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Abstract. This paper focuses on the optimization of the number of log-
ical qubits in Shor’s quantum factoring algorithm. As in previous works,
we target the implementation of the modular exponentiation, which is
the most costly component of the algorithm, both in qubits and opera-
tions.

In this paper, we show that using only o(n) work qubits, one can obtain
the first bit of the modular exponentiation output. We combine this
result with May and Schlieper’s truncation technique (ToSC 2022) and
the Eker̊a-H̊astad variant of Shor’s algorithm (PQCrypto 2017) to obtain
a quantum factoring algorithm requiring only n/2 + o(n) qubits in the
case of an n-bit RSA modulus, while current envisioned implementations
require about 2n qubits.

Our algorithm uses a Residue Number System and succeeds with a
parametrizable probability. Being completely classical, we have imple-
mented and tested it. Among possible trade-offs, we can reach a gate
count O(n3) for a depth O(n2 log3 n), which then has to be multiplied by
O(logn) (the number of measurement results required by Eker̊a-H̊astad).
Preliminary logical resource estimates suggest that this circuit could be
engineered to use less than 1700 qubits and 236 Toffoli gates, and require
60 independent runs to factor an RSA-2048 instance.

Keywords: Quantum cryptanalysis, Shor’s algorithm, Integer factoring, Residue
number system.

1 Introduction

In 1994, Shor [31] introduced a polynomial-time quantum algorithm for factoring
integers and computing Discrete Logarithms. This remains to date one of the
most powerful applications of quantum cryptanalysis, which caused the birth
of post-quantum cryptography. In this paper, we will focus on factoring large
integers.

Reduction to Modular Exponentiation. Shor’s algorithm relies on a quantum
order-finding subroutine represented in Figure 1, which finds the order of an ele-
ment a in any Abelian group (G, ·) where operations are efficiently computable.



For factoring a composite number N , the group is Z∗N , i.e., we simply compute
modulo N .

It starts by initializing an input register x of m bits and a workspace register.
It then produces a uniform superposition in the input x and computes ax in
the workspace: ax mod N in the case of factoring. It then performs a Quantum
Fourier Transform on the input register again. After measurement, a classical
post-processing extracts the order of a, i.e., the smallest positive integer r such
that ar = 1. This allows to factor N .

m

n

|0〉 H

x, 0 7→ x, ax mod N

QFT2m

|0〉

Fig. 1. Shor’s quantum factoring subroutine.

Shor shows that using m = 2 log2N input qubits is sufficient to recover the
order with good probability. Besides, both the Hadamard and Fourier transform
can be performed in place and efficiently, meaning that the computational cost
is mostly determined by the cost of the modular exponentiation circuit. Like
previous works, this is the part that we target. This operation is classical: it
does not modify the superposition, and only maps basis states to other basis
states. Therefore, it can entirely be implemented using classical reversible logic,
i.e., Toffoli, CNOT and NOT gates. This is what we do in this paper, although
many previous works have also used “inherently quantum” arithmetic circuits
based on the QFT [8].

Optimization of Space. Since Shor’s original paper, precisely estimating the cost
of the algorithm has remained a crucial question. Many authors have designed
circuits optimizing either its qubit or gate count [3,35,33,21,15]. Most of these
works report a qubit count of 2n+ 1 or above, where n = log2N (see for exam-
ple [15] for a comparison). The best count is from [35], where Zalka proposes a
circuit with 1.5n qubits, and suggests that it could be reduced further. However,
to date, this circuit has not been benchmarked in practice.

All of the recent implementations use the semi-classical Fourier transform [20]
to save the space used by the input register, by reducing it to a single qubit which
is repeatedly measured and reused. Thus, the cost of 1.5n qubits comes entirely
from our current available implementations of modular exponentiation.

The goal of these optimizations is ultimately to reduce the physical resources
required to factor large RSA moduli. For example, in [19] Gidney and Eker̊a
used a quantum circuit with around 3n logical qubits and 0.3n3 Toffoli gates.
For RSA-2048, they estimated that 20 million physical qubits would be necessary.
Reducing the qubit count by a factor 2 or 4 could make the difference in physical
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implementations, especially since near-term quantum devices remain of limited
size.

The Compression Technique. May and Schlieper studied the behavior of Shor’s
subroutine if the workspace register is reduced to a fraction of its size, down to
a single bit [24]. This means that the circuit does not implement x 7→ ax mod N
anymore, but x 7→ h(ax mod N) where h is a good hash function mapping inte-
gers modulo N to {0, 1}. They showed that if h is picked from a universal hash
function family, then the “compressed” version of Shor’s algorithm has the same
distribution of measurement results as the original one, except that the proba-
bility to measure 0 increases to 1/2 (and others are rescaled accordingly). The
measure of 0 does not give any useful information and can simply be discarded.

Unfortunately, this can only improve the space complexity of the algorithm
if h(ax mod N) can be implemented with less space than naively computing ax,
and then h. Whether such an implementation is possible at all was left as an
open question.

As noticed by May and Schlieper, the compression technique, which targets
the workspace register rather than the input, could be particularly useful in com-
bination with the Eker̊a-H̊astad variant of Shor’s algorithm [14]. This variant is
capable of factoring n-bit RSA moduli using an input register of n

2 + o(n) bits
only, thanks to their particular structure as the product of two n

2 -bit primes, at
the expense of performing multiple runs and a classical post-processing. There-
fore, a “compressed” variant could reduce the number of qubits to n

2 + o(n).

Contributions. In this paper, we introduce a dedicated method to compute
directly the “compressed” result of the modular exponentiation step in Shor’s
algorithm. More precisely, we compute only the first bit of ax mod N , instead of
the complete n-bit output. Our circuit uses only classical reversible logic, con-
tains O

(
n3
)

gates, depth Õ
(
n2
)

and m+o(n) space, including the input register
of size m = O(n) and a work register of size o(n). Therefore, in combination
with the May-Schlieper and Eker̊a-H̊astad methods, our algorithm can be used
to factor n-bit RSA moduli using only n

2 + o(n) qubits. For a good trade-off, the
total number of runs (i.e., measurements) should be around O(log n).

Our method is inspired by results of circuit complexity and methods for opti-
mizing circuit depth using Residue Number Systems (RNS). An RNS represents
a large number by a collection of residues modulo a set of small primes. In our
case, the number that we represent is a multi-product, i.e., the product of mul-
tiple precomputed integers modulo N corresponding to powers of a constant.
Using the RNS, we find that the output bit that we wish to compute can be ul-
timately expressed as a large sum of integers over O(log n) bits. These integers
(cofactors) are precomputed, and the bits which control the sum are computed
on the fly by reducing the multi-product modulo the small primes of the RNS.

Like state-of-the art implementations of quantum exponentiation [19], the
obtained circuit is not exact. Most of the error stems from the truncation of
a sum, which is very similar to the principle of oblivious carry runways [16].
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Essentially, the latter allows to compute a sum faster by reasoning independently
on several windows of bits, which remain independent with high probability
(unless a long carry propagation occurred, which is very unlikely). In our case,
we only need to compute one of the output bits, and we succeed for the same
reason. Under heuristics, we can reduce the failure probability to any constant
ε > 0, which is enough to guarantee that the Eker̊a-H̊astad and compression
methods work.

The major difference with previous works is the circuit layout. Indeed, the size
of the input register becomes dominating. Contrary to other works, we cannot
use the semi-classical Fourier transform, as input controls are reused multiple
times throughout the algorithm. But overall, the space complexity is reduced.

One should note that the gate complexity that we obtain, in O
(
n3
)
, is compa-

rable to an implementation of Shor’s algorithm using schoolbook multiplication.
If a more efficient multiplication algorithm is used, then Shor’s algorithm per-
forms better. So does Regev’s recent proposal [28]. However, for a typical size
of n = 2048 bits, current optimizations of Shor’s algorithm still use schoolbook
multiplication.

Regarding practical gate counts, Gidney and Eker̊a [19] report 231.3 Toffoli
gates to factor RSA-2048 in one run. Our current estimates give 236 Toffoli gates
for a single circuit, which is higher but comparable, for 1633 qubits including
ancillas, instead of 6144. However, this is the cost for a single run in the Eker̊a-
H̊astad algorithm. In order to succeed, between 25 and 26 runs are required,
which brings the total Toffoli gate count closer to 242, and the difference is by a
factor of a thousand.

