
Partial Differential Fault Analysis on Ascon
Yang Gao1,2

1 Beijing National Research Center for Information Science and Technology (BNRist), School of
Integrated Circuits, Tsinghua University, Beijing, China.

2 Key Laboratory of Network Cryptography Technology of Henan, Information Engineering
University, Zhengzhou, China.
gaoyang_1279@outlook.com

Abstract. Authenticated Encryption with Associated Data (AEAD) is a trend in
applied cryptography because it combine confidentiality, integrity, and authentication
into one algorithm and is more efficient than using block ciphers and hash functions
separately. The Ascon algorithm, as the winner in both the CAESAR competition and
the NIST LwC competition, will soon become the AEAD standard for protecting the
Internet of Things and micro devices with limited computing resources. We propose
a partial differential fault analysis (PDFA) technology for the Ascon algorithm, using
stuck-at fault and random-nibble fault models respectively. Theoretically, after 9.9
full-round fault injections or 263 single nibble fault injections, 128-bit key can be
completely recovered. In addition, we conducted the first discussion of this analysis
method under different nonce configurations. In the Nonce-respect case, an average
of 130 additional Tag queries are required to complete the guessing of the faulty tag,
afterwards equating this case with the Nonce-misuse case. Subsequent experimental
results proved the correctness of the theoretical model. Finally we discuss some
countermeasures against proposed attacks, and we propose a new S-box that can be
used to replace the existing S-box in ASCON to render PDFA ineffective.
Keywords: Authenticated Encryption · Ascon · CAESAR · NIST LWC competition
· Differential fault analysis

1 Introduction
Due to the rapid evolution of emerging fields like the Internet of Things, wireless sensor
networks, healthcare, and distributed control systems, interactive connections and wireless
communications among highly constrained devices have become increasingly prevalent.
However, conventional encryption algorithms, originally designed for PCs or server envi-
ronments, are no longer suitable for devices with extremely limited computing resources.
Consequently, there is an urgent demand for the development of ciphers that can operate
within the constrained resources of simple electronic devices. To tackle this challenge,
researchers are actively engaged in tailoring cryptographic primitives for these resource-
constrained devices, forming a specialized area of cryptography known as lightweight
ciphers (LWC).

In 2013, the National Institute of Standards and Technology (NIST) initiated a stan-
dardization research project on LWC, with the goal of identifying lightweight encryption
algorithms suitable for restricted environments. These algorithms aim to significantly
reduce implementation costs while ensuring the security of the system. The LWC compe-
tition [MBSTM16] commenced in July 2015, lasting for a total of 6 years. The project
outlined seven key considerations in the design of LWCs: security strength, flexibility,
low overhead for multiple functions, ciphertext expansion, susceptibility to side channel
and fault attacks, constraints on the number of plaintext-ciphertext pairs, and resilience

mailto:gaoyang_1279@outlook.com

2 Partial Differential Fault Analysis on Ascon

against related-key attacks. During the initial release and evaluation stage of the algorithm,
researchers conducted comprehensive analyses and attacks on candidate algorithms. This
included differential analysis, impossible differential analysis, truncated differential analysis,
cube analysis, algebraic cube analysis, side channel analysis, and more. In March 2021,
the LWC competition announced the selection of 10 algorithms for the final standard
algorithm set: Ascon, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle,
Romulus, Sparkle, TinyJambu, Xoodyak. After comprehensive consideration, NIST offi-
cially announced the selection of the Ascon family as the winning algorithm for the LWC
competition in February 2023. Following this decision, NIST opted to standardize the
Ascon family algorithms [NIS23a], aiming to enhance data security for IoT and micro
devices with constrained computing resources [NIS23b]. It is anticipated that Ascon will
soon be integrated into millions of authentication chips, RFID tags, and radio-controlled
devices.

Ascon made its debut in the Authenticated Encryption: Security, Applicability, and
Robustness (CAESAR) competition [Ber16], submitted by Dobraunig et al. [DEMS14]
in 2014. Subsequently, it underwent revisions and was released as Ascon v1.2 [DEMS21]
in 2016. In the initial submission, the designers delineated the cipher’s design princi-
ples and presented preliminary cryptanalysis results, notably focusing on the differential
properties of the Ascon permutation [DEMS15]. Its exceptional performance in areas
such as energy efficiency and security led to its recognition as a finalist in the CAE-
SAR competition in March 2018. Moreover, the CAESAR committee endorsed it as the
preferred choice for lightweight cryptographic applications in February 2019. Over the
past decade since the introduction of the Ascon algorithm, extensive traditional crypt-
analysis [Tez16,LZWW17,LDW17,YLW+23] and security assessments [CDN23,NSS23]
have been conducted, contributing to a comprehensive understanding of its strengths and
vulnerabilities. Simultaneously, researchers have made strides in exploring side-channel
attacks against Ascon, yielding notable findings [GWDE17,RAD20b,RAD+20a,YKSH23].

Fault analysis, a crucial aspect of side-channel analysis, is a powerful and efficient
method. It entails inducing faults in a device through physical manipulation (using meth-
ods such as clock glitches, voltage spikes, and laser beams) to generate computational
errors [GT04]. These errors, along with valid outputs, are then utilized to compromise
the security of systems, allowing for exploits like key recovery, e-wallet balance manipula-
tion, unauthorized signature acceptance, and PIN code retrieval. Initially proposed by
Boneh et al. [BDL97], fault analysis emerged as a means to analyze the RSA signature
algorithm in CRT mode. Over time, researchers have developed and refined various
fault analysis techniques, including differential fault analysis [BS97], collision fault analy-
sis [Hem04], algebraic fault analysis [CJW10], statistical fault analysis [FJLT13], etc. These
advancements have been applied to evaluate different AEAD cryptographic algorithms,
including GIFT-COFB [LGH22], Grain-128AEAD [SOX+21], PHOTON-Beetle [JP22],
TinyJambu [SAM24], among others, all of which were selected in the final round of LWC
competition. However, the fault analysis against Ascon has yielded limited success. The
proposed methods either fail to recover the complete key, rely on unrealistic attack assump-
tions, or necessitate extensive data collection and analysis. In summary, the complexity of
existing fault analysis methods hinders their efficacy against Ascon.

In this study, we propose a novel differential fault analysis method called Partial
Differential Fault Analysis (PDFA) for Ascon. Our analysis achieves complete key recovery
by leveraging fault injection under two different fault models. In the first fault model, the
attacker fixes one bit in the S-box and extracts the 4-bit part of the 5-bit S-box, transforming
it into a 4-bit S-box commonly used in traditional LWCs for analysis. Subsequently, the
complete 128-bit key is recovered through a classic random-nibble fault in the second
fault model. A noteworthy advantage of our analysis lies in the minimal attention the
attacker needs to pay to round permutations, focusing solely on the round where the tag

Yang Gao 3

is generated. This significantly mitigates the challenges associated with fault injection and
algorithmic analysis. Simultaneously, we incorporate the DFA statistical analysis strategy
from traditional LWC to comprehensively quantify the attack complexity. This allows for
a thorough evaluation of the efficiency and effectiveness of our proposed PDFA method in
both theoretical and practical contexts.

Our contributions:
(1). We propose a novel analysis named Partial Differential Fault Analysis, which

facilitates the complete recovery of the S-box intermediate state in the final permutation
during Finalization. The lower complexity of this approach can be accurately calculated,
leading to the full recovery of Key K.

(2). We make a detailed distinction and explanation of the analysis methods in the two
cases of Nonce-respect and Nonce-misuse. The results show that only additional limited
processing steps are needed to treat the two cases as equivalent.

(3). We analyze the differential properties of S-box in Ascon in detail, and distinguish
the weak position, the moderate position and the strong position within 5 bits S-box.

(4). The partial differential distribution table was utilized to determine the instances
where the S-box input could or could not be recovered after introducing N faults. A series
of theorems were then employed to calculate the success rate of fault analysis and the
expected number of fault injections necessary to recover the key successfully.

(5). We have successfully simulated 200,000 PDFA experiments on the computer, with
the experimental results aligning closely with the theoretical analysis.

(6). As a countermeasure, we propose an alternative S-box that can preserve the
original Ascon S-box’s cryptographic properties.

Outline: In Section 2, we provide a detailed description of Authenticated Encryption
with Associated Data (AEAD), an in-depth introduction to the Ascon cipher, and a
consistent notation used throughout the paper. Section 3 introduces the idea of analyzing
the Ascon algorithm, along with the two fault models used by PDFA. Section 4 discusses
the characteristics of fault analysis in two scenarios: Nonce-misuse and Nonce-respect. We
then outline the specific fault analysis implementation processes under two different nonce
configurations. Section 5 delves into the probability of successful key recovery and the
expected number of required fault injections under the two fault models. In Section 6, we
validate the theoretical analysis through specific experiments. Section 7 compares PDFA
with existing Ascon fault analysis methods, discusses the fault model’s applicability, and
proposes countermeasures or mitigation measures for attacks. Finally, Section 8 provides a
concluding summary.

2 Background

2.1 Introduction to AEAD and Ascon algorithm
2.1.1 AEAD algorithm

Authenticated encryption (AE) combines symmetric encryption and authentication prim-
itives into a single algorithm that are traditionally separated. Furthermore, in AEAD,
associated data (AD) is authenticated but does not participate in encryption [Rog02].
This is particularly useful for communication protocols where header information must be
authenticated but does not need to be encrypted. If AD or message authentication fails,
a failure Tag is output, otherwise plaintext is released, which prevents chosen ciphertext
attacks.

E : {0, 1}k × {0, 1}v × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

D : {0, 1}k × {0, 1}v × {0, 1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∗∪ ⊥

4 Partial Differential Fault Analysis on Ascon

The above shows the input and output of AEAD encryption and decryption. Formally,
set k, v, t ≥ 1, let K ∈ {0, 1}k denote Key, let N ∈ {0, 1}v denote Nonce, A ∈ {0, 1}∗

denote Associated data, P ∈ {0, 1}∗ denote Plaintext, T ∈ {0, 1}t denote Verification
tag, C ∈ {0, 1}∗ denote Ciphertext. AEAD algorithm is a triple Π = (K, E , D), with a
key generation algorithm K that returns a random K, encryption algorithm EK(N, A, P)
and decryption algorithm DK(N, A, C, T), Where E outputs a (C, T) pair and D outputs
plaintext P or an invalid symbol ⊥ (if the label is invalid).

2.1.2 Ascon Specification

Ascon cipher is an AEAD algorithm based on sponge duplex structure [GJMG11]. In
Ascon, the size of state S is 320 bits, in which rate bit r = 64 bits and capacity c = 256
bits. The initial state of Ascon consists of a 64-bit constant (called IV), followed by a
128-bit key K and a 128-bit random number N . In encryption, the 320-bit sponge state
is divided into five 64-bit words, X0, X1, X2, X3 and X4. The state S is defined as:
S = Sr||Sc = X0||X1||X2||X3||X4.

Figure 1: Structure of authenticated encryption in Ascon.

As shown in Figure 1, encryption process is divided into four stages: Initialization,
Associated data processing, Plaintext processing, and Finalization. Ascon uses two
permutation functions pa and pb, pa for the Initialization and Finalization, and pb for
the Associated data and Plaintext processing. They iteratively apply the permutation
p based on a Substitution-Permutation Network (SPN) structure, differing only in the
number of rounds. Permutation p is the core element of Ascon and consists of three
sub-transformations pC , pS and pL, i.e. p = pL ◦ pS ◦ pC .

pC involves the xor operation of the 8-bit constant cr with the word X2, i.e. X2 = X2⊕cr.
The constant depends only on the index of the current permutation, so it is easy to calculate.

pS is a nonlinear operation that represents a substitution layer. The layer consists
of 64 5-bit S-boxes. In other words, the input 5 bits of any S(x) are taken from the 5
64-bit words X0,...,X4, that is, one bit is extracted from each word, where one bit from X0

Yang Gao 5

acts as the Most Significant Bit(MSB) for the S-box input, and one bit from X4 acts as
the Least Significant Bit(LSB) for the S-box input. The S-box used in Ascon is an affine
equivalent of Keccak Sbox [KJA+18], and the specific values are shown in Table 1.

Table 1: Ascon 5-bit S-box.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

pL is a set of linear functions, Σi, that separately provide diffusion within each register
word Xi. For each i ∈ {0, . . . , 4}, Σi(Xi) is built as an XOR of Xi and its two cyclic shift
results, and the cyclic shift index is fixed and depends only on i. The function Σi is defined
as follows.

Σ0(X0) = X0 ⊕ (X0 >>> 19) ⊕ (X0 >>> 28)

Σ1(X1) = X1 ⊕ (X1 >>> 61) ⊕ (X1 >>> 39)

Σ2(X2) = X2 ⊕ (X2 >>> 1) ⊕ (X2 >>> 6)

Σ3(X3) = X3 ⊕ (X3 >>> 10) ⊕ (X3 >>> 17)

Σ4(X4) = X4 ⊕ (X4 >>> 7) ⊕ (X4 >>> 41)

The linear mapping of diffusion can be expressed in matrix form as:

Σi(Xi) = (LiXi) mod 2, i = 0, 1, 2, 3, 4

Where ⊕ and >>> denote the XOR and cyclic rightward operations, respectively. The
vector representation of the state word is denoted as Xi, while Li represents a 64×64
sparse matrix. Matrix multiplication is computed modulo 2. The initial line of L3 signifies
the presence of a non-zero element at the position corresponding to the cyclic shift value of
the associated diffusion function. For instance, the first row of L3 is a vector with elements
0, 10, and 17 set to 1, and the remaining elements set to 0. Similarly, the non-zero elements
of the first row in L4 are positioned at 0, 7, and 41. Each subsequent row of the matrix
cyclically shifts the entire preceding row to the right by one unit.

Ascon introduced two versions: Ascon-128 and Ascon-96 [DEMS15], featuring distinct
security levels and parameters. In this work, we focus on fault analysis in Ascon-128.
The designers of Ascon mentioned the level of security achievable with these two versions
and provided preliminary cryptanalysis results in their proposal submitted to the NIST
LWC competition. Ascon-128 claims a security level of 128 bits in terms of plaintext
confidentiality and plaintext/data/nonce integrity under three assumptions: Single use
of each nonce, outputting plaintext only if tag is correct, and blocks encrypted with the
same key are less than 264.

