
Don’t Use It Twice! Solving Relaxed Linear
Code Equivalence Problems

Alessandro Budroni1, Jesús-Javier Chi-Domı́nguez1, Giuseppe D’Alconzo2,
Antonio J. Di Scala2, and Mukul Kulkarni1

1 Cryptography Research Center, Technology Innovation Institute, UAE
{alessandro.budroni,jesus.dominguez,mukul.kulkarni}@tii.ae

2 Department of Mathematical Sciences, Polytechnic University of Turin, Italy
{giuseppe.dalconzo,antonio.discala}@polito.it

Abstract. The Linear Code Equivalence (LCE) Problem has received
increased attention in recent years due to its applicability in constructing
efficient digital signatures. Notably, the LESS signature scheme based on
LCE is under consideration for the NIST post-quantum standardization
process, along with the MEDS signature scheme that relies on an exten-
sion of LCE to the rank metric, namely Matrix Code Equivalence (MCE)
Problem. Building upon these developments, a family of signatures with
additional properties, including linkable ring, group, and threshold sig-
natures, has been proposed. These novel constructions introduce relaxed
versions of LCE (and MCE), wherein multiple samples share the same
secret equivalence. Despite their significance, these variations have often
lacked a thorough security analysis, being assumed to be as challeng-
ing as their original counterparts. Addressing this gap, our work delves
into the sample complexity of LCE and MCE — precisely, the sufficient
number of samples required for efficient recovery of the shared secret
equivalence. Our findings reveal, for instance, that one shouldn’t use the
same secret twice in the LCE setting since this enables a polynomial time
(and memory) algorithm to retrieve the secret. Consequently, our results
unveil the insecurity of two advanced signatures based on variants of the
LCE Problem.

Keywords: Algebraic Attack · Code Equivalence · Code-based Cryptography ·
Cryptanalysis · Post-quantum Cryptography

1 Introduction

There has been an increased interest in constructing new quantum-resistant dig-
ital signatures following the ongoing NIST post-quantum standardization pro-
cess for additional digital signature schemes [24]. Moving beyond the proposals
that appeared at the prior NIST post-quantum standardization process [23], the
research community explored a wider spectrum of computational problems, con-
jectured to be hard, for building efficient signature schemes. Notably, two closely
related problems, Linear Code Equivalence (LCE) and Matrix Code Equivalence

(MCE), served as the foundation for LESS [2] and MEDS [13], two efficient signa-
ture schemes submitted to the current NIST standardization process. Informally,
we say that two linear codes C1 and C2 of length n and dimension k over a finite
field Fq are equivalent if there exists a monomial matrix Q ∈ Fn×n

q such that
C2 = C1Q. LCE refers to the computational problem of finding Q given C1 and
C2. When a permutation matrix P takes the place of the monomial matrix Q,
then the problem is referred to as Permutation Code Equivalence (PCE). On the
other hand, MCE can be seen as a variant of LCE to matrix codes.

Multiple signature schemes have been proposed in the literature based on
the one-way functions stemming from the computational hardness of equivalence
problems. On the other hand, designing more advanced cryptographic schemes,
such as linkable ring signatures, encryption schemes, key exchange mechanisms,
etc., based on the hardness equivalence problems has been challenging with-
out assuming additional features of the objects underlying these problems. One
meaningful example comes from isogenies between elliptic curves, where more
advanced protocols can be designed [1]. In general, one plausible reason for
this designing difficulty is that while the equivalence problems can provide one-
wayness, they may not provide stronger cryptographic properties such as unpre-
dictability or pseudorandomness, which are necessary for constructing advanced
primitives. In fact, recently [17] showed this to be the case for LCE, while [11]
proved a similar result for a variant of the Lattice Isomorphism Problem. Both
these works used the group action framework to argue that their respective un-
derlying problems do not provide unpredictability or pseudorandomness.

Some researchers have also used the group actions framework to construct
signature schemes with advanced functionalities from these equivalence problems
[8,9,6,28]. However, to achieve such functionalities, they also introduced new re-
laxed versions of LCE and MCE, such as the Inverse Linear Code Equivalence
(ILCE) problem [4], the Inverse Matrix Code Equivalence (IMCE) Problem [14],
and the 2-Linear Code Equivalence Problem (2-LCE) [6].3 These variants are
often conjectured to exhibit a level of difficulty comparable to their original
counterparts but without formal proof or comprehensive cryptanalytic inves-
tigation. In the case of ILCE, the authors took the conservative choice of not
relying on such a problem at the cost of dropping the linkability property from
their ring signature scheme, posing the open question of whether ILCE can be
considered secure or not.

In this work, we fill this gap by studying these variants from an algebraic point
of view and highlighting the scenarios among the proposed ones, for which, on
the contrary, these do not provide an adequate level of security at all. Specifically,
we show that, for the proposed parameters setting [4,6], both ILCE and 2-LCE
can be solved in polynomial time and memory by exploiting the linear nature
of these problems. As a consequence, the schemes that rely on the hardness of
ILCE and 2-LCE are not secure.

3 The authors in [6] gave a more general problem definition in terms of group actions,
namely 2-Group Action Inverse Problem (2-GAIP). Here, we refer by 2-LCE to the
2-GAIP from [6] instantiated with LCE.

2

1.1 Contribution and organization

On the hardness of LCE given t samples (t-LCE)

After covering the necessary background in Section 2, we delves in Section 3
into the impact of having more than one LCE sample sharing the same secret
monomial matrix Q. We explore how this affects the hardness of recovering
Q specifically, and without loss of generality, for when the generator matrix
codes are in systematic form. In particular, we derive a concrete bound on the
number of necessary samples allowing an efficient recovery of the secret with
high probability. Additionally, a parallel analysis is conducted also for MCE. We
report our result in the following lemma.

Lemma (Informal). For (n, k)-linear codes over finite field Fq, the secret mono-

mial matrix Q can be recovered from
⌈

n2

k(n−k)

⌉
samples of LCE sharing the same

Q in polynomial time, with overwhelming probability.

The above result improves the work by D’Alconzo and Di Scala [17]. Their
result provided a bound of nk samples, applicable solely to codes not in sys-
tematic form. In contrast, our result removes this limitation, extending to codes
represented in systematic form as well. As a consequence, we derive the following
corollary.

Corollary (Informal). For (2k, k)-linear codes, the secret monomial matrix
Q can be recovered from only 4 samples of LCE sharing the same Q, with over-
whelming probability.

For the case of ILCE, we prove the following lemma.

Lemma (Informal). For (n, k)-linear codes over finite field Fq, the secret mono-

mial matrix Q can be recovered from
⌈

n2

2k(n−k)

⌉
samples of ILCE using the same

Q in polynomial time, with overwhelming probability.

Solving 2-LCE and ILCE for (2k, k)-linear codes

In Section 4 we introduce a new polynomial-time algorithm for solving 2-LCE and
ILCE when k = n/2. This algorithm is inspired by Saeed’s for solving PCE [30]
and, unlike the results mentioned above, it exploits the structure of the secret
monomial matrix to recover. Our algorithm solves 2-LCE directly without con-
verting it to a PCE instance.

Theorem (Informal). For k = n
2 , there exists a polynomial time algorithm

that solves 2-LCE and ILCE in polynomial time and with overwhelming probabil-
ity.

As a consequence,

a. We show that the proposed threshold signature scheme relying on 2-LCE in
[6] is not secure,

3

b. We resolve the open question raised by Barenghi et al. [4] asking whether
ILCE can be used to construct secure linkable ring signatures, and the answer
is negative.

To highlight the diminished security of 2-LCE and ILCE, we report in Table 1
a comparison of our complexity estimations of these two problems against the
one of LCE for the parameters sets proposed in [2].

n k q LCE 2-LCE & ILCE

252 126 127 128 61

400 200 127 192 66

548 274 127 256 70

Table 1: The column corresponding to LCE is according to the security analysis
from [2]. The column corresponding to 2-LCE & ILCE concerns the complexity
of Algorithm 1 (detailed in Theorem 1) with ω = log2(7). The presented numbers
are given in logarithm base two.

In addition, to support our findings, we report in Section 5 the results of
extensive experiments performed on linear codes of length up to n = 128 and
dimension k = 64. In accordance to the theory, our results show that, for k =
n/2 two LCE samples sharing the same secret are enough to recover the secret
equivalence in polynomial time and memory. These contributions collectively
enhance the understanding of LCE (andMCE) and their aforementioned variants,
offering a much clearer understanding of their sample complexity and preventing
researchers from building new insecure cryptographic schemes.

1.2 Technical Overview

We begin by defining LCE in terms the number of samples available to the
adversary. Let Ln,k,q,Q be a distribution which samples random (n, k)-linear
code over finite field Fq for some prime q and for a fixed secret monomial matrix
Q ∈ Monon(Fq), where Monon(Fq) is the set of all n×n monomial matrices over
Fq. Let G be a generator matrix of the sampled (n, k)-linear code, and G′ be a
generator matrix of an equivalent code whose equivalence is determined by the
secret Q as follows

G′ = SF(GQ),

where SF() denote the systematic form operation. The distribution Ln,k,q,Q out-
puts (G,G′). Here (and throughout this paper) we consider that both G and
G′ are in the systematic form, that is G := (Ik M) where Ik is k × k identity

matrix over Fq and M ∈ Fq
k×(n−k). Similarly, G′ := (Ik M ′). Let t-LCEn,k,q

be the problem of recovering Q from t samples from Ln,k,q,Q for a fixed secret

4

Q ∈ Monon(Fq) chosen uniform randomly. Note that, 1-LCEn,k,q corresponds to
the standard LCE problem.

