points, i.e., the key space after the key
chain has been iterated m times. The size of the key space is initially |S0| = N
but shrinks with each iteration if a random mapping is used as described in [18].
An important property of ρ-chains that we will use in Sect. 3.6 is that the m + 1-
iterate image points is a subset of the m-iterate image points, i.e., Sm+1 ⊆ Sm [22].
This is not true for ξ- and ω- chains where Sm+1 and Sm are typically almost
disjoint. In π-chains Sm = N .

12 John Preuß Mattsson

Key Space Size for a Single Chain. Flajolet and Odlyzko [18] prove that
for a ρ-chain, the expected number of m-iterate image points in a random
mapping of size N (i.e. the expected value of |Sm|) has the asymptotic form
E

(
|Sm|

)
= (1 − τm)N where τ0 = 0 and τi+1 = eτi−1 as N → ∞. This iterative

formula apply also to ξ- and ω-chains. This follows almost trivially from repeated
use of the well-known fact that if s balls are thrown into t urns, then the expected
number of empty urns are e−s/t.

Theorem 2. In ρ-, ξ-, and ω-chains the expected number of m-iterate image

points has the asymptotic form

E
(
|Sm|

)
= (1 − τm)N where τ0 = 0 and τi+1 = eτi−1 as N → ∞ . (21)

Flajolet and Odlyzko [18] do not describe for which values of m the iterative
formula is valid for ρ-chains, but it is clearly not valid for m ≫ N1/2, as the
expected number of ∞-iterate image points is

√
π/2 · N1/2, at which point the

key space only contains repetitive cycles and the random mapping works as a
permutation. Our numerical simulations conducted on key spaces of size 216

and 224 indicates that Eq. (21) is a good approximation for m ≤ N1/2. The key
spaces of ξ- and ω-chains shrinks until Sm = 1 (all the balls are in a single urn),
which happens around m = 2N .

To our knowledge, no explicit formula is known for Eq. (21). The number of
m-iterate image points for small values can be calculated numerically and

1 − τm ≈ 2/(m + 2) , (22)

seems to be an excellent approximation. This agrees with the estimate in Section
4.3 in [22] but is a much better approximation for small m. Values of (1 − τm)
and ϵ =

∣∣(1 − τm) − 2/(m + 2)
∣∣ for selected m ≤ 224 are show in Table 3. The

values were calculated with Julia v1.9 [26] using arbitrary precision floating point
numbers. Based on the convincing “numerical evidence” in Table 3 we make the
following conjecture.

Conjecture 1. The expected number of m-iterate image points in a ρ-, ξ-, and
ω-chain using random mapping(s) of size N has the asymptotic form

E
(
|Sm|

)
= 2

m + 2N as N → ∞ . (23)

When m ≫ 2 this can be approximated as

2N/m . (24)

Note that the shrinking key space does not increase the collision probability inside
ρ-chains more than Eq. (18) as calculated in Section 3.3. The probability of a
collision among the last v keys in a ρ-chain is ≈ mv/N and not ≈ v2/2(2N/m) =
mv2/4N as one might think based on the shrinking key space. As seen in Sect. 3.5,
the shrinking key space is unlikely to pose a security problem for ω-chains, given
that the key space remains unpredictable for potential attackers.

Security Properties of One-Way Key Chains 13

Table 3. E
(
|Sm|

)
/N = (1 − τm) and ϵ =

∣∣(1 − τm) − 2/(m + 2)
∣∣ after m iterations in

ρ, ξ, and ω-chains.

m (1 − τm) ϵ m (1 − τm) ϵ m (1 − τm) ϵ

2 2−1.0938 2−4.9 29 2−8.0109 2−16.1 217 2−16.0001 2−31.1

22 2−1.6800 2−5.6 210 2−9.0058 2−17.9 218 2−17.0000 2−33.0

23 2−2.4032 2−6.5 211 2−10.0031 2−19.8 219 2−18.0000 2−34.9

24 2−3.2306 2−7.8 212 2−11.0016 2−21.6 220 2−19.0000 2−36.9

25 2−4.1285 2−9.2 213 2−12.0008 2−23.5 221 2−20.0000 2−38.8

26 2−5.0704 2−10.9 214 2−13.0004 2−25.4 222 2−21.0000 2−40.7

27 2−6.0381 2−12.6 215 2−14.0002 2−27.3 223 2−22.0000 2−42.6

28 2−7.0204 2−14.3 216 2−15.0001 2−29.2 224 2−23.0000 2−44.6

3.5 Key Space Size for the Set of All Chains

Let S∗
m be the set of m-iterate image points in the set of all possible chains, i.e.,

a multi-connection setting. The size of the key space is initially |S∗
0 | = N but

shrinks with each iteration if a random mapping is used. For deterministic ρ-
and ξ–chains, where the context and mapping do not depend on the connection,
S∗

m = Sm ≈ 2N/m. For π-chains, S∗
m = Sm = N . For the set of randomized

ω-chain the expected number of m-iterate image points E
(
|S∗

m|
)

decreases slowly.
If the size of the universal hash function family is a, i.e., each iteration uses a
random salt with log2 a bits of entropy, the number of urns that is empty for
all a hash functions is e−a. If s balls are thrown into t urns, then the expected
number of urns that is empty for all a hash functions is e−as/t and we get the
following iterative formula for a ω-chain.

Theorem 3. In ω-chains using a universal hash function family of size a, the

expected number of m-iterate image points in the set of all possible chains has

the asymptotic form

E
(
|S∗

m|
)

= (1 − τ∗
m)N where τ∗

0 = 0 and τ∗
i+1 = ea(τ∗

i −1) as N → ∞ . (25)

Numerical analysis of the iterative formula Eq. (25) indicates that for a > 1,

τ∗
k → c as k → ∞ , (26)

where c > 0 and that c → 1 as a → ∞. Solving the equation c = ea(c−1) gives

c = −W0(−ae−a)/a , (27)

where W0 is the principal branch of the Lambert W -Function also called the
omega function. This solution agrees very well with our numerical analysis in
Table 4. For a = 2, (1−τ∗

k) → 0.79681213 . . . , for a = 4, (1−τ∗
k) → 0.98017260 . . . ,

and for a = 16, (1 − τ∗
k) → 0.99999989 Even for very small hash function

families the difference between c and 1 is negligible and can be ignored. Based on
the convincing “numerical evidence” in Table 4 we make the following conjecture.

14 John Preuß Mattsson

Table 4. E
(
|S∗

m|
)
/N = (1 − τ∗

m) and ϵ =
∣∣(1 − τ∗

m) − 1 − W0(−ae−a)/a
∣∣ after m

iterations in ω-chains.

a = 2 a = 4 a = 16

m (1 − τ∗
m) ϵ m (1 − τ∗

m) ϵ m (1 − τ∗
m) ϵ

2 0.82259667 2−5.3 2 0.98029213 2−13.0 2 0.99999989 2−61.2

22 0.80092019 2−7.9 22 0.98017335 2−20.3 22 0.99999989 2−99.4

23 0.79692341 2−13.1 23 0.98017260 2−35.0 23 0.99999989 2−175.7

24 0.79681221 2−23.5 24 0.98017260 2−64.2 24 0.99999989 2−328.4

25 0.79681213 2−44.3 25 0.98017260 2−122.7 25 0.99999989 2−633.7

26 0.79681213 2−85.9 26 0.98017260 2−239.7 26 0.99999989 2−1244.4

Conjecture 2. The expected number of k-iterate image points in the set of ω-
chains using random mappings of size N and a hash function family of size a ≥ 2
has the asymptotic form

E
(
|S∗

m|
)

=
(

1 + W0 (−ae−a)
a

)
N as m → ∞ and E

(
|S∗

m|
)

= N as a → ∞ .

Looking at the intersection of the images of all hash functions in the universal
hash function family, it is easy to see that S∗

k+1 ⊆ S∗
k .

Impact on TLS 1.3 and Signal. After m iterations of the key update mecha-
nism in TLS 1.3, the predictable traffic secret key space has size 2n+1/m. After
264 key updates, the key space is, for example, reduced by a factor 263. In most
of the TLS 1.3 cipher suites listed in Table 1, 2n ≫ 2ns and E

(
|S∗

m|
)

≥ ns as
long as m ≤ 2129. The exception is CHACHA20_POLY1305_SHA256 where
n = ns = λ. If key update is used, the traffic key space quickly becomes much
smaller than the key space for the AEAD keys, which is a design flaw. The same
result apply to Signal where n = ns = 256. TLS 1.3 also derives a random IV to
improve multi-key (multi-user) security [6]. A reasonable design principle is that
the predictable iterated key space of the traffic secrets should be greater or equal
to the AEAD key space and the IV space, i.e.,

E
(
|S∗

m|
)

≥ 2λ+niv , (28)

which implies that

n ≥

{
λ + niv + ℓ − 1 for ρ- and ξ-chains ,

λ + niv for ω- and π-chains .
(29)

where 2ℓ is that largest possible length of the key chain, i.e., m ≤ 2ℓ. For cipher
suites with n − λ = 128 and niv = 96 this is true as long as m ≤ 233.

