
Divide and Surrender:
Exploiting Variable Division Instruction Timing in

HQC Key Recovery Attacks
Robin Leander Schröder1,2, Stefan Gast3 and Qian Guo4

1 Fraunhofer SIT, Darmstadt, Germany, leander.schroeder@sit.fraunhofer.de
2 Fraunhofer Austria, Vienna, Austria, leander.schroeder@fraunhofer.at

3 Graz University of Technology, Graz, Austira, stefan.gast@iaik.tugraz.at
4 Lund University, Lund, Sweden, qian.guo@eit.lth.se

Abstract. We uncover a critical side-channel vulnerability in the Hamming Quasi-
Cyclic (HQC) round 4 optimized implementation arising due to the use of the modulo
operator. In some cases, compilers optimize uses of the modulo operator with
compile-time known divisors into constant-time Barrett reductions. However, this
optimization is not guaranteed: for example, when a modulo operation is used in a
loop the compiler may emit division (div) instructions which have variable execution
time depending on the numerator. When the numerator depends on secret data, this
may yield a timing side-channel. We name vulnerabilities of this kind Divide and
Surrender (DaS) vulnerabilities.
For processors supporting Simultaneous Multithreading (SMT) we propose a new
approach called DIV-SMT which enables precisely measuring small division timing
variations using scheduler and/or execution unit contention. We show that using
only 100 such side-channel traces we can build a Plaintext-Checking (PC) oracle with
above 90% accuracy. Our approach may also prove applicable to other instances of the
DaS vulnerability, such as KyberSlash. We stress that exploitation with DIV-SMT
requires co-location of the attacker on the same physical core as the victim.
We then apply our methodology to HQC and present a novel way to recover HQC
secret keys faster, achieving an 8-fold decrease in the number of idealized oracle
queries when compared to previous approaches. Our new PC oracle attack uses our
newly developed Zero Tester method to quickly determine whether an entire block of
bits contains only zero-bits. The Zero Tester method enables the DIV-SMT powered
attack on HQC-128 to complete in under 2 minutes on our targeted AMD Zen2
machine.
Keywords: Post-quantum cryptography · code-based cryptography · HQC ·
plaintext-checking oracle · timing side-channel attack

1 Introduction
The rise of quantum computing presents a grave threat to current cryptographic infras-
tructures, primarily based on problems like factoring and discrete logarithms. Shor’s
algorithm [Sho94], in particular, significantly compromises these security foundations. In
response, the National Institute of Standards and Technology (NIST) initiated a process in
2016 to identify and standardize quantum-resistant public-key cryptographic algorithms,
focusing on developing new standards for Key Encapsulation Mechanism (KEM) and digital
signatures. This initiative drew a robust response from the cryptographic community
and after thorough review and feedback, NIST endorsed CRYSTALS-Kyber [SAB+22] as
the primary KEM algorithm and CRYSTALS-Dilithium [LDK+22], FALCON [PFH+22],

mailto:leander.schroeder@sit.fraunhofer.de
mailto:leander.schroeder@fraunhofer.at
mailto:stefan.gast@iaik.tugraz.at
mailto:qian.guo@eit.lth.se

2
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

and SPHINCS+ [HBD+22] as key digital signature algorithms. This initiative marks
a significant shift towards securing cryptographic practices against emerging quantum
computing threats.

One notable aspect of NIST’s selection is its emphasis on lattice-based algorithms
like CRYSTALS-Kyber, CRYSTALS-Dilithium, and FALCON, reflecting a preference for
lattice-based cryptography. However, to ensure a robust cryptographic future, NIST also
prioritizes diversity in cryptographic solutions, hence its ongoing round 4 selection process
included non-lattice-based KEM algorithms. This phase spotlighted code-based KEMs such
as Classic McEliece [ABC+22], HQC [AAB+22], and BIKE [ABB+22], alongside a now
broken isogeny-based KEM, SIKE [JAC+22]. Among these, the HQC proposal [AMBD+18,
AGZ20, AAB+22], based on hard decoding problems in coding theory, emerges as a
promising candidate [AAC+22].

Given HQC’s potential for NIST standardization, an immediate and critical focus must
be directed towards scrutinizing HQC’s security claims. Specifically, secure implementation
strategies for HQC on various real-world platforms warrant exhaustive study.

Numerous studies, such as [WTBB+19, PT19, BDH+19, GJ20, GJN20, XIU+21,
SHR+22, GLG22, GHJ+22, HSC+23], have extensively explored HQC’s security and im-
plementation aspects, adopting a dynamic attack-and-fix methodology throughout NIST’s
initial evaluation rounds. The fourth-round HQC submission includes a single implementa-
tion claimed to be constant-time, suggesting resilience against timing attacks [Koc96]—a
type of attack that leverages variations in execution time to compromise security. As
constant-time implementation is a critical aspect in cryptographic libraries, it is a fasci-
nating research challenge to either validate this security claim or identify a more efficient
attack strategy for potent key-recovery attacks.

In our paper, we identify a novel timing side-channel vulnerability in the implementation
for HQC, originating from division operations that are not constant-time. This vulnera-
bility enables an efficient key recovery timing attack against the claimed constant-time
implementation in the designers’ round 4 submission to NIST. This makes HQC one of the
few known cases where division instructions are used in a cryptosystem with secret inputs
and cause an exploitable timing difference. We call these vulnerabilities instances of the
DaS vulnerability. Other instances are a potential fix for the Lucky13 attack [Lan04] and
KyberSlash [Ber23, GTS23]. In KyberSlash similar code structure causes the compiler to
emit div instructions where constant-time code could have been generated.

Our approach builds on the established PC oracle-based side-channel attacks, creating
a PC oracle that verifies if a particular ciphertext c decrypts to a given message m.
This type of attack can be traced back to the reaction attack, initially introduced by
Hall et al. in 1999 [HGS99]. Furthermore, this attack methodology has found broad
applicability in the realm of post-quantum cryptography, as evidenced by works such
as [GJS16, FHS+17, RRCB20, QCZ+21, NDGJ21, WPH+22], and is applicable to various
side-channels such as timing, cache timing, power, and electromagnetic radiation, provided
the side-channel leakage is sufficient to construct a PC oracle.

We develop the desired PC oracle using a novel side-channel, called DIV-SMT, which
originates from integer modulo operations in some SMT processors such as AMD Zen+/Zen2
processors.

On the x86-64 instruction set architecture, implemented by the AMD Zen+/Zen2
processors, the div instruction is used to calculate both, the quotient and the modulo of
the two operands. Hence, divisions and modulo operations in the source code are usually
both compiled to div instructions. Compiler optimizations eliminate the div instructions
in some cases. Specifically, with a divisor known at compile time, the GCC compiler might
apply Barrett Reduction [Bar87] as an optimization. However, as we show in Section 4,
this reduction is sometimes not performed, even if it would be possible.

In these widely deployed high-end processors, varying numerator and divisor sizes in

Robin Leander Schröder, Stefan Gast and Qian Guo 3

integer divisions can result in single cycle execution time differences. Exploiting such small
timing differences is non-trivial and the div instructions only make up a small part of
a complete decapsulation in the HQC cryptosystem. Further, advanced CPU features
like out-of-order execution can render timing measurement more challenging. Thus, the
SMT context becomes crucial here, allowing the attacker and victim threads to run on
the same physical core with shared caches, execution units, and schedulers. This setup
can create contention on execution units [ABuH+18] or schedulers [GJS+23], enabling an
adversary to detect when a co-located program executes a specific instruction, such as a
multiplication or a division.

In contrast to these prior works, which attacked non-constant-time ECDSA and RSA
implementations by detecting the points in time when specific instructions are executed
through a timing side channel, our novel approach infers information about the numerators
for the same division instruction. Our attack highlights a serious security risk in the
HQC implementation submitted to NIST that claims to be constant-time. The claimed
constant-time property is crucial for the safe integration of HQC into real-world libraries.

While avoiding non-constant-time instructions is a standard practice in constant-time
implementations, division operations in modern high-end CPUs have previously seen
little cryptographic research attention due to the lack of documented vulnerabilities and
exploits resulting from their timing behavior. To our knowledge, our research presents
the first key-recovery attack that clearly demonstrates the potential of exploiting this
vulnerability on current, SMT enabled CPUs. Thus, our methodology of distinguishing
different numerators in an SMT environment can offer valuable insights for security
assessments beyond attacking HQC.

In December 2023, a vulnerability related to the use of modulo operations, potentially
compiling into div instructions, was independently identified in the CRYSTALS-Kyber
reference implementation by Bernstein [Ber23] and by Tamvada, Kiefer, and Bharga-
van [GTS23]. The CRYSTALS-Kyber design team has acknowledged and purportedly
rectified this issue. These groups did not present an attack strategy for exploiting this
vulnerability in high-end modern CPUs, but their discoveries highlight the broad relevance
and impact of our innovative attack methodology in the SMT context, as we deem it
likely that our DIV-SMT methodology can also be used to exploit KyberSlash vulnerable
implementations of Kyber.