Relation with Circuit Complexity. Computing the “compressed” modular
exponentiation (ax mod N) mod 2 in o(n) space can be done by combining
several results of circuit complexity in a black-box way, although this does not
seem to have been noticed before in the context of Shor’s algorithm. However,
this may lead to a large polynomial, which will be useless in practice: a dedicated
analysis is required to bring this polynomial down to a reasonable O

(
n3
)
.

As noticed above, modular exponentiation is first reduced to a controlled
multi-product of n integers. In [2] Beame, Cook and Hoover showed how to
perform a product of n integers in logarithmic depth, as well as modular reduc-
tion: this was the basis of Cleve and Watrous’ log-depth algorithm for factor-
ing, which also introduced a log-depth implementation of the Quantum Fourier
Transform [6]. These techniques use the RNS.

Since the circuit for modular exponentiation has depth O(log n), the first
output bit can be written as the root node in a binary tree of size nO(logn) =
poly (n), where the leaves are the input bits (in our case, the control bits for the
exponentiation in Shor’s algorithm) and each node specifies a Boolean operation.
All the nodes in the tree (and a fortiori the root) can be computed in time
poly (n) and usingO(log n) space using a depth-first exploration. Using Bennett’s
time-space tradeoff [4], we can make this computation reversible, it will still
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run in time poly (n) and using space O
(
log2 n

)
. This applies as well to discrete

logarithms in Z∗p, which essentially rely on the same circuit.
Regarding discrete logarithms on elliptic curves, one can already notice that

the best depth available in the literature is O
(
log2 n

)
[29], which leads this

generic compression to a superpolynomial complexity 2O(log2 n) = nO(logn). The
main difference with discrete logarithm in Z∗p seems to be the availability of the
RNS. For this reason, achieving a polynomial-time workspace compression for
the case of elliptic curves remains an open question.

Outline. In Section 2, we provide basic preliminaries of notation, arithmetic
and quantum and reversible circuits. Section 3 introduces Shor’s algorithm in
more detail, recalls the Eker̊a-H̊astad variant and the May-Schlieper compres-
sion technique and explains how our approximate exponentiation circuit will fit
in with these results. This algorithm is detailed in Section 4, purely as a classi-
cal computation. In Section 5 we report on preliminary cost estimates for this
algorithm.

2 Preliminaries

In this section, we give some useful notation and basic preliminaries of arithmetic
and quantum algorithms.

2.1 Notation

Throughout this paper we need to go back and forth from numbers and their
representation as bits, as this is the main way we will be able to “compress” the
computations in less working qubits than previous implementations of Shor’s
algorithm. We will adopt the following conventions.

Let n ∈ N be the complexity parameter, typically the bit-size of the RSA
modulus we are trying to factor. We will work with integers of bit-size either
polylogarithmic in n (typically O(log n)), which will be denoted by lowercase
letters, or bit-size polynomial in n (typically from O(n) to O

(
n2
)

bits), for
which we use uppercase. We make this difference to emphasize that integers with
polylog (n) bits can be written in temporary registers of our circuits, because they
take negligible additional space with respect to the O(n)-qubit input register for
the circuit. However integers with poly (n) qubits take non-negligible space to
write down.

We use [A]p to denote A mod p, i.e., the remainder in the Euclidean division
of A by p. We use (A)i to denote the i-th bit of A, where bit 0 is the least
significant bit, i.e.: A =

∑
i(A)i2

i.

2.2 Modular Reduction and RNS

At one point in our algorithm, we need to perform modular reduction of a large
number by a large modulus. For this we use a specific form of Barrett reduction.
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Proposition 1. Let N be a fixed modulus. let k ∈ N, then for any integer A <
2k, we have:

0 ≤ A−

⌊
A
⌊
2k/N

⌋
2k

⌋
N < 2N . (1)

Furthermore, suppose that A is not a multiple of N , and that 2k ≥ AN . Then
we have: ⌊

A

N

⌋
=

⌊
A
⌊
2k/N

⌋
2k

⌋
. (2)

Proof. The proof follows trivially from the fact that x ≥ bxc > x − 1 for all

x. The first inequality is trivial since
⌊
Ab2k/Nc

2k

⌋
≤ A

N . This also implies that⌊
Ab2k/Nc

2k

⌋
≤
⌊
A
N

⌋
, since it’s an integer. Next:

∀A < 2k,

⌊
A
⌊
2k/N

⌋
2k

⌋
>
A
⌊
2k/N

⌋
2k

− 1 >
A

N
− A

2k
− 1 ≥

⌊
A

N

⌋
− 2 .

This implies that the approximated quotient can be underestimated by at most
1. However, if we make the additional assumption that A is not a multiple of N ,
then we have: A

N ≥
⌊
A
N

⌋
+ 1

N . Therefore:⌊
A
⌊
2k/N

⌋
2k

⌋
>

⌊
A

N

⌋
+

1

N
− A

2k
− 1 . (3)

In particular, setting 2k ≥ AN gives us
⌊
Ab2k/Nc

2k

⌋
>
⌊
A
N

⌋
− 1 which implies the

equality. ut

RNS. Residue number systems (RNS) have been used to obtain small-depth
circuits, e.g. in [2] for logarithmic-depth circuits for multi-products. While our
goal is orthogonal (to obtain circuits with larger depth but small memory), there
is a relation between them, as we have stated in the introduction: circuits with
small depth can be turned into algorithms with small space. Therefore, it is not
a surprise that our factoring algorithm relies on the same method, although we
need to use it differently to minimize the gate count in our setting.

A RNS uses a basis of ` prime moduli, which we denote by P := {p1, . . . p`},
and represents a large integer A by its residues modulo the pi. Indeed, let
M =

∏p
p∈P , then by the Chinese Remainder Theorem we know that there is

a bijection:
A mod M 7→ [A]p1 , . . . , [A]p` (4)

Furthermore, this bijection can be effectively computed as follows. For each
p ∈ P , let Mp = M/p and wp = (Mp)

−1 mod p. Then for any A < M :

A =

[∑
p∈P

[A]pwpMp

]
M

. (5)
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The Prime Number Theorem gives us the asymptotic behavior of the prime
counting function π(x) (the number of primes smaller than x): π(x) ' x

log x . This

means that, asymptotically, π(x) = x
log x + o

(
x

log x

)
and that the total number of

primes between x and 2x is of order 2x
log(2x) −

x
log x = O

(
x

log(x)

)
.

A consequence of this fact is that for any integer n, there exists a set of
O
(

n
logn

)
of primes of size O(log n) bits, which can be used to represent numbers

of n bits.

Lemma 1 (Consequence of the Prime Number Theorem). For any in-
teger n ≥ 8, there exists a set of prime numbers p1, . . . , p` such that ∀i, pi < n
and

∏
i pi > 2n. Furthermore ` = O(n/ log n).

2.3 Quantum Algorithms

We describe quantum algorithms using the quantum circuit model, and refer
to [25] for a detailed definition including qubits, quantum states, the ket |·〉
notation and the Euclidean distance ‖ · ‖. We emphasize that we study only log-
ical quantum circuits, which are hardware-agnostic. We do not analyze how the
obtained circuits should be mapped to a physical architecture, with additional
costs of routing and distillation of magic states for certain gates.

We analyze the costs of our circuits as follows. The width is the number
of qubits required. This always includes ancilla qubits, which are qubits whose
state is initialized to |0〉 and returned to |0〉 afterwards in order to reuse them for
several parts of the computation. The depth is the amount of time steps required
to run the circuit if independent gates can be applied in parallel. The gate count
is the total number of gates.

While this work is motivated by quantum algorithms, the operation that
we analyze is classical. Indeed, the entire quantum procedure of Shor’s algo-
rithm performs a QFT, a modular exponentiation, another QFT, and measures.
Asymptotically as well as in practice, the bulk of the cost comes from the mod-
ular exponentiation circuit. Unless one uses quantum-specific arithmetic circuits
(like Draper’s QFT adder [8]), which will not be our case, the circuit can be de-
scribed in classical reversible logic. In this setting, the NOT, CNOT and Toffoli
form a universal set of gates, which we will use for our more detailed counts.