Recall that if G is a generator matrix for an (n, k)-linear code and H ′ is a
parity check matrix of an equivalent code with generator matrix G′ = SF(GQ),

then GQH ′⊤ = 0. Since G,G′ are in systematic form, as observed by Saeed
in [30], we can create a linear system of equations given by[

(Ik M)⊗ (−M ′⊤ In−k)
]
vec(Q) = 0. (1)

where ⊗ denotes the Kronecker product and vec(Q) denotes a column vector of
length n2 created by unrolling the entries of Q.

Solving LCE with multiple instances. Note that the linear system of equa-
tions obtained from a single LCE instance in Equation (1) is underdetermined
since we have n2 unknown variables and only k(n − k) equations given by the
rows of the coefficient matrix in Equation (1). However, when we obtain t sam-
ples from Ln,k,q,Q we can combine them into a larger system using the additional
equations, such a system can be written as

A :=
[
A1

⊤ A2
⊤ · · · At

⊤]⊤ ,

where each block Ai is constructed from an individual sample as per Equa-
tion (1). This is useful if the additional equations given by the extra sam-
ples are not linearly dependent on the previous equations. Since the equa-
tions correspond to the rows of the matrix, from here onwards we will con-
sider the dependencies between these. Let Ai := (Ik M)⊗ (−M ′⊤ In−k) and

Aj := (Ik N)⊗ (−N ′⊤ In−k) be two block matrices corresponding to the ith

and jth sample respectively. We prove that the rows of Ai and Aj are linearly
dependent if and only if the following conditions are simultaneously satisfied:

• the i′
th

column of the matrices M ′ and N ′ are equal and,
• the j′

th
row of the matrices M and N are equal,

for some 1 ≤ i′ ≤ n − k and for some 1 ≤ j′ ≤ k. Assuming the samples from
Ln,k,q,Q to be chosen randomly and independently of each other, we can show
that the rows of matrix A are linearly independent with high probability. At

this point, by setting t =
⌈

n2

k(n−k)

⌉
we obtain an overdetermined linear system

of equations when k ̸= n
2 , and we recover the secret Q by solving this linear

system. If k = n
2 and t =

⌈
n2

k(n−k)

⌉
, the linear system defined by A is still

underdetermined since we get only n2− n
2 linearly independent equations in this

case. However, we can compute the generator set of the kernel of this system
using Gaussian elimination. The cardinality of this set is less than or equal to
n
2 , and we show that (a multiple of) vec(Q) is in this set with high probability.
Therefore, after computing the kernel we can simply search for Q efficiently.
The overall complexity of recovering Q from t samples is O(n2ω), where ω is the
complexity of performing matrix multiplication over Fq.

5

Solving ILCE with half the samples. We also study the problem of inverse
linear code equivalence (t-ILCEn,k,q), which is closely related to t-LCEn,k,q prob-

lem. In t-ILCEn,k,q, the adversary gets t samples from the distribution L̂n,k,q,Q,

which is defined similarly to Ln,k,q,Q with the addition that L̂n,k,q,Q returns a
tuple of three matrices (G,G′,G′′), where G,G′ are computed as in Ln,k,q,Q

and G′′ = SF(GQ−1). The main idea in this case is that we can now create a
system of equations as the one given by Equation (1) with 2k(n−k) rows instead
of k(n − k) from a single sample. Intuitively, this should result in halving the
number of t-ILCEn,k,q samples required to recover the secret Q when compared
to t-LCEn,k,q. We can therefore retrieve Q as in the case of t-LCEn,k,q by solving

the system with only t =
⌈

n2

2k(n−k)

⌉
samples.

Extending to MCE and IMCE. Let G and G′ be generators of two (m× r, k)
matrix codes such that there exist A ∈ GLm(Fq) and B ∈ GLr(Fq) satisfying
G′ = SF(G(A⊤ ⊗B)). The Matrix Code Equivalence (MCE) problem is to find
A and B given G and G′. The IMCE problem is defined analogously as the
ILCE for matrix codes. We extend the results obtained for LCE to the case of
matrix codes. In particular, we have that MCE can be solved efficiently when⌊

(mr)2

k(mr−k)

⌋
+1 samples are available. Similarly,

⌊
(mr)2

2k(mr−k)

⌋
+1 samples are enough

to solve IMCE.

Solving 2-LCE and ILCE for k = n/2. The above approach, for k = n
2 , gives

that only 4 LCE or 2 ILCE samples are sufficient to recover the secret monomial
matrix Q with high probability. We now show how to exploit the special struc-
ture of Q to reduce the number of samples even further. Note that Q contains
exactly one non-zero entry in each of its rows as well as in each of its columns.
Therefore, we construct a linear system of equations as in Equation (1) with 2

LCE samples. In total, we get 2k(n−k) = n2

2 equations with n2 unknowns, hence
an underdetermined linear system. Earlier, we resolved this issue by adding more
equations (from extra samples) to make the system overdetermined. Here, we
try to reduce the number of unknowns from n2 to some number smaller or equal

to n2

2 . Note that due to the monomial structure, if we know that Q has a non-
zero entry at a certain position (i, j) then we can immediately set the rest of
the unknowns in the corresponding row (i) and column (j) to zero. In short, the
knowledge of a single non-zero entry allows us to guess further 2(n− 1) entries
for free. Moreover, since these 2(n − 1) entries are equal to 0 we can modify
the linear system by deleting the columns corresponding to these positions in
vec(Q). Thus, we proceed by guessing the (i, j)-th entry of Q to be non-zero.

Let S be the linear system obtained from two LCE samples with n2

2 rows and
n2 columns. We guess that the (i, j)-th entry of Q is non-zero and drop the
corresponding 2(n − 1) columns from S. Let this modified system be Si,j . We
know that by construction the system S accepts a solution since vec(Q) is a
solution by construction. If our guess of the non-zero entry at (i, j)-th position
is correct, then the modified system Si,j must also accept a solution. Otherwise,
our guess is incorrect. This allows us to efficiently check whether the guessed

6

positions of non-zero entries of Q are correct, and with a certain probability, to
exclude incorrect guesses. We show that, with high probability, we can obtain
an overdetermined system by performing guesses on each of the n2 entries of Q.
Finally, we solve the resulting overdetermined system using Gaussian elimina-
tion to recover the secret monomial matrix Q. The total cost of this procedure
is O(n2+2ω).

Earlier we discussed that, in the case of t-ILCEn,k,q, it is possible to halve the
number of necessary samples with respect to t-LCEn,k,q. Using similar arguments,
we show that one only sample of ILCE is enough to efficiently recover the secret
Q with high probability, again when k = n

2 .

1.3 Related work

The cryptanalysis of equivalence problems on linear codes started with Leon’s
algorithm [21], which presented a way to compute the permutation between two
equivalent codes using the information provided by codewords of minimal weight,
but it is unpractical for cryptographic instances. Later, Petrank and Roth [27]
showed that PCE is unlikely to be NP-complete.

In his seminal work [33], Sendrier introduced the Support Splitting Algo-

rithm, which can recover the secret permutation underlying PCE in time Õ(qh),
where q is the cardinality of the field and h is the dimension of the hull of the
code, namely the intersection between the code and its dual. While Sendrier’s
algorithm fails when the hull is trivial, the authors of [30,3] proposed two at-
tacks on PCE with trivial hulls. All these results imply that PCE is not hard
when the hull is small, and this happens with high probability when the code
is randomly chosen ([32] showed that in this case, the hull dimension is a small
constant). Hence, PCE must be instantiated with self-dual or weakly-dual codes
to be suitable in cryptography.

Linear Code Equivalence and Matrix Code Equivalence. In [34] Sendrier
and Simos showed that LCE can be reduced to PCE using the closure of the code.
This implied that one should be able to solve LCE using the above techniques,
but, for q ≥ 5, the closure of a code is always weakly-self dual, and the Support
Splitting Algorithm becomes unpractical. Contrary to PCE, random instances
of LCE remain intractable, and hence, they can be used in the design of cryp-
tosystems. After the publication of LESS [10], the effort for cryptanalyzing PCE
and LCE increased [5,7], which led to a refinement of the conjectured practical
complexity of solving these problems. In summary, the known techniques are
practical for particular classes of codes, while finding the permutation or the
linear map leading to the equivalence seems to be still intractable for carefully
generated instances. In the case of matrix codes, the equivalence problem was
first studied from a cryptographic point of view in [29] and it is further crypt-
analyzed in the work that introduces MEDS [14], presenting an adaptation of
Leon’s algorithm in the setting of matrix codes and an algebraic modeling.

Code Equivalence Problems with multiple samples. All of the above
works consider the classical statement of the equivalence problems, where just a

7

single pair of equivalent codes is given. The scenario, however, changes when we
consider relaxed versions of LCE and MCE. For instance, suppose that the secret
matrix Q is used more than once, exposing multiple pairs of codes (Ci, C′i)i linked
by the same matrix Q. Recently, D’Alconzo and Di Scala [17] proved that the
variants that do not use the systematic forms of MCE and PCE can be efficiently
solved with a polynomial number of samples sharing the same secret.

2 Preliminaries

In this paper, we denote with Z and R the sets of integer and real numbers
respectively. For a number n ∈ N we use [n] for the set {1, 2, . . . , n}. We denote
matrices with upper-case bold letters (e.g. A) and vectors with lower-case bold
letters (e.g. a). We treat vectors as columns unless otherwise specified. Let Fq

denote a finite field of order q. The tensor product (A ⊗ B) ∈ Fmr×ns
q of two

matrices A ∈ Fm×n
q and B ∈ Fr×s

q is defined as the Kronecker product of A and
B.

Denote with GLn(Fq) the set of invertible n × n matrices with elements in
Fq, with Permn(Fq) the set of permutation matrices of dimension n, and with
Monon(Fq) the set of n × n monomial matrices, i.e., that can be written as
M = DP , where D ∈ Fn×n

q is full-rank diagonal, and P ∈ Permn(Fq). We also
use In to denote n× n identity matrix over Fq.

For any matrix M ∈ Fn×n
q , we write vec(M) to denote the column vector of

n2 coefficients consisting of the concatenation of the rows of M .