Utilizing the PC oracle derived from the DIV-SMT side-channel, we further advance
our research by developing a methodology that significantly reduces the number of PC
oracle queries needed to extract HQC’s secret key. This new approach holds significance
beyond the newly discovered timing attack exploiting the DaS vulnerability for two main
reasons. First, it relies on a PC oracle that can be built from various side-channel leakages.
This versatility makes it suitable for a broad spectrum of PC oracle-based side-channel
attacks on HQC, thus widening its applicability beyond just timing attacks. Second, since
interacting with the oracle is often the primary bottleneck in such attacks, optimizing
oracle calls is crucial for efficiency in most of real-world attack scenarios.

We introduce a new technique called Zero Tester for efficiently identifying through
PC oracle calls whether a consecutive block, referred to as an ‘inner block’ in HQC’s
coding scheme, consists solely of zero-bits. Through the integration of this method with a
shifting strategy, we have the capacity to pinpoint numerous zero-bit’s positions inside
the secret vector using few queries. This method significantly decreases the speed of
full key recovery: Given that the public key already provides n linear equations for the
2n unknowns in HQC’s secret key, identifying approximately n out of 2n unknown zero
positions is sufficient.
Summary of Contributions. Our core contributions are:

• We unveil a novel timing side-channel vulnerability in the supposedly constant-time
optimized reference implementation of the HQC round 4 submission to NIST, which

4
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

Table 1: Comparison of our attack to previous works. The reported number of idealized
oracle calls required for HQC-128 key-recovery is shown.

Work Oracle Calls
GHJLNS22 [GHJ+22] 866 143
SHRWS22 [SHR+22] >50 000
HSCGJ23 [HSC+23] >50 000
SCA-LDPC[GNNJ23] 10 000
Our Work 1 142

is an instance of the vulnerability class named Divide and Surrender (DaS).
• We propose a new practical exploitation strategy of division timing variance through

the use of DIV-SMT side-channels in SMT processors. By leveraging contention
between SMT sibling threads, we detect the execution of specific instructions (div)
and infer information about the operands processed (specifically, the count of leading
zeros in the numerands). This insight lays the groundwork for creating a Plaintext-
Checking (PC) oracle, enabling us to execute a key-recovery timing attack.

• We propose a novel key-recovery method for HQC using the PC oracle, significantly
reducing the required number of side-channel traces. A detailed comparison with
prior studies for HQC-128 key-recovery is presented in Table 1. We conduct extensive
simulations to investigate the efficacy of our proposed key-recovery method, employing
a simulated PC oracle across different levels of oracle accuracy. Our simulations
demonstrate a significant improvement requiring only 11% to 13% of the oracle calls
relative to the SCA-LDPC framework presented at ASIACRYPT 2023 [GNNJ23].
Notably, this gain persists even as the oracle’s accuracy decreases to 0.9.

• We demonstrate the practical applicability of our attack through evaluation on an
AMD Zen2 CPU. Out of 1000 attacks conducted, three-quarters lead to successful
full key recovery, achieving a median attack time of 111 seconds.

The artifact is available at https://github.com/hqc-attack/divide-and-surrender.
Responsible Disclosure. We disclosed the issue to the HQC design team in February
2023. However, as far as we are aware, they have not yet released a fix. Furthermore, we
disclosed the issue to the PQClean team in March 2023 [amb23]. We believe our disclosure
allowed implementers to implement a presumably constant-time free version of the vector
sampling algorithm using explicit Barrett reductions.
Outline. The rest of this paper unfolds as follows: Section 2 provides the essential
background, covering both the HQC KEM proposal and relevant aspects of CPU archi-
tectures. We present our main attack strategies in Section 3. This is followed by the
introduction of a novel PC oracle in Section 4, specifically designed to exploit a division
timing side-channel to challenge the constant-time claims of an implementation submitted
to NIST. Experimental results are reported in Section 5, followed by a comprehensive
discussion in Section 6. Section 7 draws conclusions.

2 Preliminaries
In this section, we present some preliminary background on the HQC proposal, CPU
Pipelines, and SMT.
Notations. Consider F2 as the binary finite field. The Hamming weight of a binary
vector is defined as the number of non-zero entries in the vector. In the HQC scheme, we
employ a cyclic polynomial ring R = F2[X]/(Xn−1), where n is an integer in Z. Elements
in R can be alternatively viewed as row vectors in a vector space over F2. For uniform
sampling from a set S, we utilize the notation ←$S. Specifically, ←$Rω indicates uniform

https://github.com/hqc-attack/divide-and-surrender

Robin Leander Schröder, Stefan Gast and Qian Guo 5

sampling from R of an element with a Hamming weight of ω.

2.1 HQC

HQC [AAB+22], a code-based post-quantum IND-CCA secure KEM, leverages the com-
plexity of decoding random quasi-cyclic codes in the Hamming metric for its security.
It was proposed as a KEM candidate in the fourth round of the NIST Post-Quantum
Cryptography (PQC) standardization [Cen23]. At the conclusion of the fourth round, NIST
intended to standardize a single code-based KEM primitive, either HQC or BIKE. Similar
to other NIST PQC Public Key Encryption (PKE)/KEM candidates, HQC proposal
commences with an IND-CPA version, termed HQC.CPAPKE, and subsequently introduces
an INC-CCA KEM, called HQC.CCAKEM, through a CCA transformation (HQC utilizes
the Hofheinz-Hövelmanns-Kiltz (HHK) transformation [HHK17]).

2.1.1 The PKE Version of HQC

The HQC.PKE algorithm comprises three sub-procedures: PKE.KeyGen, PKE.Encrypt,
and PKE.Decrypt. Within PKE.KeyGen, the algorithm uniformly samples three polyno-
mial elements—h, x, and y, with x and y maintaining fixed Hamming weights of w. The
secret key is designated as (x, y) and the public key as (h, s = x + h · y). PKE.Encrypt
begins by initializing the pseudo-random number generator (PRNG) with a seed θ making
the sampling process deterministic. Subsequently, the algorithm uniformly samples the
polynomials r1 and r2 from R, each possessing a Hamming weight of wr, and e with
Hamming weight we. The ciphertext is designated as c = (u, v), where u = r1 + h · r2 and
v = mG + s · r2 + e. The matrix G relies on the linear code being utilized, which we will
describe later. PKE.Decrypt employs a decoder on the input v − u · y, resulting in the
equation mG + s · r2 + e− (r1 + h · r2) · y = mG + x · r2− r1 · y + e, given that s = x + h · y.
Should the Hamming weight of the error term e′ = x · r2 − r1 · y + e be small (i.e., within
the decoding capability of the employed decoder), the decoder could correct such an error,
leading to successful decryption.

Beginning with the October 2020 release, HQC transitioned to a design incorporating
a decoding strategy that utilizes a concatenated code combining an internal duplicated
Reed-Muller (RM) code and an outer Reed-Solomon (RS) code. The resultant code
produces a publicly known generator matrix G ∈ Fk×n1n2

2 , where k = 8k1.
The specifics of the HQC parameters are detailed in Table 2. HQC computations occur

within the ambient space Fn
2 , with any remaining n− n1n2 positions of no value discarded.

The concatenated code, C, merges an internal duplicated RM code with an outer RS code.
The internal duplicated RM code possesses parameters [n2, 8, n2/2], and the outer RS code
is defined as [n1, k1, n1 − k1 + 1].

During the encoding process, a message m ∈ Fk1
28 translates into m1 ∈ Fn1

28 by the outer
Reed-Solomon code. The internal duplicated Reed-Muller code then encodes each byte m1,i

into m̄1,i ∈ Fn2
2 , where 0 ≤ i < n1. Consequently, we attain mG = (m̄1,0, · · · , m̄1,n1−1).

To decode V = v − u · y, V ∈ Fn1n2
2 is partitioned into n1 blocks, denoted as V =

(V0, · · · , Vn1−1), with each Vi ∈ Fn2
2 defined as an ‘inner block’, where 0 ≤ i < n1. Each

Vi undergoes decoding by the internal duplicated Reed-Muller code into V̄i ∈ F8
2, where

0 ≤ i < n1. Thereafter, V̄ is compiled as a string of 8n1 bits, denoted as (V̄0, · · · , V̄n1−1).
For each i ∈ [0, n1), V̄i is termed an ‘internal codeword’. It is observable that V̄ is a noisy
codeword of the outer Reed-Solomon code, which can be decoded into k1 elements over
F256 and transformed into k1 message bytes.