Security Properties of One-Way Key Chains 15

3.6 New TMTO Attacks on ρ- and ξ-chains

Preuß Mattsson [45] showed that the key update function in TLS 1.3 and the
symmetric key ratchet in Signal can be modeled as non-additive synchronous
stream ciphers [34], which means that the efficient Time Memory Tradeoff Attacks
(TMTO) for stream ciphers such as Babbage-Golić [3,19] and Biryukov-Shamir [8]
can be applied. In this section, we describe new TMTO attacks for ρ- and ξ-chains
that significantly improve Babbage-Golić by making use of the shrinking state
E

(
|S∗

m|
)

≈ 2N/m and the fact that for ρ-chains, S∗
m+1 ⊆ S∗

m.
In Babbage-Golić [3,8, 19], the attacker tries to find one of the many internal

states instead of the key. The attacker generates M random states k′
0, k′

1, . . . ,
k′

M−1 from the total number of states N , calculates an output string y′
j for

each state k′
j , and stores the pairs (k′

j , y′
j) ordered by y′

j . In the real-time phase
the attacker collects D output strings y0, y1, . . . , yi, . . . , yD−1. By the birthday
paradox the attacker can find a collision yi = y′

j and recover an inner state ki = k′
j

in time T = D = N/M , memory M , and preprocessing time P = M , where
1 ≤ T . Example points on this tradeoff relation is T = M = D = P = N1/2, as
well as T = D = N1/4 and M = P = N3/4.

In a stream cipher where the states form a ρ- or ξ-chain several novel tradeoff
attacks are possible. Instead of random states from the initial key space S∗

0 , the
attacker generates M random states from the set of m-iterate image points S∗

m.
In the real-time phase the attacker collects D output strings calculated from
states in S∗

m. If the states are uniformly distributed, Eq. (24) implies that the
time complexity is

T = |S∗
m|/M = 2N/mM , (30)

and not N/M as in Babbage-Golić’s classical attack. In practice, the generated
and collected states will follow a non-uniform distribution and the time complexity
will be lower than |S∗

m|/M . This type of multi-connection attack on ρ-chains
between two random sets sampled from S∗

m is known from [22]. We show that
this attack also applies to ξ-chains, that the attack can be turned into a single-
connection attack by lowering the probability of key recovery to less than 1, and
that ξ-chains provide zero bits of security if the chain length is unbounded. We
also describe two new attacks on ρ-chains where S∗

m+1 ⊆ S∗
m, allowing us to

exploit collisions between the end of a chain and a random set.

Babbage-Golić with Success Probability Less than One. An attacker
can significantly lower the data and memory requirements by performing an
attack where the probability of recovering a key is less than 1. The work done
by the attacker is D ≤ N/M and the success probability is ≈ DM/N . The time
complexity is still T = D/(DM/N) = N/M . The complexities of the attack are
time T = N/M , memory M , data D, and preprocessing time P = M , where
1 ≤ D ≤ T .

Single- and Multi-connection Attacks on ξ-chains. The attacker generates
M random states from S∗

m and collects D output strings calculated from states

16 John Preuß Mattsson

in S∗
m. The attacker can find a collision yi = y′

j and recover an inner state ki = k′
j

with time complexity T = 2N/mM , memory M , data D, preprocessing time
P = mM , where 1 ≤ D ≤ T . For a single-connection attack, D = 1. The success
probability is ≈ mMD/2N . For a multi-connection attack with probability close
to 1 it is required that D = T . Example points on this tradeoff relation are

T = M =
√

2N/m and P =
√

2mN . (31)

Choosing m ≈ N1/3 we get

T = M ≈ N1/3 and P ≈ N2/3 , (32)

and choosing m ≈ N , we get

T = M = D ≈ 1 and P ≈ N . (33)

Single- and Multi-connection Attacks on ρ-chains. As S∗
m+1 ⊆ S∗

m, the
M random states can be the last M states from a single chain of length m.
The D output strings are calculated from the last states in D chains of length
m. To avoid non-negligible overlap between the D chains it is required that
m2D ≤ N [21]. If M ≪ m, the attacker can find a collision yi = y′

j and recover
an inner state ki = k′

j with time complexity T = 2N/mM , memory M , data D,
and preprocessing time P = m, where 1 ≤ D ≤ T , M ≪ m, and m2D ≤ N . For
a single-connection attack, D = 1. The success probability is ≈ mMD/2N . For
a multi-connection attack with probability close to 1 it is required that D = T .
Example points on this tradeoff relation are

T = M =
√

2N/m and P = m . (34)

Choosing m ≈ N1/3 we get

T = M = P ≈ N1/3 , (35)

and choosing m ≈ N1/2 we get

T = M ≈ N1/4 and D ≈ 1 and P ≈ N1/2 . (36)

Single-connection Attack on ρ-chains with Higher Success Probability.

As S∗
m+1 ⊆ S∗

m, the D output strings can be calculated from the last D states
from a single chain of length m, i.e., a single-connection attack. The M random
states are the last states in M chains of length m. The attacker can find a collision
yi = y′

j and recover an inner state ki = k′
j with time complexity T = 2N/mM ,

memory M , data D, and preprocessing time P = mM , where 1 ≤ D ≤ T ,
D ≪ m, and m2M ≤ N . The success probability is ≈ mMD/2N . For an attack
with probability close to 1 it is required that D = T . Example points on this
tradeoff relation are

T = M =
√

2N/m and P =
√

2mN . (37)

Choosing m ≈ N1/3, we get

T = M ≈ N1/3 and P ≈ N2/3 . (38)

Security Properties of One-Way Key Chains 17

Security Level and State Size. Based on Babbage-Golić [3,19] and Biryukov-
Shamir [8], modern stream ciphers such as SNOW 5G [17] follow the design
principle that the security level is at most n/2 and that the state size in bits n
should therefore be at least twice the security level. For ρ- and ξ-chains this is
not enough.

If m is unlimited, the predictable state size of ρ-chains eventually shrinks to
n/2, the security level is n/4, and the state size in bits n should therefore be
at least four times the security level λ. The predictable state size of ξ-chains
eventually shrinks to 0 bits. To claim any security level for applications of ξ-chains,
it is essential with strict limits for the maximum number of iterations m < 2ℓ. If
m is limited to m ≤ 2ℓ ≤ 2n/2, the single- and multi-connection security level of
ρ- and ξ-chains are

λ ≤ (n − ℓ + 1)/2 , (39)

and a requirement for λ-bit security is that

n ≥ 2λ + ℓ − 1 , (40)

where 2ℓ is the largest possible length of the key chain, i.e., m ≤ 2ℓ. The single-
connection attacks are also a single-key attack on the last key in the chain. The
common practice is to disregard the preprocessing complexity when assessing the
security level.

For ω- and π-chains, if m is limited to m ≤ 2ℓ ≤ 2n/4, the single-connection
security level against Biryukov-Shamir’s attack [8] is λ = 2(n − ℓ)/3 and a
requirement for λ-bit security is that n ≥ 3λ/2 + ℓ. If ℓ ≥ n/4, the single-
connection security is n/2. The multi-connection security is always n/2. The
security and state size requirements as a function of state size 2n and maximum
chain length 2ℓ for all types of chains are summarized in Tables 5 and 6. Note
that the single-connection security against Hellman’s TMTO attack [21,42] is
2n/3 and that the multi-connection security against birthday attacks is n/2.

Table 5. Security against TMTO attacks as a function of state size 2n and maximum
chain length 2ℓ. Constant terms have been removed. The attacks have varying prepro-
cessing complexities. The single-connection attacks on ξ-chains and the single-connection
attacks on ρ-chains where ℓ ≥ n/3 have success probabilities smaller than 1.

Single-connection Multi-connection

ℓ ≤ n
4

n
4

≤ ℓ ≤ n
2

n
2

≤ ℓ ≤ n n ≤ ℓ ℓ ≤ n
2

n
2

≤ ℓ ≤ n n ≤ ℓ

ρ (n − ℓ)/2 (n − ℓ)/2 n/4 n/4 (n − ℓ)/2 n/4 n/4
ξ (n − ℓ)/2 (n − ℓ)/2 (n − ℓ)/2 0 (n − ℓ)/2 (n − ℓ)/2 0
ω 2(n − ℓ)/3 n/2 n/2 n/2 n/2 n/2 n/2
π 2(n − ℓ)/3 n/2 n/2 n/2 n/2 n/2 n/2

18 John Preuß Mattsson

Table 6. Minimum state size requirement as a function of security level λ and maximum
chain length 2ℓ. Constant terms have been removed.