The algorithm that we consider requires several measurement results: the
same circuit is run multiple times (we use alternatively the terms of “multiple
runs” or “multiple measurements” since these are the same for us). While this
number of measurements is a factor in the total gate count, it is often considered
more practical to separate a quantum computation into more sub-computations
of smaller complexities, as it increases the overall robustness to errors: this is the
idea behind Regev’s trade-off on quantum factoring [28]. Therefore, for practical
applications it might be more interesting to focus on the depth of an individual
circuit, and to ensure that the algorithm keeps working if individual measure-
ments can fail with non-negligible probability.

7



3 Preliminaries on Shor’s Algorithm

We recall the main results that we use regarding Shor’s algorithm [31], the Eker̊a-
H̊astad variant [14], the precise analysis of [9] and its compressed version [24].

3.1 Shor’s Algorithm

Shor’s algorithm is undoubtedly the most discussed quantum cryptanalysis al-
gorithm to date. Our depiction in this section follows May and Schlieper [24],
as it allows to cover quickly the original version, but also the Eker̊a-H̊astad
variant [14] and its compression.

Period-finding Subroutine. We will start with Shor’s period-finding algorithm in
Z. Consider a function f : Z → {0, 1}n admitting a hidden period r: ∀z, f(z +
r) = f(z) of known bit-size. Shor’s algorithm finds the period r by calling once
or several times the following subroutine Qshor

f :

1. Initialize an input register of size m and a workspace register of size n:
|0m〉 |0n〉

2. Create a uniform superposition in the input register, using Hadamard gates:
1√
2m

∑2m−1
z=0 |z〉 |0n〉

3. Compute f into the output register: 1√
2m

∑2m−1
z=0 |z〉 |f(z)〉

4. Apply a Fourier transform QFT2m on the input register
5. Measure and return the value of the input register

The final measurement outputs a value z which is close to some multiple
of 2m

r . By choosing m large enough, r can be found from a constant number
of measurements using a classical post-processing based on continued fractions.
Shor proposed m = 2n [31], where n is the bit-size of N .

In the case of factoring a number N , the function is defined as: f(z) =
az mod N where a is a number prime with N . It is periodic of period s = ord(a),
the multiplicative order of a modulo N . If ord(a) is even, one has: aord(a) =
1 mod N =⇒ (aord(a)/2−1)(aord(a)/2+1) = 1 mod N . Assuming that aord(a)/2−
1 6= 0 mod N , it suffices to compute a GCD between aord(a)/2− 1 and N to find
one of its prime factors (since we focus on RSA keys, this is enough for us). Shor
proved that the probability of achieving such a split is at least 1 − 21−k, when
N admits k distinct odd prime factors, which is ≥ 1

2 for RSA integers.
In the case of the Discrete Logarithm Problem in an Abelian group (G, ·), one

can consider the function defined over Z2 by: f(x, y) = gx · a−y where a is the
element considered and g is a generator of the group. Since we can first find the
order of the elements, we can restrict the function to a finite group Zk1 × Zk2 ,
which simplifies the post-processing. The input register is separated into inputs
for x and y and the last QFT is replaced by a product of two independent QFTs
on these registers. (Note that we could also run this algorithm without knowing
the order of a, but also, that we generally solve the DLP in a group of prime
order, in which the order of elements is therefore already known).
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Compression. May and Schlieper [24] studied the behavior of quantum period-
finding algorithms, among which Shor’s and Simon’s [32], when the output of
the function f is post-processed by a hash function which reduces its size. They
observed that the algorithm works almost in the same way, even if h compresses
the output down to a single bit, which will be useful for us. This is due to the
following properties.

Definition 1. A hash function family Ht = {h : {0, 1}n → {0, 1}t} is universal
if for all x, y ∈ {0, 1}n, x 6= y, one has: Prh∈Ht

[h(x) = h(y)] = 2−t .

Theorem 1 (Theorem 7 in [24]). Let f : {0, 1}q → {0, 1}n and Ht be a

universal hash function family. Let Qperiod
f be a quantum circuit that on input

|0m〉 |0n〉 yields a superposition:

|Φ〉 =
∑

y∈{0,1}m

∑
f(x)∈Im(f)

wy,f(x) |y〉 |f(x)〉 (6)

satisfying

∀y 6= 0,
∑

f(x)∈Im(f)

wy,f(x) = 0 . (7)

Let p(y), resp. ph(y), be the probability to measure |y〉 , y 6= 0 in the m input

qubits when applying Qperiod
f , resp. Qperiod

h◦f with h selected u.a.r. from Ht. Then

ph(y) = (1− 2−t)p(y).

Equation 7 is called the cancellation criterion. This criterion is satisfied by
Shor’s order-finding algorithm, but more generally by quantum period-finding of
the same family, like Simon’s [32]. The cases that are useful for us are explored
in [24]. When this property is satisfied, Theorem 1 shows that we can hash the
output register, i.e., eliminate most information from it. Measuring the input
register then yields a similar distribution as before, where the probability to
measure 0 increases (up to 1/2 when t = 1) and the other probabilities are
rescaled accordingly. Measuring 0 reveals nothing about the period; we can just
discard these results and do more measurements to succeed.

Lemma 2 (Lemma 6 in [24]). The Qshor
f subroutine has the cancellation prop-

erty Equation 7.

A corollary is that the “hashed” version of Shor’s algorithm succeeds with
two calls to Qshor

h◦f on average, where the standard version would have needed one

call to Qshor
f . However, how to compute h ◦ f in a space-efficient way (without

essentially computing f , then h) was left as an open question in [24].
In practice, using a single hash function instead of a universal family should

give similar results, and we can expect the truncation to the first bit to be a
good hash function. We will not attempt to prove this but instead encapsulate
this idea as a heuristic.

Heuristic 1. The result of Theorem 1 holds when using the single hash function
h defined by truncating to the first bit. That is, the distribution of outputs y is
similar to a rescaled version of the one for the uncompressed algorithm.
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3.2 Eker̊a-H̊astad variant

The Eker̊a-H̊astad algorithm [14] is a variant of Shor’s which reduces the number
of input qubits for computing short discrete logarithms.

In the Ekera-H̊astad circuit the input qubits are separated into (t+`)+` where
t is the bit-size of the discrete logarithm and ` determines the post-processing
time. To compute the discrete logarithm of a = gd in a group G, with generator
g, the function f is defined as: f(x, y) = gxa−y = gx−dy. Here x is of (t+ `) bits
and y is of ` bits, where ` =

⌈
m
s

⌉
for some ratio s.

Different from Shor’s algorithm, one runs the QEker̊a-H̊astad
f subroutine a total

of µ > s times, followed by a lattice-based classical post-processing algorithm.
Such a procedure is presented and analyzed in detail in [9]. For the case where
one wants to do a single run, a refined analysis is given in [12], but we are
interested in increasing s as much as possible to reduce the space, and therefore,
we consider multiple runs.

In [9], Eker̊a shows that the number of measurements necessary tends asymp-
totically to s+ 1 when s is fixed and n tends to infinity. More precisely, for the
post-processing it should be enough to perform s + 1 runs and solve a CVP
instance in a lattice of dimension s + c, where c is some constant, and c = 1
is expected to be enough asymptotically. By using s = O(log n) we ensure that
this post-processing can be performed in polynomial time in n, using a lattice
sieving algorithm of complexity 2O(logn). This will give a quantum space com-

plexity n
2 +O

(
n

logn

)
= n

2 + o(n). For parameters relevant to cryptography (e.g.,

RSA-2048), the post-processing routine was entirely simulated in [9]. We will
reuse these results for our concrete complexity estimates.

The Eker̊a-H̊astad method can also be compressed. Since the compression
only alters the probability to measure 0, and the zeroes are discarded, the sub-
routine has simply to be called twice more. The post-processing time is un-
changed.

Lemma 3 (Lemma 7 in [24]). The QEker̊a-H̊astad
f subroutine has the cancel-

lation property Equation 7.

Eker̊a-H̊astad for RSA Factorization. Although we presented the method for the
discrete logarithm case, it yields an interesting optimization for factorization of
RSA moduli. Consider N = P × Q where N is of bit-size n, but P and Q are
both of bit-size n/2. Let P̃ = P−1

2 and Q̃ = Q−1
2 . Select a random element G

invertible modulo N and let R be its order: GR = 1 mod N . Then R divides
2P̃ Q̃/ gcd(P̃ , Q̃).