We assume that computing multiplication and inverse of matrices can be
performed using O(nω) field operations for some ω ∈ [2, 3].4 Consequently, we
assume that solving a linear system Ax = b with A ∈ Fn×n

q and b ∈ Fn
q

takes time O(nω) field operations, and that calculating the rank (and kernel) of
A ∈ Fn×n

q costs O(nω) field operations.5

2.1 Linear Codes and Equivalence Problems

An (n, k)-linear code C over Fq is a k-dimensional vector subspace of Fn
q . We say

that C has length n and dimension k.

A matrix G ∈ Fk×n
q is called a generator matrix of C if its rows form a

basis of C, that is C = {uTG,u ∈ Fk
q}. We say that G is in systematic form if

G = (Ik M) for some M ∈ Fk×(n−k)
q . The systematic form of a generator can

be obtained in polynomial-time by computing its row-echelon form, and it gives
a standard basis for the vector space. We denote this operation with SF(·). For
matrix Q ∈ Fm×n

q , vec(Q) is the column vector over Fq of length mn created by
unrolling the entries of Q.

4 For example, in case of the well-known Strassen’s algorithm which is considered as
the best algorithm for matrix multiplications for large n, one can set ω = log2(7).

5 If the matrix A ∈ Fr×s
q is rectangular, we set n = max{r, s} in the complexity

8

A matrix H ∈ F(n−k)×n
q is called parity check matrix of C if and only if

∀ c ∈ C it holds that Hc = 0. Note that SF(G) = (Ik M) ⇐⇒ SF(H) =

(−M⊤ In−k) for a matrix M ∈ Fk×(n−k)
q . The parity-check matrix generates

the dual code of C, denoted with C⊥. The hull of a code C is defined as the
intersection of C with its dual. A code C is said weakly self-dual if C ⊂ C⊥ and
self-dual if C = C⊥. In both these cases, the dimension of the hull is equal to the
dimension of the code.

Due to the extended variety of namings to the Linear Code Equivalence
Problem (see Table 2), and for consistency between notations in different articles,
we use the acronyms from [34] and [14].

Permutation Code Linear Code Matrix Code
Equivalence Problem Equivalence Problem Equivalence Problem

[34,20,25] PCE LCE —

[31] PEP — —

[15,26,2] PEP LEP —

[6] PEP LEP MCE

[14,29] — — MCE

Table 2: Notation naming for the Linear, Permutation, and Matrix Code Equiv-
alence Problems through the state-of-the-art.

Linear Code Equivalence Problem: Let G,G′ be the generator matrices of two
(n, k)-linear codes C, C′. We say that C and C′ are equivalent if there exist S ∈
GLk(Fq) and Q ∈ Monon(Fq) such that G′ = SGQ.

Definition 1 (Linear Code Equivalence (LCE) Problem). Let G,G′ ∈
Fk×n
q be the generator matrices of two equivalent (n, k)-linear codes C, C′, re-

spectively. The Code Equivalence Problem is to find matrices S ∈ GLk(Fq) and
Q ∈ Monon(Fq) such that G′ = SGQ.

Sometimes, in the literature, LCE is stated as in Definition 1 but without the
assurance that such matrices S and Q establishing the equivalence between
the two codes actually exist. Nevertheless, cryptographic schemes inherently
guarantee the equivalence by construction. Consequently, this work explicitly
addresses and incorporates this scenario.

Permutation Code Equivalence Problem: The following is a simpler version of
Definition 1 where a permutation matrix is used instead of the monomial matrix.

Definition 2 (Permutation Code Equivalence (PCE) Problem). Let G,
G′ ∈ Fk×n

q be the generator matrices of two equivalent (n, k)-linear codes C, C′,

9

respectively. The Permutation Code Equivalence Problem is to find S ∈ GLk(Fq)
and P ∈ Permn(Fq) such that G′ = SGP .

Matrix Code Equivalence Problem: A (m× r, k) matrix code is a subspace D of
the space of m × r matrices. The following problem was introduced in [29,14].
Two matrix codes D,D′ are equivalent if there exists two matrices A ∈ GLm(Fq)
and B ∈ GLr(Fq) such that D′ = ADB. In fact, [14, Lemma 1] proved that
the MCE problem can be redefined in terms of the tensor product AT ⊗ B as
described below.

Definition 3 (Matrix Code Equivalence (MCE) Problem). Let G,G′ ∈
Fk×mr
q be generators of two equivalent (m×r, k)-matrix codes D,D′ respectively.

The Matrix Code Equivalence problem is to find S ∈ GLk(Fq), A ∈ GLm(Fq)
and B ∈ GLr(Fq) such that G′ = SG(A⊤ ⊗B).

Inverse Linear Code Equivalence Problem: In the context of linkable ring signa-
tures, the following problem was initially introduced in [4].

Definition 4 (Inverse Linear Code Equivalence (ILCE) Problem). Let
G,G′,G′′ ∈ Fk×n

q be the generator matrices of three equivalent (n, k)-linear
codes C, C′ and C′′ respectively. The Inverse Linear Code Equivalence Problem
is to find S ∈ GLk(Fq) and Q ∈ Monon(Fq) such that G′ = SGQ and G′′ =
S−1GQ−1.

There is also an Inverse Matrix Code Equivalence Problem variant, named
IMCE and introduced in [14], that essentially replaces Q ∈ Monor(Fq) with
Q ∈ GLmr(Fq).

Definition 5 (Inverse Matrix Code Equivalence (IMCE) Problem). Let
G,G′,G′′ ∈ Fk×mr

q be generators of three equivalent (m × r, k)-matrix codes
D,D′ and D′′ respectively. The Inverse Matrix Code Equivalence problem is to
find S ∈ GLk(Fq), A ∈ GLm(Fq) and B ∈ GLr(Fq) such that G′ = SGQ and
G′′ = S−1GQ−1 with Q = (A⊤ ⊗B) ∈ GLmr(Fq).

We introduce below the permutation variant of ILCE for completeness.

Definition 6 (Inverse Permutation Code Equivalence (IPCE) Problem).
Let G,G′,G′′ ∈ Fk×n

q be the generator matrices of three equivalent (n, k)-linear
codes C, C′ and C′′ respectively. The Inverse Permutation Code Equivalence Prob-
lem is to find S ∈ GLk(Fq) and P ∈ Permn(Fq) such that G′ = SGP and
G′′ = S−1GP−1.

Remark 1. In practice, one often works with generator matrices in systematic
forms. Hence, whenG,G′ are in systematic form, we say that C, C′ are equivalent
if there exists Q ∈ Monon(Fq) such that G′ = SF(GQ). Definitions 1 to 6 can all
be equivalently restated with the generators in systematic form without changing
the hardness of the problems.

10

2.2 Code equivalence problems with multiple samples

In order to study the stronger cryptographic properties of the equivalence prob-
lems, we introduce some new definitions allowing an interaction with stronger
adversaries. We give in Definition 7 a relaxed versions of LCE where the adversary
has access to multiple LCE samples for the same secret monomial Q.

Definition 7 (t-LCEn,k,q). Let n, k, q be integers such that k < n and q is
prime. Let Q ∈ Monon(Fq) be a secret monomial matrix. We denote by Ln,k,q,Q

the probability distribution on Fk×n
q ×Fk×n

q obtained by sampling M ∈ Fk×(n−k)
q

uniformly at random, setting G = (Ik M) ∈ Fk×n
q , and returning

(G,G′ = SF(GQ)).

Given t independent samples from Ln,k,q,Q, the t-samples LCE problem, denoted
as t-LCEn,k,q, is to find Q.

Informally, the distribution Ln,k,q,Q samples a generator matrix G (in sys-
tematic form) of a random (n, k)-linear code over Fq and outputs the pair
(G,G′), where G′ is the generator matrix (in systematic form) of another equiv-
alent linear code, and the equivalence is established via a secret monomial matrix
Q. When the parameters n, k, q are clear by the context, we simplify the notation
and drop the indices from the shortening of the problem, i.e., we simply write
t-LCE. Also, notice that 1-LCE corresponds to LCE, so in this case only write
LCE.

We give in Definition 8 and Definition 9 the corresponding t-samples problems
for PCE (Definition 2) and MCE (Definition 3).

Definition 8 (t-PCEn,k,q). Let n, k, q be integers such that k < n and q is
prime. Let Q ∈ Permn(Fq) be a secret permutation matrix. We denote by Pn,k,q,Q

the probability distribution on Fk×n
q ×Fk×n

q obtained by sampling M ∈ Fk×(n−k)
q

uniformly at random, setting G = (Ik M) ∈ Fk×n
q , and returning

(G,G′ = SF(GP)).

Given t independent samples from Pn,k,q,P , the t-samples PCE problem, denoted
as t-PCEn,k,q, is to find P .

Definition 9 (t-MCEm,r,k,q). Let k,m, r, q be integers such that k < mr and q
is prime. Let A ∈ GLm(Fq) and B ∈ GLr(Fq) be secret unimodular matrices. We
denote byMm,r,k,q,A⊤⊗B the probability distribution on Fk×mr

q ×Fk×mr
q obtained

by sampling M ∈ Fk×(mr−k)
q uniformly at random, setting G = (Ik M) ∈

Fk×mr
q , and returning

(G,G′ = SF(G(A⊤ ⊗B))).

Given t independent samples fromMm,r,k,q,A⊤⊗B, the t-samples MCE problem,
denoted as t-MCEm,r,k,q, is to find A and B.

11

The t-samples version problem for ILCE is as follows.

Definition 10 (t-ILCEn,k,q). Let n, k, q be integers such that k < n and q is

prime. Let Q ∈ Monon(Fq) be a secret monomial matrix. We denote by L̂n,k,q,Q

the probability distribution on Fk×n
q × Fk×n

q × Fk×n
q obtained by sampling M ∈

Fk×(n−k)
q uniformly at random, setting G = (Ik M) ∈ Fk×n

q , and returning

(G,G′ = SF(GQ),G′′ = SF(GQ−1)).