Single-connection Multi-connection

ℓ ≤ n
4

n
4

≤ ℓ ≤ n
2

n
2

≤ ℓ ≤ n n ≤ ℓ ℓ ≤ n
2

n
2

≤ ℓ ≤ n n ≤ ℓ

ρ 2λ + ℓ 2λ + ℓ 4λ 4λ 2λ + ℓ 4λ 4λ

ξ 2λ + ℓ 2λ + ℓ 2λ + ℓ ∞ 2λ + ℓ 2λ + ℓ ∞
ω 3λ/2 + ℓ 2λ 2λ 2λ 2λ 2λ 2λ

π 3λ/2 + ℓ 2λ 2λ 2λ 2λ 2λ 2λ

Impact on TLS 1.3 and Signal. The attacks significantly affects Signal and
all of the TLS 1.3 cipher suites, which presumably were designed to provide
min

(
ns, 2(ns + niv)/3

)
bits of security against single-connection attacks and

(ns + niv)/2 bits of security against multi-connection attacks. As the number of
key updates is unbounded, the above attacks reveal that they only provide n/4
bits of security. Specifically, the AES-128 cipher suites yield ≈ 64 bits of security
instead of 128 for single-connection and 112 for multi-connection, the AES-256
cipher suite provides ≈ 96 bits of security instead of 235 for single-connection and
176 for multi-connection, and the ChaCha20 cipher suite only delivers ≈ 64 bits
of security instead of 235 for single-connection and 176 for multi-connection. For
comparison, as of 2024, public supercomputers [58] and distributed systems [10]
have capabilities of performing 285 to 294 operations per year. The attacks do
not apply to TLS 1.3 when key updates are not used.

3.7 Comparison of Security Properties

A summary of security properties of different types of chains is presented in
Table 7. For a fixed key space N , the security of ρ- and ξ-chains are inferior to
ω-chains, which, in turn, are inferior to π-chains. For a fixed key space N and
m ≤ N1/2, ρ-chains are inferior to ξ-chains.

ρ-chains always have a non-zero probability of repetitive cycles, irrespectively
of the size of the key space. ρ-, ξ-, and ω-chains always have a non-zero probability
of collisions, irrespectively of the size of the key space. Preventing short repetitive
cycles has long been a fundamental objective in cryptographic design. ρ- and
ξ-chains have predictable shrinking state spaces, and ρ-chains has the property
that S∗

m+1 ⊆ S∗
m. ρ-chains are notoriously hard to analyze and do not seem to

have any significant benefits compared to ξ-chains as long as m ≤ N1/2. Several
security properties of ρ-chains are still unknown, such as the collision probability
between c chains of length v, and the number of m-iterate image points near
N1/2.

1 See Appendix A. The value 4mv/N is an estimate based on simulations in key spaces
with size 216 and 224. The collision probability is at least 2mv/N .

Security Properties of One-Way Key Chains 19

Table 7. Summary of expected values of several security metrics for ρ-, ξ-, ω-, and
π-chains after m iterations where v ≤ m ≪ N1/2.

ρ ξ ω π

Fraction of weak keys k0 leading to repetitive cycles m2

2N
0 0 0

Fraction of keys ki being part of a collision m3

4N
m2

2N
m2

2N
0

Collision probability for first v keys in one chain v2

2N
v2

2N
v2

2N
0

Collision probability for last v keys in one chain mv
N

v2

2N
v2

2N
0

m-iterate key space size |Sm| for a single chain 2N
m

2N
m

2N
m

N

m-iterate key space size |S∗
m| for the set of all chains 2N

m
2N
m

N N

∞-iterate key space size |S∗
∞| for the set of all chains N1/2 1 N N

Collision probability between v random keys ∈ S∗
m and

v random keys ∈ S∗
m

mv2

2N
mv2

2N
v2

N
v2

N

Collision probability between v random keys ∈ S∗
m and

the last v keys in one chain
mv2

2N
v2

N
v2

N
v2

N

Max collision probability for 2v keys from two chains1 4mv
N

2v2

N
2v2

N
v2

N

Collision probability for the last c keys km−1 from c chains1. mc2

4N
mc2

4N
c2

2N
c2

2N

ξ-chains can easily be implemented with local counters that do not need to be
transmitted. For a fixed key space N , ω-chains have better security than ξ-chains.
However, ω-chains require that all parties agree on a random value to use in each
iteration and cannot efficiently handle out-of-order messages, whereas ξ-chains
can.

π-chains have the unique property of never having any collision. The cost of
the permutation operation would be negligible in non-constrained devices using
protocols where the key chain is not iterated each message. One-way permutations
based on the discrete logarithm problem are however not quantum-resistant,
which ρ-, ξ-, and ω-chains based on symmetrical primitives are. Rekeying with
key chains based on one-way permutations also exhibits significantly inferior
security properties compared to ephemeral key exchange, such as x25519 [32]
and ML-KEM [40], which would have similar or lower computational cost.

While rekeying with ephemeral key exchange significantly improves security
against key leakage and exfiltration, one-way key chains do not. In the worst-case
scenario, assuming a rational attacker, the attacker exfiltrates the first key and
rekeying with one-way key chains does not provide any benefit. One definition of
perfect forward secrecy is that compromise of a single key will compromise only
the data protected by the single key [12]; one-way key chains do not achieve this.

20 John Preuß Mattsson

4 Analysis of Affected Security Protocols

In this section, we assess the impact of our results on various security proto-
cols employing symmetric key ratchets. The protocols under scrutiny—TLS
1.3 [48], DTLS 1.3 [49], QUIC [24,57], Signal [54], MLS [4], EDHOC [50], and
OSCORE [23,51]—are widely used, recently standardized, or in the final stages
of standardization. Our analysis is based on technical specifications; we have not
examined implementations or deployments. For protocols that do not specify the
intended security level λ for different algorithms, we assume that the intended
security level corresponds to the key size ns of the AEAD keys Ki. Unless the
protocol defines limits on the length m of the key chain k0, k1, . . . , km−1, we
adopt the worst-case scenario, assuming an unlimited chain length.

4.1 TLS 1.3 Family of Protocols (TLS 1.3, DTLS 1.3, and QUIC)

The ρ-chains in the TLS 1.3 family of protocols (TLS 1.3, DTLS 1.3, and QUIC)
exhibit very poor security properties, including weak keys, repetitive cycles, a
high level of collisions at the end of chains, a predictable shrinking key space,
and vulnerability to TMTO attacks that recover a large number of keys. In TLS
1.3 and QUIC the TMTO attack has complexity T = M ≈ N1/4, P ≈ N1/2

and T = M = P ≈ N1/3. Most of the TLS 1.3 cipher suites offer ≈ 64 bits
of single- and multi-connection security against these pre-computation attacks.
DTLS 1.3 offers (n − 47)/2 bits of security against the new TMTO attacks as
the chain length is limited to 248. In practical applications, the security depends
on the number of key updates m, but is always below the expected security
level ns when key update is used. EAP-TLS 1.3 [47], DTLS-SRTP [35], and
DTLS/SCTP [59,60] are not affected as they do not use key update.

The simple attack described in Sect. 3.3 does not require any pre-computation
and finds an AEAD (key, nonce) collision with complexity T = N/m with negli-
gible data and memory requirements M = D = O(1). The popular cipher suite
CHACHA20_POLY1305_SHA256, which uses a 256-bit AEAD key, only pro-
vides 256− log2 m bits of security against this collision attack, which compromises
confidentiality, integrity, replay protection, and availability. When key update
is used, CHACHA20_POLY1305_SHA256 has a traffic secret space of only
257 − log2 m bits even though ns + niv = 352 bits are required to derive AEAD
keys and IVs with the expected amount of entropy. The other cipher suites in
Table 1 have less than the expected amount of entropy when m > 233.

As shown in [45], the procedures used to calculate AEAD limits specified
in Appendix B of DTLS 1.3 [49] and QUIC [24], exhibit significant flaws both
in theory and practical application. The results in Sect. 3, reveal additional
inaccuracies, particularly when considering long chains. The advantages calculated
in the procedures assume independent and uniformly distributed keys with full
entropy. When key update is used, the keys are not independent, and they are not
uniformly distributed if they are derived from a smaller key space. The single-key
security of the last AEAD key is bounded by the multi-key security of all the traffic
secrets. Another issue not mentioned in [45] is that the procedures base decisions

Security Properties of One-Way Key Chains 21

on probabilities rather than attack complexities. This yields disparate outcomes
for different algorithms unless the work done by the attacker is constant across
algorithms. These findings reinforce the recommendation in [45] to deprecate the
procedures.

The findings in Sects. 3.2 to 3.6 illustrate significant theoretical design flaws
in TLS 1.3, DTLS 1.3, and QUIC that should be addressed in future revisions.
ρ-chains are notoriously hard to analyze, and several properties remain unknown,
which are not good security traits. The use of ρ-chains is more problematic in the
TLS 1.3 family of protocols than in the Signal protocol, as TLS 1.3, DTLS 1.3,
and QUIC can be expected to use much longer chains than the Signal protocol.
The key update mechanism introduced in TLS 1.3 [48] should have been regarded
as experimental new cryptography and negotiated with an optional extension.