We define f(N) = (N − 1)/2− 2n/2−1 = 2P̃ Q̃ + P̃ + Q̃− 2n/2−1. Let H :=
Gf(N) = GD for some D < R. Then: D = f(N) mod R = P̃ + Q̃ − 2n/2−1

mod R. This means that the discrete logarithm D is small.

By computing the discrete logarithm of H, one obtains P̃ + Q̃ − 2n/2−1

mod R, which we can assume to be equal to P̃ + Q̃ − 2n/2−1, i.e., one obtains
P +Q. Since N = PQ is also known, we can deduce P and Q.

10



One should note that, while the post-processing is very different, the Eker̊a-
H̊astad circuit for factorization remains very similar to the Shor circuit. Indeed,
the Shor subroutine computes [AX ]N by a series of n modular multiplications by
precomputed powers of A. The Eker̊a-H̊astad circuit computes GXH−Y , which is
also done by modular multiplications. The number of multiplications to perform
is n

2 +2
⌈
n
2s

⌉
where s is the ratio above, determined by the runtime of the classical

post-processing.
For a 2048-bit RSA modulus N , Table 3 in [9] shows that s = 17 can be

used, µ = 20 runs only are required and the classical post-processing is efficient.
In that case the input register has bit-size m = 2048

2 + 2
⌈

2048
34

⌉
= 1146.

3.3 Approximate Arithmetic

It has been observed in previous works that Shor’s algorithm does not require
an exact modular exponentiation circuit. In fact, it is enough to return a good
result with large probability on a random instance. Zalka first proposed such a
strategy in [34] and coined the term “deterministic errors”. Further, the coset
representation of modular integers [35] is both approximate and inherently quan-
tum, as it represents integers modulo N using a superposition. In [16], Gidney
introduced the technique of oblivious carry runways. These techniques have been
used in state-of-the-art resources estimates of quantum factoring [19].

Analysis. The analysis we give here is specific to our case: we have an erroneous
circuit computing a “compressed” version of the output, and we need multiple
measurements. From now on, we write h instead of h ◦ f for the compressed
periodic function with a single-bit output.

We analyze a version of the compressed period-finding subroutine where in-
stead of implementing h, we implement a function h′ such that h′(x) = h(x) with
probability 1− p only. We do not know a priori on which inputs the function is
implemented correctly, but we assume that these inputs are selected uniformly
at random (in particular, these errors should not interact with the rest of the
algorithm).

We can bound the difference between the “real” and “ideal” runs of compressed-
period using the Euclidean distance between quantum states before the last QFT
operation and measurement. Indeed, if we define:

|ψr〉 =
1

2m/2

2m−1∑
z=0

|z〉 |h(z)〉 and |ψi〉 =
1

2m/2

2m−1∑
z=0

|z〉 |h′(z)〉

then:

‖ |ψe〉 ‖2 := ‖ |ψr〉 − |ψi〉 ‖2 = (p2m)
4

2m
= 4p , (8)

and, since the last QFT step is a unitary:

‖(I ⊗QFT2m)(|ψr〉)− (I ⊗QFT2m)(|ψi〉)‖ = ‖ |ψr〉 − |ψi〉 ‖ = 2
√
p . (9)

11



Consider the Eker̊a-H̊astad algorithm with the post-processing routine of [9],
in its “compressed version”. We perform 3µ runs of the algorithm before finding
µ measurement results which are not zero, and which we can feed to the post-
processing routine. We can bound the total distance between the real and ideal
runs as follows:

‖(|ψr〉)⊗3µ − (|ψi〉)⊗3µ‖ =
√

3µ · 2√p . (10)

Therefore, the total variation distance between the probability distributions
resulting from measuring the ideal and the real runs is bounded by: 4

√
3µ2
√
p

by Lemma 3.6 in [5].
Let pi be the probability to succeed in the “ideal” run, i.e., the probability

that all measurement results are good. Then the probability to succeed in the
“real” run is lower bounded by:

pr ≥ pi − 4
√

3µ2
√
p . (11)

For our RSA-2048 example, the success probability given in [9] is 0.99 and we
need 20 measurements. In the compressed version, using 60 ' 25.91 measurement
results for good measure, we are ensured that at least 20 of them are non-zero
with probability ≥ 0.9969. The inequality becomes:

pr ≥ 0.992 − 26.75√p . (12)

That is, by selecting p ≤ 2−20, we are ensured to succeed with overwhelming
probability.

3.4 Overview of Related Works for Factoring

Since Shor’s original paper, many authors have attempted to optimize the al-
gorithm in terms of depth, gate count or qubit usage. Since we focus here on
space requirements, we list in Table 1 the number of qubits required by different
implementations. We emphasize that these results concern the abstract circuit
model where only the qubit and gate counts are considered.

It is well known that the complexity of implementing Shor’s algorithm de-
pends crucially on the multiplication circuit that is used. Since multiplication
of n-bit integers can be done in O(n log n) bit operations [22], there exists a
quantum circuit for multiplying n-bit integers using O(n log n) gates and qubits,
and some of the gate counts given in the literature follow this asymptotic rule.
However, this circuit is inapplicable for 2048-bit RSA moduli (especially if we
want to optimize the space). Other circuits such as fast Karatsuba multiplica-
tion [17] improve the gate count significantly (for large numbers) while keeping
the space at O(n), but this also comes at the expense of a larger constant.

So far, when aiming for the space complexity, the only multiplication circuits
that have been used are either schoolbook multiplication (combined with more
advanced techniques such as windowed arithmetic [18] or coset representation
of modular integers [35]) or QFT-based addition [8] and multiplication circuits.
These require at least O

(
n2
)

gates.

12



Very recently, Kahanamoku-Meyer and Yao proposed a new efficient multi-
plication circuit that could be suitable for small-size numbers, and requires only
few ancilla qubits [23]. While the paper is not available at the time of writing
we include this result in Table 1 for completeness.

Table 1. Quantum space-optimized factoring algorithms. The input is an n-bit num-
ber. The gate count is for the entire algorithm, as ours (last lines) requires O(logn)
independent runs. The difference between RSA and general integers comes from the
variant of Shor’s algorithm and post-processing that can be applied (see Subsection 4.6
for the general case).

Algorithm Qubits Gates (Toffolis)

[3] 2n + 3 O
(
n3 logn

)
[33] 2n + 2 O

(
n3 logn

)
[21] 2n + 2 O

(
n3 logn

)
[15] 2n + 1 O

(
n3 logn

)
[35] 1.5n +O(1) O

(
n3 logn

)
[19] 3n + 0.002n logn 0.3n3 + 0.0005n3 logn
[23] 2n +O(logn) O

(
n2.4

)
This work (RSA) n

2
+ o(n) O

(
n3 logn

)
This work (general integers) n + o(n) O

(
n3 logn

)

Regev’s Algorithm. Very recently also, Regev [28] introduced a new quantum
factoring which can be regarded as a multi-dimensional variant of Shor’s, al-
lowing to reduce the circuit size by a factor O(

√
n) at the expense of making

O(
√
n) measurements. In particular, if schoolbook multiplication is used, this

reduces the gate count of each run from O
(
n3
)

for variants of Shor’s algorithm

to O
(
n5/2

)
. Shortly afterwards, Ragavan and Vaikuntanathan [27] showed how

to implement this algorithm with O(n) qubits, which was a difficulty in [28].
The algorithm was also extended to Discrete Logarithms in Z∗p [13]. However,
regarding space complexity, Regev’s algorithm is worse than previous works,
and [27] reports 12.32(1 + ε)n qubits (where ε is a small heuristic constant)
when schoolbook multiplication is used.

4 Compressed Modular Multi-Product Circuit

In this section, we explain our main result: a space-efficient circuit for computing
a compressed modular multi-product.

Let N < 2n be the number to factor. In the case of a generic integer, we
may consider the standard version of Shor’s algorithm, while in the case of
an RSA modulus, we consider the Eker̊a-H̊astad variant. In both cases, the
exponentiation circuit reduces to a modular multi-product : we have a fixed se-
quence of m integers (Ai)0≤i≤m−1 modulo N , where m = O(n). Given an input

13



X :=
∑m−1
i=0 xi2

i identified with an m-bit string, our goal is to compute the

multi-product : AX :=
∏m−1
i=0 Axi

i , to reduce it modulo N , and to truncate to its
first bit (compression).