Given t independent samples from L̂n,k,q,Q, the t-samples ILCE problem, denoted
as t-ILCEn,k,q, is to find Q.

Analogously, one can give the definitions for t-IPCEn,k,q and t-IMCEm,r,k,q,

and the corresponding distributions P̂n,k,q,Q and M̂m,r,k,q,A⊗B. Similarly to
t-LCE, we simplify, whenever possible, the shortening of all these problems. Ob-
serve that for t-PCEn,k,q and t-IPCEn,k,q the relevant case is when the distri-

butions Pn,k,q,P and P̂n,k,q,Q sample (weakly) self-dual codes, since for general
random codes the problem is solvable in polynomial time as early as t = 1.

2.3 Code equivalences modeled as group actions

A group action is a mapping of the form ⋆ : G × X → X, where G is a
group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X, we have
g1 ⋆ (g2 ⋆x) = (g1g2) ⋆x. Cryptographic group actions are endowed with the cer-
tain hardness properties, such as one-wayness, weak-unpredictability and weak-
pseudorandomness [1].

The Linear Code Equivalence problem (Definition 1) can be modeled as a
group action as follows. Define the group G = GLk(Fq)×Monon(Fq) and the set
X = Fk×n

q . Then the group action is defined as

⋆ : G×X → X, ((S,Q),G) 7→ (S,Q) ⋆G := SGQ.

Similarly, PCE and MCE are modeled as group actions following the same frame-
work. Consequently, it follows that LCE, PCE, and MCE are instances of the
so-called Vectorization Problem [16].

Similarly, 2-LCE, 2-PCE, 2-MCE are special cases of the 2-GAIP defined in [6,
Problem 3]. Additionally, Definition 11 describes a useful property required for
building secure threshold signatures as analyzed in [6].

Definition 11. (2-weakly pseudorandom group action [6, Def. 3]) A group ac-
tion ⋆ : G ×X → X is 2-weakly pseudorandom if there is no probabilistic poly-
nomial time algorithm that given (x, g ⋆ x) can distinguish with non negligible
probability between (x′, y′) and (x′, g ⋆ x′) with. x′, y′ ∈ X sampled uniformly at
random from X.

12

3 Solving Code Equivalence with Multiple Instances

Recently, D’Alconzo and Di Scala [17] showed that, using representation theory,
for certain group actions (G,X, ⋆) it is possible to recover the secret g ∈ G from a
polynomial number of samples of the form (xi, g ⋆ xi) for random xi ∈ X. In the
case of the group action defined in Section 2.3, this can be viewed as variants of
the problems t-LCE, t-PCE, and t-MCE that do not use the systematic form SF.
They show that these variants can be solved efficiently (with high probability)
when t ∈ poly(λ). In the case of t-LCE they showed that t ≥ nk samples are
sufficient to recover the secret matrices S and Q (with high probability).

In this section, we show that the use of the systematic form leads to a signifi-
cantly smaller number of samples from Ln,k,q,Q (resp. Pn,k,q,Q andMm,r,k,q,Q))
needed to solve the corresponding computational problems. The key ingredient
of our results relies on [30, Corollary 3.2.13].

In what follows, we focus our analysis on t-LCE. Since we don’t take advantage
of the structure of the secret matrix, we obtain simultaneously results for t-MCE
too, as it falls in the same setting. Moreover, unless differently specified, we do
not restrict our linear codes to have any specific structure or properties, e.g.
self-dual codes or non-self-dual codes.

Lemma 1. Given two generator matrices G = (Ik M) ∈ Fk×n
q and G′ =

SF(GQ) = (Ik M ′) ∈ Fk×n
q of two equivalent codes for some Q ∈ GLn(Fq), we

have that [
(Ik M)⊗ (−M ′⊤ In−k)

]
vec(Q) = 0. (2)

Proof. This is a straightforward application of [30, Definition 1.1.3 and Corollary
3.2.13] without assuming the matrix Q to be a permutation, where G = (Ik M)
and the parity-check matrix of the code generated by G′ = (Ik M ′) is given by

(−M ′⊤ In−k). ⊓⊔

Notice that Lemma 1 gives k(n − k) linear equations in the n2 variables
determining the entries of Q. 6 Such a linear system has the following particular
structure. Let us denote the (i, j)-th entry of M by Mi,j , then the homogeneous
linear system of equations derived from Equation (2) can be written as: A ·
vec(Q) = 0 where A is equal to


−M ′⊤ Ic 0 0 · · · 0 −M1,1M

′⊤ M1,1Ic · · · −M1,cM
′⊤ M1,cIc

0 0 −M ′⊤ Ic
. . .

... −M2,1M
′⊤ M2,1Ic · · · −M2,cM

′⊤ M2,cIc
...

. . .
. . .

. . .
. . . 0

...
... · · ·

...
...

0 · · · 0 0 −M ′⊤ Ic −Mk,1M
′⊤ Mk,1Ic · · · −Mk,cM

′⊤ Mk,cIc


6 In case of LCE we restrict Q to be in Monon(Fq), while for MCE we assume that
n = mr and Q = A⊤ ⊗B for some A ∈ GLm(Fq) and B ∈ GLr(Fq).

13

with c = (n − k). In particular, the matrix A has full (row) rank due to the
presence of k identity blocks In−k.

Lemma 2 gives the necessary number of samples to build a determined linear
system that allows an efficient recovery of Q.

Proposition 1. For a prime q ≥ 2 and integers n ≥ 2, k ∈ [n − 1], for any

matrices M ,M ′,N ,N ′ ∈ Fk×(n−k)
q , let

A :=

[
(Ik M)⊗ (−M ′⊤ In−k)

(Ik N)⊗ (−N ′⊤ In−k)

]
∈ F2k(n−k)×n2

q .

Then rows of A are linearly dependent if and only if for some i ∈ [n − k] and
for some j ∈ [k]

• the ith column of the matrices M ′ and N ′ are equal, and
• the jth row of the matrices M and N are equal.

Proof. Let us consider the matrixA :=

[
AM ,M ′

AN ,N ′

]
in blocksB1,1,B1,2,B2,1,B2,2

as written below. In the following we use c := (n− k) for ease of notation.

[
B1,1 B1,2

B2,1 B2,2

]
=



−M ′⊤ Ic 0 0 · · · 0 −M1,1M
′⊤ M1,1Ic · · · −M1,cM

′⊤ M1,cIc

0 0 −M ′⊤ Ic
. . .

.

.

. −M2,1M
′⊤ M2,1Ic · · · −M2,cM

′⊤ M2,cIc
.
.
.

. . .
. . .

. . .
. . . 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 · · · 0 0 −M ′⊤ Ic −Mk,1M
′⊤ Mk,1Ic · · · −Mk,cM

′⊤ Mk,cIc

−N ′⊤ Ic 0 0 · · · 0 −N1,1N
′⊤ N1,1Ic · · · −N1,cN

′⊤ N1,cIc

0 0 −N ′⊤ Ic
. . .

.

.

. −N2,1N
′⊤ N2,1Ic · · · −N2,cN

′⊤ N2,cIc
.
.
.

. . .
. . .

. . .
. . . 0

.

.

.
.
.
. · · ·

.

.

.
.
.
.

0 · · · 0 0 −N ′⊤ Ic −Nk,1N
′⊤ Nk,1Ic · · · −Nk,cN

′⊤ Nk,cIc


Let us determine when the matrix A is not full rank. Because of the presence

of the sub-blocks Ic, we can obtain linear dependence on the rows of A only by

subtracting two rows. Let us look at the block

[
B1,1

B2,1

]
. Here the sub-matrices

Ic are never in the same row. Hence, the only possibility of having a linear
dependency is when the jth column of M ′ is equal to the jth column of N ′, for
some 1 ≤ j ≤ n − k (note that M ′,N ′ are transposed). When such an event

happens, then we have that the block

[
B1,2

B2,2

]
has two rows that are linearly

dependent if and only if the ith row of M is equal to the ith row of N , for some
1 ≤ i ≤ k. ⊓⊔

Proposition 1 gives the conditions for which the matrix A has maximum
rank. Notice that the probability that the jth row of M and N are equal, for
some j ∈ [k] is p < k

qn−k , thus negligible in n. This is because both M and N

14

are sampled uniformly at random over Fk×(n−k)
q . On the other hand, M ′ and N ′

are not sampled uniformly at random, but they are output of the equivalence
transformation for a fixed Q. Hence, in this case, we consider the following
assumption.

Assumption 1 Let (Gℓ,G
′
ℓ = SF(GℓQ)) be two samples from Ln,k,q,Q, for

ℓ = 1, 2 and for a random Q ∈ Monon(Fq). Let M
′,N ′ ∈ Fk×(n−k)

q be such that
G′

1 = (Ik M ′) and G′
2 = (Ik N ′). Then, the probability that M ′ and N ′ have

their ith column equal, for some i ∈ [n− k] is negligible in n.

Under assumption Assumption 1, we have that the probability of the condi-
tions in Proposition 1 to be simultaneously satisfied is negligible in n. We use
Assumption 1 in Lemma 2 and Theorem 1 (in Section 4). In Corollary 1, we
implicitly take an analogous assumption for MCE.

Lemma 2. Under Assumption 1, for t ≥
⌈

n2

k(n−k)

⌉
, the t-LCEn,k,q is solvable

with overwhelming probability in time O(n2ω).

Proof. We show how to recover the secret monomial matrix Q below. For each
LCE sample, we use Lemma 1 to construct a system of k(n− k) linear equations
with n2 variables representing the entries of Q. So, we only need to show that
t samples obtained from the challenger are sufficient to construct a system of
linear equations in the n2 variables from which we can recover Q. Below we show
how to construct such a system of equation which has row-rank (n2 − ξ) where
ξ ∈

{
1, n

2

}
, with overwhelming probability.