2.2 Notations
The important symbols and notations used in this paper are shown in Table 2.

3 Fault model used in PDFA for Ascon
DFA is an excellent strategy for analyzing traditional LWCs such as LBlock, Present,
TWINE, etc. This efficacy stems from two primary factors. Firstly, owing to the prevalence
of lightweight cryptographic devices, attackers can conveniently procure multiple ciphertexts

6 Partial Differential Fault Analysis on Ascon

Table 2: Symbols and notations.

|V | The number of elements contained in set V
K and T 128-bit key and tag of Ascon

K0 and K1 Two 64-bit words divided by K

T0 and T1(T ∗
0 and T ∗

1) Two 64-bit words divided by T after stuck-at
fault before (after) random-nibble fault

Y3 and Y4(Y ∗
3 and Y ∗

4) Two 64-bit words output by Finalization after
stuck-at fault before (after) random-nibble fault

X3 and X4(X∗
3 and X∗

4)
The second least significant and least significant

64-bit words output by S-box layer after
stuck-at fault before (after) random-nibble fault

S∗ 4-bit S-box after stuck-at fault

αin

4-bit fault value of the ith

S∗ in nth fault injection

βin

4-bit output difference of the ith

S∗ in nth fault injection
β′ Highest 2 bits of 4-bit output difference in S∗

mi 4-bit input value of the ith S∗

Qin

4-bit possible input set of the ith

S∗ in nth fault injection
⌊x⌋k Bitstring x truncated to the first (most significant) k bits
⌈x⌉k Bitstring x truncated to the last (least significant) k bits

Gn and Hn

The number of fault trails that can obtain a
unique solution after nth fault injection

when α takes elements in G and H

Tn
The number of fault trails that obtain a
unique solution after nth fault injection

pn (p̃n) The probability that a single S-box has a unique
solution after (exactly) the nth fault injection

E (E′) Expectation of the number of fault injections required
to recover a single (every) S-box input value

for identical (plaintext, key) pairs. Conversely, traditional LWCs often utilize 4-bit S-
boxes to strike a balance between efficiency and security. Nonetheless, compared to
their non-lightweight counterparts (e.g., the 8-bit S-box in AES), these lightweight S-
boxes may exhibit some shortcomings in terms of differential uniformity and nonlinearity.
Specifically, for DFA, the differential distribution table of 4-bit S-boxes harbors more
statistical properties, significantly facilitating the analysis of LWC algorithms.

However, since the advent of Ascon, DFA methods for it have been scant. To date, only
one study has explored this avenue, employing a bit-flip fault model. This scarcity can be
attributed to the divergence of Ascon from the aforementioned advantageous conditions for
DFA. Firstly, Ascon adopts a 5-bit S-box, markedly elevating the complexity of differential
distribution analysis. Moreover, unlike traditional LWCs, the AEAD algorithm necessitates
a nonce as part of its input. Across various encryption requests, this nonce is typically
reset and randomized. Consequently, even if an attacker targets identical plaintexts, keys,
and Associated Data (AD), injecting the same fault at the same position during algorithm
execution may not yield same faulty ciphertexts and tags in both encryption processes.
Notably, in practical scenarios, where nonce configurations can vary between Nonce-respect
and Nonce-misuse, cryptanalysis typically needs to consider both scenarios.

Yang Gao 7

3.1 Key recovering in Ascon
Our objective is to analysis the entire Ascon-128 algorithm to obtain knowledge of K.
Throughout the Ascon process, K participates in both Initialization and Finalization
stages. Initially, we explore the potential for conducting DFA during Initialization. If
a fault is injected during the initialization process to induce a difference, Ascon must
undergo all the procedures of absorbing AD and generating ciphertext. Consequently, the
fault diffusion obtained at each ciphertext output tends to be relatively uniform, rendering
it challenging to clearly distinguish the characteristics correlated with K.

Hence, we contemplate performing DFA during Finalization. As indicated in Subsub-
section 2.1.2, the output of pa during Finalization consists of two 64-bit words, Y3 and Y4.
We divide the 128-bit K into two 64-bit key words, denoted as K = K0||K1. Subsequently,
Y3 and Y4 are XORed with two key words and then combined to derive the verification
tag T, resulting in:

T0 = K0 ⊕ Y3, T1 = K1 ⊕ Y4, T = T0 ⊕ T1

It is evident from the above equations that K can be directly recovered upon knowledge
of the 64-bit words Y3 and Y4. Referring again to Subsubsection 2.1.2, we know that Y3
and Y4 can be directly obtained from the 64-bit words X3 and X4 output by S-box layer
through the linear transformation layer pL. Consequently, our goal shifts to recovering the
64-bit words X3 and X4.

Traditional DFA methods often commence from the final S-box layer involved in the
algorithm and proceed with reverse-order analysis. Likewise, we explore injecting faults at
the input of the S-box in the last round of pa during the Finalization phase of the Ascon
encryption process. As this represents the concluding nonlinear transformation of the
entire cipher, such injections will introduce an unknown difference at the S-box output.
According to the criterion of differential diffusion in cryptographic algorithms, nonlinear
components alter difference values, whereas linear components primarily propagate and
replicate difference values [Hey02]. Consequently, these differences maintain linearity after
traversing the linear layer pL and undergoing XOR operations with the key, ultimately
manifesting as differences in the output tag T of the entire Ascon algorithm. In essence,
following DFA implementation, we obtain several faulty tags, and the discrepancies between
these tags can be translated into output differences of the S-box through inverse linear
transformation. Assuming correct execution of the Ascon encryption process, the resulting
tag is represented as:

T = T0||T1 = (K0 ⊕ Y3)||(K1 ⊕ Y4) = (K0 ⊕ Σ3(X3))||(K1 ⊕ Σ4(X4)).

The tag obtained after injecting a fault at the S-box input of the last round of permutation
p in Finalization is

T ∗ = T ∗
0 ||T ∗

1 = (K0 ⊕ Y ∗
3)||(K1 ⊕ Y ∗

4) = (K0 ⊕ Σ3(X∗
3))||(K1 ⊕ Σ4(X∗

4)),

we observe that X3 ⊕ X∗
3 and X4 ⊕ X∗

4 are the lowest and second-lowest 64-bit words.
More precisely, we can discern the Least Significant Bit (LSB) and second LSB of the 5-bit
XOR value of the correct and faulty outputs of each of the 64 S-boxes before and after
fault injection. This information, coupled with an appropriate fault model, is adequate for
deducing the input of the S-box layer and subsequently obtaining the 64-bit words X3 and
X4.

3.2 Fault models in PDFA
Prior to embarking on the specific fault analysis of Ascon, we first introduce the two fault
models utilized in the proposed PDFA method.

8 Partial Differential Fault Analysis on Ascon

3.2.1 Stuck-at fault model

By naturally analyzing the differential distribution table of the 5-bit S-box (see in Ap-
pendix), we found that there are some properties. However, these properties alone proved
insufficient for recovering the 128-bit key. To address this limitation, we explored the
possibility of transforming the 5-bit S-box into a 4-bit S-box through a strategic manipula-
tion. We hypothesized that such a transformation might reveal differential distribution
properties analogous to those observed in other classic LWCs like MIBS [GWY+19b]. This
forms the crux of the proposed PDFA method.

To address the first question regarding the optimal method for processing the 5-bit S-box
to achieve the most effective analysis, we turned to the original Ascon’s S-box. Specifically,
we explored the idea of fixing the LSB of the S-box and studying the relationship between
the remaining 4 bits and the output difference concerning the S-box input. Without loss of
generality, we introduced a stuck-at-0 fault into the S-box, resulting in the reduced S-box
denoted as S∗, as illustrated Table 3.

Table 3: S-box S∗ after stuck-at-0 fault injected in LSB.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 4 31 26 9 27 8 29 6 30 7 0 17 16 1 22 15

In alignment with the characteristics of the Ascon algorithm, only the last two bits
of the output difference β′ could be obtained after fault injections during the final round
of the S-box in the Finalization stage. Consequently, the classic differential equation
S∗(m) ⊕ S∗(m ⊕ α) = β had to be transformed into the form S∗(m) ⊕ S∗(m ⊕ α) = β′,
where β′ = β mod 4. In simpler terms, only four possibilities existed for β′, namely {00,
01, 10, 11}. The resulting differential distribution table of S∗ after introducing a stuck-at-0
fault in the LSB is presented in Table 4.

Our objective is to determine the input value of S∗ with as few fault injections as
possible. Ideally, the best-case scenario is that the unique S∗ input m can be obtained after
just two fault injections. To formalize this objective, we introduce Definition 1 [GWY+19a].

Definition 1. Let S∗(x) denote a “stuck-at” S-box in Ascon. For any fixed input difference
α ∈ F4

2 and output difference β′ ∈ F2
2, we difine

⟨α|β′⟩ =
{

m ∈ F4
2 : S∗(m) ⊕ S∗(m ⊕ α) = β′} .

We try to find two groups of ⟨α1|β′
1⟩ and ⟨α2|β′

2⟩ corresponding to the same S∗ input
m in differential distribution table, such that |⟨α1|β′

1⟩ ∩ ⟨α2|β′
2⟩| = 1. At this time, it has

⟨α1|β′
1⟩ ∩ ⟨α2|β′

2⟩ = m. However, upon examination of Table 4, it becomes evident that no
such ⟨α1|β′

1⟩ and ⟨α2|β′
2⟩. In other words, we observe

∣∣⟨αi|β′
i⟩ ∩

〈
αj |β′

j

〉∣∣ ≥ 2 for any i, j.
Consequently, obtaining a unique S∗ input m after two fault injections becomes unfeasible.

Given the input m of S∗, a fault value α must correspond to an output difference β′.
For the sake of simplifying subsequent discussions, we introduce the following Definition 2
is given:

Definition 2. Let α1 → α2 → · · · → αn represent the sequence of fault injections, where
the first injection is denoted as α1, the second as α2, and so forth, until the nth injection,
αn. This sequence is termed the fault trail from α1 to αn. The set ⟨α1 → α2 → · · · → αn⟩
denotes the possible input values of S∗ under this fault trail, defined as

⟨α1 → α2 → · · · → αn⟩ = ⟨α1|β′
1⟩ ∩ ⟨α2|β′

2⟩ ∩ · · · ∩ ⟨αn|β′
n⟩ .

Example 1. Consider the scenario where the input value of S∗ is m = 2, we randomly
inject the fault values α1 and α2. In this case, ⟨α1 → α2⟩ = {0, 2}.

Yang Gao 9

Table 4: Differential distribution table of S∗ after stuck-at-0 fault injected in LSB.

α β′ = 00 β′ = 01 β′ = 10 β′ = 11

0
0,1,2,3,4,5,

6,7,8,9,10,11,
12,13,14,15

- - -

1 - 8,9,10,11,
12,13,14,15 - 0,1,2,3,

4,5,6,7

2 - -
0,1,2,3,4,5,

6,7,8,9,10,11,
12,13,14,15

-

3 - 0,1,2,3,
4,5,6,7 - 8,9,10,11,

12,13,14,15

4 - - 8,9,10,11,
12,13,14,15

0,1,2,3,
4,5,6,7

5 0,1,2,3,
4,5,6,7 - - 8,9,10,11,

12,13,14,15

6 8,9,10,11,
12,13,14,15

0,1,2,3,
4,5,6,7 - -

7 - 8,9,10,11,
12,13,14,15

0,1,2,3,
4,5,6,7 -

8 1,3,9,11 5,7,3,15 0,2,8,10 4,6,12,14
9 5,7,12,14 1,3,8,10 4,6,13,15 0,2,9,11
10 0,2,8,10 4,6,12,14 1,3,9,11 5,7,13,15
11 4,6,13,15 0,2,9,11 5,7,12,14 1,3,8,10
12 0,2,12,14 4,6,8,10 1,3,13,15 5,7,9,11
13 4,6,9,11 0,2,13,15 5,7,8,10 1,3,12,14
14 1,3,13,15 5,7,9,11 0,2,12,14 4,6,8,10
15 5,7,8,10 1,3,12,14 4,6,9,11 0,2,13,15

The aforementioned Example 1 highlights a straightforward yet important observation:
when the actual input value of S∗ is 2, it becomes impossible to distinguish whether
the input value is m = 2 or m = 0 through only two fault injections. Additional fault
injections become necessary to resolve this ambiguity. From the perspective of an attacker,
this situation is undesirable as they strive to minimize the number of injections while
maximizing their understanding of the intermediate state of cryptographic systems. To
address this issue, we must explore altering the positions of fixed bits in the original S-box
in Ascon. Such changes will lead to a complete transformation of the stuck-at S-box.
Moreover, for the same fixed position, "stuck-at-0" and "stuck-at-1" will also yield entirely
different alterations to S∗. Consequently, there exist 2 × 5 = 10 types of stuck-at S-boxes
S∗, as listed below:

Upon examining Table 5, it becomes evident that the significance of the five bit positions
within Ascon’s S-box for conducting a successful differential analysis varies notably. As
per the outcomes of our program executions, for the complete 5-bit S-box, there is
min {|⟨αi → αj⟩|} = 2, 0 ≤ ai, aj ≤ 31(see in Appendix). From an attacker’s perspective,
it’s apparent that the MSB x0 and the second MSB x1 are obviously bad positions. Because
after installing the stuck-at fault here, min {|⟨αi → αj⟩|} will be increased, which means
two fault injections reduce 16 possible S-box input values to 4 at most. On the other hand,
the LSB x4 and the second LSB x3 are moderate positions. After inducting the stuck-at
fault, min {|⟨αi → αj⟩|} = 2. The effect is the same as not installing the stuck-at fault
and this is obviously unacceptable. In essence, there is only one possible good position
that we can determine, which is the middle (3rd) bit of the S-box, x2. At this time,

10 Partial Differential Fault Analysis on Ascon

Table 5: S∗ under different stuck-at models.

stuck-at model The corresponding output when the
remaining 4 bit input of S-box are 0 to 15 min {|⟨αi → αj⟩|}

stuck-at-0 at x4 4,31,26,9,27,8,29,6,30,7,0,17,16,1,22,15 2
stuck-at-1 at x4 11,20,21,2,5,18,3,28,19,14,13,24,12,25,10,23 2
stuck-at-0 at x3 4,11,26,21,27,5,29,3,30,19,0,13,16,12,22,10 2
stuck-at-1 at x3 31,20,9,2,8,18,6,28,7,14,17,24,1,25,15,23 2
stuck-at-0 at x2 4,11,31,20,27,5,8,18,30,19,7,14,16,12,1,25 1
stuck-at-1 at x2 26,21,9,2,29,3,6,28,0,13,17,24,22,10,15,23 4
stuck-at-0 at x1 4,11,31,20,26,21,9,2,30,19,7,14,0,13,17,24 4
stuck-at-1 at x1 27,5,8,18,29,3,6,28,16,12,1,25,22,10,15,23 4
stuck-at-0 at x0 4,11,31,20,26,21,9,2,27,5,8,18,29,3,6,28 4
stuck-at-1 at x0 30,19,7,14,0,13,17,24,16,12,1,25,22,10,15,23 4

min {|⟨αi → αj⟩|} = 1, suggesting that the S-box input can be conclusively determined by
at least two fault injections. This observation aligns with the design specifics of Ascon.
This observation aligns with the design specifics of Ascon. Notably, the Finalization output
results from a linear transformation amalgamating the LSB and the second LSB of the 64
S-box outputs into respective words X4 and X3 respectively. This shows that for algorithm
designers, two positions that are inconsequential for differential analysis are allowed to
expose, while safeguarding the most vulnerable bit against potential attackers.