We design a reversible circuit for this, performing the operation:

|X〉 |0〉 7→ |X〉 |
[
[AX ]N

]
2
〉 . (13)

using only O
(
n3
)

gates and O
(

n
logn

)
= o(n) ancilla space, for a total depth

O
(
n2(log n)3

)
(Theorem 2). This space can even be reduced to O(log n), but

the depth would increase to O
(
n3
)
.

This circuit fails on some inputs. However, under heuristics, the probability
of failure can be bounded precisely for a uniformly random input m-bit string.

4.1 Main Idea

The core of our technique is to use an RNS to represent the multi-product AX ,
i.e., a number of at most nm bits. We only reduce modulo N once.

RNS Parameters and Notation. Let P = {p1, . . . , p`} be the prime numbers for
the RNS. By Lemma 1 we have ` = O(mn/ log n) = O

(
n2/ log n

)
and ∀p ∈

P, p ≤ mn. We let w := dlog2 maxp∈P pe. The product M :=
∏
p∈P p is upper

bounded by: M < 2nmp` ≤ 2nm+w. Indeed, by definition of the RNS, we have∏`−1
i=0 pi < 2nm =⇒ M < 2nmp`. Thus M can get bigger than 2nm due to

the last prime factor, but only by a small number of bits. Finally, we define:

α :=
⌈
log2

(∑
p∈P p

)⌉
. In particular α ≤ w + dlog2 `e.

For all p, let Mp = M/p (which is an integer) and wp = (Mp)
−1 mod p, and

notice that Mpwp < M . Let us define:

A′X :=
∑
p∈P

[
AX

]
p︸ ︷︷ ︸

w bits

Mpwp︸ ︷︷ ︸
mn+w bits

≤ 2mn+w+α . (14)

From there, we need to perform two layers of modular reduction: modulo M
and modulo N , as we have:

[AX ]N = [[A′X ]M ]N . (15)

We define two quantities which are the quotients of both Euclidean divisions:
qM := bA′X/Mc =

⌊∑
p∈P [AX ]pMpwp

M

⌋
QN := b[A′X ]M/Nc =

⌊
(
∑

p∈P [AX ]pMpwp)−qMM

N

⌋
(16)

We notice here that qM is a small number, which is why we used a lowercase
letter for the notation. Indeed, we have: A′X ≤ 2mn+w+α and M ≥ 2nm by
definition of the RNS, thus qM < 2w+α = poly(n).

14



Finally, we can express our end result as:

[[[A′X ]M ]N ]2 = [(A′X − qMM)−QNN ]2
= [A′X ]2 ⊕ [qM ]2 [M ]2 ⊕ [QN ]2 .

We can already observe that [A′X ]2 can be computed on the fly, by summing
all least significant bits of [AX ]pMpwp. Next, we will see how we compute qM ,
then [qM ]2 and [QN ]2. For this, we will make two successive approximations.
The first one requires X to have bounded Hamming weight, which is ensured
with high probability if X is selected uniformly at random. The second one
is probabilistic, and its probability of success is a tunable parameter in our
algorithm.

Remark 1. We could write instead:

[[[A′X ]M ]N ]2 = [[AX ]N ]2 = [AX ]2 ⊕ [QN ]2 , (17)

and notice that [AX ]2 = 0 iff one of the numbers in the product is even. Comput-
ing this exactly requires slightly more work, since we need to maintain a counter
of size log n for the number of even numbers in the product. However, we may
also assume that the product will be even with high probability, and simply fail
if this is not the case. In all cases, the cost of this computation is insignificant,
and we still need to compute qM as it appears in the expression of QN .

The Hamming Weight Constraint on X. The success of our algorithm depends
on the Hamming weight of X. We have the following.

Lemma 4. When X is chosen u.a.r., with probability 2 exp
(
− 4

6m
1/3
)

= negl(n),
the following holds: {

hw(X) ≤ m
2 +m2/3

AX ≤ N
m
2 +m2/3 (18)

Proof. Since we just need to count the 1-coordinates ofX, we use a multiplicative
Chernoff bound:

Pr
(∣∣∣hw(X)− m

2

∣∣∣ ≥ 2m−1/3 × m

2

)
≤ 2 exp

(
−(2m−1/3)2m

6

)
=⇒ Pr

(∣∣∣hw(X)− m

2

∣∣∣ ≥ m2/3
)
≤ 2 exp

(
−4

6
m1/3

)
.

The second inequality is a direct implication. ut

An immediate consequence of this fact is that we do not need our RNS
to represent nm-bit numbers, but only n(m2 + m2/3)-bit numbers. To be more
precise, we modify our definition as follows: we let P = p1, . . . , p` be O

(
n2/ log n

)
prime numbers such that M =

∏
p∈P p ≥ 2n( m

2 +2m2/3). The additional factor

2nm
2/3

has a reason which will be explained below.
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4.2 Reduction Modulo M and First Approximation

We will now see how we compute qM . Recall its definition:

qM :=

⌊∑
p∈P [AX ]pwpMp

M

⌋
=

∑
p∈P

[AX ]p
wp
p

 . (19)

Here p, wp, [AX ]p and eventually q are all small numbers (bit-size logarithmic
in n), so intuitively we may compute this sum directly by approximating 1

p by
1

2u b2u/pc, where u = O(log n) is chosen appropriately. We prove the following.

Lemma 5. Let u =
⌈
log2

∑
p∈P p

2
⌉

. Asymptotically in n, with probability 1 −
negl(n), the following holds:

qM =

 1

2u

∑
p∈P

[AX ]pwp b2u/pc

+ 1 . (20)

Proof. Recall that we chose our RNS product M such that M ≥ 2n( m
2 +2m2/3),

but with high probability we have AX ≤ 2n( m
2 +m2/3). As a consequence: 0 <

AX

M ≤ 2−nm
2/3

. As a consequence:∑
p∈P

[AX ]p
wp
p

 =
AX
M
≤ 2−nm

2/3

.

That is, the fractional part of this sum is very small.
Next, we choose u such that: 2u >

∑
p∈P p

2. Then we have the following
inequalities:

2u

p
≥
⌊

2u

p

⌋
+

1

p
and

⌊
2u

p

⌋
≥ 2u

p
− 1 . (21)

On the one hand, we have:∑
p∈P

[AX ]p
wp
p

−
∑
p∈P

[AX ]p
wp
2u

 ≤ 1

2u

∑
p∈P

[AX ]pwp b2u/pc

 (22)

Therefore, our choice of u ensures that:

qM − 1 ≥

 1

2u

∑
p∈P

[AX ]pwp b2u/pc

 . (23)

On the other hand:

1

2u

∑
p∈P

[AX ]pwp b2u/pc

 ≤
∑
p∈P

[AX ]p
wp
p

(1− 2−u
)
. (24)
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Asymptotically in n, we have seen that the fractional part of
∑
p∈P [AX ]p

wp

p is

very small, so that, if u = polylog(n):∑
p∈P

[AX ]p
wp
p

 < 2−u

∑
p∈P

[AX ]p
wp
p


Consequently this inequality entails:

1

2u

∑
p∈P

[AX ]pwp b2u/pc

 <
∑
p∈P

[AX ]p
wp
p
−

∑
p∈P

[AX ]p
wp
p

 = qM . (25)

Thus, the result of the sum needed to be corrected by 1. ut

At this point, we notice that qM can be computed on the fly (by computing
the [AX ]p again) using low space. The value of qM is important both for having
[qM ]2, but also because it appears in QN . We can now turn ourselves towards
the second step, i.e., the computation of [QN ]2.

Remark 2. Strictly speaking, this first approximation is not necessary. We could
choose an RNS representing n(m+ 1)-bit numbers, and the computation of qM
by Equation 20 would then work with certainty for all inputs X. However, this
source of errors is negligible, and the gain in practice is significant enough to
justify taking a smaller RNS.