6
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

Table 2: The HQC parameter sets [AAB+22]. The base Reed-Muller code is the first-order
[128, 8, 64] Reed-Muller code.

RS-S Duplicated RM
Instance n1 k1 dRS Mult. n2 dRM n1n2 n ω ωr = ωe

HQC-128 46 16 31 3 384 192 17664 17669 66 75
HQC-192 56 24 33 5 640 320 35840 35851 100 114
HQC-256 90 32 49 5 640 320 57600 57637 131 149

Input: pk
Output: K, c = (u, v), d

1: m←$(Fk
2)

2: salt←$ F128
2

3: θ ← G(m∥pk∥salt)
4: c←PKE.Encrypt (pk, m, θ)
5: K ← K(m, c)

(a) KEM.Encaps

Input: sk = (x, y), c = (u, v), salt
Output: K

1: m′ ←PKE.Decrypt (sk, c)
2: θ

′ ← G(m′∥pk∥salt)
3: c

′ ←PKE.Encrypt (pk, m′, θ′)
4: if m′ =⊥ ∨ c ̸= c′ then
5: K ← K(σ, c)
6: else
7: K ← K(m′, c)

(b) KEM.Decaps

Figure 1: HQC.CCAKEM

2.1.2 The KEM Version of HQC

The HQC KEM, depicted in Figure 1, is constructed from the HQC PKE scheme using a
HHK transform. Crucially the encryption is now de-randomized and the decapsulation
performs a re-encryption step to verify the validity of the ciphertext. Additionally the
decapsulation invokes two distinct cryptographic hash functions: G and K. The seed θ
is derived from the message m, the public key and a random 128-bit salt. The seed θ
and the inputs that are used to derive it are vital to the exploitation of the scheme, as it
determines the side-channel behavior of a ciphertext (cf. Section 4).

2.2 CPU Pipelines
Modern superscalar CPUs execute multiple instructions in parallel [Fog21]. The CPU
frontend decodes instructions into micro-ops (µops) and forwards them to the backend via
a dedicated dispatch buffer. The CPU backend has multiple execution units, processing
µops in parallel. Simple µops, (e.g., additions of two registers) can typically be executed by
multiple execution units, whereas more complex µops (e.g., divisions) require a specialized
execution unit [AMD23, Int23]. The execution units are controlled by one [Int23] or multi-
ple [AMD20a, AMD20b, AMD23] schedulers that retrieve µops from the dispatch buffer
and determine which µops are ready for execution, based on their operand dependencies,
enabling out-of-order execution. The results of the executed µops become architecturally

Robin Leander Schröder, Stefan Gast and Qian Guo 7

visible after they retire in the instruction stream order.

2.3 Simultaneous Multithreading (SMT)
CPUs reach their maximum performance if they utilize all execution units simultaneously.
Usually, this is not achieved with a single instruction stream. Therefore, many modern
CPUs execute multiple instruction streams on the same core, sharing caches, execution
units and schedulers. Most Intel and AMD CPUs support two SMT threads on the same
core [Int23, AMD23]. Some Power10 CPUs can support up to 8 SMT threads per core[pow].
While this increases performance, it also enables multiple side channels [Sze19, TRVT22].
Particularly, contention on execution units [ABuH+18] or schedulers [GJS+23] enables an
adversary to observe that a co-located program executes a specific machine instruction.
This in turn allows an adversary to recover secret keys when attacking non-constant-time
ECDSA and RSA implementations [ABuH+18, GJS+23].

3 New Key-Recovery Attack
In this section, we present a novel key-recovery attack on HQC using a PC oracle. First,
we present a general description of the threat model. Next, we review several existing
attacks in this context. Finally, we detail our new method, which efficiently identifies
blocks in the secret vector that have a zero Hamming weight.

3.1 The Generic Threat Model
In our study, we investigate a side-channel-assisted chosen-ciphertext attack model targeting
HQC’s decapsulation algorithm. Here, the attacker picks specific ciphertexts and closely
observes various side-channel data emanating from the targeted device. This could include
timing, cache-timing, or even power and electromagnetic leakages. Our general threat
model posits that the attacker can construct a PC oracle Oρ

HQC from side-channel leakage.
This oracle confirms or denies whether PKE.Decrypt (sk, c) ?= m, where c represents the
ciphertext and m a message vector. We assume that the adversary can choose both the
ciphertext and the message. This oracle has an accuracy level of ρ, meaning it returns
a correct decision with a probability of ρ and an incorrect one with a probability of
1− ρ. Leveraging such an oracle, our focus shifts to methods for full secret key recovery.
Importantly, our key recovery technique is not limited to the specific types of side-channel
leakages involved.

It is important to clarify that the above framework outlines our generic threat model.
For any specific attack scenario, a more detailed threat model must be articulated, as
the adversary’s methodology for constructing the PC oracle could vary substantially
depending on the concrete attack. For instance, in Section 4.2.1, we elaborate on the
threat model pertinent to our newly identified timing attacks originating from division
timing side-channels, where both the adversary and the victim need to run in the SMT
setting.

3.2 Relevant Attacks from Generic PC Oracle
We briefly review three relevant attacks, each discussed in the following references:
[GHJ+22], [HSC+23], and [GNNJ23].

3.2.1 The Key-Recovery Attack from [GHJ+22]

In [GHJ+22], the attacker purposefully sets r1 to 1 (the multiplicative identity of R)
while ensuring both r2 and e are set to 0 (the zero vector). As a result, the foundational

8
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

ciphertext is determined as C0 = (u, v) = (1, mG). An analysis of the PKE.Decrypt
procedure reveals that v + uy = mG + y. This finding suggests that the error the decoder
must address during decryption corresponds to y, which forms the latter half of the secret
key.

Let us clarify that in our descriptions, all attack strategies operate under a common
assumption. They all presume that the decryption outcome hinges on a single inner block
decoding of the RM code. In other words, the attacks have already introduced enough
errors to push the outer RS decoding to its boundary for correct decoding.

The attacker’s strategy involves introducing additional errors in a targeted inner RM
block that push the RM decoder towards its boundary limits. If even a single bit change
alters the decryption result—without loss of generality, from a successful to a failed state—
it strongly suggests that the introduced change has increased the weight of the error. That
is, a bit in the error vector may have been flipped from 0 to 1. Once the decoding boundary
has been reached and a decoding failure occurs, they flip each bit to test if it results in a
decoding success again. If the latter happens, the bit was an error-bit with high probability.
Since all added vectors are recorded, this enables a highly probable prediction of a specific
bit in the secret y. The strategy comes at the cost of high online query complexity, as each
test of the decryption status requires a separate call to the oracle or the PKE.Decrypt
procedure with the secret key.

3.2.2 The Two-Phase Attack from [HSC+23]

In [HSC+23], Huang et al. introduced a two-phase key-recovery attack that employs the
PC oracle. The attack comprises both online and offline stages. During the online stage, the
attacker’s objective is to identify a specially crafted, invalid ciphertext c = (u, v) = (1, v)
such that adding the secret key’s y results in a decoding failure: C.Decode(v + y) ̸=
C.Decode(v). The attacker repeated a certain number of attempts to find such a ciphertext,
After multiple attempts to locate such a ciphertext, the attacker, if successful, engages
in educated guessing to discern if a weight-1 pattern explains the decoding behavior. To
enhance the likelihood of identifying the correct pattern, the attacker can repeat this
procedure. If numerous attempts yield no such ciphertext c, the conclusion is that the
inner block has a weight of 0, signifying an all-zero vector block.

Similarly, the attacker can employ this method to recover the inner blocks of x with
weight bounded by 1. Due the sparsity of the key, close to (or more than) 50% of the secret
positions are recovered. With the public key relation that x + h · y = s, the full secret key
can be recovered by Gaussian elimination or slight post-processing such as information set
decoding.

The primary advantage of this method over the key recovery method from [GHJ+22] is
that when performing educated guess for the value of one inner block of y (or x), only the
public decoder of the employed RS RM codes is used, which can be done offline without
interaction with the oracle. Thus, the online query complexity can be much lower.

3.2.3 The SCA-LDPC Framework [GNNJ23]

In [GNNJ23], the authors introduce SCA-LDPC, a generic framework grounded in coding
theory for key-recovery chosen-ciphertext side-channel attacks on lattice-based and code-
based KEMs using a PC-like oracle. When applied to HQC, this framework significantly
reduces query complexity compared to the attacks outlined in [GHJ+22] and [HSC+23].