A practical alternative in almost all use cases is to not use symmetric key
update at all and instead set up new connections with ephemeral key exchange. As
explained in [45], this gives much better security against key leakage/exfiltration
than any key chains and aligns with zero trust principles. It also aligns with
the stronger definition of perfect forward secrecy that compromise of a single
key compromise only the data protected by that single key. Modern ephemeral
key exchange algorithms like x25519 [32] are very fast and have small message
overhead. The public keys are 32 bytes long and the cryptographic operations
take 53 µs per endpoint on a single core AMD Ryzen 5 5560U [16], a mobile CPU
from 2021. Ephemeral key exchange with the quantum-resistant algorithm ML-
KEM [40] that NIST will standardize is even faster. For the non-standardized
Kyber512 version of ML-KEM the cryptographic operations take 12 µs for
the client and 8 µs for the server [15] on the same CPU. In both algorithms,
key generation can be pre-computed, reducing the time required for real-time
cryptographic operations to 27 µs per endpoint for x25519 and to 6 µs for the
client and 8 µs for the server when ML-KEM-512 is utilized.

TLS 1.3 should clearly state the intended security levels for different cipher
suites. The entropy issue with CHACHA20_POLY1305_SHA256 must be ad-
dressed irrespectively of rekeying by increasing the size of the traffic secrets
and/or standardizing a new cipher suite. The replay attack described in Sect. 3.3
could have been prevented by including the epoch in the AEAD key derivation,
nonce, or additional authenticated data. However, the preferred solution is to
abstain from using ρ-chains altogether. The existence of weak keys and repetitive
cycles can only be cured by removing the current ρ-chain and replacing it with
something better.

We recommend current implementations and deployments of TLS 1.3, DTLS
1.3, and QUIC to not use key update and, instead, establish new connections
using ephemeral key exchange when rekeying is needed. We recommend imple-
mentations to rekey with ephemeral key exchange every 222.5 full-size records
(214 bytes) to align with current best practice and requirements recommending
rekeying with ephemeral key exchange at least every hour and every 1–100 GB of
data [2,33,53]. This approach offers significantly enhanced security against key
leakage/exfiltration and the overhead of performing one ephemeral key exchange

22 John Preuß Mattsson

every 222.5 messages is negligible. A mechanism for ephemeral key exchange within
the connection could likely be done with smaller message sizes than resumption.
We stress that the ephemeral keys should only be used once. As explained in
the paper “Measuring the Security Harm of TLS Crypto Shortcuts” [55], reuse
of key shares is a major practical security problem. We recommend TLS 1.3,
DTLS 1.3, and QUIC to deprecate the current key update mechanism, which
generates ρ-chains with insufficient state and without appropriate limitations
on chain length. We also recommend all implementations and deployments to
disable reuse of key shares, and for IETF to forbid such reuse.

Expanded Chain States. Increasing the chain state size can be achieved by
using larger traffic secrets. Currently, the TLS 1.3 specification [48] states that
the size of the traffic secrets is equal to the output size of the hash function.
HKDF-Expand [31], used in TLS, can utilize up to block size bytes of entropy
from the key. Changing the size of the traffic secrets to the block size would
significantly increase the size of the chain space n. The output size and block size
of some SHA-2 functions [39] are shown in Table 8. Modern KDF algorithms
like KMAC [25] have less restrictions.

Table 8. Output size and block size of some SHA-2 hash functions.

Hash function Output size Block size

SHA-256 32 64
SHA-384 48 128
SHA-512 64 128

Improved Key Chains. The current key chain can be transformed into a ξ-
chain by including a counter in the key derivation context, as is done in MLS [4].
DTLS 1.3 [49] already has such a counter, known as the epoch. Alternatively,
the chain can be converted into an ω-chain by including a random number in
the key update message and including it in the key derivation context as done in
OSCORE [23]. TLS 1.3 [48] and DTLS 1.3 have dedicated key update messages
while QUIC [24, 57] indicates key update with a bit in the packet header. As
explained in Sect. 3.5, even a 1-bit random salt is enough to make sure that
|S∗

m| ≈ N . Introducing a π-chain built on elliptic curve cryptography would
be more complex and would not be useful together with the quantum-resistant
algorithms ML-KEM [40] and ML-DSA [41] that TLS 1.3 will soon introduce.
We are not aware of any quantum-resistant one-way permutations.

If a symmetric key update is needed in certain use cases and TLS 1.3 decide to
continue using symmetric key chains, we recommend imposing very small, strict
limits ℓ on the length of ξ- or ω-chains. The state sizes n need to be increased so

Security Properties of One-Way Key Chains 23

that the requirements outlined in Table 6 are fulfilled. Alternatively, the stated
security levels can be adopted to fulfill the requirements outlined in Table 5.
Note that symmetric rekeying should not be seen as a replacement for periodic
rekeying with ephemeral key exchange in long-lived connections.

4.2 Signal Protocol

The Signal protocol [54] share many of the problems with the TLS family of
protocols. The ρ-chains in Signal exhibit very poor security properties, including
weak keys, repetitive cycles, a high level of collisions at the end of chains,
a predictable shrinking key space, and vulnerability to TMTO attacks with
complexity T = M ≈ N1/4, P ≈ N1/2 and T = M = P ≈ N1/3 that recover a
large number of keys. The Signal protocol [54] offer ≈ 64 bits of single- and multi-
connection security against these pre-computation attacks. The Signal protocol
recommends encryption with AES-256 but only provides 256 − log2 m bits of
security against the collision attack described in Sect. 3.3, which does not require
any pre-computation and finds an AEAD (key, nonce) collision with complexity
T = N/m with negligible data and memory requirements M = D = O(1). The
chain key space is only 257 − log2 m bits, which is smaller than the 256-bit
message key and much less that the 384 bits in the AES-256-CBC encryption
key and the random IV. The findings in Sects. 3.2 to 3.6 illustrate significant
theoretical design flaws in Signal that should be addressed in future revisions.
ρ-chains are notoriously hard to analyze, and several properties remain unknown,
which are not good security traits. The use of ρ-chains is slightly less problematic
in the Signal protocol than in TLS 1.3, DTLS 1.3, and QUIC as the chains can be
expected to be shorter. However, as found by [45], an attacker blocking messages
in one direction can indefinitely increase the length of the chains.

Signal should clearly state the intended security levels. The entropy issue can
only be addressed by increasing the size of the chain keys. The existence of weak
keys and repetitive cycles can only be cured by removing the current ρ-chain
and replacing it with something better. We recommend the Signal protocol to
convert the key chain into an ξ-chain by including a counter in the key derivation
context, as is done in MLS [4]. An ω-chain would cause problems for out-of-order
messages. We recommend imposing very small, strict limits ℓ on the chain length.
The chain key size n needs to be increased so that the requirements outlined in
Table 6 are fulfilled. Alternatively, the stated security levels can be adopted to
fulfill the requirements outlined in Table 5. To increase security against multi-key
attacks we recommend Signal to increase the size of the message key so that it is
at least as big as the encryption key and the IV.

4.3 The Messaging Layer Security (MLS) Protocol

Background. The Messaging Layer Security (MLS) Protocol [4] is a standardized
protocol for secure group messaging developed by the Internet Engineering
Task Force (IETF). MLS utilizes a ratchet tree structure [14] for the effective
management of cryptographic keys within a group. It is designed to support

24 John Preuß Mattsson

large groups with dynamic memberships, ensuring secure communication even as
members join or leave the group. MLS have been deployed at scale to protect
sensitive real-time conversations in Cisco Webex and many other applications
are planning to transition to MLS.

As outlined in Section 9 of [4], each sender maintains two symmetric key
ratchets for every other member in the group—one for handshake messages and
another for application messages. The ratchets work very similar to the ratchets
in Signal with the difference that a counter is used as context. Each message
i is encrypted using a ratchet key Ki and a ratchet nonce IVi, which are used
only once. Before transmitting each message, the ratchet secret, key, and nonce
undergo updates using a symmetric-key ratchet, as outlined in Section 9.1 of [4].
The ratchet key Ki, the ratchet nonce IVi, and the next ratchet secret ki+1 are
computed using a Key Derivation Function (KDF) based on HKDF-Expand [31]
as

Ki = KDF(ki, "key", i, ns) ,

IVi = KDF(ki, "nonce", i, niv) ,

ki+1 = KDF(ki, "secret", i, n) ,

(41)

where n is the size of the ratchet secret, ns is the size of the ratchet key, and
niv is the size of the ratchet nonce. MLS calls each iteration of the ratchet for
a generation. MLS impose that m ≤ 232 by specifying that the generation is
encoded as an uint32. Table 9 provides a list of the KDF and AEAD algorithms
in the initial MLS cipher suites. MLS specifies the intended security level λ for
all cipher suites.