3.2.2 Random-nibble fault model

After determining the stuck-at position, it is necessary to decide whether to employ the
stuck-at-0 or stuck-at-1 model. Both models partition all 32 outputs of the original 5-bit
S-box into two distinct halves, and the values of two resultant S∗ boxes have no overlap.
However, upon examination of Table 5, it became evident that min {|⟨αi → αj⟩|} = 1 is in
both cases. Consequently, we hypothesize that the differential characteristics of the two S∗

are identical. Subsequent verification through programming confirmed this conjecture, with
the difference distribution tables of both models being identical, as illustrated in Table 6.

All

possible

S box

input

1

5

7

9

11

13

15

0

4

2

6

8

10

12

14

3

12, 13, 14, 15

8, 10, 13, 15

8, 10, 12, 14

5, 6, 13, 14

5, 6, 12, 15

1, 6, 10, 13 1, 5, 8, 12

1, 6, 8, 15 1, 5, 10, 14

α2 α2α1 α1

Figure 2: Trails to obtain unique S∗ input after 2 fault injections.

Once the stuck-at position is established, the 5-bit S-box can be transformed into a
4-bit S∗ for further analysis. In classic LWCs, the random-nibble fault model commonly

Yang Gao 11

employed in PRESENT, TWINE, and LBlock can be readily applied. It’s noteworthy
to delineate that the random-nibble fault model manifests in two forms: fault injection
in single S-box and fault injection in all S-boxes within a round simultaneously (named
"full-round" S-box). With a total of 64 S-boxes operating in parallel during the last round
of pa in Finalization, injecting 64 random-nibble faults concurrently minimizes the number
of injections required, albeit at the expense of increased complexity compared to the
former model. In order to comprehensively gauge the attacker’s capabilities across varying
scenarios, this paper will explore the random-nibble fault model in both aforementioned
situations.

Table 6: Differential distribution table of S∗ after stuck-at fault injected in x2.

α β′ = 00 β′ = 01 β′ = 10 β′ = 11

0
0,1,2,3,4,5,

6,7,8,9,10,11,
12,13,14,15

- - -

1 12,13,14,15 8,9,10,11 4,5,6,7 0,1,2,3

2 - 8,9,10,11,
12,13,14,15 - 0,1,2,3,

4,5,6,7

3 0,1,2,3,
8,9,10,11

4,5,6,7,
12,13,14,15 - -

4 - - 1,3,5,7,
8,10,12,14

0,2,4,6,
9,11,13,15

5 1,3,4,6 0,2,5,7 8,10,13,15 9,11,12,14
6 0,2,4,6 1,3,5,7 9,11,13,15 8,10,12,14

7 - - 0,2,5,7,
9,11,12,14

1,3,4,6,
8,10,13,15

8 1,2,9,10 5,6,13,14 0,3,8,11 4,7,12,15

9 - 1,2,5,6,
8,11,12,15 - 0,3,4,7,

9,10,13,14
10 5,6,12,15 1,2,8,11 4,7,13,14 0,3,9,10

11 1,2,5,6,
9,10,13,14 - 0,3,4,7,

8,11,12,15 -

12 0,7,11,12 3,4,8,15 2,5,9,14 1,6,10,13
13 0,4,9,13 3,7,10,14 2,6,11,15 1,5,8,12
14 3,4,10,13 0,7,9,14 1,6,8,15 2,5,11,12
15 3,7,8,12 0,4,11,15 1,5,10,14 2,6,9,13

Firstly, we focus on examining the set of possible input values of S∗ after two fault
injections, that is, the fault trail α1 → α2. Employing programming tools, we systematically
explore all fault trails outlined in Table 6, revealing a consistent outcome: regardless of
the input value m of S∗, the fault trails satisfying ⟨α1 → α2⟩ = m remain constant, which
are illustrated in Figure 2.

Evidently, when α1 = 0, it is equivalent to an invalid empty fault. For the rest
of the effective fault injection, as depicted in the preceding Figure 2, reveals that when
|⟨α1 → α2⟩| = 1, it implies α1 ∈ G, where G = {1, 5, 6, 8, 10, 12, 13, 14, 15}. Conversely, con-
sidering H = {2, 3, 4, 7, 9, 11}, if α1 ∈ H, irrespective of the value α2 takes, |⟨α1 → α2⟩| ≥ 2.
In such cases, obtaining the sole possible input of S∗ becomes unattainable through only
two fault injections. Remarkably, upon revisiting Table 6, a correlation emerges: precisely
when α1 ∈ G, there is |⟨α1⟩| = 4; for α1 ∈ H, |⟨α1⟩| = 8; and when α1 = 0, |⟨α1⟩| = 16.
Consequently, it can be inferred that elements in G exhibit a robust ability to filter the
input of S∗, those in h demonstrate a weaker filtering capacity, while α1 = 0 (empty fault)
lacks any ability to filter the input of S∗. These characteristics form the basis of the

12 Partial Differential Fault Analysis on Ascon

discussion on complexity.
For a single S∗ box, there exist 16 × 16 = 256 situations in which two faults are injected.

Referring to Figure 2, it becomes evident that 36 situations satisfy |⟨α1 → α2⟩| = 1.
Consequently, the probability of attaining the unique input value of S∗ box after two
fault injections is calculated as 9×4

256 = 9
64 . For full-round S∗ boxes, 64 random-nibble

faults must be simultaneously injected. Since the 64 S∗ boxes operate independently
during the Finalization, it is apparent that the probability of acquiring the input value
for all S∗ by injecting two faults is

(9
64

)64 ≈ 2.99 × 10−55. This minute value implies
that the likelihood of uniquely determining the intermediate state of S∗ boxes after two
fault injections is exceedingly small, verging on negligible. However, this doesn’t render
simultaneous random-nibble fault injections in full-round S∗ boxes futile. As the number of
fault injections increases, more intriguing conclusions emerge. Subsequent to the two-time
fault injection discussion, our focus will delve into a detailed analysis in Section 5.

4 PDFA process on Ascon
4.1 Discussion of different nonce configurations
As discussed in Subsubsection 2.1.1, the AEAD algorithm implemented by Ascon differs
from traditional LWCs in that it requires a nonce as input. Typically, the nonce is reset
and randomized for each encryption request, a practice known as Nonce-respect. However,
in real-world scenarios, there exists the possibility of reusing the (key, nonce) pair, referred
to as Nonce-misuse or Nonce-reuse. In such cases, where multiple plaintexts are encrypted
using the same (key, nonce) pair, the state after Initialization remains constant throughout.
This section delves into the operation of PDFA under these two nonce configurations.

It’s important to note that regardless of whether Nonce-misuse or Nonce-respect is
employed, a stuck-at fault must be injected at the S∗ box input of the last round of pa

during the Finalization stage of the encryption process. The only variation lies in the
timing of the injection of the random-nibble fault. Thus, for the ensuing discussion, the
stuck-at fault is assumed to have been injected at the S∗ box of the final round of pa

during Finalization, whether in encryption or decryption processes.

4.1.1 Nonce-misuse

In this scenario, the attacker is assured of obtaining both the ciphertext and tag for the
same plaintext, key, nonce, and AD. Put differently, prior to tag generation in Finalization,
the internal state of Ascon remains identical across consecutive runs. This satisfies the
prerequisites for executing PDFA. The attacker’s task then involves injecting the fault
models outlined in Subsection 3.2 into the encryption process during repeated executions
of the cryptosystem and collecting multiple faulty tags. Drawing from the pertinent details
in Subsection 3.1, the S∗ box input in the last round of permutation pa during Finalization
can be obtained, thereby facilitating the recovery of K.

4.1.2 Nonce-respect

Performing DFA in this scenario poses significant challenges due to the inability of the
attacker to observe both correct and faulty outputs for the same plaintext. Nevertheless,
the AEAD algorithm necessitates the use of a nonce during the decryption process of
a given encryption request. It is imperative to ensure that this nonce matches the one
used in the corresponding encryption request; otherwise, the tag verification will fail.
Consequently, a pair of encryption and decryption operations can be viewed as a natural
replay with a fixed nonce. Hence, we propose injecting random-nibble faults into the

Yang Gao 13

decryption process, which constitutes the fundamental condition for completing DFA in a
Nonce-respect scenario.

As elucidated in Subsection 3.1, the primary objective of our proposed PDFA is to
ascertain the input value of the final round of the S∗ and subsequently recover the key.
These input values are determined by solving a set of differential equations. The initial
information required by the attacker includes the input and output differences. In the
context of the random-nibble fault model, the fault value represents the input difference.
Thus, solving the differential equations hinges upon acquiring knowledge of the output
difference.

Injecting random-nibble faults in Finalization of decryption leads to a change in the
resulting tag, denoted as T ∗. If T ∗ deviates from the tag T obtained during the encryption
process without fault injection, the verification process fails. Our purpose is to manipulate
the decryption input to K × N × AD × C × T ∗ to successfully pass the verification and
deduce the output difference β′ = T ∗ ⊕ T . We focus on the scenario of injecting nibble
faults into a single S∗ box, resulting in four possible output differences: β′ = {00, 01, 10, 11}.
Here, K = K0||K1 represents the 128-bit encryption key, T = T0||T1 denotes the 128-bit
tag output during encryption, and T ∗ = T ∗

0 ||T ∗
1 signifies the 128-bit label computed during

decryption. And T0(T1) represents the XOR result of the 64-bit word Y3(Y4) output by
permutation pa and the 64-bit key K0(K1) in Finalization. The detailed results of the
discussion are outlined below.

1. β′ = 00. The output difference caused by injecting a fault at S∗ box has last two
bits as 0, implying no variation in the components involved in tag calculation. It implies
T ∗ = T , signifying, T ∗

0 = T0, T ∗
1 = T1.

2. β′ = 01. The second LSB in output difference of S∗ remains unchanged, while LSB
is 1. This suggests a change in the 64-bit word X3 output by S∗, with X4 remaining
unaffected. Without loss of generality, let’s assume fault injection into the first S∗ box, S∗

0.
This leads to

∆X3 = X3 ⊕ X∗
3 = 100 . . . 00.

Utilizing the properties of the linear transformation layer pL in permutation p, we derive

∆Y3 = Y3 ⊕ Y ∗
3 = Σ3(X3) ⊕ Σ3(X∗

3) = Σ3(X3 ⊕ X∗
3) = L3 · (X3 ⊕ X∗

3) mod 2

Consequently, the difference in the 64-bit word Y3 after the linear transformation is
∆Y3 = 100 . . . 100 . . . 100 . . . 0(1st, 11th and 18th bits are 1, others are 0). As Y3 is directly
XORed with the key word K0 to obtain T0, i.e., T ∗

0 = K0 ⊕ Y ∗
3 and T0 = K0 ⊕ Y3, it

follows that

T ∗
0 = T0 ⊕ Y3 ⊕ Y ∗

3 = T0 ⊕ 100 . . . 100 . . . 100 . . . 0, T ∗
1 = T1

3. β′ = 10. The LSB in output difference of S∗ remains unchanged, while the second
LSB is 1. This indicates a change in the 64-bit word X4 output by S∗, with X3 remaining
unchanged. Without loss of generality, assuming fault injection into the first S∗ box, S∗

0,
we have

∆X4 = X4 ⊕ X∗
4 = 100 . . . 00.

Following the properties of the linear transformation layer pL in permutation p, we obtain

∆Y4 = Y4 ⊕ Y ∗
4 = Σ4(X4) ⊕ Σ4(X∗

4) = Σ4(X4 ⊕ X∗
4) = L4 · (X4 ⊕ X∗

4) mod 2

Hence, the difference in the 64-bit word Y4 following the linear transformation can be
represented as ∆Y4 = 100 . . . 100 . . . 100 . . . 0(1st, 8th and 42th bits are 1, others are 0).
As Y4 is directly XORed with the key word K1 to yield T1, denoted as T ∗

1 = K1 ⊕ Y ∗
4 ,

T1 = K1 ⊕ Y4. Consequently,

T ∗
1 = T1 ⊕ Y4 ⊕ Y ∗

4 = T1 ⊕ 100 . . . 100 . . . 100 . . . 0, T ∗
0 = T0

14 Partial Differential Fault Analysis on Ascon

Table 7: The probability of guessing the correct β′ under different fault values in S∗

fault value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
β′ = 00 1 1/4 - 1/2 - 1/4 1/4 - 1/4 - 1/4 1/2 1/4 1/4 1/4 1/4
β′ = 01 - 1/4 1/2 1/2 - 1/4 1/4 - 1/4 1/2 1/4 - 1/4 1/4 1/4 1/4
β′ = 10 - 1/4 - - 1/2 1/4 1/4 1/2 1/4 - 1/4 1/2 1/4 1/4 1/4 1/4
β′ = 11 - 1/4 1/2 - 1/2 1/4 1/4 1/2 1/4 1/2 1/4 - 1/4 1/4 1/4 1/4

4. β′ = 11. Both the second LSB and LSB in output difference of S∗ being 1. From
the aforementioned analysis, it follows that

T ∗
0 = T0 ⊕ Y3 ⊕ Y ∗

3 = T0 ⊕ 100 . . . 100 . . . 100 . . . 0(1st, 11th and 18th bits are 1),

T ∗
1 = T1 ⊕ Y4 ⊕ Y ∗

4 = T1 ⊕ 100 . . . 100 . . . 100 . . . 0(1st, 8th and 42th bits are 1).
During the decryption process, when inputting K × N × AD × C × T ∗, only one of the

four aforementioned scenarios can successfully pass the tag verification. By repetitively
injecting nibble faults into the same S∗ box and guessing T ∗, multiple faulty tags capable
of passing verification can be collected. At this juncture, Nonce-respect can transition into
a Nonce-misuse scenario. Notably, the probabilities of the aforementioned four scenarios
occurring are not uniform. According to Table 6, we derive the following properties.
Proposition 1. If S∗ box input value m ∈ {0, 1, 2, 3, 4, 6, 9, 10, 12, 13, 14}, the probabil-
ities in above four situations are 5

16 , 3
16 , 3

16 , 5
16 respectively; If m ∈ {5, 7, 8, 11, 14}, the

probabilities of four situations are 3
16 , 5

16 , 5
16 , 3

16 respectively.