In contrast to the other attacks, the approach in [GNNJ23] generates a low-Hamming-
weight vector hl and sets r1 = hl, while keeping r2 and e as zero vectors. Consequently,
the decryption function takes v + uy = mG + hl · y as its input. Unlike the method
in [GHJ+22], which inefficiently recovers only a single y-vector entry per PC oracle call,
the SCA-LDPC attack yields more valuable information. This is because each entry in hl ·y

Robin Leander Schröder, Stefan Gast and Qian Guo 9

is much closer to a uniformly distributed bit, increasing the amount of information gained
from each oracle interaction. Further, due to the low-Hamming-weight characteristic of hl,
we can generate a Low-Density Parity-Check (LDPC) code and deploy iterative decoding
techniques to effectively recover the sparse secret vector y.

It is worth emphasizing that the attacks from both [HSC+23] and [GNNJ23] leverage
the extreme sparsity of HQC’s secret key vectors. However, they are based on divergent
design principles, making it nontrivial to combine these two attack strategies as per current
literature.

3.3 New Method: Zero Testers with Shifting
We next introduce a novel method that tests whether n2 consecutive bits have weight
zero with greater query efficiency. While this approach aligns with the attack described
in [HSC+23], it diverges in its methods and objectives. Rather than identifying patterns
with a bounded weight of 1, our method focuses on efficiently determining blocks with
weight zero.

Definition 1 (Block). A block is a collection of n2 consecutive bits. Typically blocks are
a slice of an element of R. The block may wrap around at the edges — e.g. the last bit,
and the first n2 − 1 bits of x ∈ R may form a block.

Definition 2 (Zero-Block). A zero-block is a block that has zero Hamming weight, i.e. all
bits are zero.

The zero-blocks we identify may be at any offset in parts of the secret key’s x and y.
We are not limited by the RM code’s codeword offsets, as we can shift the secret key’s
components using u and r2. Specifically, we can craft ciphertext such that the victim’s
decoder will correct an error corresponding to shifted versions of x or y.

To construct a ciphertext that contains y shifted by k positions as its error, we can set
r2 = 0 and u = Xk and compute v honestly as per the scheme by v = mG+s·r2+e. During
decapsulation, this will result in C.Decode(v−u·y), where v−u·y = mG+s·r2+e−Xk ·y =
mG+e−Xk ·y. The error e is then used by the zero-tester method to ascertain information
about the first block of this shifted version of y. Analogously, for x one may set r2 = Xk

and u = Xk ·h, which results in the computation of v−u ·y = mG+s ·Xk +e−Xk ·h ·y =
mG + x ·Xk + e by s = x + h · y. Both cases result in shifted versions of the secret key to
become the error that the victim’s decoder needs to correct. This shifting idea was already
introduced in [HSC+23]; however, it is made viable through our new zero-testers and we
fully develop and implement the idea.

A zero-tester can be used to identify whether a block has weight zero. Zero-testers
are errors we add to the ciphertext, such that a decoding failure indicates whether the
tested block in the original error of ciphertext can be a zero-block or not — i.e. it indicates
whether a block of the secret key has weight zero. To implement this idea we find a
sequence of errors (testers) that can be added to the ciphertext’s y. The errors ei are
chosen such that adding one or more error bits to them results in a RM decoding failure.
This allows efficient testing of whether a block of n2-bits of the secret key is zero. Using
these testers we can perform the attack. The requirement for a single error to detect all
possible errors is unsatisfiable since the additional errors could unflip error bits set by the
error e. A more reasonable requirement is that each tester should detect a large subset of
possible errors induced by the secret key. Since the secret key is sparse the weight of the
n2-bit blocks is typically ≤ 5. Ideally, the union of the sets of secret key errors that the
testers detect makes up the vast majority of possible errors that we are likely to encounter.
Furthermore, we would like to find the shortest sequence of testers that allows us to detect
the whole set of possible errors.

10
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

The number of oracle calls our attack requires is highly sensitive to the number of tests
required per block. In contrast to other methods, we do not need to search for set-bits -
with our zero-testers we can recover n2 bits with very few queries. Each test requires a
single oracle call. For zero-blocks all tests (3 for HQC-128) must be performed to confirm
that it does indeed contain no set bits. Since the majority of blocks have a weight larger
than 0, we can filter these out early. Only approx. 40% of blocks pass the first stage of the
zero-tester in HQC-128. This means for the majority of blocks only a single oracle call
needs to be performed. The second stage again only lets 31% of the remaining blocks pass.
Thus, even though we use 3 testers for HQC-128, only 1 oracle call is performed per shift
for the majority of cases.

The full attack then consists of shifting the respective part of the secret key into a
position and performing zero-tests on the first block of the ciphertext. The core procedure
of our attack is represented as pseudocode in Figure 2.

3.3.1 Finding Suitable Zero-Testers

Our method of finding a sequence of testers is akin to a mutation fuzzer. We start with
random testers of a weight w ∈ {⌊n2 ·0.4⌉, . . . , ⌊n2 ·0.5⌉}. Then we perform many mutations
on these testers and select the mutation that performs the best. Experimentally we found
that mutations that flip 1 or 2 bits yield the best results.

Our evaluation criterion is also probabilistic: we sample a given number of low-weight
errors according to the probability distribution of their occurrence in the secret key. This
probability distribution can be approximated well using the coefficients of the polynomial
given by f :

f(x) = ((1− p) + p · x)n2 (1)
where p = ω

n . The jth coefficient of f yields the probability that j bits are set in an array
of n2 bits where each bit is i.i.d. with probability p of being set.

After applying a mutation we estimate the success probability of an attack as the
probability that the sequence of testers will not fail for the number of queries required by
the attack (e.g. 1000). If this estimated attack success probability is greater than 99% we
terminate.

If we see no improvement in some iterations of the mutation finding process, we restart
the process entirely with newly chosen random errors. This prevents remaining stuck in
local optima.

3.4 Selecting Suitable Shifts
During the attack, we shift the secret key to test the weight of different blocks of the key.
This raises the question of which of all possible n shifts should be tested first to increase
the efficiency of the attack.

3.4.1 Static Shift Selection

A simple approach is to use a fixed sequence of shifts every time we perform the attack.
For HQC-128 we used the shifts 0, 192, 92, 297, 238, and 115 plus an offset of bn2 for the
current block b ∈ {0, . . . , n1 − 1}. These shifts were chosen by greedily picking a shift that
performed well in simulation, under the assumption that the previous shifts have already
been used to test each block. If these shifts don’t suffice we pick random new shifts that
have not been tested before.

3.4.2 Dynamic Shift Selection

When performing the attack we obtain new information about the key with each query.
Based on the queries performed and their observed responses, we can attempt to search for

Robin Leander Schröder, Stefan Gast and Qian Guo 11

a shift that will maximize the information gained. One such method could be derived from
belief propagation, as the problem shares a similar structure. Once we have an algorithm
for estimating the posterior conditional probability distribution of a zero-test for a shift s
given the query response pairs observed so far, we could combine it with game tree search
algorithms, e.g. a variant of expectimax. This may yield further improved shifts. However,
this would come at a significant computational cost, as the branching factor is n ≥ 17669.

3.4.3 Recoverable Keys and Success Chance

Our attack depends on that there exist sufficiently many zero-blocks in the two parts
of the secret key x and y such that we can recover slightly more than 50% of the secret
key. This means there may be some keys that cannot be recovered by our attack, since
some keys may not have enough zero-blocks. In the simulation we show that for HQC-128
and HQC-256 this is not an issue, and we can recover 98% and 99% of keys respectively,
assuming we try all possible shifts exhaustively. For HQC-192 we can only recover approx.
15% of keys, but a large portion of the key can be recovered and be used to reduce the
complexity of other attacks.

To obtain the full key in post-processing one can solve the linear equations given by
the public key relation s =

[
In rot(h)

] [
x
y

]
. In practice, the resulting n× n matrix over

F2 is often not invertible. Thus, one needs to recover additional zero-bits until there is an
invertible submatrix. We recover 5 additional bits, which yields a probability of approx.
97% that the n× (n− 5) matrix contains an invertible (n− 5)× (n− 5) submatrix. This
probability is computed as p(n, m) =

∏m
i=1(1− 2i−1−n) [Fer], where m = n− 5.

4 Division Timing Side-Channel
In [GHJ+22] the authors reveal a timing-side channel stemming from the use of variable-
time constant-weight vector sampling. The constant-weight vector sampling is performed
as part of the re-encryption step to sample the vectors r1, r2, and e. The re-encryption
step is part of the decapsulation, as shown in Figure 3. The identified vulnerability was
that the sampling process used rejection sampling, which is non-constant-time in the used
randomness. The vector sampling process must be constant-time in the used randomness
because the randomness depends on the seed θ, which is derived from secret inputs (the
message). Leaking any timing information about θ leads to a distinguisher which can be
used as a PC oracle. Such a PC oracle completely breaks the cryptosystem leading to full
key-recovery.