Table 9. The KDF and AEAD algorithms in the initial MLS cipher suites. λ is the
intended security level.

Cipher suite λ n ns niv n − λ n/λ

AES128GCM_SHA256 128 256 128 96 128 2.0
CHACHA20POLY1305_SHA256 128 256 256 96 128 2.0
AES256GCM_SHA512 256 512 256 96 256 2.0
CHACHA20POLY1305_SHA512 256 512 256 96 256 2.0
AES256GCM_SHA384 256 384 256 96 128 1.5

Analysis. As MLS limits the length of the chain length to ℓ = 32, the ξ-chains
in MLS only have benefits compared to ρ-chains. The ξ-chains do not exhibit
any weak keys or repetitive cycles, and the single-connection TMTO attacks
typically have success probability less than one, which may be less appealing to
real-world attackers compared to attacks with a success probability close to one.
It is commendable that MLS specifies a security level λ for every cipher suite.

Security Properties of One-Way Key Chains 25

However, ξ-chains have a predictable shrinking key space and only offer
(n − 31)/2 bits of security against the new TMTO attacks described in Sect. 3.6.
The attacks lower the single-connection security of AES128GCM_SHA256 and
CHACHA20POLY1305_SHA256 to 112 bits and the single-connection security
of AES256GCM_SHA384 to 176 bits. The new attacks do not lower the single-
connection security of AES256GCM_SHA512 and CHACHA20POLY1305_-
SHA512, which offer 234 bits of security against Hellman’s TMTO attack [21,42].

The sizes n of the ratchet secrets should be increased so that the requirements
outlined in Table 6 are fulfilled. Alternatively, the stated security levels can be
adopted to fulfill the requirements outlined in Table 5. MLS uses HKDF-Expand
and the size of the ratchet secrets is the values Nh from Hybrid Public Key
Encryption (HPKE) [5]. Currently, all values are equal to the output sizes of
the hash function, even though it’s not explicitly stated as a rule. Similar to
the approach described in Sect. 4.1 for TLS, MLS could expand the size of the
ratchet secrets to the block size of the hash function.

4.4 Key Update for OSCORE (KUDOS)

Background. The Key Update for OSCORE (KUDOS) [23] is an extension to
the Object Security for Constrained RESTful Environments (OSCORE) protocol
[51]. KUDOS is currently undergoing standardization by the IETF. In OSCORE,
the keying material consists of a master secret k and a master salt r. KUDOS
aims to provide efficient symmetric rekeying with forward secrecy. It differs from
the TLS 1.3 key update by also refreshing the master salt, and each iteration
introduces fresh randomness. In KUDOS, both parties provide random numbers
N1 and N2, each ranging from 8 to 128 bits in length, with the recommended
size being 64 bits. The next master secret ki+1 and salt ri+1 are computed using
a Key Derivation Function (KDF) based on HKDF-Expand [31] as

ri+1 = N1
∣∣∣∣N2 ,

ki+1 = KDF(ki, label1, ri+1, nk) ,
(42)

where nk is the size of the master secret. From the master secret ki, the AEAD
key Ki and the initialization vector IVi are derived as

Ki = KDF(ki, label2, ri, ns) ,

IVi = KDF(ki, label3, ri, niv) .
(43)

KUDOS does not enforce any limits ℓ on the chain length m and does not make
any recommendations regarding key lengths, salt lengths, KDF algorithms, and
AEAD algorithms beyond what is stipulated by the OSCORE specification [51].
The OSCORE specification leaves the determination of the sizes nk of the master
secret and nr of the master salt to the application and does not explicitly state
the intended security level. The mandatory-to-implement algorithm is AES-128
with ns = 128 bits. In the provided examples [51], the size nk of the master secret
k is 128 bits, with or without a salt.

26 John Preuß Mattsson

Analysis. The utilization of random salts ri in KUDOS implies that the chain of
master secrets forms an ω-chain, which offers relatively good security properties.
However, despite the unpredictable key space in ω-chains, KUDOS remains
vulnerable to TMTO attacks as discussed in [45]. A successful TMTO attack
recovers half of the keys in the connection. As the master salt is included in the
derivation of the AEAD key and IV, the state space in KUDOS is n = nk + nr.
The size n should be configured to fulfill the requirements outlined in Table 6.
Alternatively, the stated security levels can be adopted to fulfill the requirements
outlined in Table 5. If the chain length remains unrestricted, the state space n
should be greater or equal to twice the security level λ.

KUDOS and OSCORE give a lot of freedom and responsibility to the appli-
cation but does not give any guidance. KUDOS should provide guidance on the
relation between the chain state size n, security level λ, and maximum chain
length ℓ. OSCORE [51] should provide guidance on the length of the master
key and master salt. Even without KUDOS, the multi-key security is deter-
mined by min(n + nr, ns + niv)/2. Assuming that λ = ns and that k and r are
uniformly random, OSCORE should require that n ≥ ns and recommend that
nk + nr ≥ ns + niv. Additionally, OSCORE should also describe the single- and
multi-key security levels if these conditions are not satisfied.

While an ω-chain may offer acceptable security in the short term, as explained
in Section 5.2 of [45], symmetric key exchange has significantly worse security
properties than ephemeral Diffie-Hellman. We strongly recommend the KUDOS
document to recommend periodic rekeying with ECDHE based on time and data
using e.g., EDHOC. As explained in [45], the security advantages of employing
periodic ephemeral key exchange are considerable, particularly in attack scenarios
like side-channel attacks on Internet of Things (IoT) devices, where physical prox-
imity is mandated. Current best practice and requirements for non-constrained
implementations is to rekey with ephemeral key exchange at least every hour and
every 1–100 GB of data [2,33,53]. As suggested in [45], constrained implementa-
tions should also mandate periodic rekeying with ephemeral Diffie-Hellman but
could have a maximum period of 1 day, 1 week, or 1 month depending on how
constrained the device and the radio is. Symmetric rekeying should not be seen
as a replacement for periodic rekeying with ephemeral key exchange.

4.5 Ephemeral Diffie-Hellman Over COSE (EDHOC)

Background. Ephemeral Diffie-Hellman Over COSE (EDHOC) [50] is a Light-
weight Authenticated Key Exchange (LAKE) currently undergoing standard-
ization by the Internet Engineering Task Force (IETF). EDHOC has similar
security properties as TLS 1.3 but with message sizes potentially less than 1/7 of
a DTLS 1.3 handshake [46]. EDHOC has already been deployed in industry ap-
plications and many other deployments are planned. Appendix H of the EDHOC
specification [50] specifies an optional key update function that can be used to
update the key PRK_out k. It differs from the TLS 1.3 key update and the
Signal symmetric ratchet, as it takes an application provided context as input

ki+1 = KDF(ki, label, context, n) . (44)

Security Properties of One-Way Key Chains 27

The EDHOC specification [50] states that the context, e.g., can be a counter, a
pseudorandom number, or a hash, but does not provide any recommendations.
It is mentioned that the context can be utilized to bind ki+1 to the event that
triggered the key update. EDHOC does not impose any limits ℓ on the chain
length m and does not explicitly state the intended security level λ. Table 10
provides a list of the EDHOC hash algorithm and Application AEAD algorithms
in the initial cipher suites.

Table 10. The EDHOC hash algorithm and Application AEAD algorithm in the initial
EDHOC cipher suites.

Cipher suite n λ = ns niv n − λ n/λ

AES-CCM-16-64-128, SHA-256 256 128 104 128 2.0
A128GCM, SHA-256 256 128 96 128 2.0
A256GCM, SHA-384 384 256 96 128 1.5
ChaCha20/Poly1305, SHA-256 256 256 96 0 1.0
ChaCha20/Poly1305, SHAKE256 512 256 96 256 2.0

As known deployments and protocols like Authentication and Authorization
for Constrained Environments (ACE) [52] were planning to instead use KUDOS
[23] together with EDHOC, the IETF LAKE working group discussed removing
EDHOC key update from the specification. However, it was decided to make the
mechanism optional and relocate it to an appendix instead.

Analysis. With a fixed context, the EDHOC key update produces a ρ-chain with
all its associated bad properties. We strongly recommend EDHOC to mandate
that the input to the context includes a nonce (number used once, e.g., a counter
or a random number) to guarantee that there are no weak keys, repetitive cycles,
or high level of collisions at the end of chains. Using a counter produces a ξ-chain
and using a random number produces a ω-chain. EDHOC with key update is
vulnerable to the TMTO attacks as discussed in Sect. 3.6. A successful TMTO
attack recovers half of the keys in the connection.

It should be mentioned in the EDHOC specification that the cipher suite
combining ChaCha20 and SHA-256 does not give 256-bit security when used
with key update as n = 256. When EDHOC is used with OSCORE, the random
IV does not increase protection against multi-key attacks as the 256-bit AEAD
key and 96-bit IV is derived from at most 256-bits of entropy. When EDHOC is
used with ρ- or ξ-chains, the entropy is only 257 − log2 m bits. The cipher suite
combining ChaCha20 and SHAKE256 gives 256-bit security for ω-chains but
might not be suitable for constrained devices only having support for SHA-256.