The concept introduced in Proposition 1 deviates somewhat from mere subconscious
intuition. Conventionally, it is posited that the likelihood of encountering each of the four
aforementioned situations is 1/4. Consequently, when attempting to guess β′ without
prior knowledge of the fault value, it’s common practice to initially lean towards guessing
β′ = 00 or β′ = 11, thus increasing the probability of correctly identifying β′ that would
allow T ∗ = T ⊕ β′ to pass verification sooner.

During the analysis employing the proposed fault models, the value of the random-
nibble fault is known to us. Consequently, a row in Table 6 can be directly locked. For
example, if the fault value is 4, β′ cannot be 00 or 01. Then the probability of accurately
guessing β′ rises to 1/2, as demonstrated in Table 7 shows.

Subsequently, based on the data presented in Table 7, we further derive Theorem 1.
Theorem 1. In the Nonce-respect scenario, the expectation number of faulty tags T ∗

required for correctly guessing β′ in a single S∗ box is 2.03125.

Proof. Observing above Table 7, it becomes evident that when α ∈ G = {1, 5, 6, 8, 10, 12, 13, 14, 15},
the probability of determining the correct β′ is 1/4. Conversely, when α ∈ H =
{2, 3, 4, 7, 9, 11}, this probability increases to 1/2. Additionally, when α = 0, the probability
of ascertaining the correct β′ is 1 (as an empty fault does not alter the tag).

Furthermore, when α ∈ H, the expectation of determining the correct β′ is calculated
as

EH = 1 · 1
2 + 2 · 1

2 · 1 = 1.5 (Sampling without replacement);

when α ∈ G, the expectation becomes β′ is

EG = 1 · 1
4 + 2 · 3

4 · 1
3 + 3 · 3

4 · 2
3 · 1

2 + 4 · 3
4 · 2

3 · 1 = 2.5.

Since each fault value in the random-nibble model carries the same probability, we deduce
that

Eguess = 1 · 1 + 6 · EH + 9 · EG

16 = 2.03125,

which marginally exceeds 2.

Yang Gao 15

The analysis in Theorem 1 elucidates that a single S∗ box permits successful tag
authentication even in the presence of up to 2.03125 additional guesses of faulty tags
during decryption. This signifies a relaxation of the nonce reuse restriction inherent in the
Nonce-respect scenario, aligning it with the proposed PDFA’s Nonce-misuse scenario.

4.2 Specific PDFA process
4.2.1 Single S-box

The steps for recovering the input of a single S-box are delineated below:
Step1 : Begin by selecting any key, nonce, associated data, and plaintext for Ascon

encryption, denoted as EK(N, AD, P).
Step2 : During the algorithm’s execution, inject a stuck-at-0(1) fault into the middle

(3rd) bit of the ith S-box when reaching the final round of permutation pa in the Finalization
stage, yielding the tag T .

Step3(Nonce − misuse scenario): Re-execute the encryption algorithm with the
same parameters. At the final round of permutation pa in Finalization, inject stuck-at-0(1)
fault into the middle (3rd) bit of the ith S-box. Subsequently, inject a random-nibble fault
αi1 into the remaining 4 bits of the ith S-box, generating the faulty tag T ∗ = T ∗

0 ||T ∗
1 .

Step3∗(Nonce − respect scenario): Utilize the same parameters to execute the
decryption algorithm. Guess the tag T ∗ = (T0 ⊕ ∆Y3)||(T1 ⊕ ∆Y4) computed during the
decryption process at this point and employ T ∗ as the input for decryption. Upon reaching
the final round of permutation pa in Finalization, inject a stuck-at-0(1) fault into the
middle (3rd) bit of the ith S-box. Then inject a random-nibble fault into the remaining
4 bits of the same S-box, and verify whether the validation succeeds. If not, continue to
guess the tag T ∗ until validation is achieved.

Step4: Calculate the difference value ∆T = T ⊕ T ∗ = ∆T0||∆T1 between the correct
and faulty tags, where ∆T0 = T0 ⊕ T ∗

0 , ∆T1 = T1 ⊕ T ∗
1 .

Step5: Represent the 64-bit words ∆T0 and ∆T1 in vector form, calculate ∆X3 =
L−1

3 (∆T0) and ∆X4 = L−1
4 (∆T1). Then, obtain the results ∆X3 = (0, . . . 0, ∆x3,i, . . . , 0, . . . , 0),

∆X4 = (0, . . . 0, ∆x4,i, . . . , 0, . . . , 0).
Step6: For the ith S-box Si, the last two bits of the output difference β′

i can be
expressed as β′

i = ∆x3,i ⊕ ∆x4,i.
Step7: Refer to Table 6 to solve the differential equation S∗(m) ⊕ S∗(m ⊕ αi) = β′

i,
and save all possible input m in S∗ box input candidate set Qi.

Step8: Repeat the above steps from Step3 to Step7 n times. For S∗
i , n input candidate

sets Qi1 , Qi2 , . . . Qin after n fault injections can be obtained. When |Qi1 ∩ Qi2 ∩ · · · ∩ Qin | =
1 is satisfied, the input value of S∗

i is recovered, which is mi = Qi1 ∩ Qi2 ∩ · · · ∩ Qin .
Step9: Repeat the above steps from Step1 to Step8 64 times. Find the input values

mi(i = 0, . . . , 63) of all 64 S∗ boxes.
Extract the second LSB bit x3,i and LSB bit x4,i of all 64 S-boxes output S(⌊mi⌋2 ||0|| ⌈mi⌉2)

respectively and concatenate them into 64-bit intermediate state words X3 and X4, then
K can be expressed as

K = K0||K1 = (Σ3(X3) ⊕ T0)||(Σ4(X4) ⊕ T1).

4.2.2 All S-boxes in a round

Steps of recovering input of all S-boxes in a round at a time are listed below:
Step1 : Begin by selecting any key, nonce, associated data, and plaintext for Ascon

encryption, denoted as EK(N, AD, P).
Step2 : At the final round of the permutation pa during Finalization, simultaneously

introduce stuck-at-0(1) faults into the middle (3rd) bits of all 64 S-boxes to generate the
tag T .

16 Partial Differential Fault Analysis on Ascon

Step3(Nonce − misuse scenario): Re-execute the encryption algorithm with identi-
cal parameters. During the final round of permutation pa in Finalization, inject stuck-at-0(1)
faults into the middle (3rd) bits of all 64 S-boxes. Subsequently, inject 64 random-nibble
faults αi(i = 0, 1, . . . , 63) into the remaining 4 bits of all S-boxes, resulting in the faulty
tag T ∗ = T ∗

0 ||T ∗
1 .

Step3∗(Nonce − respect scenario): Proceed with the decryption algorithm using
the same parameters and guess the tag T ∗ = (T0 ⊕ ∆Y3)||(T1 ⊕ ∆Y4) computed during
decryption at this stage, and utilize T ∗ as the input for decryption. During the final round
of permutation pa in Finalization, inject stuck-at-0(1) faults into the middle (3rd) bits of
all 64 S-boxes. Then inject 64 random-nibble faults αi(i = 0, 1, . . . , 63) into the remaining
4 bits of all S-boxes. Observe the verification process; if it fails, continue refining the
guessed tag T ∗ until validation succeeds.

Step4: Compute the difference ∆T = T ⊕ T ∗ = ∆T0||∆T1 between the correct and
faulty tags, where ∆T0 = T0 ⊕ T ∗

0 , ∆T1 = T1 ⊕ T ∗
1 .

Step5: Convert the 64-bit words ∆T0 and ∆T1 into vector form. Compute ∆X3 =
L−1

3 (∆T0) and ∆X4 = L−1
4 (∆T1). This yields ∆X3 = (∆x3,0, ∆x3,1, . . . , ∆x3,63) and

∆X4 = (∆x4,0, ∆x4,1, . . . , ∆x4,63).
Step6: For all 64 S-boxes Si(i = 0, 1, . . . 63), the last two bits of the output difference

β′
i can be expressed as β′

i = ∆x3,i ⊕ ∆x4,i.
Step7: Refer to Table 6 to solve the differential equation S∗(m) ⊕ S∗(m ⊕ αi) = β′

i

for each S∗ box, and save all possible input m in S∗
i box input candidate set Qi.

Step8: Repeat the above steps from Step3 to Step7 n times. For S∗
i , n input candidate

sets Qi1 , Qi2 , . . . Qin after n fault injections can be obtained. When |Qi1 ∩ Qi2 ∩ · · · ∩ Qin | =
1 is satisfied for all 0 ≤ i ≤ 63, then the SDFA process is completed. At this stage, the
input value of S∗

i is mi = Qi1 ∩ Qi2 ∩ · · · ∩ Qin
.

The representation of K remains consistent with that in Subsubsection 4.2.1. Notably,
the computational complexity of guessing the faulty tag reaches 464 = 2128 in Step3∗.
Consequently, during practical analysis, random-nibble fault injections into full-round
S-boxes is only viable for Nonce-misuse scenarios.

5 Complexity analysis
In Section 4, we provided a detailed process of PDFA under different random-nibble
fault models and nonce configurations. The subsequent problem is the complexity of
analysis. In Subsubsection 4.1.2, we discuss the success rate of guessing the faulty tag
T ∗ within the Nonce-respect scenario. This section now shifts focus to another critical
issue highlighted at the end of Subsubsection 3.2.2. We aim to discuss the probability of
successfully recovering K and the expectation of required number of fault injections under
two distinct random-nibble fault models.

As highlighted in Subsubsection 3.2.2, following two random-nibble fault injections,
the S∗

i box input may not necessarily converge to a unique value. Uniqueness in de-
termination occurs only when the fault trail from α1 to α2 assumes specific values,
denoted as |⟨α1 → α2⟩| = 1. Specifically, under these conditions, the first fault α1
takes the value G = {1, 5, 6, 8, 10, 12, 13, 14, 15}; Conversely, when α1 assumes the value
H = {2, 3, 4, 7, 9, 11}, it becomes impossible to uniquely determine the S∗

i box input,
resulting in |⟨α1 → α2⟩| ≥ 2. Notably, when α1 = 0(empty fault), it is also impossible to
uniquely determine the S∗

i input. Unlike the case in H, this fault offers no assistance in
filtering possible inputs of S∗

i , hence possessing unique statistical properties warranting
separate discussion. Next, we generalize all the above properties to the case of multiple
fault injections.
Theorem 2. Let Gn represents the number of fault trails that can obtain a unique input
after n fault injections in S∗ when α1 takes elements in G, then Gn = 22n−4 · (2n − 2)2.

Yang Gao 17

Proof. Given that α1 ∈ G, as established in Subsubsection 3.2.2, we can deduce that
|⟨α1⟩| = 4. Consequently, following the nth fault injection, all scenarios involving the
screening of input from the S∗

i box can be categorized into three cases:
A. |⟨α1 → αn⟩| = 4;
B. |⟨α1 → αn⟩| = 2;
C. |⟨α1 → αn⟩| = 1.
When αn falls into cases A, B, and C, we denote the number of fault trails resulting in

a unique input as gna
, gnb

, and gnc
, respectively. Since the elements in G share the same

properties of fault trails, let’s consider the scenario with α1 = 1 without loss of generality.

Case A: There are 4 values for αn ∈ {0, 1, 2, 3} satisfying A. Due to |⟨α1 → αn⟩| = 4
and |⟨α1⟩| = 4, it follows that ⟨α1⟩ ⊆ ⟨αn⟩, implying that the nth fault injection does not
contribute to filtering the input of the S∗

i box. As |⟨α1 → α2 → · · · → αn⟩| = 1, it must be
the case that |⟨α1 → α2 → · · · → αn−1⟩| = 1. Consequently, when the penultimate fault
αn−1 is injected, the unique input of S∗

i has been obtained. Thus, gna
= Gn−1, and the

total number of trails in Case A is 4 · Gn−1.

Case B: There are 8 values for αn ∈ {4, 5, 6, 7, 8, 9, 10, 11} satisfying B in total. Due to
the conditions of |⟨α1 → αn⟩| = 2 is more complicated, we continue adopting classification
discussion:

B1. |⟨α1 → αn−1 → αn⟩| = 1;
B2. |⟨α1 → αn−1 → αn⟩| = 2.
When αn−1 falls into cases B1 and B2, we denote the number of fault trails resulting in

a unique input as gnb1 and gnb2 . Similarly, since all αn in Case B share the same properties
of fault trails, let’s consider the scenario with αn = 4 without loss of generality.

Case B1: There are 8 values for αn−1 ∈ {8, 9, 10, 11, 12, 13, 14, 15} satisfying B1 in total.
At this time there is |⟨α1 → α2 → · · · → αn⟩| = |⟨α1 → αn−1 → αn⟩| = 1. Regardless of
the values of α2, α3, . . . αn−2, the unique input of S∗ box can be identified by α1, αn−1
and αn. Hence, gnb1 = 16n−3, and the total number of trails in Case B1 is 8 · 16n−3.