To remedy the timing side-channel the authors of the scheme implemented a constant-
time constant-weight vector sampling algorithm described in [Sen21]. This algorithm
requires modulo reductions of random numbers, which were derived from the seed θ.
Unfortunately, the compiler (gcc v13.1.1) uses division instructions to implement these
modulo reductions. Division instructions typically take a variable number of cycles on
a CPU, depending on the size of the operands. (cf. Section 4.1). The vulnerable code
snippet may be found in Figure 4. We identified the vulnerability through manual analysis
of the code’s disassembly.

In principle modern compilers have the ability to convert modulo reductions modulo
a compile-time known constant into constant-time code using Barrett reductions. This
optimization typically occurs when there are single modulo or division operations, that
are not within a loop. However, in this case, the compiler does not do so, even when using
the -funroll-all-loops flag. This flag causes the loop to be unrolled, but the compiler
still generates division instructions instead of Barrett reductions.

12
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

Algorithm 1: PC-Oracle Key Recovery Attack

Data: h from the public key, a suitable message m and salt, shifts,
zero testers, and scheme parameters n, n2, δ

Result: bit status array: zero-bits in the secret key
1 bit statusi,j ← “Unknown” ∀i ∈ [“X”, “Y”], j ∈ {0, . . . , n− 1}
2 for k ∈ shifts do
3 if

∧
j∈{s−n2+1,...,s} bit statuskey part,j = “KnownZero” then

// we already know each bit in this block to be zero

4 continue

5 end
6 classification ← “ZeroBlock”
7 for tester ∈ zero testers do

8 set error e with δ = ⌊dRS

2 ⌋ RM-code blocks flipped,
9 such that the corruption of the first block

10 will cause an RS decoder failure.
11 set the first block of e to the used tester
12 if key part = “X” then
13 r2 ← Xk

14 u← Xk · h
15 else if key part = “Y” then
16 r2 ← 0

17 u← Xk

18 end
19 construct ciphertext c as (u,mG+ s · r2 + e, salt)
20 if ¬OHQC(c) then
21 classification ← “NonZeroBlock”
22 break

23 end

24 end
25 if classification = “ZeroBlock” then
26 for j ∈ {s− n2 + 1, . . . , s} do
27 bit statuskey part,j ← “KnownZero”
28 end

29 end

30 if
(∑

i∈[X,Y]

∑
j∈{0,...,n−1} bit statusi,j = “KnownZero”

)
≥ n+ 5

then
31 return bit status
32 end

33 end
34 return bit status

Figure 2: The core of our attack procedure on HQC represented as pseudocode. For brevity
we assume that array accesses into bit_status wrap around modulo n.

Robin Leander Schröder, Stefan Gast and Qian Guo 13

c Decrypt1

sk

G

saltpk

Encrypt3θ′

pk

̸=2

c′
abort

K
m′

K

Figure 3: Simplified illustration of HQC decapsulation. Parts with previously identified
timing side-channel vulnerabilities are marked in red. Our identified side-channel is in the
vector-sampling part of the re-encryption, similar to [GHJ+22]. It was introduced in the
patch to [GHJ+22]. 1 [WTBB+19, PT19]; 2 [GJN20]; 3 [GHJ+22].

for (size_t i = 0; i < weight; ++i) {
tmp[i] = i + rand_u32[i] % (PARAM_N - i);

}

Figure 4: Vulnerable code snippet generating div instructions.

The timing variation caused by the divisions may be exacerbated if the target system
is embedded, and has worse division performance than high-performance x86 micro-
architectures. For our analyses and exploitation, we focus on high-performance x86_64
systems, as the vulnerable optimized HQC implementation is written for processors
supporting the AVX2 vector instruction-set extension.

4.1 Analyzing Numerator Dependent Division Throughput

To characterize the side-channel leakage that we want to exploit we perform experiments
regarding the division throughput on different x86_64 processor microarchitectures.

We measure the throughput of an instruction sequence containing a division using
nanoBench[AR20]. The measured instruction sequence is shown in Figure 6.

The instruction sequence was measured on Zen3 (AMD Ryzen 9 5900X), Zen2 (AMD
Ryzen 9 3900X), Zen+ (AMD Ryzen 7 3700U) and Intel 8th Gen (Intel i7-8550U). The
measured throughput includes not only the division itself but also the preceding instructions.
On AMD architectures the 076.00 LsNotHaltedCyc performance counter was used. On
Intel we used 3C.00 CORE_CYCLES. The benchmark results can be reproduced using the
code artifact.

The AMD and Intel optimization manuals are relatively sparse on details regarding
latency and throughput of divisions. The AMD Optimization manual for the Family 19h
line of processors (Zen3, Zen3+, and Zen4) states that: “The hardware integer divider
unit has a typical latency of 8 cycles plus 1 cycle for every 9 bits of quotient. The divider
allows limited overlap between two consecutive independent divide operations. ‘Typical’
64-bit divides allow a throughput of one divide per 8 cycles (where the actual throughput
is data dependent)”. For the Family 17h (Zen, Zen+, and Zen2) the optimization manual
states: “The radix-4 hardware integer divider unit can compute 2 bits of results per cycle”.

To exploit the variable division runtime we target a Zen2 machine. We choose Zen2
due to the variable division timing even for 32-bit numerators.

Using just timing information on the vector sampling part of the HQC decapsulation
on an otherwise idle machine, we are able to distinguish a fast vector sampling from a
random one. We obtain an accuracy of up to 80% (both classes represented equally).
However, when measuring the execution time of the entire decapsulation, the timing signal
becomes too weak for practical exploitation. Even 100 000 timing measurements do not
suffice to gain any significant distinguishing advantage.

14
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

0 10 20 30

10

15

20

25

No. of set bits in the dividend

R
ec

ip
ro

ca
lT

hr
ou

gh
pu

t
(c

yc
le

s)

Intel 8th Gen
Zen2/Zen+

Zen3

Figure 5: Empirical results of numerator dependent throughput of divisions on different
microarchitectures for a fixed divisor (17669). Some high-performance x86 microarchitec-
tures can perform 32-bit divisions by the chosen fixed divisor with numerator-independent
throughput, while Zen2 and Zen+ have varying division throughput.

mov r10, 17669 ; divisor
mov rax, numerator
xor rdx, rdx
idiv r10

Figure 6: Measured instruction sequence, where numerator is replaced with a concrete
numerator.

Robin Leander Schröder, Stefan Gast and Qian Guo 15

4.2 DIV-SMT
We introduce DIV-SMT, which enables us to precisely measure only the contribution of
the div instructions to the timing signal, and filter out noise caused by the other parts of
the cryptosystem - less than 2% of the decapsulation runtime are dedicated to the divisions
relevant to our attack. Like prior works [ABuH+18, GJS+23], we use contention among
SMT sibling threads to detect the execution of a certain instruction (div). In addition and
in contrast to these works, we also use contention to infer information about the processed
operands (the number of leading zeros in the numerators).

4.2.1 Threat Model

DIV-SMT is relevant to all contexts where the attacker can execute code co-located to
the victim. Crucially, the CPU must support SMT and have it enabled. Disabling SMT
comes with a typically high but workload-dependent cost [RPNT05, Lar18]. Especially in
systems with high SMT thread count like Power10, which sports up to 8 SMT threads per
core it is very desirable to leave SMT enabled. Further, the attacker must not be impeded
by scheduling countermeasures such as Linux’s Core Scheduling [lin]. Core Scheduling
may prevent the attacker from running on the same core as the victim, but also comes
with a performance cost. In certain cases, the performance may be worse than with SMT
disabled due to the additional scheduling overhead [Fag19].

4.2.2 Side-Channel Measurement

The setup for DIV-SMT is as follows: the attacker runs a thread pinned to the sibling SMT
thread of the victim’s thread. For our attack simulation, we also pin the victim’s thread.
In more restricted scenarios, the attacker may not have permissions to pin other user’s
processes. To counteract this, the attacker may start many DIV-SMT receivers [GJM+24].
If possible, these receivers may be pinned to a different physical core to reduce measurement
noise.

The attacker executes division instructions in a loop, measures the cycle counter and
stores the counter for measurement in an array. For the cycle counter measurement, we use
the rdpru instruction. The rdpru instruction allows us to read the Actual Performance
Frequency Clock Counter (APERF) performance-counter from user-space which counts the
number of cycles executed by the specific core the executing thread is running on [LGS22].
This is opposed to the rdtsc instruction which reads a global core-frequency-independent
timestamp counter. Further, in our experiments, rdpru executes faster than rdtsc which
enables higher temporal resolution in our SMT side-channel traces. An excerpt from the
attacking loop code may be found in Figure 7.