EDHOC key update gives a lot of freedom and responsibility to the application
but does not give any guidance. EDHOC should clearly state the intended security
levels. If EDHOC key update allows ρ- or ξ-chains, it is essential with strict limits

28 John Preuß Mattsson

ℓ on the chain length m. The size n of the PRK_out needs to be increased so
that the requirements outlined in Table 6 are fulfilled. Alternatively, the stated
security levels can be adopted to fulfill the requirements outlined in Table 5.
EDHOC should provide guidance on the relation between type of context and
the security properties of the resulting key chain. EDHOC should also provide
guidance on the relation between the chain state size n, security level λ, and
maximum chain length ℓ. Just like TLS and MLS, the size n is the output size of
the hash function, and using the approach described in Sect. 4.1 for TLS, EDHOC
could expand the size of the keys to the block size when hen HKDF-Expand is
used and unlimited when KMAC is used.

If used for long-term connections, EDHOC should mandate periodic rekeying
with ECDHE based on time and data. As explained in [45], the security advantages
of employing periodic ephemeral key exchange are considerable, particularly in
attack scenarios like side-channel attacks on Internet of Things (IoT) devices,
where physical proximity is mandated. Current best practice and requirements
for non-constrained implementations is to rekey with ephemeral key exchange
at least every hour and every 1–100 GB of data [2,33,53]. As suggested in [45],
constrained implementations should also mandate periodic rekeying with ECDHE
but could have a maximum period of 1 day, 1 week, or 1 month depending on
how constrained the device and the radio is.

5 Conclusions, Recommendations, and Future Work

The findings and attacks presented in this paper highlight significant theoretical
flaws in many crucial security protocols that utilize symmetrical key ratchets,
resulting in significantly lower security levels than anticipated based on the AEAD
key sizes. We strongly advise against the use of ρ-chains. We recommend existing
security protocols to phase out ρ-chains and replace them with better alternatives.
Applications of key chains should enforce strict limits on the chain length. All
stream ciphers we are aware of impose restrictions on the number of times the
state update function can be iterated. One-way key chains have important use
cases for messaging applications, group communication, and constrained environ-
ments. The use in general non-constrained two-party protocols is questionable
and goes against established best practices for long-lived connections [2,33,53].
We stress that one-way key chains and ratchets should not be seen as general
replacements for periodic rekeying with ephemeral key exchange in long-lived
connections.

Based on the analysis, we recommend TLS 1.3, DTLS 1.3, and QUIC to:

– Deprecate the key update mechanism producing ρ-chains.
– Recommend ephemeral key exchange for all rekeying.
– Mandate periodic ephemeral key exchange based on time and data.
– Forbid reuse of key shares.
– Introduce a new key update mechanism producing ξ- or ω-chains.
– Increase the state size (traffic secret) of the chains.

Security Properties of One-Way Key Chains 29

– Introduce strict limits on the chain length.
– Clearly state intended security levels aligning with Table 5.

Based on the analysis, we recommend Signal to:
– Deprecate the symmetric ratchet producing ρ-chains.
– Introduce a new symmetric ratchet producing ξ-chains.
– Increase the state size (chain key) of the chains.
– Introduce strict limits on the chain length.
– Increase the size of the message key.
– Mandate rekeying with the Diffie-Hellman ratchet based on time and data.
– Clearly state intended security levels aligning with Table 5.

Based on the analysis we recommend MLS to:
– Increase the state size (ratchet secret) of the chains.
– Align security levels with Table 5.

Based on the analysis, we recommend OSCORE and KUDOS to:
– Introduce strict limits on the chain length.
– Provide guidance on the relation between the chain state size n, security level

λ, and maximum chain length ℓ.
– Provide guidance on the relation between the length of the master key, the

length of the master salt, and security levels.
– Introduce strict minimum requirements for the security level.
– Recommend frequent rekeying with ECDHE based on time and data.

Based on the analysis, we recommend EDHOC to:
– Recommend frequent rekeying with ECDHE based on time and data.
– Clearly state intended security levels.
– Provide guidance on the relation between the type of context and the security

properties of the resulting key chain.
– Mandate that the key update context includes a counter or a random number.
– Provide guidance on the relation between the chain state size n, security level

λ, and maximum chain length ℓ.
– Introduce strict limits on the maximum chain length.

Suggested future work:
– Evaluate the use of key chains in protocol implementations and deployments.

Differences compared to specifications are often significant.
– Assess how different alternatives for rekeying (ξ-, ω-, π-chain, ephemeral key

exchange inside the connection, or during resumption) impact performance.
– Investigate how often deployments perform rekeying and explore if an active

attacker can influence the frequency.
– Explore methods to construct quantum-resistant one-way permutations using,

for example, lattice-, code-, or isogeny-based cryptography.
– Explore the new TMTO attacks in Sect. 3.6 and propose new techniques,

enhancements, and optimizations.
– Explore ρ-chains, derive formulas for the collision probability between c chains

of length v and determine the number of m-iterate image points near N1/2.

30 John Preuß Mattsson

Acknowledgements

The authors would like to thank Patrik Ekdahl, Loïc Ferreira, Alexander Maximov,
Erik Thormarker, Göran Selander, and Ben Smeets for their helpful comments
and suggestions. The introduction and the descriptions of Signal, TLS 1.3, and
Babbage-Golić draw significant inspiration from the work of [45], which has been
used with proper permission and attribution.

References

1. 3GPP: Security architecture and procedures for 5g system (jan 2024),
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=3169

2. Agence nationale de la sécurité des systèmes d’information: Recommendations
for securing networks with ipsec (August 2015), https://www.ssi.gouv.fr/uploads/
2015/09/NT_IPsec_EN.pdf

3. Babbage, S.: Improved "exhaustive search" attacks on stream ciphers. In: European
Convention on Security and Detection, 1995. pp. 161–166 (1995). https://doi.org/
10.1049/cp:19950490

4. Barnes, R., Beurdouche, B., Robert, R., Millican, J., Omara, E., Cohn-Gordon,
K.: The Messaging Layer Security (MLS) Protocol. RFC 9420 (Jul 2023). https:
//doi.org/10.17487/RFC9420

5. Barnes, R., Bhargavan, K., Lipp, B., Wood, C.A.: Hybrid Public Key Encryption.
RFC 9180 (Feb 2022). https://doi.org/10.17487/RFC9180, https://www.rfc-editor.
org/info/rfc9180

6. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology
– CRYPTO 2016, Part I. Lecture Notes in Computer Science, vol. 9814, pp. 247–
276. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18, 2016).
https://doi.org/10.1007/978-3-662-53018-4_10

7. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more
complete analysis of the signal double ratchet algorithm. Cryptology ePrint Archive,
Report 2022/355 (2022), https://eprint.iacr.org/2022/355

8. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) Advances in Cryptology – ASIACRYPT 2000. Lecture
Notes in Computer Science, vol. 1976, pp. 1–13. Springer, Heidelberg, Germany,
Kyoto, Japan (Dec 3–7, 2000). https://doi.org/10.1007/3-540-44448-3_1

9. Bishop, M.: HTTP/3. RFC 9114 (Jun 2022). https://doi.org/10.17487/RFC9114,
https://www.rfc-editor.org/info/rfc9114

10. Blockchain.com: Total hash rate (th/s), https://www.blockchain.com/explorer/
charts/hash-rate

11. Bradford, P., Gavrylyako, O.: Hash chains with diminishing ranges for sensors.
In: Workshops on Mobile and Wireless Networking/High Performance Scientific,
Engineering Computing/Network Design and Architecture/Optical Networks Con-
trol and Management/Ad Hoc and Sensor Networks/Compil. pp. 77–83 (2004),
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.1221

12. Carrel, D., Harkins, D.: The Internet Key Exchange (IKE). RFC 2409 (Nov 1998).
https://doi.org/10.17487/RFC2409, https://www.rfc-editor.org/info/rfc2409

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
https://www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf
https://www.ssi.gouv.fr/uploads/2015/09/NT_IPsec_EN.pdf
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1049/cp:19950490
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9420
https://doi.org/10.17487/RFC9180
https://doi.org/10.17487/RFC9180
https://www.rfc-editor.org/info/rfc9180
https://www.rfc-editor.org/info/rfc9180
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/978-3-662-53018-4_10
https://eprint.iacr.org/2022/355
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9114
https://www.rfc-editor.org/info/rfc9114
https://www.blockchain.com/explorer/charts/hash-rate
https://www.blockchain.com/explorer/charts/hash-rate
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.1221
https://doi.org/10.17487/RFC2409
https://doi.org/10.17487/RFC2409
https://www.rfc-editor.org/info/rfc2409