Case B2: There are 8 values for αn−1 ∈ {0, 1, 2, 3, 4, 5, 6, 7} satisfying B2 in total. In this
case, the last two fault injections can be combined into once. Let the combined fault α′ =
αn−1 → αn, which implies ⟨α′⟩ = ⟨αn−1 → αn⟩. When |⟨α1 → α2 → · · · → αn⟩| = 1, it is
equivalent to |⟨α1 → α2 → · · · → αn−2 → α′⟩| = 1. Similarly, when |⟨α1 → αn−1 → αn⟩| =
2, it is equivalent to |⟨α1 → α′⟩| = 2. Hence, Case B2 after n fault injections is equivalent
to the Case B after n − 1 fault injections. Therefore, gnb2 = gn−1b

, and the total number
of trails in Case B2 is 8 · gn−1b

.
Now, let’s consider the entire Case B, where gnb

= 8 · 16n−3 + 8 · gn−1b
. Since

there are 8 values for αn satisfying B, the total number of trails in Case B is 8 · gnb
=

8 · (8 · 16n−3 + 8 · gn−1b
).

Case C: There are 4 values for αn ∈ {12, 13, 14, 15} satisfying C. At this point, there
is |⟨α1 → α2 → · · · → αn⟩| = |⟨α1 → αn⟩| = 1. In other words, regardless of the values
of α2, α3, . . . αn−1, the unique input of S∗ box can be determined by α1 and αn. Thus,
gnc

= 16n−2, and the total number of trails in Case C is 4 · 16n−2.

To summarize, when α1 takes elements from G, the number of fault trails that can
obtain a unique input after n fault injections is:

Gn = 4 · gna
+ 8 · gnb

+ 4 · gnc

= 4 · Gn−1 + 8 · (8 · 16n−3 + 8 · gn−1b
) + 4 · 16n−2

= 4 · Gn−1 + 8 · 16n−2 + 64 · gn−1b

(1)

Equation 1 is a recurrence relation. Combining it with another recurrence relation

18 Partial Differential Fault Analysis on Ascon

gnb
= 8 · 16n−3 + 8 · gn−1b

(2)
We can derive the general formula for Gn.

First, let’s find the general term of gnb
in Equation 2. It is easy to know that when

α2 falls into Case B, there is |⟨α1 → α2⟩| = 2. Consequently, the initial value is g2b
= 0.

Utilizing Mathematica components, we can derive the general term of gnb
, which is

gnb
= 23n−8 · (2n − 4), n ≥ 2

Thus, the general term of Gn is given by Gn+1 = 4 · Gn + 8 · 16n−1 + 23n−2 · (2n − 4).
From Figure 2, we know that when α1 ∈ G, there is G2 = 4. Therefore, the general term
of Gn is found to be:

Gn = 22n−4 · (2n − 2)2, n ≥ 1

Next, we continue to discuss the number of fault trails when the first fault α1 ∈ H =
{2, 3, 4, 7, 9, 11}.

Theorem 3. Let Hn represents the number of fault trails that can obtain a unique input
after n fault injections in S∗ when α1 takes elements in H, then Hn = 2n−4·(2n−4)·(2n−2)2.

Proof. Given that α1 ∈ H, as established in Subsubsection 3.2.2, we can deduce that
|⟨α1⟩| = 8. No matter what value α2 takes, there is |⟨α1 → αn⟩| ≥ 2. Consequently,
following the nth fault injection, all scenarios involving the screening of input from the S∗

i

box can be categorized into three cases:
A. |⟨α1 → αn⟩| = 8;
B. |⟨α1 → αn⟩| = 4;
C. |⟨α1 → αn⟩| = 2.
Since the elements in H share the same properties of fault trails, let’s consider the

scenario with α1 = 2 without loss of generality.

Case A: There are 2 values for αn ∈ {0, 2} satisfying A. As |⟨α1 → α2 → · · · → αn⟩| =
1, it must be the case that |⟨α1 → α2 → · · · → αn−1⟩| = 1. Consequently, when the penul-
timate fault αn−1 is injected, the unique input of S∗

i has been obtained. When αn falls
into cases A, we denote the number of fault trails resulting in a unique input as hna . Thus,
hna

= Hn−1, and the total number of trails in Case A is 2 · Hn−1.

Case B: There are 8 values for αn ∈ {4, 5, 6, 7, 8, 9, 10, 11} satisfying B in total. Due to
the conditions of |⟨α1 → αn⟩| = 4 is more complicated, we continue adopting classification
discussion.

case i. When αn ∈ {1, 3, 4, 5, 6, 7}, we denote the number of fault trails resulting in a
unique input after n fault injections as hnb

. All cases can be divided into the following
three categories.

B1. |⟨α1 → αn−1 → αn⟩| = 1;
B2. |⟨α1 → αn−1 → αn⟩| = 2.
B3. |⟨α1 → αn−1 → αn⟩| = 4.
When αn−1 falls into cases B1, B2 and B3, we denote the number of fault trails resulting

in a unique input as hnb1 , hnb2 and hnb3 respectively. Similarly, since all αn in case i share
the same properties of fault trails, let’s consider the scenario with αn = 1 without loss of
generality.

Case B1: There are 4 values for αn−1 ∈ {12, 13, 14, 15} satisfying B1 in total. At
this time there is |⟨α1 → α2 → · · · → αn⟩| = |⟨α1 → αn−1 → αn⟩| = 1. Regardless of the

Yang Gao 19

values of α2, α3, . . . αn−2, the unique input of S∗ box can be identified by α1, αn−1 and
αn. Hence, hnb1 = 16n−3, and the total number of trails in Case B1 in case i is 4 · 16n−3.

Case B2: There are 8 values for αn−1 ∈ {4, 5, 6, 7, 8, 9, 10, 11} satisfying B2 in total. In
this case, the last two fault injections can be combined into once. Let the combined fault
α′ = αn−1 → αn, which implies ⟨α′⟩ = ⟨αn−1 → αn⟩. When |⟨α1 → αn−1 → αn⟩| = 2,
it is equivalent to |⟨α1 → α′⟩| = 2. Hence, Case B2 after n fault injections in case i is
equivalent to the Case C after n − 1 fault injections. Therefore, hnb2 = hn−1c

, and the
total number of trails in Case B2 in case i is 8 · hn−1c

.
Case B3: There are 4 values for αn−1 ∈ {0, 1, 2, 3} satisfying B3 in total. Similarly, let

the combined fault α′ = αn−1 → αn. When |⟨α1 → αn−1 → αn⟩| = 4, it is equivalent to
|⟨α1 → α′⟩| = 4. Hence, Case B3 after n fault injections in case i is equivalent to the Case i
in case B after n − 1 fault injections. Therefore, hnb3 = hn−1b

, and the total number of
trails in Case B3 in case i is 4 · hn−1b

.
Now, let’s consider the entire case i in Case B, where hnb

= 4·16n−3+8·hn−1c +4·hn−1b
.

Since there are 6 values for αn satisfying case i, the total number of trails in Case i is 6 ·hnb
.

case ii. When αn ∈ {9, 11}, we denote the number of fault trails resulting in a unique
input after n fault injections as h′

nb
. All cases can be divided into the only two categories.

B2. |⟨α1 → αn−1 → αn⟩| = 2.
B3. |⟨α1 → αn−1 → αn⟩| = 4.
When αn−1 falls into cases B2 and B3, we denote the number of fault trails resulting

in a unique input as h′
nb2

and h′
nb3

respectively. Similarly, since all αn in case ii share
the same properties of fault trails, let’s consider the scenario with αn = 9 without loss of
generality.

Case B2: There are 12 values for αn−1 ∈ {1, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15} satisfying
B2 in total. In this case, the last two fault injections can be combined into once. Let
the combined fault α′ = αn−1 → αn. When |⟨α1 → αn−1 → αn⟩| = 2, it is equivalent
to |⟨α1 → α′⟩| = 2. Hence, Case B2 after n fault injections in case ii is equivalent to the
Case C after n − 1 fault injections. Therefore, h′

nb2
= hnb2 = hn−1c , and the total number

of trails in Case B2 in case ii is 12 · hn−1c
.

Case B3: There are 4 values for αn−1 ∈ {0, 2, 9, 11} satisfying B3 in total. Similarly, let
the combined fault α′ = αn−1 → αn. When |⟨α1 → αn−1 → αn⟩| = 4, it is equivalent to
|⟨α1 → α′⟩| = 4. Particularly, B3 in case ii is slightly different from that in case i. Case B3
after n fault injections in case ii is equivalent to the Case ii (Not Case i) in case B after
n − 1 fault injections. Therefore, h′

nb3
= h′

n−1b
, and the total number of trails in Case B3

in case ii is 4 · h′
n−1b

.
Now, let’s consider the entire case ii in Case B, where h′

nb
= 12 ·hn−1c + 4 ·h′

n−1b
. Since

there are 2 values for αn satisfying case ii, the total number of trails in Case ii is 2 · h′
nb

.
Furthermore, combining two cases of i and ii, the total number of trails in Case B can be
obtained as 6 · hnb

+ 2 · h′
nb

Case C: There are 6 values for αn ∈ {8, 10, 12, 13, 14, 15} satisfying C in total. Due to
the conditions of |⟨α1 → αn⟩| = 2 is more complicated, we continue adopting classification
discussion:

C1. |⟨α1 → αn−1 → αn⟩| = 1;
C2. |⟨α1 → αn−1 → αn⟩| = 2.
When αn−1 falls into cases C1 and C2, we denote the number of fault trails resulting in

a unique input as hnc1 and hnc2 . Similarly, since all αn in Case C share the same properties
of fault trails, let’s consider the scenario with αn = 8 without loss of generality.

Case C1: There are 8 values for αn−1 ∈ {4, 5, 6, 7, 12, 13, 14, 15} satisfying C1 in total.
At this time there is |⟨α1 → α2 → · · · → αn⟩| = |⟨α1 → αn−1 → αn⟩| = 1. Regardless of
the values of α2, α3, . . . αn−2, the unique input of S∗ box can be identified by α1, αn−1

20 Partial Differential Fault Analysis on Ascon

and αn. Hence, hnc1 = 16n−3, and the total number of trails in Case C1 is 8 · 16n−3.
Case C2: There are 8 values for αn−1 ∈ {0, 1, 2, 3, 8, 9, 10, 11} satisfying C2 in total. In

this case, the last two fault injections can be combined into once. Let the combined fault
α′ = αn−1 → αn, which implies ⟨α′⟩ = ⟨αn−1 → αn⟩. When |⟨α1 → α2 → · · · → αn⟩| = 1,
it is equivalent to |⟨α1 → α2 → · · · → αn−2 → α′⟩| = 1. Similarly, when |⟨α1 → αn−1 → αn⟩| =
2, it is equivalent to |⟨α1 → α′⟩| = 2. Hence, Case C2 after n fault injections is equivalent
to the Case C after n − 1 fault injections. Therefore, hnc2 = hn−1c , and the total number
of trails in Case C2 is 8 · hn−1c

.
Now, let’s consider the entire Case C, where hnc = 8 · 16n−3 + 8 · hn−1c . Since

there are 6 values for αn satisfying C, the total number of trails in Case C is 6 · hnc =
6 · (8 · 16n−3 + 8 · hn−1c

).

To summarize, when α1 takes elements from H, the number of fault trails that can
obtain a unique input after n fault injections is:

Hn = 2 · hna + 6 · hnb
+ 2 · h′

nb
+ 6 · hnc

= 2 · Hn−1 + 6 · (hnb1 + hnb2 + hnb3) + 2 · (h′
nb2

+ h′
nb3

) + 6 · (hnc1 + hnc2)
= 2 · Hn−1 + 6 · (4 · 16n−3 + 4 · hn−1b

+ 8 · hn−1c
) + 2 · (12 · hn−1c

+ 4 · h′
n−1b

)
+ 6 · (8 · 16n−3 + 8 · hn−1c

)
= 2 · Hn−1 + 72 · 16n−3 + 24 · hn−1b

+ 8 · h′
n−1b

+ 120 · hn−1c

(3)

Equation 3 is a recurrence relation. Combining it with another three recurrence relations

hnc = 8 · 16n−3 + 8 · hn−1c
(4)

h′
nb

= 12 · hn−1c
+ 4 · h′

n−1b
(5)

hnb
= 4 · 16n−3 + 8 · hn−1c

+ 4 · hn−1b
(6)

We can derive the general formula for Hn.
First, let’s find the general term of hnc in Equation 4. It is easy to know that the initial

value is h2c = 0. Utilizing Mathematica components, we can derive the general term of
hnc

, which is

hnc = 23n−8 · (2n − 4), n ≥ 2

Then Equation 5 and Equation 6 can be expressed as h′
n+1b

= 3 ·23n−6 · (2n −4)+4 ·h′
nb

and hn+1b
= 4 · 16n−2 + 23n−5 · (2n − 4) + 4 · hnb

. Combined with the initial value
h′

2b
= h2b

= 0, the general term of h′
nb

and hnb
can be obtained as:

h′
nb

= 4n−4 · (2n − 4) · (2n − 8), n ≥ 2

hnb
= 22n−8 · (2n − 4)2, n ≥ 2

Thus, the general term of Hn is given by

Hn+1 = 2 · Hn + 72 · 16n−2 + 24 · hnb
+ 8 · h′

nb
+ 8 + 120 · hnc

= 2 · Hn + 72 · 16n−2 + 3 · 22n−5 · (2n − 4)2 + 22n−5 · (2n − 4) · (2n − 8)
+ 15 · 23n−5 · (2n − 4)

Yang Gao 21

From Figure 2, we know that when α1 ∈ H, there is H2 = 0. Therefore, the general
term of Hn is found to be:

Hn = 2n−4 · (2n − 4) · (2n − 2)2, n ≥ 1

Combining Theorem 2 and Theorem 3, the following Theorem 4 can be obtained, which
is the core theorem of this section.

Theorem 4. Let Tn represents the number of fault trails that can obtain a unique input
after n fault injections in S∗, then Tn = (2 − 3 · 2n + 22n)2.