We can then solve this system of equations efficiently to recover Q.
Let {(Gℓ,G

′
ℓ = SF(GℓQ))}ℓ=1,...,t be t independent samples from Ln,k,q,Q.

Note that Gℓ := (Ik Mℓ) and G′
ℓ := (Ik M ′

ℓ) where the matrices Mℓ ∈
Fk×(n−k)
q are sampled uniformly at random.
Let us construct the following matrix

A :=
[
A1

⊤ A2
⊤ · · · At

⊤]⊤ ,

where Aℓ := (Ik Mℓ) ⊗ (−M ′
ℓ
⊤
In−k) is the system given by Lemma 1, for

ℓ ∈ [t]. Our desired system of equations is given byAx = 0. Note that, the kernel
of A is not trivial, since we know that there exists at least one non-zero vector
(namely vec(Q)) in Ker(A). We have that (t − 1)k(n − k) < n2 ≤ tk(n − k),
where the equality holds only if k = n

2 .
Let

A−t :=
[
A1

⊤ A2
⊤ · · · At−1

⊤]⊤ .

Thanks to Proposition 1 and Assumption 1, we know that rows of A−t are
linearly dependent with probability p =

(
t−1
2

)
p′, where p′ ∈ negl(n). This implies

that, with overwhelming probability 1− p,

rank(A−t) = (t− 1)k(n− k) = (n2 − k(n− k)).

15

Now let us see what happens when we add the block At to A−t and obtain the
full matrix A. Again under Assumption 1, At shall add k(n − k) rows which
are pairwise linearly independent with all the blocks in A−t with overwhelming
probability. However, we know that rank(A) ≤ (n2 − 1), therefore (n2 − k(n −
k)) < rank(A) ≤ (n2−1), where the first inequality is strict because of presence
of k blocks In−k in each block matrix Aℓ.

Case 1 (k ̸= n/2 - A is overdetermined): the matrix A has tk(n−k) > n2 rows.
Therefore, with overwhelming probability, the systemAx = 0 is overdetermined,
since A contains more rows than columns (i.e. we have more equations than the
unknown variables). The kernel of A has dimension one as one non-zero solution
exists by construction, and thus it coincides with ⟨vec(Q)⟩.

Case 2 (k = n/2 - A is underdetermined): the matrix A is square and accepts at
least one non-zero solution by construction (vec(Q)). Hence, there is at least one
row of A that is linearly dependant on the others. But because of the repetitive
structure of A, every dependent row leads to k dependent rows. Therefore, we
have that rank(A) = n2 − n/2 with overwhelming probability. The kernel of A

has dimension n/2, and we compute a basis {v1, . . . ,vn/2 ∈ Fn2

q } for it using
Gaussian elimination. We prove by contradiction that vec(Q) ∈ ⟨vi⟩, for some
i ∈ [n/2]. Let us assume that vec(Q) /∈ ⟨vi⟩, for every i ∈ [n/2]. Then, because
of how standard Gaussian elimination for computing the kernel generators of a
matrix works, we have that, with overwhelming probability, v1, . . . ,vn/2 stacked
in columns as a matrix, will have the lowest n/2 × n/2 block as the identity

In/2. Also, vec(Q) =
∑n/2

i=0 αivi, for some α1, . . . , αn/2 ∈ Fq such that at least
two are different from zero. Because of the monomial structure of Q, we have
that vec(Q) can have at most one non-zero entry among its last n/2 entries.
Let us consider the case for which vec(Q) has one non-zero entry among its
last n/2 entries, then we have that αi ̸= 0, for some i, and αj = 0, for every
j ∈ [n/2] \ {i} (because v1, . . . ,vn/2 are row-Echelon reduced). On the other
hand, if vec(Q) has only zero entries in its last n/2 entries, then there exist no
linear combination of them that results in vec(Q) (again, because v1, . . . ,vn/2

are row-Echelon reduced). Hence we can conclude that vec(Q) ∈ ⟨vi⟩, for some
i ∈ [n/2], and so it can be efficiently recovered.

In summary, finding vec(Q) reduces to calculating the kernel of A, giving a
polynomial time complexity of O(n2ω) field operations.

⊓⊔

Notice that, under an analogous Assumption 1 for PCE, Lemma 2 applies
naturally to t-PCEn,k,q, for any dimension of the hull. We extend Lemma 2 to
MCE in Corollary 1.

Corollary 1. For t ≥
⌊

m2r2

k(mr−k)

⌋
+ 1, the t-MCEm,r,k,q is solvable with over-

whelming probability in time O((mr)
2ω
).

16

Proof. Since in the proof of Lemma 2 the monomial structure of the secret
matrix is never used, except for the case of k = n/2, the proof follows with
analogous arguments by setting n := mr. When k = n/2, one must still ensure
that the obtained linear system is overdetermined. However, in this case, this is
guaranteed by the lower bound on the number of samples t. ⊓⊔

Corollary 2 shows the sufficient number of samples required to recover the se-
cret for t-LCEn,k,q and t-MCEm,r,k,q for the parameters used in signature schemes
LESS [2] and MEDS [13].

Corollary 2. The following statements hold.

a) If k = n/2, then t = 4 samples from Ln,k,q,Q are sufficient to recover Q with
overwhelming probability in time O(n2ω).

b) If k = r = m, then t =
⌈

k2

k−1

⌉
samples from Mm,r,k,q,A⊤⊗B are sufficient

to recover Q = A⊤ ⊗B with overwhelming probability in time O(k4ω).

3.1 Implications to ILCE and IMCE

In this section we apply the results from Lemma 1 and Lemma 2 to t-ILCEn,k,q.
Specifically, we show that t-ILCEn,k,q allows a recovery of the secret with half
the number of samples with respect to t-LCEn,k,q. Similarly as for Lemma 2, we
extend our results also to t-IMCEm,r,k,q.

The main difference compared to the LCE case lies in the fact that we cannot
use Assumption 1 here. In fact, we need to consider the following.

Assumption 2 Let (G,G′,G′′) be a sample from L̂n,k,q,Q, for a random Q ∈
Monon(Fq), and let M ,M ′,M ′′ ∈ Fk×(n−k)

q be such that G = (Ik M), G′ =
(Ik M ′) and G′′ = (Ik M ′′). Then, the following event

• the ith column of the matrices M ′ and M are equal, and
• the jth row of the matrices M and M ′′ are equal,

for some i ∈ [n− k] and j ∈ [n], happens with probability negligible in n.

Note that this assumption is stronger than Assumption 1. However, we ob-
served experimentally that both of them hold in practice. We consider Assump-
tion 2 in Lemma 3 and Theorem 2 (Section 4), and we take an analogous as-
sumption for IMCE in Corollary 3.

Lemma 3. Under Assumption 2, for t ≥
⌈

n2

2k(n−k)

⌉
, the t-ILCEn,k,q is solvable

with overwhelming probability in time O(n2ω).

Proof. Consider the samples from L̂n,k,q,Q (see Definition 10) as two LCE pairs
(G,G′) and (G′′,G). Then, we apply Lemma 1 on both of them to get the
following system of 2k(n− k) linear equations in the n2 variables Qi,j .[

(Ik M)⊗ (−M ′⊤ In−k)

(Ik M ′′)⊗ (−M⊤ In−k)

]
vec(Q) =

[
0
0

]
. (3)

17

Where, G′ = (Ik M ′) and G′′ = (Ik M ′′) for some matrices M ′,M ′′ ∈
Fk×(n−k)
q and G = SF(G′′Q). Proposition 1 together with Assumption 2 ensure

that the rows of the matrix in Equation (3) are linearly independent with over-
whelming probability, and so the proof follows as in Lemma 2. Since one sample
from L̂n,k,q,Q gives us two blocks at time (as in Equation (3)), the sufficient
number of samples t for recovering Q is halved compared to t-LCEn,k,q. ⊓⊔

Corollary 3. For t ≥
⌊

m2r2

2k(mr−k)

⌋
+ 1, the t-IMCEm,r,k,q is solvable with over-

whelming probability in time O((mr)2ω).

Proof. Follows the same arguments as Lemma 3 and Corollary 1. ⊓⊔

Corollary 4. The following statements hold.

a) If k = n/2, then t = 2 samples from L̂n,k,q,Q are sufficient to recover Q with
overwhelming probability in time O(n2ω).

b) If k = r = m, then t =
⌈

k2

2(k−1)

⌉
samples from M̂m,r,k,q,A⊤⊗B are sufficient

to recover Q = A⊤ ⊗B with overwhelming probability in time O(k4ω).

4 Further Improvements by Exploiting the Monomial
Matrix Structure

In this section, we exploit the structure of the secret matrix in LCE and ILCE for
k = n/2 to further reduce, for certain parameters range, the number of samples
necessary to retrieve the secret. Specifically, we show how to solve, in polynomial
time, 2-LCE and ILCE. The approach presented below builds upon the algorithm
by Saeed for PCE [30, Sec. 3.7].

4.1 A polynomial-time algorithm for solving 2-LCE for k = n/2

Lemma 2 shows that, for k = n/2, 4-LCE can be solved in polynomial time.
In this section, we give the conditions on q to solve 2-LCE in polynomial time
by a new algorithm introduced here. Consider a monomial matrix Q and the
following two LCE instances,(

G1 = (Ik M), G′
1 = SF(G1Q) = (Ik M ′)

)
,(

G2 = (Ik N), G′
2 = SF(G2Q) = (Ik N ′)

)
.

(4)

From these, we apply Lemma 1 to each instance to write the following linear
system S: [

(Ik M)⊗ (−M ′⊤ In−k)

(Ik N)⊗ (−N ′⊤ In−k)

]
vec(Q) =

[
0
0

]
, (5)

18

for k = n/2. Notice that the 2k(n − k)× n2 system in Equation (5) is likely to

have full rank when the matricesM andN are uniformly random over Fk×(n−k)
q .