When the victim is executing divisions, the execution unit for divisions is busy, and
the attacker’s divisions are also slowed down. Slowing the attacker’s divisions down causes
an increase in the cycle delta between measurements for the attacker. When the victim
does not use the execution unit for divisions, the attacker’s divisions complete at a faster
rate enabling us to filter out parts of the cryptosystem that do not use divisions and are
therefore irrelevant to our attack. We use an empirically determined constant threshold to
classify whether the sibling SMT thread is performing divisions. We then sum up these
division timings to obtain a total division runtime for a single trace. After collecting 100
traces and computing each trace’s total division runtime, we compute the median total
division runtime. This division runtime is then thresholded to form a classifier.

In principle, we use the contention timing side-channel for two distinct purposes. Similar
to e.g. PortSmash [ABuH+18] and SQUIP [GJS+23]), we use the contention side-channel
to detect the execution of division instructions. Additionally, and unlike them, we use
the side-channel to infer information about the processed operands, an aspect of SMT
contention attacks, which, to the best of our knowledge, has not been exploited before.

16
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

fn rdpru32() -> u32 {
let lo;
unsafe {

asm!("rdpru",
out("eax") lo,
out("edx") _,
in("rcx") 1,

);
}
lo

}

let mut i = 0;
while !done_decaps.load(Ordering::SeqCst) && i < len {

unsafe { *measurements.get_unchecked_mut(i) = rdpru32() };
let mut _dividend = 1;
let mut _remainder: u64 = 0;
let divisor = 1;

unsafe {
asm!(

".rept 5",
"xor edx, edx",
"div rcx",
".endr",
inout("rax") _dividend,
inout("rdx") _remainder,
in("rcx") divisor,

);
}
i += 1;

}

Figure 7: Excerpt from the attacking code showing the measurement loop and use of
the rdpru instruction. In the loop body the APERF performance-counter is stored into
the measurement array and 5 divisions are executed. The loop continues until either the
maximum trace length is reached (in which case the trace is discarded), or the decapsulation
has finished.

4.2.3 Practical Exploitation in HQC

For our HQC attack, we compute a threshold using ciphertexts where it is known whether
a decoding failure occurs. Such ciphertexts are easy to construct by setting the error to a
large or small value. The classifier then determines whether the total division runtime is
faster than a random message or not. If it is faster, we know that decoding succeeded.

With the SMT based side-channel, we obtain above 90% accuracy with 100 traces. To
further increase the accuracy, we measure the true-positive-rate and true-negative-rate
of the classifier, and make a decision based on multiple classifications by computing the
probability of a positive or negative class, given the observed classifications. A majority
vote could also be used and would likely perform similarly.

Finding suitable zero testers is the most costly part of the attack, which is why we
would like to only perform it once. By fixing a single message first we can achieve that
goal, since the zero testers depend solely on the first RM codeword.

In the round 4 submission of HQC the public key and salt are added as inputs to derive
the seed θ, which in turn determines the generated numerators. The addition of the salt
allows us to brute-force a salt, that, together with the fixed message and a given public
key, generates suitable numerators. This process is also illustrated in Figure 8. In general,
we want to find a salt that minimizes the division runtime of the generated numerators as
this will increase the distinguishing capability. In our experiments we brute-force salts for

Robin Leander Schröder, Stefan Gast and Qian Guo 17

m pk salt

numeratorszero testers

1 fix any message and find zero testers

2find fast numerators

Figure 8: We first choose an arbitrary message for which we intend to find suitable zero
testers. Once we’ve found suitable zero testers for this message we can attack any public
key by varying the salt. By changing the salt we change which numerators are generated.
These are used during the re-encryption step and leak timing information about the
decoded message. We need to distinguish our chosen numerators from random different
ones. Therefore, we want to find a salt that generates fast divisions with small numerators.

103 104 105 106 107 108

Oracle calls

O0.515
HQC

O0.9
HQC

O0.95
HQC

O0.995
HQC

Oideal
HQC

Operfect
HQC

1

Figure 9: Oracle call requirements for attacking HQC-128 under various oracle accuracies,
with whiskers representing the 5th and 95th percentile. We performed 1 000 simulated
attacks per oracle accuracy.

each attack such that we expect a timing difference of at least 55 cycles from a median
ciphertext’s numerators total division runtime.

5 Experimental Results
In this section, we present the experimental results of our research, organized into two
distinct subsections. We begin by showing the simulation results, which illustrate the
enhanced performance of our method across a range of oracle accuracies. Subsequently,
we present real-world attack results on HQC-128 executed on an AMD Zen2 platform,
demonstrating its practical effectiveness and confirming that our simulation findings align
with real-world applications.

5.1 Attack Simulation
To provide evidence that our new attack strategy works, we perform attacks using a
simulated side-channel oracle. The simulated oracle obtains the true information that is to
be leaked and adds oracle accuracy dependent noise to it. The true information in our
case is whether the decoder outputs the original message or not. We simulate the attack in

18
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

Table 3: Comparison of median oracle calls required in our attack vs. SCA-LDPC. For
our attack we additionally show the success rate. Attacks are classified as successful if
they managed to recover n + 5 zero bits from the secret key and no bits were incorrectly
identified as a zero bit. These n + 5 zero bits are sufficient in approx. 97% of cases as
discussed in Section 3.4.3.

Operfect
HQC Oiedal

HQC O0.995
HQC O0.95

HQC O0.9
HQC O0.515

HQC

SCA-LDPC[GNNJ23] 9 000 10 000 18 000 35 250 59 500 n/a
Our Work 1 094 1 142 2 246 4 922 6 951 5 728 728
Success Rate 78.00% 77.30% 76.90% 77.10% 76.60% 77.13%

6 different scenarios: perfect, ideal, 0.995, 0.95, 0.9 and 0.515, denoted by Operfect
HQC , Oideal

HQC ,
O0.995

HQC , O0.95
HQC , O0.9

HQC and O0.515
HQC , respectively.

The perfect side-channel scenario is unobtainable in practice: this oracle simply reveals
the true information—whether the decoder outputs the original message or not. Nonetheless,
this concept plays a crucial role in the misuse or key-mismatch attack scenarios [BDH+19].

The ideal scenario is relevant to the round 3 implementation of HQC – it is similar to
the perfect oracle, except that a message-dependent deterministic failure rate of 0.0058 for
decoding failures is simulated. Specifically, when the decoder outputs a message m′ different
from the original message m there’s a chance of 0.0058 that the ideal oracle will output
that m = m′, even though they are different. This simulates the case where the message
m′ has the same timing behavior as the message m and is therefore indistinguishable.
We use this oracle for the sake of comparison to previous works, as in its current form
it no longer applies to the HQC round 4 implementation, since the timing vulnerability
discovered in [GHJ+22] has been patched.

The other oracles build on the ideal oracle and add independently sampled random
noise: for an accuracy level of ρ = 0.995 there’s a 1− ρ = 0.005 chance that the result will
be flipped.

In Figure 9, we show the number of oracle calls the attack requires to complete an
attack under different noise conditions. The oracle here is simulated and uses a random
number generator to simulate the random failures during a real-world side-channel attack.
It can be seen that the distribution has a long tail, which consists of attacks that fail
because they cannot find a sufficient number of zero-blocks.

In Table 3, we compare the median number of oracle calls required by our attack versus
the SCA-LDPC framework. Our findings indicate a substantial improvement with the new
Zero Tester method, which necessitates only 11% to 13% of the oracle calls compared to
the SCA-LDPC framework. Notably, this ratio of efficiency gains remains consistent even
as the oracle’s accuracy decreases to 0.9.

We simulate the performance of the PC oracle at the accuracy of 0.515. As noted
in [UXT+22], this specific accuracy level corresponds to the effectiveness of a Neural
Network model in constructing a PC oracle from a masked hardware implementation. For
such an oracle O0.515

HQC , estimating the number of oracle calls required by the SCA-LDPC
framework is resource-intensive, a task not undertaken in [GNNJ23]. In contrast, our
simulations demonstrate a median requirement of only 5 728 728 oracle calls.

If desired one may reduce the number of oracle calls further by trading it for computation
time. Although the trade-off comes with quickly diminishing returns as Information-Set
Decoding (ISD) [Pra62, Ste89] comes with high costs. In Table 3, we simulate a success
probability ranging between 76% and 78%. Enhancing the success rate is achievable
through employing more resource-intensive ISD for post-processing, as opposed to Gaussian
Elimination.

Robin Leander Schröder, Stefan Gast and Qian Guo 19

5.2 Real-World Attacks in an AMD Zen2 Platform
We performed 1000 attacks using our DIV-SMT side-channel oracle. The targeted machine
is a Zen2 machine featuring an AMD Ryzen 7 3700X 8-Core Processor. The attacks ran
concurrently on 8 cores, each using 2 SMT threads. 75.3% of the attacks succeeded in
recovering n + 5 zero-bits from the secret key. This success rate comes close to the 76%
to 78% success rate that we observe in simulation (cf. Table 3). A median of 465 409
DIV-SMT traces were used to form responses to a median of 2 577 oracle calls in a median
attack runtime of 111 seconds. The number of traces includes a median number of 204 180
calibration traces. Using the calibrated threshold the SMT oracle was tested to have an
accuracy of 98.8%.