Proof. According to Theorem 2 and Theorem 3, when α1 ∈ G = {1, 5, 6, 8, 10, 12, 13, 14, 15},
we have Gn = 22n−4 · (2n − 2)2; When α1 ∈ H = {2, 3, 4, 7, 9, 11}, we have Hn =
2n−4 · (2n − 4) · (2n − 2)2. In particular, when α1 = 0, it is an empty fault, and thus we
have

|⟨α1 → α2 → · · · → αn−1⟩| = |⟨α2 → · · · → αn−1⟩| = 1.

This is equivalent to the case where a unique solution is obtained after n fault injections,
so the number of fault trails is Tn−. Therefore, Equation 7 can be obtained as follows:

Tn = Tn−1 + 9 · Gn + 6 · Hn

= Tn−1 + 9 · 22n−4 · (2n − 2)2 + 6 · 2n−4 · (2n − 4) · (2n − 2)2 (7)

Thus, the general term of Tn is given by

Tn = (2 − 3 · 2n + 22n)2, n ≥ 1

After calculating the number of fault trails that obtain a unique solution after n
fault injections, we can calculate the probability of key recovery after (exactly) the nth
fault injection. Moreover, the expectation of the number of fault injections required to
successfully recover K under two random-nibble fault models can be calculated, as stated
in Theorem 5.

Theorem 5. The probability that a single S-box has a unique solution after n fault injections
is pn =

(
(2n−1)·(2n−2)

4n

)2
, n ≥ 1, The expectation of the number of fault injections required

to recover the input value of a single S-box is E ≈ 4.114, and the expectation of the number
of fault injections required to recover the input value of all S-boxes in a round is E′ ≈ 9.912.

Proof. According to Theorem 4, the number of fault trails that can yield a unique solution
after n fault injections is given by Tn = (2 − 3 · 2n + 22n)2. It is evident that the total
number of fault trails after n fault injections is 16n. Thus, the probability of achieving a
unique solution after n fault injections is:

pn = Tn

16n
= (2 − 3 · 2n + 22n)2

16n
=

(
2 − 3 · 2n + 22n

4n

)2

=
(

(2n − 1) · (2n − 2)
4n

)2
.

Further, let p̃n denote the probability of obtaining a unique solution after exactly n
fault injections. We establish that p̃1 = p1 = 0, and for n ≥ 2, p̃n = pn − pn−1. Now, let’s
examine the scenario of injecting 64 random-nibble faults simultaneously to recover the
full-round S-box. Given the independence of the 64 S-boxes, the probability of attaining a
unique solution after n fault injections is p64

n . Refer to Table 8 for the values of pn, p̃n and
p64

n .

22 Partial Differential Fault Analysis on Ascon

Table 8: Probability (p̃n) pn that there is a unique input of S∗ after (exactly) 1 to 20
fault injections

n 1 2 3 4 5 6 7
pn 0 14.0625% 43.0664% 67.2913% 82.4833% 90.9378% 95.3913%
p̃n 0 14.0625% 29.0039% 24.2249% 15.192% 8.4545% 4.4535%
p64

n 0 2.99 × 10−55 3.84 × 10−24 9.75 × 10−12 4.44 × 10−6 2.29 × 10−3 0.0488

n 8 9 10 11 12 13 14
pn 97.676% 98.833% 99.4153% 99.7073% 99.8536% 99.9268% 99.9634%
p̃n 2.285% 1.157% 0.5823% 0.2920% 0.1463% 0.0732% 0.0366%
p64

n 0.222 0.4718 0.6871 0.829 0.9105 0.9542 0.9768

n 15 16 17 18 19 20
pn 99.9817% 99.9908% 99.9954% 99.9977% 99.9989% 99.9994%
p̃n 0.0183% 0.0091% 0.0046% 0.0023% 0.0012% 0.0005%
p64

n 0.9883 0.9942 0.9971 0.9985 0.9993 0.9996

Observing Table 8 reveals that for n > 20, p̃n approaches 0 infinitely, rendering
their contributions to the expectation of fault injections negligible. Consequently, the
expectation of fault nibbles required to recover the input value of a single S∗ box is
determined by E =

∑20
n=1n · p̃n =

∑20
n=2n · (pn − pn−1) ≈ 4.114. Similarly, the expectation

of injecting 64 random-nibble faults simultaneously in full-round S∗ boxes is denoted as is
E′ =

∑20
n=2 n · (p64

n − p64
n−1) ≈ 9.913.

6 Simulation of PDFA experiments
6.1 Experimental environment
Regarding hardware specifications, the system comprises a PC equipped with an Intel
Core i7-1260P 2.1GHz CPU, running a 64-bit operating system with 16GB of memory.
The programming environment utilized is Visual C++ for Microsoft Visual Studio 2022,
along with Wolfram Mathematica version 12.1.

6.2 Experimental results
In reference to Subsection 4.2, after recovering the 64 S∗ box inputs mi(i = 0, 1, . . . , 63),
the second LSB x3,i and LSB x4,i of the 64 S(⌊mi⌋2 ||0|| ⌈mi⌉2) (or S(⌊mi⌋2 ||1|| ⌈mi⌉2))
are individually extracted. These bits are then amalgamated into 64-bit intermediate state
words denoted as X3,i and X4,i. Consequently, the key K is represented as K = K0||K1 =
(Σ3(X3) ⊕ T0) || (Σ4(X4) ⊕ T1), thus concluding the analysis of the Ascon algorithm. The
complexity associated with recovering the S-box input under the Nonce-misuse scenario
aligns with the complexity of analyzing Ascon itself. In the Nonce-respect scenario,
additional steps involve guessing faulty tags during the decryption process, leading to an
average guessing complexity of 2.03125 × 64 = 130 tag queries.

To empirically evaluate the Ascon algorithm, we conduct 10 sets of experiments under
both the Stuck-at-0 and Stuck-at-1 fault models, encompassing 10,000 PDFA trials in each
set. In each trial, we meticulously document the number of fault injections required to
recover the input of full-round S-boxes, as well as the average number needed to recover the
input value of a single S-box. The culmination of these experimental results is presented
in Table 9 below.

Yang Gao 23

Table 9: Experimental results under 10 groups of stuck-at-0 and 10 groups of stuck-at-1
fault models

Experiment
serial

number

Stuck-at-0 Stuck-at-1
Average fault

injections to recover
all S-boxes

Average fault
injections to recover

single S-box

Average fault
injections to recover

all S-boxes

Average fault
injections to recover

single S-box
1 9.9190 4.11304 9.9271 4.11424
2 9.9164 4.11165 9.9197 4.11374
3 9.9365 4.11296 9.9156 4.11465
4 9.9137 4.11396 9.9261 4.11455
5 9.9327 4.11556 9.9130 4.11442
6 9.9026 4.11070 9.9053 4.10930
7 9.9158 4.11654 9.9079 4.11238
8 9.8951 4.1136 9.9254 4.11369
9 9.9162 4.11351 9.9106 4.11799
10 9.9049 4.11945 9.9215 4.11536

The experimental results in Table 9 are close to the theoretical results in Section 5,
which illustrates the practicality and accuracy of the PDFA model.

7 Discussion

7.1 Comparison with existing analysis on Ascon
Ascon has undergone extensive scrutiny by researchers, leading to its selection as the
lightweight use case portfolio in CAESAR competition and winner in NIST-LwC competi-
tion. The original submission by its designers proposed a zero-sum distinguisher for full
12-rounds permutation with complexity 2130, alongside two key recovery attacks [DEMS15].
Subsequently, Jovanovic et al. [JLM14] validated the security assertions regarding Ascon’s
mode of operation. Tezcan [Tez16] introduced truncated, impossible, and improbable
differential attacks targeting 5 of ASCON’s 12 rounds during the initialization phase,
with complexities ranging from 2109 to 2256. Li et al. [LDW17] presented a 7-round key
recovery attack, with a time complexity of 2103.9 for key retrieval. However, the full
12-round Ascon configuration remains impervious to such attacks. Additionally, Samwel et
al. [SD17] conducted the first side-channel analysis of Ascon, employing a differential power
analysis attack and correlation power analysis on a toy-sized ASCON implementation.
Their findings suggest that attacking a full-sized and full-protected Ascon implementation
is infeasible.

Ascon exhibits robust cryptographic properties, demonstrating resistance against
various linear and differential cryptanalysis methods. However, vulnerabilities in Ascon’s
implementation become apparent in the face of side-channel and fault analysis targeting key
recovery. In this context, Ramezanpour et al. [RAD19b] introduced a Statistical Ineffective
Fault Analysis (SIFA) on full-round Ascon. Their approach relies on the assumption of
an uneven or biased fault probability distribution. The complexity of key search depends
on the number of experiments required to find statistics. Each experiment necessitates
between 12.5 and 2500 correct tag values, individually subjected to invalid faults, with
distributions ranging from highly biased to more even fault distributions. The minimum
achievable key search space is 2124. Moreover, the success of the attack hinges on a
strong assumption that the attacker can collect pairs of faulty and fault-free tag values
from the same input, which is infeasible in the Nonce-respect scenario. In the same year,
Ramezanpour et al. [RAD19a] proposed Fault Intensity Map Analysis (FIMA) to enhance
the previous technology reliant solely on error deviation. This advancement reduces the
number of required fault injections by 50%, reaching a minimum of 250 and 305 for different

24 Partial Differential Fault Analysis on Ascon

Table 10: Comparison between PDFA and existing fault attacks

Attack
method Fault model Residual keyspace Nonce configuration Complexity (number of tags or faults) Year

SIFA random-AND 2124 Nonce-misuse 12.5–2500 2019

FIMA random-AND 2124 Nonce-misuse
p ∈ [0, 0.3], 250

p ∈ [0, 0.2], 305
2019

SSFA
bit-reset

multi-byte

Between

1 to 264
Nonce-respect

1 word, 85

1 Byte, 8×85

1 bit, 64×85

2019

DFA
bit-flip

bit-set
- Nonce-respect 1024 2023

PDFA
stuck-at

random-nibble
- Nonce-respect

Single S-box random nibble,
64×4.11=263 2024Full-round S-box random nibble,

9.91
Nonce-misuse extra 130 faulty tag guesses

data sizes. Joshi et al. [JM19] introduced a SubSet Fault Analysis (SSFA) attack on Ascon,
exploiting various fault models with different granularities to uniquely recover keys. For
the SSFA attack, they determined that 85, 680, and 5440 faults are needed to reduce the
key space to values between 1 and 264 at different bit-reset fault granularities of 1 bit, byte,
and word, respectively. Furthermore, Surya et al. [SMS20] proposed a local clock glitch
fault injection attack on Ascon-128. Jana [Jan23] introduced a Differential Fault Analysis
(DFA) method tailored for ASCON, employing a two-stage fault model to facilitate error
forgery. By leveraging a bit-flip fault in the first stage followed by a bit-set fault in the
subsequent stage, the attacker can effectively retrieve the key through 1024 erroneous
queries. This process necessitates an additional 576 bytes of memory and demonstrates
linear time complexity. However, it’s worth noting that the article lacks confirmation of
both actual experimental results and theoretical values. Moreover, the practicality of this
approach is hindered by the relatively large number of tag queries required. A detailed
comparison between our proposed analysis method and existing fault analysis techniques
is presented in Table 10.

7.2 Feasibility and practicality of the fault models
This part delves into critical considerations regarding the fault models addressed in the
proposed analysis, emphasizing the feasibility and implementation challenges associated
with each.

The first fault model examined is the stuck-at fault, with the underlying assumption
that attackers can inject such faults. Practical experiments by Roscian et al. [RSDT13]
on the RAM memory of a microcontroller revealed successful induction of stuck-at faults
using a laser beam. Piscitelli et al. [PBR15] further noted a higher occurrence rate of
stuck-at faults compared to bit-flip faults. While the laser-induced malfunction requires
costly equipment, Skorobogatov [Sko10] demonstrated that stuck-at faults can be precisely
injected in terms of both location and timing [BBKN12].

Moving on to random-nibble faults, the assumption is made that faults can be injected
at nibble granularity. Agoyan et al. [ADM+10b] and Dutertre et al [DMNT10]. reported
that, in laser-induced faults, injecting nibble faults is notably easier than injecting single-bit
faults due to the diameter and spot size of the laser beam. This process demands more
control and precision.

Regarding reproducibility, the fault model posits that the same fault can be accurately
reproduced multiple times through laser beam injection. Dutertre et al. [DMNT10]

Yang Gao 25

showcased reproducibility of byte errors on smart cards with 0.35µm microcontrollers
and SOSSE operating systems at a clock frequency of 16MHz. Agoyan et al. [ADM+10a]
conducted similar experiments, demonstrating the repeatability of injecting single-bit and
nibble faults using a laser beam.

In conclusion, the fault models discussed in this article are shown to be reproducible
and hold significant relevance across various practical applications.

7.3 Countermeasures
Countermeasures against PDFA can be categorized into three main groups: 1) Error
detection, 2) Error randomization, and 3) Algorithm enhancement.

In the first category, error detection techniques leverage spatial/temporal redundancy to
identify faults in cryptographic operations and implement measures to mitigate erroneous
values. Examples of such redundant algorithms for detecting errors in cryptographic
operations encompass those designed for 8-bit S-boxes [KJA+18], lightweight compo-
nents [KTAS14], and utilizing SIMD to exploit software redundancy [LCFS18]. We propose
an additional approach for PDFA, involving the sacrifice of part of the storage to complete
the verification of calculation results from the final round of permutation pa in S-boxes. For
instance, in Ascon, the intermediate state S11 after the penultimate round (11th round)
in Finalization stage can be stored in memory. Subsequently, the calculation is completed,
and the state is saved as S12. S12 is then decrypted to obtain the input of the previous
round, denoted as S′11. Finally, the obtained S′11 is compared with the saved state S11.
If a mismatch is detected, cipher execution is halted, and the system generates no output.
If no mismatch occurs, execution is deemed complete.

The second category of countermeasures, error randomization, involves introducing
supplementary operations on the cipher to randomize errors induced by fault injection, thus
preventing the leakage of valuable information about the data-dependent distribution of
faults to potential attackers. An illustrative example is the AES infection countermeasure
proposed in [TBM14] and evaluated in [PCM17]. In this method, the state of cipher is
cross-checked with a redundant state, and if any disparity arises due to an error, the state is
substituted with a dummy state. Consequently, what becomes visible to the attacker is not
an faulty state but rather a randomized state. To thwart attackers from injecting identical
faults into both cryptographic and redundant states, a fault space transformation [PCMC17]
is suggested, wherein cryptographic and redundant operations are executed using distinct
encodings. Consequently, fault spaces in cryptographic operations are mapped to dissimilar
fault spaces in redundant operations. The selection of this mapping ensures that the
distribution of error values in the cryptographic state differs from that in the redundant
state. For PDFA, the approach of randomizing error tags can be directly employed through
fault space transformation.