The idea of our algorithm is to guess, for each row of the secret monomial Q, the
position of the non-zero entry, and check whether the system admits acceptable
solutions or not to infer information related to Q.

The following observation holds regarding the monomial matrix Q: if a cer-
tain entry takes a non-zero value, its structure tells us that all the other entries
corresponding to the same row and column in take zero values. Recall that
Q = PD, for some permutation matrix P ∈ Permn(Fq) and diagonal matrix
D ∈ GLn(Fq). Let di ∈ F∗

q be the ith diagonal entry of D. Then Ri = d−1
i Q

satisfies G′
1 = SF(G1Ri) and G′

2 = SF(G2Ri)), for each i := 1, . . . , n. In this
case, Ri is also monomial, but its ith non-zero entry takes value of 1. Hence,
instead of guessing ith non-zero entry of Q, we guess ith non-zero entry of Ri

which is equal to 1. Given that Ri has the same permutation structure of Q,
we can infer that 2n− 2 additional entries are automatically zero, resulting in a
total of 2n− 1 guessed entries.

For each guessing, we perform the following test.

Test 1 For the guess on the entry (i, j)-th entry of Ri to be equal to 1 construct
from S (Equation (5)) a reduced system Si,j with n2−2n+1 variables by setting
Ri(i, j) = 1 and Ri(i, µ),Ri(η, j) = 0, for µ ∈ {1 . . . n} \ {j} and η ∈ {1 . . . n} \
{i}. Accept the guess if the system Si,j accepts at least one solution.

The main idea of our algorithm is to use Test 1 in order to eliminate variables
from the system in Equation (5) that are zero, hoping to be able to exclude
enough so that the system becomes (over)determined. Notice that Test 1 has no
guarantees of rejecting all incorrect guesses. Indeed, an incorrect guess for which
the corresponding system Si,j admits a solution (and this happens with a certain
probability depending on the parameters of the problem) will pass Test 1. On
the other hand, all correct guesses are such that Si,j admits at least one solution,
thus they always pass Test 1.

One way of checking whether Si,j accepts solutions is to use Rouché–Capelli
Theorem. Indeed, the system Si,j is of the form Ax = b, and one could simply
check whether rank(A) = rank(A|b). Alternatively, and similarly to what ob-
served by Saeed in [30, Sec. 3.7] for PCE, one could note that making a correct
guess to the monomial matrix Q is equivalent to performing a puncturing on
the corresponding column of the codes whose equivalence is determined by Q.
Hence, we have that the system Ax = b, determined by the punctured codes, ac-
cepts a solution (by construction) and must have rank smaller than the original
linear system S. Given that the rank of the coefficients matrix of S is 2k(n− k),
then we have that rank((A|b)) < 2k(n − k). This gives a practical speed-up as
it allows to save one rank computation.

The whole method is outlined in Algorithm 1.

19

Algorithm 1 Solving 2-LCE

Input: A 2-LCE instance as in Equation (4)
Output: A monomial matrix R solution to Equation (4) or ⊥
1: Construct the linear system S given by Equation (5)
2: Set g = [g1, . . . , gn] such that gi is an empty list
3: for i := 1 to n do ▷ loop over rows
4: for j := 1 to n do ▷ loop over columns
5: if Test 1 passes then
6: Append j to the list gi
7: end if
8: end for
9: end for
10: Construct the linear system Sred obtained by substituting Qi,j = 0 in S for each

i := 1, . . . , n and j ̸∈ gi
11: if Sred is underdetermined then
12: Return ⊥
13: end if
14: Compute a solution matrix R of the linear system Sred

15: Return R

Notice that, when Algorithm 1 succeeds, it returns an equivalent solution (a
multiple) to the original secret matrix Q.

Analysis of Algorithm 1 Let gi be the list of guesses that pass Test 1 in
Algorithm 1, for each ith row of Ri. Let us fix i and j, and consider the linear
system Si,j from Test 1. Let

Si,j = {Si,j | for every M ,N ∈ Fk×(n−k)
q }.

Since Q is fixed, M ′ and N ′ are completely determined by M and N . Then, the
size of Si,j is bounded by all possibilities for M and N , that is #Si,j ≤ q2k(n−k).

For our analysis, we consider the following.

Assumption 3 Given the system S, for any indexes i and j, the reduced system
Si,j is distributed uniformly at random over Si,j.

We give the success condition and the time and memory complexities of Algo-
rithm 1 in Theorem 1.

Theorem 1. Let n, k ∈ N be such that k = n/2 and n > 2, and let q be a prime
such that

q ≥ 3n− 4

n− 2
.

Under Assumption 1 and Assumption 3, we have that Algorithm 1 solves 2-LCEn,k,q

in polynomial time and memory with overwhelming probability.

20

Proof. We determine the complexity of Algorithm 1 with the given constraints
on the parameters. Because the pair of LCE samples are random, the constructed
system S has maximum rank with overwhelming probability (see Section 3). The
cost for calculating the rank of the coefficient matrix of the reduced system Si,j
and of its augmented matrix is O(n2ω) field operations for every i, j, resulting
in a total of O(n2+2ω). We compute the probability that Si,j has non-maximum
rank, i.e., that Test 1 is accepted, as follows.

Pr (Test 1 is accepted) = Pr
(
Si,j

$←− Si,j has rank smaller than 2k(n− k)
)

=
q2k(n−k)−1 + q2k(n−k)−2 + · · ·+ q2 + q

q2k(n−k)

=
1

q
+

1

q2
+ · · ·+ 1

q2k(n−k)−2
+

1

q2k(n−k)−1

=
q2k(n−k) − q

(q − 1)q2k(n−k)
.

For k = n
2 , we have that

Pr (Test 1 is accepted) =
q

n2

2 − q

(q − 1)q
n2

2

= (1− ϵ(n))
1

q − 1
,

for some negligible ϵ(n). Test 1 always accepts the guess corresponding to the
right solution which reduces the rank of Si,j by construction. The list gi in Al-
gorithm 1 contains the accepted guesses, and its expected size #gi is

1 + (n− 1)Pr(Test 1 is accepted) = 1 + (1− ϵ(n))
n− 1

q − 1
.

Thus, for every row i, we reduce the amount of variables Qi,1, . . . ,Qi,n from n
to #gi. The expected number of variables

∑n
i=1 #gi of Sred is

(
1 + (1− ϵ(n))

n− 1

q − 1

)
n <

(
1 +

n− 1

q − 1

)
n ≤

(
1 +

(n− 1)(n− 2)

2(n− 1)

)
n = n2/2.

Hence, we have that the system Sred with n2/2 equations is overdetermined
with overwhelming probability, and so it has a unique solution by construction.
The cost of solving such a system is O(n2ω). Therefore, Algorithm 1 runs in
polynomial time complexity

O(n2+2ω + n2ω) = O(n2+2ω),

and has a memory complexity of O(n4) field elements. ⊓⊔

Remark 2. Algorithm 1 is highly parallelizable since all n2 guesses can be eval-
uated independently.

Remark 3. The success condition q ≥ 3n−4
n−2 in Theorem 1 translates to q > 3,

for n ≥ 4, covering all cryptographic relevant values of q and n.

21

4.2 A polynomial-time algorithm for solving ILCE for k = n/2

In this section, we show how to solve ILCE in polynomial time, for certain pa-
rameters sets. Consider a monomial matrix Q and the ILCE instance (G =
(Ik M),G′ = SF(GQ),G′′ = SF(GQ−1)), where

(
G = (Ik M), G′ = (Ik M ′), G′′ = (Ik M ′′)

)
(6)

for some M ,M ′,M ′′ ∈ Fk×(n−k)
q . From this, we apply Lemma 3 to the above

ILCE instance to get the linear system S given by Equation (3). Notice that the
2k(n−k)×n2 system in Equation (3) is likely to have full rank when the matrices

M and N are uniformly random over Fk×(n−k)
q (see Proposition 1). The main

idea here is to adapt Algorithm 1 for finding a matrix R ∈ Monon(Fq) such that
G′ = SF(GR) and G′′ = SF(GR−1).

An ILCE instance takes the form of a 2-LCE (see Equation (4)) instance as
(G1 = G,G′

1 = G′) and (G2 = G′′,G′
2 = G). However, such a 2-LCE instance

is not expected to be uniformly distributed in the set Si,j (this is because N is
determined by M in this scenario). Nevertheless, we can still model the ILCE
instance similarly to the 2-LCE scenario, with the difference that the set Si,j is
replaced by another set. Consider the following set

S ′i,j = {system given by Equation (3) |M ′,M ′′ ∈ Fk×(n−k)
q },

whose size is also upper bounded by q2k(n−k), and the following assumption.

Assumption 4 Given the system S, for any indexes i and j, the reduced system
Si,j is distributed uniformly at random over S ′i,j.

Hence, we have the following theorem that gives conditions for ILCE to be
solved in polynomial time.

Theorem 2. Let n, k ∈ N be such that k = n/2 and n > 2, and let q be a prime
such that

q ≥ 3n− 4

n− 2
.

Under Assumption 2 and Assumption 4, we have that there exists an algorithm
that solves ILCEn,k,q in polynomial time and memory with overwhelming proba-
bility.

Proof. It follows analogous arguments as in the proof of Theorem 1. ⊓⊔

4.3 Implications for self-dual codes, 2-PCE, and IPCE instantiations

Since PCE is a particular case of LCE, we obtain that the above results can be
carried for IPCE and 2-PCE. One should note that, for random instances, PCE
can be solved in polynomial time using the Support Splitting Algorithm [33].

22

Moreover, if we restrict to the case of trivial hulls, the algebraic approach pro-
posed by Saeed [30] gives a practical algorithm to find the permutation between
the two codes. However, cryptographic relevant instantiations of PCE concerning
self-dual codes remain secure since both algorithms from [33,30] have an expo-
nential running time concerning the hull dimension (for example the use of PCE is
suggested in order to reduce signature sizes in [4,26]). Nevertheless, Theorems 1
and 2 are unaffected by the dimension of the hull.