4.3 Reduction Modulo N and Second Approximation

For the computation of [QN ]2, we will use Barrett reduction. We introduce a
parameter tN to satisfy the condition of Proposition 1, i.e., 2tN ≥ AXN , so we
can choose tN =

⌈
n(m2 +m2/3)

⌉
+ n. We also remark that:

Lemma 6. For any choice of X, AX is not a multiple of N .

Which follows from the fact that all numbers in the multi-product are powers
of A, which is (assumed to be) prime with N . Therefore, Proposition 1 applies
and QN has the expression:

QN =

 1

2tN

∑
p∈P

[AX ]pMpwp
⌊
2tN /N

⌋
− qMM

⌊
2tN /N

⌋ (26)

We have:

[QN ]2 =

∑
p∈P

[AX ]pMpwp
⌊
2tN /N

⌋
− qMM

⌊
2tN /N

⌋
tN

, (27)
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i.e., we need to compute the bit at position tN in this quantity, where qM has
been computed at the previous step. For convenience, we replace the difference
by a sum, working modulo 2tN+1. We have:

[QN ]2 =

∑
p∈P

[AX ]pMpwp
⌊
2tN /N

⌋
+ qM

(
2tN+1 −M

⌊
2tN /N

⌋)
tN

(28)

Intuitively, there is no need to compute the entire sum, as the least significant
bits only have a very small influence on the value of the tN -th bit. To view this
however, we first decompose the modular residues [AX ]p and qM on individual
bits, and express [QN ]2 as the tN -th bit in a large sum:

[QN ]2 =

(∑
p∈P

∑
i

([AX ]p)i 2iMpwp
⌊
2tN /N

⌋
+
∑
i

(qM )i2
i
(
2tN+1 −M

⌊
2tN /N

⌋))
tN

Therefore we can see [QN ]2 as a sum of ≤
∑
p∈P dlog2 pe + dlog2 qMe inte-

gers. How many depends on the current values of [AX ]p and qM (but we prefer
to overestimate). These integers behave as if they were drawn uniformly at ran-
dom1.

We introduce a parameter u′ and approximate [QN ]2 by truncating these
integers to u′ bits, and taking the bit u′ in the sum:

[QN ]2 '
(∑
p∈P

∑
i

([AX ]p)i

⌊
2iMpwp

⌊
2tN /N

⌋
/2tN−u

′
⌋

+
∑
i

(qM )i

⌊
2i
(
2tN+1 −M

⌊
2tN /N

⌋)
/2tN−u

′
⌋)

u′

The amount of precision we need is related to the number of integers we are
summing. In a sum of β random integers we need a precision of at least dlog2 βe
bits to succeed with constant probability. The reason is the same as in oblivious
carry runways [16]. When truncating with dlog2 βe+ν bits, the probability that
carries propagate all the way from the truncated part of the integers to the
wanted bit (and the bit is flipped as a result) is 2−ν .

This is what happens if the integers are drawn at random. This is not the
case for us, as these integers are precomputed cofactors depending on the RNS.
Experimentally, we observe that this property remains satisfied, and formulate
it as a heuristic.

1 This is not exactly the case because they have some zero LSBs, but since we are
looking at the coordinate tN (which is quite far in the sum), the LSBs are insignifi-
cant.
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Heuristic 2. When choosing u′ =
⌈
log2(

∑
p∈P dlog2 pe+ dlog2 qMe)

⌉
+ ν, for

random inputs X, the truncation at Step 2 succeeds with probability ≥ 1−2−ν .

At this point, the only subroutine that remains is the computation of [AX ]p
for primes p in the RNS. This computation can be done in O(log n) space and
time O

(
m log2 n

)
using a series of m multiplications modulo p. We give another

strategy in Subsection 4.5 which is overall more efficient.

4.4 Summary

Thanks to the approximations, both qM and [QN ]2 are computed with o(n)
space. More precisely, let � be a bitwise right-shift, then we have:

qM =
((∑

p∈P
[AX ]p wp b2u/pc︸ ︷︷ ︸

Precomputed

)
� u

)
+ 1 (29)

and:

[QN ]2 =

(∑
p∈P

∑
i

([AX ]p)i

[⌊
2iMpwp

⌊
2tN /N

⌋
/2tN−u

′
⌋]

2u′+1︸ ︷︷ ︸
≤2u′+1 and precomputed

+
∑
i

(qM )i

[⌊
2i
(
2tN+1 −M

⌊
2tN /N

⌋)
/2tN−u

′
⌋]

2u′+1︸ ︷︷ ︸
≤2u′+1 and precomputed

)
� u′

Therefore, we only need to compute large (controlled) sums of precomputed
cofactors, depending on the bits of [AX ]p and qM . The maximal amount of
storage required remains in O(log n). The cofactors are the following:

Cp,i :=
[
2iwp b2u/pc

]
2u+dlog2 qMe+1

D0,i :=
[⌊

2i
(
2tN+1 −M b2tN /Nc

)
/2tN−u

′
⌋]

2u′+1

Dp,i :=
[⌊

2iMpwp b2tN /Nc /2tN−u
′
⌋]

2u′+1

(30)

We summarize the resulting algorithm as Algorithm 1, with a layout close to
how it will be implemented as a quantum circuit.

Under the heuristics above, our algorithm will use about O
(
n3
)

gates and
succeed with constant probability.

Theorem 2. Assume that m = O(n). There exist a reversible logical circuit
for compressed multi-product which, on input (X, 0), returns (X, [[AX ]N ]2), and
succeeds:

– for inputs X satisfying hw(X) ≤ m
2 +m2/3,

– with probability 1− ε for a chosen ε > 0, under Heuristic 2.
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Algorithm 1 Approximate multi-product algorithm.

Input: X
Output: [[AX ]N ]2
Precomputed: cofactors Cp,i, D0,i, Dp,i

1: qM← 0 . value of qM
2: QN2← 0 . value of [QN ]2
3: AXp2← 0 . value of [A′

X ]2
4: for all p in the RNS do
5: x← [AX ]p . using the subroutine
6: x := x0 + 2x1 + ...
7: for all 0 ≤ i ≤ dlog2 pe do
8: if xi = 1 then
9: qM← qM + Cp,i . The computation is done on u + dlog2 qMe+ 1 bits

10: QN2← QN2 + Dp,i . The computation is done on u′ + 1 bits
11: end if
12: end for
13: AXp2← AXp2⊕ [x]2[Mpwp]2
14: end for
15: qM← qM� u
16: qM← qM + 1
17: AXp2← AXp2⊕ [qM]2[M ]2
18: qM := b0 + 2b1 + . . .
19: for all 0 ≤ i ≤ dlog2 qMe do
20: if bi = 1 then
21: QN2← QN2 + D0,i

22: end if
23: end for
24: QN2← QN2� u′

25: Return AXp2⊕ [QN2]2

It uses O
(
n3
)

gates, depth O
(
n2 log3 n

)
and O

(
n

logn

)
ancillas.

Proof. The circuit layout follows Algorithm 1.

Throughout the computation we maintain a register for qM , a register for
[A′X ]2 and a register for QN . Each time a new residue is computed, we per-
form O(log n) controlled additions by constants in the registers for qM and QN .
We also update the register for [A′X ]2 with a CNOT. By Lemma 1, there are
O
(
n2/ log n

)
primes and we compute each residue only once. We use the multi-

product circuit of Lemma 8, either with the sequential sum or its parallel version.

Once the whole sum for qM has been computed, we shift it by u bits and
increment. We have obtained qM .

We use the bits of qM to complete the sum for QN , by making new con-
trolled additions for each one with their own precomputed cofactors. This step
is computationally negligible with respect to the other additions that we just
performed.
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When we have finished the sum for QN , we select its u′-th bit, XOR it
with [A′X ]2 and output the result. Then, we erase the accumulator registers by
recomputing the residues and performing a series of controlled subtractions.

Since the accumulator registers are also of logarithmic size in n, the circuit
uses O(log n) working bits in addition of those required for the RNS residues.
The gate count is dominated by the computation of the residues, which we do
using Lemma 8. ut

Remark 3. Since the size of intermediate registers is logarithmic, the dominat-
ing space complexity term n

logn comes entirely from our implementation of the

multi-sum circuit in Lemma 8. This can be reduced down to O(log n) qubits by
sacrificing the depth.