The third category of countermeasures, specifically algorithm enhancement, which is
exemplified by the cipher DEFAULT [BBB+21]. This method incorporates a meticulously
designed DEFAULT-CORE component (lacking security against DFA) positioned between
two DEFAULT-LAYERs (providing robust DFA security). Ideally, this arrangement
includes a sophisticated cipher interposed between the two DEFAULT-LAYER blocks,
resulting in an enhanced overall performance compared to previous configurations. While
this design inherently curtails the information accessible to potential attackers, there
remains a vulnerability wherein attackers can leverage the properties of the round function
to identify standardized keys, characterizing large classes of equivalent keys. Through
strategic fault placement optimization, the equivalent key fault complexity for recovering
DEFAULT-LAYER can be diminished to fewer than 100 fault computations. The work
underscores the effectiveness of password-level protection but emphasizes the necessity for
more profound consideration beyond linear structures [NDE22]. Consequently, the paper
draws inspiration from Ascon’s 5-bit S-box, aiming to modify it in a way that preserves all

26 Partial Differential Fault Analysis on Ascon

critical cryptographic properties of the original S-box, such as algebraic degree, differential
uniformity, nonlinearity, balance, linear and differential branch numbers. The objective
is to maximize the number of trails obtaining unique S-box input. For instance, after
introducing a stuck-at fault in any of the 5-bit positions of the S-box [JM19] as outlined
in Table 11, regardless of how many random-nibble faults are injected, a trail obtaining
unique S-box input values will never emerge.

Table 11: Improved 5-bit S-box with PDFA resistance in Ascon

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 4 25 31 6 26 7 9 16 27 5 8 18 15 17 20 14

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 30 19 21 28 0 13 3 10 2 12 1 11 22 24 29 23

8 Conclusion
The widespread adoption of AEAD algorithms in constrained devices has sparked increased
interest in physical attacks like DFA, which forms the primary focus of this study. Moreover,
the LwC competition outlined in [1] specifically highlights "side-channel and fault attacks"
as essential criteria, further motivating our research endeavors. This paper delves into
examining the susceptibility of the Ascon algorithm to DFA and proposes a PDFA analysis
method capable of fully recovering the 128-bit key.

We introduce two fault models in this work: the stuck-at model and the random-nibble
model. The former effectively condenses the 5-bit S-box into a 4-bit S-box, elucidating
its distinctive differential properties. The latter encompasses two variations: single S-box
fault injection and full-round S-box fault injection. We determine the average number of
fault injections necessary to retrieve the S-box input under both models. Our experimental
and theoretical findings corroborate each other, validating the accuracy of the proposed
models.Furthermore, we present a rigorous mathematical framework for analyzing fault
injections within the Ascon algorithm’s S-box. We offer recursive relationships and
general formulas to compute the number of fault trails in various scenarios. We assess
the success rate of recovering the key K of Ascon under diverse fault models and derive
mathematical expressions to quantify this metric. Additionally, we introduce two distinct
nonce configurations. In the Nonce-misuse scenario, both single S-box and full-round
S-box fault models are applicable. Conversely, in the Nonce-respect scenario, only fault
injection in a single S-box is feasible, necessitating additional computational complexity to
guess the faulty tags. On average, 130 tag queries are required to complete the guessing
process. Overall, our proposed PDFA method enables comprehensive analysis of the Ascon
algorithm. Through specific fault analysis, we demonstrate that the 128-bit key can be fully
recovered after either 9.9 full-round fault injections or 263 single-nibble fault injections
(calculated as 4.1×64). To conclude, the article addresses potential countermeasures to
mitigate the proposeed analysis. One notable suggestion is the introduction of a new S-box
to replace the existing one in Ascon, offering enhanced resistance against differential fault
analysis.

References
[ADM+10a] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache,

Anne-Lise Ribotta, and Assia Tria. How to flip a bit? In 16th IEEE
International On-Line Testing Symposium (IOLTS 2010), 5-7 July, 2010,
Corfu, Greece, pages 235–239. IEEE Computer Society, 2010.

Yang Gao 27

[ADM+10b] Michel Agoyan, Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache,
Anne-Lise Ribotta, and Assia Tria. Single-bit dfa using multiple-byte laser
fault injection. In 2010 IEEE International Conference on Technologies for
Homeland Security (HST), pages 113–119. IEEE, 2010.

[BBB+21] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Mustafa Khairallah, Thomas
Peyrin, Sumanta Sarkar, and Siang Meng Sim. DEFAULT: Cipher level
resistance against differential fault attack. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part II, volume 13091 of LNCS, pages
124–156. Springer, Heidelberg, December 2021.

[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.
Fault injection attacks on cryptographic devices: Theory, practice, and
countermeasures. Proc. IEEE, 100(11):3056–3076, 2012.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer,
Heidelberg, May 1997.

[Ber16] Bernstein. (2016) Cryptographic competitions. [Online]. Website, 2016.
https://competitions.cr.yp.to/caesar.html.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 513–525. Springer, Heidelberg, August 1997.

[CDN23] Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi. Exact security
analysis of ASCON. In Jian Guo and Ron Steinfeld, editors, Advances
in Cryptology - ASIACRYPT 2023 - 29th International Conference on the
Theory and Application of Cryptology and Information Security, Guangzhou,
China, December 4-8, 2023, Proceedings, Part III, volume 14440 of Lecture
Notes in Computer Science, pages 346–369. Springer, 2023.

[CJW10] Nicolas T Courtois, Keith Jackson, and David Ware. Fault-algebraic attacks
on inner rounds of des. In E-Smart’10 Proceedings: The Future of Digital
Security Technologies. Strategies Telecom and Multimedia, 2010.

[DEMS14] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon. Submission to the CAESAR competition: http://ascon. iaik. tugraz.
at, 2014.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Cryptanalysis of Ascon. In Kaisa Nyberg, editor, CT-RSA 2015, volume
9048 of LNCS, pages 371–387. Springer, Heidelberg, April 2015.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. Journal of
Cryptology, 34(3):33, July 2021.

[DMNT10] Jean-Max Dutertre, Amir-Pasha Mirbaha, David Naccache, and Assia Triaz.
Reproducible single-byte laser fault injection. In 6th Conference on Ph. D.
Research in Microelectronics & Electronics, pages 1–4. IEEE, 2010.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance

https://competitions.cr.yp.to/caesar.html

28 Partial Differential Fault Analysis on Ascon

in Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages 108–118.
IEEE Computer Society, 2013.

[GJMG11] Bertoni Guido, Daemen Joan, P Michaël, and VA Gilles. Cryptographic
sponge functions, 2011.

[GT04] Christophe Giraud and Hugues Thiebeauld. A survey on fault attacks.
In Jean-Jacques Quisquater, Pierre Paradinas, Yves Deswarte, and Anas
Abou El Kalam, editors, Smart Card Research and Advanced Applications VI,
IFIP 18th World Computer Congress, TC8/WG8.8 & TC11/WG11.2 Sixth
International Conference on Smart Card Research and Advanced Applications
(CARDIS), 22-27 August 2004, Toulouse, France, volume 153 of IFIP, pages
159–176. Kluwer/Springer, 2004.

[GWDE17] Hannes Groß, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.
Ascon hardware implementations and side-channel evaluation. Microprocess.
Microsystems, 52:470–479, 2017.

[GWY+19a] Yang Gao, Yongjuan Wang, Qing-jun Yuan, Tao Wang, and Xiangbin Wang.
Improvement of differential fault attack based on lightweight ciphers with
GFN structure. In Xingming Sun, Zhaoqing Pan, and Elisa Bertino, editors,
Artificial Intelligence and Security - 5th International Conference, ICAIS
2019, New York, NY, USA, July 26-28, 2019, Proceedings, Part II, volume
11633 of Lecture Notes in Computer Science, pages 549–560. Springer, 2019.

[GWY+19b] Yang Gao, Yongjuan Wang, Qing-jun Yuan, Tao Wang, and Xiangbin Wang.
Probabilistic analysis of differential fault attack on MIBS. IEICE Trans. Inf.
Syst., 102-D(2):299–306, 2019.

[Hem04] Ludger Hemme. A differential fault attack against early rounds of (triple-
)DES. In Marc Joye and Jean-Jacques Quisquater, editors, CHES 2004,
volume 3156 of LNCS, pages 254–267. Springer, Heidelberg, August 2004.

[Hey02] Howard M. Heys. A tutorial on linear and differential cryptanalysis. Cryp-
tologia, 26(3):189–221, 2002.

[Jan23] Amit Jana. Differential fault attack on ascon cipher. IACR Cryptol. ePrint
Arch., page 1923, 2023.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages
85–104. Springer, Heidelberg, December 2014.

[JM19] Priyanka Joshi and Bodhisatwa Mazumdar. A subset fault analysis of ASCON.
Cryptology ePrint Archive, Report 2019/1370, 2019. https://eprint.iacr.
org/2019/1370.

[JP22] Amit Jana and Goutam Paul. Differential fault attack on photon-beetle. In
Chip-Hong Chang, Ulrich Rührmair, Debdeep Mukhopadhyay, and Domenic
Forte, editors, Proceedings of the 2022 Workshop on Attacks and Solutions
in Hardware Security, ASHES 2022, Los Angeles, CA, USA, 11 November
2022, pages 25–34. ACM, 2022.

[KJA+18] Mehran Mozaffari Kermani, Amir Jalali, Reza Azarderakhsh, Jiafeng Xie,
and Kim-Kwang Raymond Choo. Reliable inversion in gf(28) with redundant
arithmetic for secure error detection of cryptographic architectures. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 37(3):696–704, 2018.

https://eprint.iacr.org/2019/1370
https://eprint.iacr.org/2019/1370

Yang Gao 29

[KTAS14] Mehran Mozaffari Kermani, Kai Tian, Reza Azarderakhsh, and Siavash Bayat
Sarmadi. Fault-resilient lightweight cryptographic block ciphers for secure
embedded systems. IEEE Embed. Syst. Lett., 6(4):89–92, 2014.

[LCFS18] Benjamin Lac, Anne Canteaut, Jacques J. A. Fournier, and Renaud Sirdey.
Thwarting fault attacks against lightweight cryptography using SIMD instruc-
tions. In IEEE International Symposium on Circuits and Systems, ISCAS
2018, 27-30 May 2018, Florence, Italy, pages 1–5. IEEE, 2018.

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack
on round-reduced ASCON. IACR Trans. Symm. Cryptol., 2017(1):175–202,
2017.

[LGH22] Shuai Liu, Jie Guan, and Bin Hu. Fault attacks on authenticated encryption
modes for GIFT. IET Inf. Secur., 16(1):51–63, 2022.

[LZWW17] Yanbin Li, Guoyan Zhang, Wei Wang, and Meiqin Wang. Cryptanalysis of
round-reduced ASCON. Sci. China Inf. Sci., 60(3):38102, 2017.

[MBSTM16] Kerry McKay, Lawrence Bassham, Meltem Sönmez Turan, and Nicky Mouha.
Report on lightweight cryptography. Technical report, National Institute of
Standards and Technology, 2016.

[NDE22] Marcel Nageler, Christoph Dobraunig, and Maria Eichlseder. Information-
combining differential fault attacks on DEFAULT. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of
LNCS, pages 168–191. Springer, Heidelberg, May / June 2022.

[NIS23a] NIST. Lightweight Cryptography Standardization Process: NIST Se-
lects Ascon. Website, 2023. https://csrc.nist.gov/News/2023/
lightweight-cryptography-nist-selects-ascon.

[NIS23b] NIST. NIST Selects ‘Lightweight Cryptography’ Al-
gorithms to Protect Small Devices. Website, 2023.
https://www.nist.gov/news-events/news/2023/02/
nist-selects-lightweight-cryptographyalgorithms-protect-small-devices.

[NSS23] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Committing security
of ascon: Cryptanalysis on primitive and proof on mode. IACR Trans.
Symmetric Cryptol., 2023(4):420–451, 2023.

[PBR15] Roberta Piscitelli, Shivam Bhasin, and Francesco Regazzoni. Fault attacks,
injection techniques and tools for simulation. In 10th International Conference
on Design & Technology of Integrated Systems in Nanoscale Era, DTIS 2015,
Napoli, Italy, April 21-23, 2015, pages 1–6. IEEE, 2015.

[PCM17] Sikhar Patranabis, Abhishek Chakraborty, and Debdeep Mukhopadhyay.
Fault tolerant infective countermeasure for AES. J. Hardw. Syst. Secur.,
1(1):3–17, 2017.

[PCMC17] Sikhar Patranabis, Abhishek Chakraborty, Debdeep Mukhopadhyay, and
Partha Pratim Chakrabarti. Fault space transformation: A generic approach
to counter differential fault analysis and differential fault intensity analysis
on aes-like block ciphers. IEEE Trans. Inf. Forensics Secur., 12(5):1092–1102,
2017.

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptographyalgorithms-protect-small-devices
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptographyalgorithms-protect-small-devices

30 Partial Differential Fault Analysis on Ascon

[RAD19a] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. FIMA: Fault
intensity map analysis. In Ilia Polian and Marc Stöttinger, editors, COSADE
2019, volume 11421 of LNCS, pages 63–79. Springer, Heidelberg, April 2019.

[RAD19b] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. A statistical
fault analysis methodology for the ascon authenticated cipher. In IEEE
International Symposium on Hardware Oriented Security and Trust, HOST
2019, McLean, VA, USA, May 5-10, 2019, pages 41–50. IEEE, 2019.

[RAD+20a] Keyvan Ramezanpour, Abubakr Abdulgadir, William Diehl, Jens-Peter Kaps,
and Paul Ampadu. Active and passive side-channel key recovery attacks on
ascon. In Proc. NIST Lightweight Cryptogr. Workshop, pages 1–27, 2020.