Comparison with Saeed’s algorithm: Due to the structure of the secret permu-
tation, the strategy presented for LCE can be refined adding some linear equa-
tions leading to an alternative algorithm solving PCE in the case of trivial hulls.

For a fixed permutation matrix P , let G and G′ such that M ∈ Fk×(n−k)
q ,

G = (Ik M) ∈ Fk×n
q and G′ = SF(GP). Notice that P−1 = P⊤ since

P ∈ Permn(Fq), and thus G = SF(G′P−1) = SF(G′P⊤) also holds.
Now, from [30, Corollary 3.2.13] follows that we can build the following sys-

tem of 2k(n− k) linear equations in the n2 variables Pi,j :

[
(Ik M)⊗ (−M ′⊤ In−k)

(−M⊤ In−k)⊗ (Ik M ′)

]
vec(P) =

[
0
0

]
, (7)

One can observe that the system in Equation (7) has rank 2k(n − k) for codes
with trivial hull. Additionally, one can add some extra linear equations to the
systems Equation (7). The permutation P satisfies that the sum of each row
(resp. column) must give one. That observation gives 2n sparse linear equations
in the n2 variables Pi,j ; however, we can only select 2n−1 of them to ensure linear
independence. In other words, we get 2n− 1 sparse linear equations represented
in Equation (8) (see [30, Proposition 3.2.21]),[

In ⊗ 1⊤
n

1⊤
n ⊗ In

]
vec(P) =

[
1n

1n

]
, (8)

where 1n denotes the 1× n matrix with each entry equals to one.
In this way, we have enough independent linear equations with just one sam-

ple using the same strategy from Section 4.1. Like in [30], we get an algorithm
that solves PCE in polynomial time for codes with trivial hull. More precisely,
in this setting, our algorithm coincides with the algebraic algorithm proposed
in [30, Sec. 3.7] for solving the PCE problem. In other words, our algorithm
extends Saeed’s algebraic method from solving PCE to solving 2-LCE and ILCE.

5 Experiments and Cryptographic Implications

5.1 Experiments

We support our results presented in Lemmas 2 and 3, Corollaries 1 and 3 and
Theorems 1 and 2 with extensive experiments and simulations performed by

23

means of a SageMath [35] proof-of-concept implementation. All scripts are avail-
able in [12].

To better illustrate the impact of the results from Section 4, we start by
giving a comparison between the estimated asymptotic complexities of LCE ac-
cording to [2], and 2-LCE, and ILCE cording to Theorems 1 and 2. We follow
the parameter sets from [2], ensuring 128, 192, and 256 security bits for LCE
under the current most efficient algorithms for solving it. On the other hand,
the estimations from Theorems 1 and 2 imply a security of 2-LCE and ILCE of
around 60-70 security bits for the same parameter sets (see Table 1).

We perform intensive experiments to corroborate the lesser security bits for
2-LCE and ILCE compared to LCE. We take into consideration the following
observation on the parameter set from [2]:

– 128 bits: n = 252 and q = 127 satisfies q ≈ n/2,
– 192 bits: n = 400 and q = 127 satisfies q ≈ n/3, and
– 256 bits: n = 548 and q = 127 satisfies q ≈ n/4.

On that basis, we center our experiments on the following parameter set:
n ∈ [32, 40, 48, 64, 72, 80, 96, 128], k = n/2, and q ∈ [n/2, n/3, n/4, 127]. Essen-
tially, we tackle 30–50 bits of security for LCE; such a complexity estimation is
based on the analysis presented in [2]. Table 3 presents the time and memory
measurements of our experiments performed on a 2.45 GHz AMD EPYC 7763
64-core Processor machine with 1T of RAM running Ubuntu 22.04.2 LTS. Our
implementation employs parallelization per row; more precisely, it runs n pro-
cessors in parallel, and the jth processor has the task of computing the rank of
Si,j . Consequently, that parallelization approach gives a factor of n times faster,
but the memory increases by the same factor (i.e., it is n times bigger). We use
the multiprocessing Python package for the parallelization and the tracemalloc
Python module to measure the memory usage. In addition, for each parameters
set considered, Table 3 reports a comparison of the expected number of variables
in Sred against the average obtained in our experiments. This comparison serves
to illustrate that our experimental findings align with the analysis presented in
the proof of Theorem 1.

To highlight the polynomial time (and polynomial memory) complexity, we
interpolate the first and the last measurements for the memory and runtime
columns from Table 3, with the corresponding asymptotic estimations O(n5)
and O(n1+2ω) for ω = log2(7). Figure 1 illustrates that the experimental mea-
surements fit well with the theoretical estimations.

It is worth highlighting that our analysis does not assume anything about
the hull dimension of the codes. In fact, our results hold for any codes (even for
self-dual codes), assuming the conditions from Theorem 1 hold. In particular,
we add some small examples (with n =∈ {16, 24, 28}, k = 8, and q = 7) in
the provided implementation, showing that our results also work for self-dual
codes 8.

7 More extensive experiments will be reported in the full version of the submission
8 Such experiments test Algorithm 1 with the self-dual codes from [19,18]

24

n q Expected
vars in Sred

Measured
vars in Sred

Memory Runtime

32

7 198 170 1.00 GB 59.32 sec
11 132 116 1.01 GB 57.37 sec
17 94 91 1.01 GB 58.69 sec
127 40 39 1.04 GB 57.49 sec

40

11 196 185 2.54 GB 2 min 48s
13 170 166 2.54 GB 2 min 48s
19 127 121 2.55 GB 2 min 49s
127 53 50 2.56 GB 2 min 49s

48

13 236 224 5.33 GB 7 min 13s
17 189 184 5.32 GB 7 min 12s
23 151 151 5.33 GB 7 min 11s
127 66 64 5.33 GB 7 min 10s

64

17 316 292 16.96 GB 33 min 57s
23 248 255 16.95 GB 33 min 37s
31 199 203 16.97 GB 33 min 38s
127 96 99 16.96 GB 33 min 59s

72

19 356 348 27.18 GB 1h 05 min
23 305 298 27.20 GB 1h 04 min
37 214 224 27.19 GB 1h 04 min
127 113 115 27.20 GB 1h 04 min

80

19 432 397 41.47 GB 1h 59 min
29 306 295 41.47 GB 1h 59 min
41 238 235 41.48 GB 1h 59 min
127 131 129 41.47 GB 1h 59 min

96

23 511 486 85.82 GB 5h 52 min
31 400 368 85.82 GB 5h 49 min
47 295 294 85.82 GB 5h 50 min
127 169 172 85.82 GB 5h 50 min

128

31 670 604 271.78 GB 1d 18h 43m
43 516 522 271.78 GB 1d 09h 36m
61 399 380 271.80 GB 1d 10h 48m
127 258 246 271.81 GB 1d 14h 24m

Table 3: The data corresponds to the average of solving ten random 2-LCE in-
stances, except for n ∈ {96, 128}, corresponding with a single random instance 7.
The third and fourth columns present the theoretical expected number of vari-
ables of Sred, and the average of the observed values, respectively.

25

32 48 64 80 96 112 128
0
24
48
72
96
120
144
168
192
216
240
264

Code length (n)

M
em

o
ry

(g
ig
a
b
y
te
s)

Algorithm 1

O(n5)

32 48 64 80 96 112 128
0

256

512

768

1,024

1,280

1,536

1,792

2,048

2,304

Code length (n)

R
u
n
ti
m
e
(m

in
u
te
s)

Algorithm 1

O(n1+2ω)

Fig. 1: The data corresponds with the parameter set with q = 127. The experi-
ments employ parallelization per row, which increases the memory (and decreases
the runtime) by a factor of n. In the above two plots, we interpolate the first and
the last measurements for the memory and runtime columns from Table 3, with
the corresponding asymptotic estimations O(n5) and O(n1+2ω) for ω = log2(7).
In particular, the curves in red ink color correspond to memory(x) = ax5+b and
time(x) = a′x1+2 log2(7) + b′ for some real (positive) numbers a, a′, b, b′ ∈ R.

5.2 Cryptographic implications

On the impact on ILCE-based linkable signatures: In [4], the authors stated that
if the ILCE problem were proved to be safe, all the necessary linkable proper-
ties would be satisfied, thus building a secure linkable ring signature scheme.
Nevertheless, as a direct consequence of Section 4.2, we have that any linkable
signature relying on the hardness of the ILCE problem is insecure, when the
conditions from Theorem 2 are satisfied.

On the impact on 2-LCE-based threshold signatures: The authors of [6] intro-
duced the 2-LCE problem in the group action framework [6, Problem 3] and em-
phasized constructions for 2-weakly pseudorandom scenarios. Specifically, they
proposed a threshold signature based on the 2-weakly pseudorandom construc-
tions built on top of the LCE and MCE problems. Nevertheless, as another conse-
quence of Theorem 1, we show that Definition 11 when instantiated with group
action based on LCE does not achieve the pseudorandomness property as we can
use Algorithm 1 to recover the secret, which breaks the unpredictability as well
as the pseudorandomness of the group action. Therefore, the threshold signature
instantiations with LESS from [4, Sec. 5.3] become insecure when k = n/2.

Possible other implications: It is true that the analysis from Sections 3 and 4
centers on the systematic form, but all the analysis easily extends to any specific
code form. As we take advantage of the use of the systematic form, our results

26

could further benefit from the canonical forms analyzed in [26] and [15], and
they could be applied even in those cases. In fact, the canonical forms allow the
transmission of less information about the secret monomial Q, encoding it in
how the code is represented. Hence, fewer unknowns could be used to represent
Q. Further analysis is required, and we leave this as a future work.