4.5 Modular Multi-Product in the RNS

The main problem with the computation of [AX ]p is its sequentiality. Indeed,
if we follow the blueprint of modular multi-product in Shor’s algorithm, we do
a sequence of m controlled modular multiplications by [Ai]p. This takes depth

Õ(m), and gates are applied only on a work register of size O(log p) = O(log n),
while the control qubits remain idle for the most part.

In the following, since we work at low scales, the asymptotic formulas that we
give assume the use of schoolbook addition and multiplication circuits: on log n
bits, addition costs O(log n) gates and depth, and multiplication costs O

(
log2 n

)
gates and depth.

Our first improvement on the naive multi-product is to replace the controlled
modular multiplications by a sequence of controlled additions.

Lemma 7. Let a0, . . . , am−1 ∈ Zp, and p be a prime, with m = O(n) and
p = O(n). There exists a circuit performing the multi-product modulo p:

|x0, . . . , xm−1〉 |0〉 7→ |x0, . . . , xm−1〉 |[
∏
i

axi
i ]p〉 ,

using O(m log n) gates and O(m log n) depth.

Proof. We choose a generator g of Z∗p and precompute the discrete logarithms
of the ai modulo p. Let αi ≤ p− 1 be such that: ai ≡ gαi mod p. Then we have:∏

i

axi
i ≡ g

∑m−1
i=0 xiαi mod p . (31)

Instead of requiring O
(
m log2 n

)
gates, we will need:

– O(m log n) gates for computing
∑m−1
i=0 xiαi, which is smaller than (p− 1)m

(thus on O(log n) bits)

– aO(log n)-bit exponentiation circuit modulo p: we precompute the g2i

mod p,

we read off the O(log n) bits of
∑m−1
i=0 xiαi, and perform O(log n) modular

multiplications in gate count: O
(
log3 n

)
.
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Only O(log n) ancilla space is needed for these two operations. ut

However this circuit is still sequential. We modify it further by optimizing
the multi-sum, which is the dominating cost.

Lemma 8. There exists a circuit for the multi-product modulo p using O(m log n)

gates, O
(

m
logn

)
ancilla qubits and depth O

(
log4 n

)
.

Proof. We change the way we compute
∑m−1
i=0 xiαi, as follows. We select a pa-

rameter 2 < k ≤ m and cut the numbers into k groups.
For each group, we compute its sum using an addition tree. As there are

(m/k) numbers to add, the tree has depth log2(m/k). We need O
(
m
k log n

)
an-

cilla qubits to write all its nodes (starting from the first numbers), andO
(
m
k log n

)
gates to compute all of them.

The result of each smaller sum is added into an accumulator register, which
contains the result of the whole sum.

Since there are k groups, the total depth is: O(k × log(m/k)× log n) =
O
(
k(log n)2

)
and the total gate count is: O(m log n).

By selecting k = (log n)2, we achieve a space in O
(

m
logn

)
and a depth

O
(
(log n)4

)
(which becomes dominating), for the same gate count. ut

Remark 4. The choice of m
logn ancillas is not entirely arbitrary: the goal is to

match the asymptotic space increase of the Eker̊a-H̊astad algorithm (see Sub-
section 3.2).

SinceO
(
(log n)4

)
is still quite a large factor for a typical n = 2048, we propose

an alternative optimization which gives slightly better results in practice, even
though it increases the asymptotic gate count.

Lemma 9. There exists a circuit for the multi-product mod p using O
(
m log2 n

)
gates, O

(
m log logn

logn

)
= o(m) ancilla qubits and depth O

(
log3 n

)
.

Proof. Let us decompose αi as a sequence of bits: ∀i, αi =
∑
k(αi)k2k. We then

have:
m−1∑
i=0

xiαi =
∑
k

(
m−1∑
i=0

xi(αi)k

)
2k . (32)

A strategy to compute the sum in O(log n) steps follows: we initialize a O(log n)-

qubit accumulator. At each step, we compute
∑m−1
i=0 (αi)k, shift the value by k

bits and add it to our accumulator.
We now focus on the computation of

∑m−1
i=0 xi(αi)k for a fixed k. Since (αi)k

are precomputed values, this is equivalent to computing
∑
i∈I xi for a fixed

subset I ⊆ {0, . . . ,m − 1}. To do this with a minimal use of ancillas, we adopt
the following strategy.

We cut the bits of I (less than m) into groups of size k = O(log n). To each
of these groups, we append an ancillary register of O(log log n) qubits. We use a
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sequence of log n in-place incrementor circuits to sum the bits into this register
one by one. Then, we sum these ancillary registers two by two. Each time we
sum two registers, we use an addition circuit and append two more qubits for
the inevitable carries. The total ancilla space is therefore:

m

k
log k +

m

k

(
1 +

1

2
+ . . .

)
= O

(
m

log log n

log n

)
.

The first step (local and sequential) uses m
logn × log n × log n = O(m log n)

gates and depth O
(
log2 n

)
. The second step (global and parallel) needs depth

O
(
log m

k × log n
)

= O
(
log2 n

)
as well under the same assumption, and uses

O(m) gates.

Finally, we need to do this O(log n) times. The gate count increases to
O
(
m log2 n

)
and the total depth is O

(
log3 n

)
, which is the same as the modular

exponentiation circuit. ut

4.6 Other Applications

While the main application of our method remains factorization of RSA moduli
with the Eker̊a-H̊astad method, other applications of Theorem 2 are immediate.
Essentially any application of Shor’s algorithm where the group exponentiation
can be reduced to an integer multi-product, and which uses an input register of
size m = O(n), can be performed in time O

(
n3
)

with m+ o(n) qubits.

One of these cases is the factorization of general integers, where the space
can be reduced to n+ o(n) as follows.2

First, one uses the classical reduction from [10], which factors an integer N
completely given the order of a random element g in Z∗N . To solve this order-
finding problem, one uses Seifert’s variant of Shor’s algorithm [30] combined
with the analysis of App. A in [11]. At this point, the input register length is of
m+ dm/se where m ≤ n is an upper bound on the bit-length of the order of g,
and about s runs are required to find the entire order.

Finally, we can use the exact same procedure to compute discrete logarithms
in prime fields. For the short discrete logarithm setting we can use the Eker̊a-
H̊astad method again (here we refer to [9] for more details).

5 Experiments

Since Algorithm 1 is a classical algorithm, we tested it with the RSA-2048 in-
stance of the RSA factoring challenge. The code of our experiments is available
at:

https://gitlab.inria.fr/capsule/quantum-factoring-less-qubits

2 The details that follow here were explained to us by Martin Eker̊a.
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Success Probability. We used ν = 20 additional bits for Heuristic 2 (truncation
of the sum). This means that we expect our algorithm to succeed with proba-
bility ≥ 1 − 2−20 on random inputs. Following the discussion in Subsection 3.2
and Subsection 3.3, we take s = 17 in the Eker̊a-H̊astad variant, i.e., we perform
60 = 25.91 runs of the algorithm, find 20 results which are non-zero, and use the
post-processing of Eker̊a [9] to factor N with success probability close to 1. This
means that m = 1146 in the multi-product circuit.

Note that the number of independent runs and measurements is not negligible
and should be factored in the total time complexity, especially at these scales.

RNS. By Lemma 4, we chose to limit the RNS to represent numbers of size

Nm/2+m2/3

, i.e., 1 398 784 bits. We chose primes of similar bit-sizes for more
uniformity, and chose 72 199 primes of bit-sizes 19 to 21 (included). Their product
is of size 1 398 786 bits. The most important resulting parameters are given
in Table 2.

Table 2. Parameters for running our algorithm with RSA-2048.

Parameter Value

s, ` =
⌈

n
2s

⌉
,m = n

2
+ 2` 17, 61, 1146

Number of primes in the RNS 72 199
Maximal bit-size of primes in the RNS 21

u 57
u′ 41

dlog2 qMe 57
Size of qM register = dlog2 qMe+ u + 1 115

Size of QN register = u′ + 1 42

5.1 Classical Implementation

We implemented Algorithm 1 on a desktop computer, by separating the pre-
computation and the actual computation. We verified that on randomly chosen
inputs X, the algorithm succeeds with large probability. Our implementation
is quite slow, and computes about one value per second. This allowed us to
verify Heuristic 2 for larger failure probabilities (but not for 2−20).