Security Properties of One-Way Key Chains 31

13. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. Cryptology ePrint Archive, Report
2016/1013 (2016), https://eprint.iacr.org/2016/1013

14. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on
Computer and Communications Security. pp. 1802–1819. ACM Press, Toronto, ON,
Canada (Oct 15–19, 2018). https://doi.org/10.1145/3243734.3243747

15. eBACS: ECRYPT Benchmarking of Cryptographic Systems: Measurements of
key-encapsulation mechanisms, https://bench.cr.yp.to/results-kem.html

16. eBACS: ECRYPT Benchmarking of Cryptographic Systems: Measurements of
public-key diffie–hellman secret-sharing systems, https://bench.cr.yp.to/results-dh.
html

17. Ekdahl, P., Johansson, T., Maximov, A., Yang, J.: SNOW-vi: an extreme per-
formance variant of SNOW-V for lower grade CPUs. Cryptology ePrint Archive,
Report 2021/236 (2021), https://eprint.iacr.org/2021/236

18. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.J., Vande-
walle, J. (eds.) Advances in Cryptology – EUROCRYPT’89. Lecture Notes in Com-
puter Science, vol. 434, pp. 329–354. Springer, Heidelberg, Germany, Houthalen,
Belgium (Apr 10–13, 1990). https://doi.org/10.1007/3-540-46885-4_34

19. Golic, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) Advances
in Cryptology – EUROCRYPT’97. Lecture Notes in Computer Science, vol. 1233,
pp. 239–255. Springer, Heidelberg, Germany, Konstanz, Germany (May 11–15,
1997). https://doi.org/10.1007/3-540-69053-0_17

20. Goucher, A.P.: One-way permutations, https://cp4space.hatsya.com/2021/07/05/
one-way-permutations/

21. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Informa-
tion Theory 26(4), 401–406 (1980), https://ee.stanford.edu/~hellman/publications/
36.pdf

22. Hong, J., Kim, W.H.: TMD-Tradeoff and state entropy loss considerations of
streamcipher MICKEY. Cryptology ePrint Archive, Report 2005/257 (2005),
https://eprint.iacr.org/2005/257

23. Höglund, R., Tiloca, M.: Key Update for OSCORE (KUDOS). Internet-Draft
draft-ietf-core-oscore-key-update-06, Internet Engineering Task Force (Oct 2023),
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/06/, work in
Progress

24. Iyengar, J., Thomson, M.: QUIC: A UDP-Based Multiplexed and Secure Transport.
RFC 9000 (May 2021). https://doi.org/10.17487/RFC9000

25. John Kelsey, Shu-jen Chang, R.P.: Sha-3 derived functions: cshake, kmac, tuplehash
and parallelhash (dec 2016). https://doi.org/10.6028/NIST.SP.800-185

26. Julia Project: The julia programming language, https://julialang.org/
27. Kaliski Jr., B.S.: One-way permutations on elliptic curves. Journal of Cryptology

3(3), 187–199 (Jan 1991). https://doi.org/10.1007/BF00196911
28. Kim, J.H., Montenegro, R., Peres, Y., Tetali, P.: A birthday paradox for markov

chains with an optimal bound for collision in the pollard rho algorithm for discrete
logarithm. The Annals of Applied Probability 20(2) (apr 2010). https://doi.org/
10.1214/09-aap625

29. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Addison-Wesley, Boston, third edn. (1997)

https://eprint.iacr.org/2016/1013
https://doi.org/10.1145/3243734.3243747
https://doi.org/10.1145/3243734.3243747
https://bench.cr.yp.to/results-kem.html
https://bench.cr.yp.to/results-dh.html
https://bench.cr.yp.to/results-dh.html
https://eprint.iacr.org/2021/236
https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://cp4space.hatsya.com/2021/07/05/one-way-permutations/
https://cp4space.hatsya.com/2021/07/05/one-way-permutations/
https://ee.stanford.edu/~hellman/publications/36.pdf
https://ee.stanford.edu/~hellman/publications/36.pdf
https://eprint.iacr.org/2005/257
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-key-update/06/
https://doi.org/10.17487/RFC9000
https://doi.org/10.17487/RFC9000
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://julialang.org/
https://doi.org/10.1007/BF00196911
https://doi.org/10.1007/BF00196911
https://doi.org/10.1214/09-aap625
https://doi.org/10.1214/09-aap625
https://doi.org/10.1214/09-aap625
https://doi.org/10.1214/09-aap625

32 John Preuß Mattsson

30. Kogan, D., Manohar, N., Boneh, D.: T/key: Second-factor authentication from
secure hash chains. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.)
ACM CCS 2017: 24th Conference on Computer and Communications Security. pp.
983–999. ACM Press, Dallas, TX, USA (Oct 31 – Nov 2, 2017). https://doi.org/
10.1145/3133956.3133989

31. Krawczyk, D.H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (May 2010). https://doi.org/10.17487/RFC5869

32. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748 (Jan
2016). https://doi.org/10.17487/RFC7748, https://www.rfc-editor.org/info/rfc7748

33. Lonvick, C.M., Ylonen, T.: The Secure Shell (SSH) Transport Layer Protocol. RFC
4253 (Jan 2006). https://doi.org/10.17487/RFC4253, https://www.rfc-editor.org/
info/rfc4253

34. Mattsson, J.: Stream Cipher Design - An evaluation of the eSTREAM candidate
Polar Bear. Master’s thesis, Royal Institute of Technology (2006), https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.108.40

35. McGrew, D., Rescorla, E.: Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for the Secure Real-time Transport Protocol (SRTP). RFC 5764
(May 2010). https://doi.org/10.17487/RFC5764

36. McKay, K., Cooper, D.: Guidelines for the selection, configuration, and use of
transport layer security (tls) implementations (2019-08-29 2019). https://doi.org/
10.6028/NIST.SP.800-52r2

37. Morrison, K.E.: Random maps and permutations, https://aimath.org/~morrison/
Research/randommaps.pdf

38. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC 8439 (Jun
2018). https://doi.org/10.17487/RFC8439

39. NIST: Fips 180-4 secure hash standard (shs) (aug 2015). https://doi.org/10.6028/
NIST.FIPS.180-4, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

40. NIST: Fips 203 (draft) module-lattice-based key-encapsulation mechanism standard
(2023-08-24 2023), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.
pdf

41. NIST: Fips 204 (draft) module-lattice-based digital signature standard (2023-08-24
2023), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf

42. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) Advances in Cryptology – CRYPTO 2003. Lecture Notes in Computer Science,
vol. 2729, pp. 617–630. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 17–21, 2003). https://doi.org/10.1007/978-3-540-45146-4_36

43. Perrig, A.: The biba one-time signature and broadcast authentication protocol.
Proceedings of the ACM Conference on Computer and Communications Security
(12 2001), https://netsec.ethz.ch/publications/papers/biba.pdf

44. Pollard, J.M.: A Monte Carlo method for factorization. BIT 15, 331–334
(1975), https://www.cs.cmu.edu/afs/cs/academic/class/15451-f11/www/lectures/
lect1122_Pollard.pdf

45. Preuß Mattsson, J.: Hidden stream ciphers and tmto attacks on tls 1.3, dtls
1.3, quic, and signal. Cryptology ePrint Archive, Paper 2023/913 (2023), https:
//eprint.iacr.org/2023/913

46. Preuß Mattsson, J., Palombini, F., Vučinić, M.: Comparison of CoAP Secu-
rity Protocols. Internet-Draft draft-ietf-iotops-security-protocol-comparison-03,
Internet Engineering Task Force (Oct 2023), https://datatracker.ietf.org/doc/
draft-ietf-iotops-security-protocol-comparison/03/, work in Progress

47. Preuß Mattsson, J., Sethi, M.: EAP-TLS 1.3: Using the Extensible Authentication
Protocol with TLS 1.3. RFC 9190 (Feb 2022). https://doi.org/10.17487/RFC9190

https://doi.org/10.1145/3133956.3133989
https://doi.org/10.1145/3133956.3133989
https://doi.org/10.1145/3133956.3133989
https://doi.org/10.1145/3133956.3133989
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC7748
https://doi.org/10.17487/RFC7748
https://www.rfc-editor.org/info/rfc7748
https://doi.org/10.17487/RFC4253
https://doi.org/10.17487/RFC4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.40
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.40
https://doi.org/10.17487/RFC5764
https://doi.org/10.17487/RFC5764
https://doi.org/10.6028/NIST.SP.800-52r2
https://doi.org/10.6028/NIST.SP.800-52r2
https://doi.org/10.6028/NIST.SP.800-52r2
https://doi.org/10.6028/NIST.SP.800-52r2
https://aimath.org/~morrison/Research/randommaps.pdf
https://aimath.org/~morrison/Research/randommaps.pdf
https://doi.org/10.17487/RFC8439
https://doi.org/10.17487/RFC8439
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.ipd.pdf
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36
https://netsec.ethz.ch/publications/papers/biba.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15451-f11/www/lectures/lect1122_Pollard.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15451-f11/www/lectures/lect1122_Pollard.pdf
https://eprint.iacr.org/2023/913
https://eprint.iacr.org/2023/913
https://datatracker.ietf.org/doc/draft-ietf-iotops-security-protocol-comparison/03/
https://datatracker.ietf.org/doc/draft-ietf-iotops-security-protocol-comparison/03/
https://doi.org/10.17487/RFC9190
https://doi.org/10.17487/RFC9190