Acknowledgments

Giuseppe D’Alconzo and Antonio J. Di Scala are members of GNSAGA of IN-
dAM and of CrypTO, the group of Cryptography and Number Theory of the
Politecnico di Torino.

The work of Antonio J. Di Scala was partially supported by the QUBIP
project (https://www.qubip.eu), funded by the European Union under the Hori-
zon Europe framework programme [grant agreement no. 101119746].

This work was partially supported by project SERICS (PE00000014) under
the MUR National Recovery and Resilience Plan funded by the European Union
– NextGenerationEU.

We would also like to thank Ricardo Pontaza for his helpful insights and
discussions which helped us improve the analysis of our techniques.

References

1. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai and Wang [22], pp. 411–439. https://doi.org/
10.1007/978-3-030-64834-3 14

2. Baldi, M., Beckwith, A.B.L., Biasse, J.F., Esser, A., Gaj, K., Mohajerani, K.,
Pelosi, G., Persichetti, E., Saarinen, M.J.O., Santini, P., Wallace, R.: LESS (version
1.1). Tech. rep., National Institute of Standards and Technology (2023), https:
//www.less-project.com/

3. Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation Code Equivalence is Not
Harder Than Graph Isomorphism When Hulls Are Trivial. In: 2019 IEEE In-
ternational Symposium on Information Theory (ISIT). pp. 2464–2468 (2019).
https://doi.org/10.1109/ISIT.2019.8849855

4. Barenghi, A., Biasse, J., Ngo, T., Persichetti, E., Santini, P.: Advanced sig-
nature functionalities from the code equivalence problem. International Jour-
nal of Computer Mathematics: Computer Systems Theory 7(2), 112–128 (2022),
https://doi.org/10.1080/23799927.2022.2048206

5. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational hard-
ness of the code equivalence problem in cryptography. Advances in Mathematics
of Communications 17(1), 23–55 (2023), https://doi.org/10.3934/amc.2022064

6. Battagliola, M., Borin, G., Meneghetti, A., Persichetti, E.: Cutting the GRASS:
Threshold GRoup Action Signature Schemes. Cryptology ePrint Archive, Paper
2023/859 (2023), https://eprint.iacr.org/2023/859

7. Beullens, W.: Not enough LESS: An improved algorithm for solving code equiv-
alence problems over Fq. In: International Conference on Selected Areas in Cryp-
tography. pp. 387–403. Springer (2020), https://doi.org/10.1007/978-3-030-81652-
0 15

27

https://www.qubip.eu
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://www.less-project.com/
https://www.less-project.com/
https://doi.org/10.1109/ISIT.2019.8849855
https://doi.org/10.1109/ISIT.2019.8849855
https://doi.org/10.1080/23799927.2022.2048206
https://doi.org/10.3934/amc.2022064
https://eprint.iacr.org/2023/859
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15

8. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.F., Pintore, F.: Group signatures
and more from isogenies and lattices: Generic, simple, and efficient. In: Dunkelman,
O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 95–
126. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-
07085-3 4

9. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai and Wang [22], pp.
464–492. https://doi.org/10.1007/978-3-030-64834-3 16

10. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT
20. LNCS, vol. 12174, pp. 45–65. Springer, Heidelberg (Jul 2020). https://doi.org/
10.1007/978-3-030-51938-4 3

11. Budroni, A., Benčina, B., Chi-Domı́nguez, J.J., Kulkarni, M.: Properties of lat-
tice isomorphism as a cryptographic group action. Cryptology ePrint Archive, Pa-
per 2023/1093 (2023), https://eprint.iacr.org/2023/1093, https://eprint.iacr.org/
2023/1093

12. Budroni, A., Chi-Domı́nguez, J.J., D’Alconzo, G., Di Scala, A.J., Kulkarni, M.:
relaxed-lce-algorithms, available at https://github.com/JJChiDguez/relaxed-
lce-algorithms.git

13. Chou, T., Niederhagen, R., Persichetti, E., Ran, L., Hajatiana, T., Reijnders, K.,
Samardjiska, S., Trimoska, M.: MEDS (version 1.1). Tech. rep., National Institute
of Standards and Technology (2023), https://www.meds-pqc.org/

14. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your MEDS: digital signatures from matrix
code equivalence. In: Mrabet, N.E., Feo, L.D., Duquesne, S. (eds.) Progress in
Cryptology - AFRICACRYPT 2023 - 14th International Conference on Cryptology
in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings. Lecture Notes in Com-
puter Science, vol. 14064, pp. 28–52. Springer (2023). https://doi.org/10.1007/978-
3-031-37679-5 2

15. Chou, T., Persichetti, E., Santini, P.: On Linear Equivalence, Canonical Forms,
and Digital Signatures. Cryptology ePrint Archive, Paper 2023/1533 (2023), https:
//eprint.iacr.org/2023/1533

16. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006), https://eprint.iacr.org/2006/291

17. D’Alconzo, G., Di Scala, A.J.: Representations of Group Actions and their Ap-
plications in Cryptography. Cryptology ePrint Archive, Paper 2023/1247 (2023),
https://eprint.iacr.org/2023/1247

18. Gaborit, P., Otmani, A.: TABLES OF SELF-DUAL CODES, available at https://www.
unilim.fr/pages perso/philippe.gaborit/SD/

19. Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite
Fields and Their Applications 9(3), 372–394 (2003). https://doi.org/https://doi.
org/10.1016/S1071-5797(03)00011-X

20. Kazmi, R.A.: Cryptography from post-quantum assumptions. Cryptology ePrint
Archive, Report 2015/376 (2015), https://eprint.iacr.org/2015/376

21. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans-
actions on Information Theory 28(3), 496–511 (1982), https://doi.org/10.1109/
TIT.1982.1056498

22. Moriai, S., Wang, H. (eds.): ASIACRYPT 2020, Part II, LNCS, vol. 12492.
Springer, Heidelberg (Dec 2020)

28

https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://eprint.iacr.org/2023/1093
https://eprint.iacr.org/2023/1093
https://eprint.iacr.org/2023/1093
https://github.com/JJChiDguez/relaxed-lce-algorithms.git
https://github.com/JJChiDguez/relaxed-lce-algorithms.git
https://www.meds-pqc.org/
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2023/1247
https://www.unilim.fr/pages_perso/philippe.gaborit/SD/
https://www.unilim.fr/pages_perso/philippe.gaborit/SD/
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://doi.org/https://doi.org/10.1016/S1071-5797(03)00011-X
https://eprint.iacr.org/2015/376
https://doi.org/10.1109/TIT.1982.1056498
https://doi.org/10.1109/TIT.1982.1056498

23. National Institute of Standards and Technology: Post-Quantum Cryptogra-
phy Standardization. https://csrc.nist.gov/projects/post-quantum-cryptography
(2017)

24. National Institute of Standards and Technology: Post-quantum cryptography: Dig-
ital signature schemes. Round 1 Additional Signatures (2023), https://csrc.nist.
gov/Projects/pqc-dig-sig/round-1-additional-signatures

25. Persichetti, E., Randrianariso, T.H., Santini, P.: An attack on a non-interactive
key exchange from code equivalence. Tatra Mountains Mathematical Publications
82(2), 53–64 (2023), https://doi.org/10.2478/tmmp-2022-0018

26. Persichetti, E., Santini, P.: A New Formulation of the Linear Equivalence Problem
and Shorter LESS Signatures. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryp-
tology – ASIACRYPT 2023. pp. 351–378. Springer Nature Singapore, Singapore
(2023), https://doi.org/10.1007/978-981-99-8739-9 12

27. Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Transactions on
Information Theory 43(5), 1602–1604 (1997), https://doi.org/10.1109/18.623157

28. Pham, M.T.T., Duong, D.H., Li, Y., Susilo, W.: Threshold ring signature scheme
from cryptographic group action. In: Zhang, M., Au, M.H., Zhang, Y. (eds.) Prov-
able and Practical Security. pp. 207–227. Springer Nature Switzerland, Cham
(2023), https://doi.org/10.1007/978-3-031-45513-1 12

29. Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness Estimates of the Code
Equivalence Problem in the Rank Metric. Designs, Codes and Cryptography pp.
1–30 (01 2024). https://doi.org/10.1007/s10623-023-01338-x

30. Saeed, M.A.: Algebraic Approach for Code Equivalence. Ph.D. thesis, Nor-
mandie Université, University of Khartoum, (2017), Available at https://theses.
hal.science/tel-01678829v2

31. Santini, P., Baldi, M., Chiaraluce, F.: Computational hardness of the permuted
kernel and subcode equivalence problems. Cryptology ePrint Archive, Report
2022/1749 (2022), https://eprint.iacr.org/2022/1749

32. Sendrier, N.: On the dimension of the hull. SIAM Journal on Discrete Mathematics
10(2), 282–293 (1997), https://doi.org/10.1137/S0895480195294027

33. Sendrier, N.: Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203
(2000). https://doi.org/10.1109/18.850662

34. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its applica-
tion to code-based cryptography. In: Gaborit, P. (ed.) Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013. pp. 203–216. Springer Heidelberg
(June 2013), https://doi.org/10.1007/978-3-642-38616-9 14

35. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.8) (2023), https://www.sagemath.org

29

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.2478/tmmp-2022-0018
https://doi.org/10.1007/978-981-99-8739-9_12
https://doi.org/10.1109/18.623157
https://doi.org/10.1007/978-3-031-45513-1_12
https://doi.org/10.1007/s10623-023-01338-x
https://doi.org/10.1007/s10623-023-01338-x
https://theses.hal.science/tel-01678829v2
https://theses.hal.science/tel-01678829v2
https://eprint.iacr.org/2022/1749
https://doi.org/10.1137/S0895480195294027
https://doi.org/10.1109/18.850662
https://doi.org/10.1109/18.850662
https://doi.org/10.1007/978-3-642-38616-9_14

	Don't Use It Twice! Solving Relaxed Linear Code Equivalence Problems