5.2 Quantum Implementation

We did not write down entirely the quantum circuit for this instance, as it has
above 230 gates and our implementations in Python would not support this.
However, we estimated the gate count and depth from its basic building blocks
using Qiskit [26]. This is a preliminary estimate which might still be significantly
improved.
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The main computational cost (in gates and in depth) of our circuit is lo-
cated in the computation of [AX ]p for all primes p in the RNS. The circuit
is constructed from a precomputed list a0 = [A0]p, . . . , am−1 = [Am−1]p and
computes:

|x0, . . . , xm−1〉 |0〉 7→ |x0, . . . , xm−1〉 |[
∏

axi
i ]p〉

by summing the discrete logarithms di of the ai relative to an arbitrary generator
of Z∗p:

|x0, . . . , xm−1〉 |0〉 7→ |x0, . . . , xm−1〉 |
∑
i

(xidi)〉

and then computing a small modular exponentiation.
We implemented a circuit for this operation following the blueprint of Lemma 9,

computed its costs on random instances and took the average.

Basic Arithmetic Operations. Our circuit relies on arithmetic operations like
additions, multiplications or Euclidean divisions on less than 60 bits. We built
them from a simple in-place sequential adder from [7] (and a controlled version
of it, when necessary). This adder is suited to optimize the qubit count, since it
requires at most one ancilla.

Multi-Sum. As expected, most of the cost in the multi-product comes from
the multi-sum circuit. However, the small exponentiation modulo p is also not
negligible.

In the multi-sum circuit, we needed 21× 2 multi-bit sums (once for each bit
forwards and backwards). For each multi-bit sum, we used groups of 15 bits and
a 4-bit controlled incrementor circuit using an ancilla qubit. This circuit was
optimized in an ad hoc manner.

q0

q1

q2

q3

q4

q5

Fig. 2. 4-bit controlled incrementor circuit. Qubit q0 is the control; qubit q5 is the
ancilla.

As it can be seen in Figure 2, our incrementor contains 6 Toffoli and 3
CNOT gates, and it has depth 8. Each multi-bit sum first sums the bits inside
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each group of 15 inputs, calling 15 times this circuit in sequence. Then, it uses
a tree of additions. Counting only the incrementors, we would need: (2× 21)×
(1146/2) × 9 = 216 594 gates, assuming that we only have (1146/2) bits to
sum at each level (half of them being 0). Besides, the depth should be around
2× 21× 8× 15 = 5040.

Trying some random instances, we obtain gate counts around 160 000 Tof-
folis and 110 000 CNOTs, and a depth around 17 000. The difference in depth
comes from the sequential adders, both in the addition trees and also during the
computation of the sum.

Modular Exponentiation. For the modular exponentiation circuit, we need to
compute: |x〉 |0〉 7→ |x〉 |[ax]p〉 where a is a predetermined constant, x ≤ p−1 and
p is about 21 bits. We could use a sequence of 21 modular multiplications for this,
but we obtained better results using windowed arithmetic. We cut the exponent
x into three parts: x = x1 + 27x2 + 214x3, and we compute [ax1 ]p, [(a

27

)x2 ]p
and [(a214

)x3 ]p using table lookup circuits (see e.g. [1]). Afterwards, we do non-
modular multiplications and Euclidean divisions to reduce modulo p. This allows
us to compute the full modular exponentiation in typically less than 50 000 gates.
However, the depth is large (and mostly comes from the table lookups).

Modular Multi-Product. The modular multi-product circuit uses both compo-
nents. While the exact costs depend on the ai and on p, we tried a handful
random choices and observe that the variations are quite small at these scales.

Table 3. Average counts of modular multi-product. The operation considered here is
the computation of [AX ]p, and the multi-sum of discrete logarithms is kept along to
avoid an unnecessary level of uncomputation.

Qubits (incl. ancilla) Toffoli CNOT X Depth

1475 (329) 217.47 216.99 210.13 215.28

Full Quantum Circuit. The quantum circuit follows the layout given in Algo-
rithm 1. We need to keep track of the qM, QN2 and AXp2 registers, which
represent:

(u+ dlog2 qMe+ 1) + (u′ + 1) + 1 = 158 qubits.

The cost in depth and gates of the sums is negligible with respect to the
modular multi-product sub-circuits. For each prime of the RNS, we will compute
a modular multi-product, update the accumulators, and then uncompute it.
When we have computed the output bit, we copy it, and then we uncompute
everything to erase the accumulators. This means that we compute 72 199×4 =
288 796 = 218.14 modular multi-product circuits.
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Table 4. Expected gate and qubit counts for our RSA-2048 instance. These are the
costs for a single exponentiation circuit: 60 runs must be performed in the compressed
Eker̊a-H̊astad algorithm.

Qubits (incl. ancilla) Toffoli CNOT X Depth

1633 (487) 235.61 235.13 228.27 233.42

We summarize the costs of the full quantum circuit in Table 4. These numbers
count a single run of the algorithm. As we have remarked in Subsection 3.3, since
we use the Eker̊a-H̊astad variant we need 60 ' 25.91 independent runs.

5.3 Future Optimizations and Remarks

The main desirable improvement of our algorithm would be a reduction in depth.
While the depth is asymptotically O

(
n2 × polylog(n)

)
, in practice, the factor

polylog(n) is far from negligible. A first step in this direction would be to use
shallower circuits for arithmetic operations (e.g., additions), and to optimize
these circuits for small-scale operations, since we typically sum numbers of 20
to 60 bits.

Next, the trade-off between depth and width needs to be analyzed in a more
refined way. Again, while our algorithm requires n

2 +o(n) qubits only, in practice,
the o(n) cannot be neglected. A better algorithm for the multi-sum operation
could significantly reduce the ancilla overhead of our current implementation.

Finally, some arithmetic circuits make use of dirty ancillas (which start in
an uncontrolled state, and are returned to this state). Since we are essentially
computing with o(n) qubits, and keeping the n

2 controls along the way, such
components would certainly be more suited to our algorithm.

6 Conclusion

In this paper, we reduced the number of logical qubits for quantum factoring to
n
2 + o(n) for the case of RSA moduli. In particular, the number of qubits goes
below the size of the RSA modulus, and for RSA-2048 we could propose a circuit
with less than 1700 qubits. More generally, the space required for factoring will
depend on the input register rather than the workspace register, as the latter
can be compressed down to size O(log n).

While this result may be counter-intuitive at first sight, it follows from a
classical algorithm. Using an arithmetic circuit based on the RNS, we can com-
pute (efficiently) a single bit of a modular exponentiation on n bits using o(n)
space. This realizes the compression initially proposed by May and Schlieper [24].
Then, we can use the Eker̊a-H̊astad algorithm for computing short discrete log-
arithms [14,9]. This algorithm reduces the size of the input to n

2 + o(n) bits in
the case of RSA moduli. Since the input register is all that remains in terms
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of asymptotic complexity, this technique becomes particularly important in our
context.

The arithmetic circuit itself contains O
(
n3
)

gates and makes few errors.
Our preliminary estimates indicate that the constant factor in the O is small.
Compared to state-of-the art benchmarks for quantum factoring [19], our circuit
currently increases the gate count by a factor about 25 for a single run. However,
multiple runs are needed for the Eker̊a-H̊astad method, so overall the factor
is about a thousand. Since our circuit architecture differs from previous ones,
further work is required to understand precisely the possible optimizations and
trade-offs.

An interesting question is whether our strategy could be applied to the re-
cent work of Regev [28], who modified Shor’s algorithm to split the work into√
n+ 4 independent runs (while keeping the overall gate count similar). Current

estimates [27] indicate that the space requirement in Regev’s algorithm, while it
can be made linear in n, is quite large. Therefore, it would be even more useful
to compress the work registers in this case. However, the classical subroutine in
Regev’s algorithm is a multi-exponentiation instead of a single one, which cannot
be reduced easily to a multi-product. This is the same reason for which the algo-
rithm needs a quantum exponentiation circuit where the input is quantum and
not only the exponent. Finally, another prominent target of Shor’s algorithm is
the discrete logarithm problem on elliptic curves. Since the notion of RNS does
not exist in their case, they remain outside the scope of our work. Whether there
is another way to compress their workspace register (while keeping the circuit
size polynomial in n) is an interesting open question.
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