Security Properties of One-Way Key Chains 33

48. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018). https://doi.org/10.17487/RFC8446

49. Rescorla, E., Tschofenig, H., Modadugu, N.: The Datagram Transport Layer Security
(DTLS) Protocol Version 1.3. RFC 9147 (Apr 2022). https://doi.org/10.17487/
RFC9147

50. Selander, G., Preuß Mattsson, J., Palombini, F.: Ephemeral Diffie-Hellman Over
COSE (EDHOC). Internet-Draft draft-ietf-lake-edhoc-23, Internet Engineering
Task Force (Jan 2024), https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/23/,
work in Progress

51. Selander, G., Preuß Mattsson, J., Palombini, F., Seitz, L.: Object Security for
Constrained RESTful Environments (OSCORE). RFC 8613 (Jul 2019). https:
//doi.org/10.17487/RFC8613

52. Selander, G., Preuß Mattsson, J., Tiloca, M., Höglund, R.: Ephemeral Diffie-
Hellman Over COSE (EDHOC) and Object Security for Constrained Envi-
ronments (OSCORE) Profile for Authentication and Authorization for Con-
strained Environments (ACE). Internet-Draft draft-ietf-ace-edhoc-oscore-profile-03,
Internet Engineering Task Force (Oct 2023), https://datatracker.ietf.org/doc/
draft-ietf-ace-edhoc-oscore-profile/03/, work in Progress

53. Siemens Industry Sector: Ruggedcom ros-f v4.2.2.f security target reference guide
(August 2018), https://cache.industry.siemens.com/dl/files/226/109760226/att_
993693/v1/ROS-F_v4.2.2.F_Security-Target_Reference-Guide_EN.pdf

54. Signal: Signal technical documentation, https://signal.org/docs/
55. Springall, D., Durumeric, Z., Halderman, J.A.: Measuring the security harm of tls

crypto shortcuts. In: Proceedings of the 2016 Internet Measurement Conference.
pp. 33–47 (2016), https://jhalderm.com/pub/papers/forward-secrecy-imc16.pdf

56. Thomson, M., Benfield, C.: HTTP/2. RFC 9113 (Jun 2022). https://doi.org/10.
17487/RFC9113, https://www.rfc-editor.org/info/rfc9113

57. Thomson, M., Turner, S.: Using TLS to Secure QUIC. RFC 9001 (May 2021).
https://doi.org/10.17487/RFC9001, https://www.rfc-editor.org/info/rfc9001

58. TOP500 project: The top500 list, https://www.top500.org/
59. Tüxen, M., Rescorla, E., Seggelmann, R.: Datagram Transport Layer Security

(DTLS) for Stream Control Transmission Protocol (SCTP). RFC 6083 (Jan 2011).
https://doi.org/10.17487/RFC6083

60. Westerlund, M., Preuß Mattsson, J., Porfiri, C.: Datagram Transport Layer Security
(DTLS) over Stream Control Transmission Protocol (SCTP). Internet-Draft draft-
ietf-tsvwg-dtls-over-sctp-bis-07, Internet Engineering Task Force (Oct 2023), https:
//datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/07/, work in Progress

61. Wikipedia: Weak key, https://en.wikipedia.org/wiki/Weak_key

A Multi-Connection Attacks - Collisions Between Several

Chains

The probabilities of a collision occurring within chains and between chains are
not equal. An attacker might look at collisions between keys in several chains
to be able to gather more data or, depending on the type of chain, increase the
probability for a collision. A collision between two chains breaks the security of
both sessions but does not indicate a cycle in any of the chains. Let p′ be the
probability of a collision between 2v keys where v keys are from one chain and

https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://doi.org/10.17487/RFC9147
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/23/
https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613
https://datatracker.ietf.org/doc/draft-ietf-ace-edhoc-oscore-profile/03/
https://datatracker.ietf.org/doc/draft-ietf-ace-edhoc-oscore-profile/03/
https://cache.industry.siemens.com/dl/files/226/109760226/att_993693/v1/ROS-F_v4.2.2.F_Security-Target_Reference-Guide_EN.pdf
https://cache.industry.siemens.com/dl/files/226/109760226/att_993693/v1/ROS-F_v4.2.2.F_Security-Target_Reference-Guide_EN.pdf
https://signal.org/docs/
https://jhalderm.com/pub/papers/forward-secrecy-imc16.pdf
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9113
https://doi.org/10.17487/RFC9113
https://www.rfc-editor.org/info/rfc9113
https://doi.org/10.17487/RFC9001
https://doi.org/10.17487/RFC9001
https://www.rfc-editor.org/info/rfc9001
https://www.top500.org/
https://doi.org/10.17487/RFC6083
https://doi.org/10.17487/RFC6083
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/07/
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-dtls-over-sctp-bis/07/
https://en.wikipedia.org/wiki/Weak_key

34 John Preuß Mattsson

the other v keys are from another chain. Let p′′ be the probability of a collision
between c keys km from c different chains.

π-chains. While the probability of collision inside a single π-chain is zero,
the probability of collisions between two π-chains is not zero. The probability
of collision between two sets of v keys each from two chains using the same
permutation is ≈ v2/N . The attacker can achieve this probability by looking
for collisions between the keys k0, kv, k2v, . . . , k(v−1)v from the first chain and
the keys k0, k1, k2, . . . , kv−1 in the second chain. Note that the probability of
collision between two sets of v keys each from two chains using different random
permutations is also v2/N . This probability is given by the birthday attack
between two sets. The probability of a collision between c keys km from c
different chains is c2/2N . We get

p′
π ≈ v2

N
and p′′

π ≈ c2

2N
. (45)

ω-chains. The probability of a collision between 2v keys where v keys are
from one chain and the other v keys are from another chain is the same as the
collision probability of 2v keys from a single chain. The probability is given by
the birthday attack as ≈ (2v)2/2N = 2v2/N . As |S∗

m| ≈ N , the probability of a
collision between c keys km from c different chains is c2/2N . We get

p′
ω ≈ 2v2

N
and p′′

ω ≈ c2

2N
. (46)

ξ-chains. The probability of a collision between 2v keys where v keys are from
one chain and the other v keys are from another chain is the same as the collision
probability of 2v keys from a single chain. The probability is given by the birthday
attack as ≈ (2v)2/2N = 2v2/N . As |S∗

m| ≈ 2N/m, the probability of a collision
between c keys km from c different chains is c2/2(2N/m) = mc2/4N . We get

p′
ξ ≈ 2v2

N
and p′′

ξ ≈ mc2

4N
. (47)

ρ-chains. Based on our numerical simulations, the probability p′ of a collision
between 2v keys where v keys are the last keys from one chain and the other v
keys are the last keys from another chain seems to be significantly higher than
the probability ≈ 2mv/N of a collision between the last 2v-keys in a single chain.
Note that the collision probability is at least 2mv/N as the probability of a
collision inside each of the chains is mv/N . Based on our numerical simulations
in key spaces with size 216 and 224, p′ ≈ 4mv/N and it is beneficial for an
attacker to look for collisions between two chains. Collisions between ρ-chains is
shortly mentioned in [22], which write that the analysis seems to be complicated.
The probability of a collision between c keys km from c different chains is

Security Properties of One-Way Key Chains 35

c2/2(2N/m) = mc2/4N . We get

p′
ρ ≈ 4mv

N
and p′′

ρ ≈ mc2

4N
. (48)

B Expanded State Space in ρ-, ξ-, and ω-chains.

In all existing security protocols we are aware of, the only information retained
between iterations is the key ki, resulting in the chain state size n being equal
to the key size. The chain state size can be increased by increasing the key size.
The state size n can also be expanded beyond the key size by incorporating a
salt z with size nz as part of the context

ki+1 = KDF(ki, label1, [zi, . . .], nk) ,

zi+1 = KDF(ki, label2, [zi, . . .], nz) .
(49)

The state size becomes n = nk + nz, where nk is the key size. This is useful in
KDFs that has a fixed key size or those that only make use of a limited amount
of entropy from the key. Considering the relatively inexpensive nature of key
derivation, the approach detailed in Eq. (49) seems preferable to using a fixed salt
like z0 as context, as in ki+1 = KDF(ki, label, [z0, . . .], nk). The latter solution
would expand the space S∗

m for all chains but not the space Sm for a single chain.

	Security Properties of One-Way Key Chains and Implications for Security Protocols like TLS 1.3