Table 4: Approximation of the probability that a randomly sampled inner block in the
secret vector has a certain Hamming weight [GLG22]. Pi denotes the probability that the
block has a Hamming weight of i.

Variants P0 P1 P2 P3 P4 P≥5
HQC-128 23.44% 34.38% 24.83% 11.77% 4.12% 1.45%
HQC-192 16.50% 30.00% 27.00% 16.04% 7.07% 3.40%
HQC-256 23.14% 34.06% 24.87% 12.02% 4.32% 1.59%

6 Discussions
In this section, we discuss the discovered vulnerability and the attack methodology from
various perspectives. We first address countermeasures against the DaS vulnerability in
HQC. Subsequently, we compare our new key-recovery method to the state-of-the-art
SCA-LDPC framework, elucidating the sources of performance improvement. Lastly, we
explore the potential limitations of the new Zero Tester method.

6.1 Countermeasures
In addressing the DaS vulnerability within HQC, two main countermeasures emerge:

1. Manually code the necessary Barrett reductions.

2. Use multiplication and bit-shift as in Bit Flipping Key Encapsulation (BIKE)

The PQClean implementers, after our public disclosure [amb23], chose the first approach
– it stays true to the specification of the scheme, but this solution comes with additional
implementation effort.

BIKE replaces the modulo reduction with rounding: Instead of i + (si mod n − i)
they compute i + ⌊ (n−i)si

232 ⌋. The latter function can be implemented using an integer
multiplication and a bit-shift. This function generates the same noticeable bias as the
modulo reduction when compared to a uniform distribution. Note, that the bias is not
a security issue [Sen21]. We advise to use the method used by BIKE as it is easier to
implement (especially cross-platform), less error-prone, and most likely faster on most
target architectures.

We advise a change in the specification in any case: implementers of the modulo
reduction in the specification are likely to make the same mistakes unless additional
guidance is given.

20
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

6.2 Comparison to SCA-LDPC
The SCA-LDPC framework is a generic framework that can apply not only to code-based
schemes but also to lattice-based schemes with a larger alphabet and a more dense secret
distribution. Our new PC key-recovery method is tied to HQC and exploits the extreme
sparsity of the secret vector and the concatenated code construction used in HQC. The
latter allows us to check whether blocks of consecutive bits in the secret key have weight 0,
and due to the low weight of the secret key, this is often the case.

Moreover, in [GNNJ23], an information-theoretical lower bound is discussed through
the calculation of Shannon’s entropy of the secret vectors x or y. Utilizing LDPC codes,
the SCA-LDPC framework achieves near-optimal performance. This is characterized by
the number of necessary parity checks being only a small constant times greater than the
theoretical lower bound as per Shannon’s theory. However, this information-theoretical
bound does not extend to our new attack method. Our method exploits the public-key
information s = x + h · y. Given these additional equations, the secret key can be uniquely
identified even without relying on side-channel leakages, assuming there are no constraints
on the computational resources available.

6.3 Limitations
Last, we discuss the limitations of the new Zero Tester method and the potential for
improvement. The efficacy of our approach is contingent upon finding long sequences
of all-zero entries between two ones in the secret polynomials x and y. The probability
that an inner RM block within the secret vector is entirely zero is over 23% for HQC-128
and HQC-256, decreasing to 16.5% for HQC-192, as shown in Table 4. This reduction
in likelihood explains the limited applicability of the new method to HQC-192, where it
is effective for only about 15% of keys, as discussed in Section 3.4.3. For the remaining
keys, the positions recovered are not adequate to achieve full-key recovery using Gaussian
Elimination. Resorting to the more computationally demanding ISD algorithms for post-
processing could enable the recovery of a greater number of keys. We defer a detailed
quantitative analysis of this aspect to future research.

7 Conclusion
In this work, we have identified a novel timing side-channel vulnerability, an instance of
the DaS vulnerability class, within the optimized, supposedly constant-time, reference
implementation of the HQC round 4 submission to NIST. This vulnerability, characterized
by its generic nature as demonstrated by similar issues in cryptographic implementations
like KyberSlash, poses a significant security risk. Our proposed DIV-SMT methodology
effectively targets this vulnerability on SMT-enabled processors by leveraging contention
among SMT sibling threads. This process not only identifies specific instructions but also
deduces operand information, thereby establishing a PC oracle distinguisher that enables
a key-recovery timing attack.

Additionally, we have introduced a new key recovery approach for HQC leveraging the
PC oracle, which significantly lowers the requirement for side-channel traces. Through
comprehensive simulations using a simulated PC oracle at various levels of accuracy,
coupled with practical attacks executed on an AMD Zen2 CPU, our research confirms
both the effectiveness and practical viability of our novel attack strategy.

Robin Leander Schröder, Stefan Gast and Qian Guo 21

References
[AAB+22] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert,
and Pascal Veron. HQC. Technical report, National Institute of Stan-
dards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2022.

[ABB+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier,
Jean-Pierre Tillich, Gilles Zémor, Valentin Vasseur, Santosh Ghosh, and Jan
Richter-Brokmann. BIKE. Technical report, National Institute of Stan-
dards and Technology, 2022. available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions.

[ABC+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben Nieder-
hagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter
Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson,
and Wen Wang. Classic McEliece. Technical report, National Institute of Stan-
dards and Technology, 2022. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-4-submissions.

[ABuH+18] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida García, and Nicola Tuveri. Port Contention for Fun and Profit. In
S&P, 2018.

[AGZ20] Nicolas Aragon, Philippe Gaborit, and Gilles Zémor. Hqc-rmrs, an instantiation
of the hqc encryption framework with a more efficient auxiliary error-correcting
code. arXiv preprint arXiv:2005.10741, 2020.

[amb23] ambiso. Hqc implementation out of date/vulnerable, 2023. https://github.
com/PQClean/PQClean/issues/482.

[AMBD+18] Carlos Aguilar-Melchor, Olivier Blazy, Jean-Christophe Deneuville, Philippe
Gaborit, and Gilles Zémor. Efficient encryption from random quasi-cyclic codes.
IEEE Transactions on Information Theory, 64(5):3927–3943, 2018.

[AMD20a] AMD. Software Optimization Guide for AMD EPYC 7002 Proces-
sors, 3 2020. https://www.amd.com/content/dam/amd/en/documents/
epyc-technical-docs/software-optimization-guides/56305.zip.

[AMD20b] AMD. Software Optimization Guide for AMD EPYC 7003 Proces-
sors, 11 2020. https://www.amd.com/content/dam/amd/en/documents/
epyc-technical-docs/software-optimization-guides/56665.zip.

[AMD23] AMD. Software Optimization Guide for the AMD Zen4 Microarchi-
tecture, 1 2023. https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/software-optimization-guides/57647.zip.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://github.com/PQClean/PQClean/issues/482
https://github.com/PQClean/PQClean/issues/482
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/software-optimization-guides/56305.zip
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/software-optimization-guides/56305.zip
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/software-optimization-guides/56665.zip
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/software-optimization-guides/56665.zip
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/software-optimization-guides/57647.zip
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/software-optimization-guides/57647.zip

22
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

[AR20] Andreas Abel and Jan Reineke. nanoBench: A Low-Overhead Tool for Running
Microbenchmarks on x86 Systems. In 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 34–46. IEEE,
2020.

[Bar87] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 311–323. Springer,
Heidelberg, August 1987.

[BDH+19] Ciprian Băetu, F. Betül Durak, Loïs Huguenin-Dumittan, Abdullah Talayhan,
and Serge Vaudenay. Misuse attacks on post-quantum cryptosystems. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477
of LNCS, pages 747–776. Springer, Heidelberg, May 2019.

[Ber23] Daniel J. Bernstein. variable-time kyber ref software, 2023. https:
//groups.google.com/a/list.nist.gov/g/pqc-forum/c/hWqFJCucuj4/m/
-Z-jm_k9AAAJ.

[Cen23] NIST Computer Security Resource Center. Round 4 Submissions - Post-
Quantum Cryptography | CSRC, 2023. https://csrc.nist.gov/Projects/
post-quantum-cryptography/round-4-submissions accessed: 2024-01-17.

[Fag19] Dario Faggioli. Re: [RFC PATCH v3 00/16] Core scheduling v3, 2019.

[Fer] Alfonso Fernandez. Probability that a random binary matrix will have full
column rank? Mathematics Stack Exchange. https://math.stackexchange.
com/q/564699 (version: 2013-11-12).