[RAD20b] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCARL: side-
channel analysis with reinforcement learning on the ascon authenticated
cipher. CoRR, abs/2006.03995, 2020.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vi-
jayalakshmi Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press,
November 2002.

[RSDT13] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.
Fault model analysis of laser-induced faults in SRAM memory cells. In
Wieland Fischer and Jörn-Marc Schmidt, editors, 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August
20, 2013, pages 89–98. IEEE Computer Society, 2013.

[SAM24] Iftekhar Salam, Janaka Alawatugoda, and Hasindu Madushan. Statistical
fault analysis of tinyjambu. Discover Applied Sciences, 6(2):1–13, 2024.

[SD17] Niels Samwel and Joan Daemen. DPA on hardware implementations of ascon
and keyak. In Proceedings of the Computing Frontiers Conference, CF’17,
Siena, Italy, May 15-17, 2017, pages 415–424. ACM, 2017.

[Sko10] Sergei Skorobogatov. Optical fault masking attacks. In Luca Breveglieri,
Marc Joye, Israel Koren, David Naccache, and Ingrid Verbauwhede, editors,
2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2010, Santa Barbara, California, USA, 21 August 2010, pages 23–29. IEEE
Computer Society, 2010.

[SMS20] G Surya, Paolo Maistri, and Sriram Sankaran. Local clock glitching fault
injection with application to the ascon cipher. In 2020 IEEE International
Symposium on Smart Electronic Systems (iSES)(Formerly iNiS), pages 271–
276. IEEE, 2020.

[SOX+21] Md. Iftekhar Salam, Thian Hooi Ooi, Luxin Xue, Wei-Chuen Yau, Josef
Pieprzyk, and Raphaël C.-W. Phan. Random differential fault attacks on
the lightweight authenticated encryption stream cipher grain-128aead. IEEE
Access, 9:72568–72586, 2021.

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying
fault invariant with randomization - A countermeasure for AES against
differential fault attacks. In Lejla Batina and Matthew Robshaw, editors,
CHES 2014, volume 8731 of LNCS, pages 93–111. Springer, Heidelberg,
September 2014.

Yang Gao 31

[Tez16] Cihangir Tezcan. Truncated, impossible, and improbable differential analysis
of ascon. Cryptology ePrint Archive, Report 2016/490, 2016. https://
eprint.iacr.org/2016/490.

[YKSH23] Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar, and Feng Hao. Low
trace-count template attacks on 32-bit implementations of ASCON AEAD.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):344–366, 2023.

[YLW+23] Xiaorui Yu, Fukang Liu, Gaoli Wang, Siwei Sun, and Willi Meier. A closer
look at the s-box: Deeper analysis of round-reduced ASCON-HASH. IACR
Cryptol. ePrint Arch., page 865, 2023.

https://eprint.iacr.org/2016/490
https://eprint.iacr.org/2016/490

32 Partial Differential Fault Analysis on Ascon

Appendices
(The values in Table 12 are expressed in hexadecimal format, with the binary representations provided in brackets.)

Table 12: Differential distribution table of 5-bit S-box in Ascon

α Correspondence between the output difference and the input value when the input difference (fault value) is fixed

0x01 β 9(01001) b(01011) d(01101) f(01111) 18(11000) 1a(11010) 1c(11100) 1e(11110)
m 12,13,16,17 2,3,6,7 10,11,14,15 0,1,4,5 1a,1b,1e,1f a,b,e,f 18,19,1c,1d 8,9,c,d

0x02 β 11(10001) 13(10011) 15(10101) 17(10111) 19(11001) 1b(11011) 1d(11101) 1f(11111)
m 14,16,18,1a 4,6,8,a 15,17,19,1b 5,7,9,b 10,12,1c,1e 0,2,c,e 11,13,1d,1f 1,3,d,f

0x03 β 1(00001) 5(00101) 9(01001) d(01101) 10(10000) 14(10100) 18(11000) 1c(11100)
m c,f,1c,1f d,e,1d,1e 8,b,18,1b 9,a,19,1a 0,3,10,13 1,2,11,12 4,7,14,17 5,6,15,16

0x04 β 6(10110) e(01110) 16(10110) 1e(11110)

m
8,9,c,d,

18,19,1c,1d
a,b,e,f,

1a,1b,1e,1f
2,3,6,7,

12,13,16,17
0,1,4,5,

10,11,14,15

0x05 β 11(10001) 13(10011) 14(10100) 16(10110) 18(11000) 1a(11010) 1d(11101) 1f(11111)
m 0,1,4,5 10,11,14,15 a,b,e,f 1a,1b,1e,1f 8,9,c,d 18,19,1c,1d 2,3,6,7 12,13,16,17

0x06

β 1(00001) 3(00011) 5(00101) 7(00111) 9(01001) b(01011) d(01101) f(01111)
m 3,5 13,15 2,4 12,14 1,7 11,17 0,6 10,16
β 11(10001) 13(10011) 15(10101) 17(10111) 19(11001) 1b(11011) 1d(11101) 1f(11111)
m b,d 1b,1d a,c 1a,1c 9,f 19,1f 8,e 18,1e

0x07 β 2(00010) 3(00011) 6(00110) 7(00111) a(01010) b(01011) e(01110) f(01111)
m 1,6,11,16 9,e,19,1e 0,7,10,17 8,f,18,1f 2,5,12,15 a,d,1a,1d 3,4,13,14 b,c,1b,1c

0x08 β 6(00110) 7(00111) e(01110) f(01111) 16(10110) 17(10111) 1e(11110) 1f(11111)
m 3,b,12,1a 4,c,15,1d 1,9,10,18 6,e,17,1f 5,d,14,1c 2,a,13,1b 7,f,16,1e 0,8,11,19

0x09

β 1(00001) 3(00011) 4(00100) 6(00110) 8(01000) a(01010) d(01101) f(01111)
m 0,9 11,18 7,e 16,1f 5,c 14,1d 2,b 13,1a
β 10(10000) 12(10010) 15(10101) 17(10111) 19(11001) 1b(11011) 1c(11100) 1e(11110)
m 1,8 10,19 6,f 17,1e 4,d 15,1c 3,a 12,1b

0x0a

β 1(00001) 2(00010) 4(00100) 7(00111) 9(01001) a(01010) c(01100) f(01111)
m 7,d 13,19 2,8 16,1c 5,f 11,1b 0,a 14,1e
β 11(10001) 12(10010) 14(10100) 17(10111) 19(11001) 1a(11010) 1c(11100) 1f(11111)
m 3,9 17,1d 6,c 12,18 1,b 15,1f 4,e 10,1a

0x0b

β 2(00010) 3(00011) 6(00110) 7(00111) a(01010) b(01011) e(01110) f(01111)
m 15,1e 1,a 4,f 10,1b 6,d 12,19 17,1c 3,8
β 12(10010) 13(10011) 16(10110) 17(10111) 1a(11010) 1b(11011) 1e(11110) 1f(11111)
m 11,1a 5,e 0,b 14,1f 2,9 16,1d 13,18 7,c

0x0c β 1(00001) 8(01000) 10(10000) 19(11001)

m
4,6,8,a,

15,17,19,1b
1,3,d,f,

10,12,1c,1e
5,7,9,b,

14,16,18,1a
0,2,c,e,

11,1d,13,1f

0x0d

β 1(00001) 3(00011) 5(00101) 7(00111) 8(01000) a(01010) c(01100) e(01110)
m 13,1e 2,f 11,1c 0,d 16,1b 7,a 14,19 5,8
β 10(10000) 12(10010) 14(10100) 16(10110) 19(11001) 1b(11011) 1d(11101) 1f(11111)
m 12,1f 3,e 10,1d 1,c 17,1a 6,b 15,18 4,9

0x0e β 1(00001) 2(00010) 4(00100) 7(00111) 11(10001) 12(10010) 14(10100) 17(10111)
m 14,16,18,1a 0,2,c,e 11,13,1d,1f 5,7,9,b 10,12,1c,1e 4,6,8,a 15,17,19,1b 1,3,d,f

0x0f β 8(01000) 9(01001) c(01100) d(01101) 18(11000) 19(11001) 1c(11100) 1d(11101)
m 4,b,17,18 3,c,10,1f 6,9,15,1a 1,e,12,1d 0,f,13,1c 7,8,14,1b 2,d,11,1e 5,a,16,19

0x10 β 9(01001) b(01011) 18(11000) 1a(11010)

m
9,a,d,e,

19,1a,1d,1e
8,b,c,f,

18,1b,1c,1f
1,2,5,6,

11,12,15,16
0,3,4,7,

10,13,14,17

0x11 β 11(10001) 13(10011) 15(10101) 17(10111)

m
2,6,a,e,

13,17,1b,1f
3,7,b,f,

12,16,1a,1e
1,5,9,d,

10,14,18,1c
0,4,8,c,

11,15,19,1d

0x12

β 1(00001) 3(00011) 5(00101) 7(00111) 9(01001) b(01011) d(01101) f(01111)
m 2,10 0,12 1,13 3,11 6,14 4,16 5,17 7,15
β 10(10000) 12(10010) 14(10100) 16(10110) 18(11000) 1a(11010) 1c(11100) 1e(11110)
m e,1c c,1e d,1f f,1d a,18 8,1a 9,1b b,19

0x13 β 2(00010) 4(00100) a(01010) c(01100)

Yang Gao 33

m
4,7,8,b,

14,17,18,1b
5,6,9,a,

15,16,19,1a
0,3,c,f,

10,13,1c,1f
1,2,d,e,

11,12,1d,1e

0x14 β 4(00100) 5(00101) 6(00110) 7(00111) c(01100) d(01101) e(01110) f(01111)
m 0,4,10,14 b,f,1b,1f 1,5,11,15 a,e,1a,1e 3,7,13,17 8,c,18,1c 2,6,12,16 9,d,19,1d

0x15 β 5(00101) 7(00111) 9(01001) b(01011) 11(10001) 13(10011) 1d(11101) 1f(11111)
m 3,7,12,16 2,6,13,17 0,4,11,15 1,5,10,14 8,c,19,1d 9,d,18,1c b,f,1a,1e a,e,1b,1f

0x16

β 10(10000) 11(10001) 12(10010) 13(10011) 14(10100) 15(10101) 16(10110) 17(10111)
m f,19 7,11 9,1f 1,17 8,1e 0,16 e,18 6,10
β 18(11000) 19(11001) 1a(11010) 1b(11011) 1c(11100) 1d(11101) 1e(11110) 1f(11111)
m b,1d 3,15 d,1b 5,13 c,1a 4,12 a,1c 2,14

0x17 β 2(00010) 4(00100) a(01010) c(01100) 12(10010) 14(10100) 1a(11010) 1c(11100)
m a,d,1a,1d b,c,1b,1c 9,e,19,1e 8,f,18,1f 2,5,12,15 3,4,13,14 1,6,11,16 0,7,10,17

0x18

β 4(00100) 5(00101) 6(00110) 7(00111) c(01100) d(01101) e(01110) f(01111)
m f,17 8,10 6,1e 1,19 4,1c 3,1b d,15 a,12
β 14(10100) 15(10101) 16(10110) 17(10111) 1c(11100) 1d(11101) 1e(11110) 1f(11111)
m 0,18 7,1f 9,11 e,16 b,13 c,14 2,1a 5,1d

0x19 β 3(00011) 6(00110) 8(01000) d(01101) 10(10000) 15(10101) 1b(11011) 1e(11110)
m 5,d,14,1c 2,a,13,1b 0,8,11,19 7,f,16,1e 4,c,15,1d 3,b,12,1a 1,9,10,18 6,e,17,1f

0x1a

β 1(00001) 2(00010) 5(00101) 6(00110) 8(01000) b(01011) c(01100) f(01111)
m b,11 5,1f 0,1a e,14 7,1d 9,13 c,16 2,18
β 11(10001) 12(10010) 15(10101) 16(10110) 18(11000) 1b(11011) 1c(11100) 1f(11111)
m f,15 1,1b 4,1e a,10 3,19 d,17 8,12 6,1c

0x1b

β 2(00010) 3(00011) 4(00100) 5(00101) a(01010) b(01011) c(01100) d(01101)
m 9,12 6,1d 3,18 c,17 1,1a e,15 b,10 4,1f
β 12(10010) 13(10011) 14(10100) 15(10101) 1a(11010) 1b(11011) 1c(11100) 1d(11101)
m d,16 2,19 7,1c 8,13 5,1e a,11 f,14 0,1b

0x1c β 1(00001) 3(00011) 8(01000) a(01010) 10(10000) 12(10010) 19(11001) 1b(11011)
m 1,e,12,1d 3,c,10,1f 6,9,15,1a 4,b,17,18 2,d,11,1e 0,f,13,1c 5,a,16,19 7,8,14,1b

0x1d β 3(00011) 5(00101) 8(01000) e(01110) 10(10000) 16(10110) 1b(11011) 1d(11101)
m 7,b,16,1a 5,9,14,18 2,e,13,1f 0,c,11,1d 6,a,17,1b 4,8,15,19 3,f,12,1e 1,d,10,1c

0x1e

β 8(01000) 9(01001) a(01010) b(01011) c(01100) d(01101) e(01110) f(01111)
m a,14 2,1c 8,16 0,1e 5,1b d,13 7,19 f,11
β 18(11000) 19(11001) 1a(11010) 1b(11011) 1c(11100) 1d(11101) 1e(11110) 1f(11111)
m e,10 6,18 c,12 4,1a 1,1f 9,17 3,1d b,15

0x1f β 2(00010) 3(00011) 4(00100) 5(00101) 12(10010) 13(10011) 14(10100) 15(10101)
m 3,f,10,1c 4,8,17,1b 1,d,12,1e 6,a,15,19 7,b,14,18 0,c,13,1f 5,9,16,1a 2,e,11,1d

	Introduction
	Background
	Introduction to AEAD and Ascon algorithm
	Notations

	Fault model used in PDFA for Ascon
	Key recovering in Ascon
	Fault models in PDFA

	PDFA process on Ascon
	Discussion of different nonce configurations
	Specific PDFA process

	Complexity analysis
	Simulation of PDFA experiments
	Experimental environment
	Experimental results

	Discussion
	Comparison with existing analysis on Ascon
	Feasibility and practicality of the fault models
	Countermeasures

	Conclusion