[FHS+17] Tomás Fabsic, Viliam Hromada, Paul Stankovski, Pavol Zajac, Qian Guo, and
Thomas Johansson. A reaction attack on the QC-LDPC McEliece cryptosystem.
In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptography -
8th International Workshop, PQCrypto 2017, pages 51–68. Springer, Heidelberg,
2017.

[Fog21] Agner Fog. The microarchitecture of Intel, AMD, and VIA CPUs: An
optimization guide for assembly programmers and compiler makers, 2021.
https://www.agner.org/optimize/microarchitecture.pdf.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexan-
der Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery
timing attacks due to rejection-sampling in HQC and BIKE. IACR TCHES,
2022(3):223–263, 2022.

[GJ20] Qian Guo and Thomas Johansson. A new decryption failure attack against
HQC. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I,
volume 12491 of LNCS, pages 353–382. Springer, Heidelberg, December 2020.

[GJM+24] Stefan Gast, Jonas Juffinger, Lukas Maar, Christoph Royer, Andreas Kogler,
and Daniel Gruss. Remote scheduler contention attacks. In Financial Cryptog-
raphy and Data Security - 28th International Conference, FC 2024, Revised
Selected Papers, Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Springer-Verlag, March 2024. Financial Cryptography and Data Security 2024,
FC 2024 ; Conference date: 04-03-2024 Through 08-03-2024.

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hWqFJCucuj4/m/-Z-jm_k9AAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hWqFJCucuj4/m/-Z-jm_k9AAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hWqFJCucuj4/m/-Z-jm_k9AAAJ
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://math.stackexchange.com/q/564699
https://math.stackexchange.com/q/564699

Robin Leander Schröder, Stefan Gast and Qian Guo 23

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transformation
and its application on FrodoKEM. In Daniele Micciancio and Thomas Risten-
part, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 359–386.
Springer, Heidelberg, August 2020.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS,
pages 789–815. Springer, Heidelberg, December 2016.

[GJS+23] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar, Andreas
Kogler, Simone Franza, Markus Köstl, and Daniel Gruss. SQUIP: Exploiting
the Scheduler Queue Contention Side Channel. In S&P, 2023.

[GLG22] Guillaume Goy, Antoine Loiseau, and Philippe Gaborit. A new key recovery side-
channel attack on HQC with chosen ciphertext. In Post-Quantum Cryptography:
13th International Workshop, PQCrypto 2022, Virtual Event, September 28–30,
2022, Proceedings, pages 353–371. Springer, 2022.

[GNNJ23] Qian Guo, Denis Nabokov, Alexander Nilsson, and Thomas Johansson. SCA-
LDPC: A Code-Based Framework for Key-Recovery Side-Channel Attacks
on Post-Quantum Encryption Schemes. ASIACRYPT 2023, 2023. https:
//eprint.iacr.org/2023/294.

[GTS23] Franziskus Kiefer Goutam Tamvada, Karthikeyan Bhargavan and Pe-
ter Schwabe. Updated poly_tomsg to prevent a compiler from
using div, 2023. https://github.com/pq-crystals/kyber/commit/
dda29cc63af721981ee2c831cf00822e69be3220.

[HBD+22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas
Westerbaan, and Ward Beullens. SPHINCS+. Technical report, National
Institute of Standards and Technology, 2022. available at https://csrc.nist.
gov/Projects/post-quantum-cryptography/selected-algorithms-2022.

[HGS99] Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction attacks against several
public-key cryptosystems. In Vijay Varadharajan and Yi Mu, editors, ICICS
99, volume 1726 of LNCS, pages 2–12. Springer, Heidelberg, November 1999.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–371. Springer,
Heidelberg, November 2017.

[HSC+23] Senyang Huang, Rui Qi Sim, Chitchanok Chuengsatiansup, Qian Guo, and
Thomas Johansson. Cache-Timing Attack Against HQC. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2023, Issue 3:136–163,
2023. https://tches.iacr.org/index.php/TCHES/article/view/10959.

[Int23] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,
2023. https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html.

https://eprint.iacr.org/2023/294
https://eprint.iacr.org/2023/294
https://github.com/pq-crystals/kyber/commit/dda29cc63af721981ee2c831cf00822e69be3220
https://github.com/pq-crystals/kyber/commit/dda29cc63af721981ee2c831cf00822e69be3220
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://tches.iacr.org/index.php/TCHES/article/view/10959
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

24
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

[JAC+22] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, Geovandro
Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Technical report, Na-
tional Institute of Standards and Technology, 2022. available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/round-4-submissions.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of
LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[Lan04] Adam Langley. Lucky Thirteen attack on TLS CBC. https://www.
imperialviolet.org/2013/02/04/luckythirteen.html, 2013-02-04. ac-
cessed 2023-10-02.

[Lar18] Michael Larabel. Intel Hyper Threading Performance With A Core i7 On
Ubuntu 18.04 LTS, 6 2018.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2022. avail-
able at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022.

[LGS22] Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD Prefetch Attacks
through Power and Time. In USENIX Security, 2022.

[lin] Core scheduling. https://www.kernel.org/doc/html/latest/
admin-guide/hw-vuln/core-scheduling.html.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-
channel attack on a masked IND-CCA secure saber KEM implementation.
IACR TCHES, 2021(4):676–707, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/9079.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[pow] Ibm power e1080 technical overview and introduction. https://www.redbooks.
ibm.com/redpapers/pdfs/redp5649.pdf.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[PT19] Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC
encryption scheme. In Kenneth G. Paterson and Douglas Stebila, editors, SAC
2019, volume 11959 of LNCS, pages 551–573. Springer, Heidelberg, August
2019.

[QCZ+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding.
A systematic approach and analysis of key mismatch attacks on lattice-based
NIST candidate KEMs. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 92–121. Springer,
Heidelberg, December 2021.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-scheduling.html
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.redbooks.ibm.com/redpapers/pdfs/redp5649.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5649.pdf

Robin Leander Schröder, Stefan Gast and Qian Guo 25

[RPNT05] Yaoping Ruan, Vivek S. Pai, Erich Nahum, and John M. Tracey. Evaluating
the Impact of Simultaneous Multithreading on Network Servers Using Real
Hardware. In SIGMETRICS, 2005.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR TCHES, 2020(3):307–335, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8592.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,
and Jintai Ding. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[Sen21] Nicolas Sendrier. Secure Sampling of Constant-Weight Words – Application to
BIKE. Cryptology ePrint Archive, Paper 2021/1631, 2021. https://eprint.
iacr.org/2021/1631.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh,
and Georg Sigl. A Power Side-Channel Attack on the Reed-Muller Reed-
Solomon Version of the HQC Cryptosystem. In Jung Hee Cheon and Thomas
Johansson, editors, Post-Quantum Cryptography - 13th International Workshop,
PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings, volume
13512 of Lecture Notes in Computer Science, pages 327–352. Springer, 2022.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In Coding The-
ory and Applications: 3rd International Colloquium Toulon, France, November
2–4, 1988 Proceedings 3, pages 106–113. Springer, 1989.

[Sze19] Jakub Szefer. Survey of microarchitectural side and covert channels, attacks,
and defenses. Journal of Hardware and Systems Security, 3(3):219–234, 2019.

[TRVT22] Mohammadkazem Taram, Xida Ren, Ashish Venkat, and Dean Tullsen. Sec-
SMT: Securing SMT Processors against Contention-Based Covert Channels.
In USENIX Security, 8 2022.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR TCHES, 2022(1):296–322, 2022.

[WPH+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning power
side-channel attacks into remote timing attacks on x86. In Kevin R. B. Butler
and Kurt Thomas, editors, USENIX Security 2022, pages 679–697. USENIX
Association, August 2022.

[WTBB+19] Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit, and
Etienne Marcatel. A practicable timing attack against HQC and its coun-
termeasure. Cryptology ePrint Archive, Report 2019/909, 2019. https:
//eprint.iacr.org/2019/909.

https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2019/909
https://eprint.iacr.org/2019/909

26
Divide and Surrender:

Exploiting Variable Division Instruction Timing in HQC Key Recovery Attacks

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3
KEM candidates. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part II, volume 13091 of LNCS, pages 33–61. Springer, Heidel-
berg, December 2021.

	Introduction
	Preliminaries
	HQC
	CPU Pipelines
	Simultaneous Multithreading (SMT)

	New Key-Recovery Attack
	The Generic Threat Model
	Relevant Attacks from Generic PC Oracle
	New Method: Zero Testers with Shifting
	Selecting Suitable Shifts

	Division Timing Side-Channel
	Analyzing Numerator Dependent Division Throughput
	*divsmt

	Experimental Results
	Attack Simulation
	Real-World Attacks in an AMD Zen2 Platform

	Discussions
	Countermeasures
	Comparison to *scaldpc
	Limitations

	Conclusion

