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Abstract. We present a new post-quantum Public Key Encryption scheme
(PKE) named Supersingular Isogeny Lollipop Based Encryption or SILBE.
SILBE is obtained by leveraging the generalized lollipop attack of Cas-
tryck and Vercauteren on the M-SIDH Key exchange by Fouotsa, Moriya
and Petit. Doing so, we can in fact make of SILBE a post-quantum secure
Updatable Public Key Encryption scheme (UPKE). SILBE is the first
isogeny-based UPKE which is not based on group actions. In its core,
SILBE extensively uses both the Deuring Correspondence and Kani’s
Lemma, two central concepts in Isogeny-Based Cryptography.

Keywords: Post-Quantum Cryptography · Supersingular Isogenies · M-
SIDH · Generalized Lollipop Attacks · UPKE

1 Introduction

The notion of Updatable Public Key Encryption (UPKE) was initially intro-
duced in [7] as a relaxation of Forward Secure Public Key Encryption (FSPKE),
given the inherent complexity of constructing FSPKE systems and the shared
advantageous properties between the two. In addition to functioning as PKE,
UPKE allows for secure asynchronous key updates. Several schemes have been
proposed based on discrete logarithm [19], DRC [1], LWE [19,2], and on isogenies
[20,29].

In this later case, an in-depth exploration of the question was performed in
2020 by Eaton, Jao, Komlo, and Mokrani in [20]. They proposed two designs of
isogeny-based UPKE, respectively based on SIDH [23,14] and CSIDH [9]. For
the former protocol, the authors suggested that “a viable construction in prac-
tice is hindered by existing mathematical limitations” and described a relaxed
variant of UPKE which they named “online UPKE”. The online UPKE was
then instantiated in the SIDH setting. Follow-up developments on isogeny-based
UPKE have been, to the best of our knowledge, focused on CSIDH and more
generally on group actions [29].

In the meantime, the SIDH was shown insecure in [8,30,35] by leveraging
the accessible images of torsion points to construct a high-dimensional isogeny
using Kani’s Lemma [25], one then extracts the secret isogeny from the high-
dimensional one. This tool is revolutionary and has enables a breath of new
schemes such as SQISignHD [12], FESTA and QFESTA [5,33], IS-CUBE [32] or
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Leroux’s VRF [28] and spawn many countermeasures such as M-SIDH [21,22]
and binSIDH/terSIDH [4]. Proposed by Fouotsa, Moriya and Petit, the M-SIDH
countermeasure prevents the attack of [8,30,35], at the cost of a lesser efficiency.

The idea we wanted to explore was therefore whether Kani’s Lemma could be
leveraged to construct an UPKE not based on isogeny group action. To answer
this question, we strongly rely on two central tools:

– The first is the generalized lollipop attack of [10] as proposed by Castryck
and Vercauteren, and especially how it can be used to attack some specific
instances of the M-SIDH.

– The second is the Deuring correspondence, that links isogeny between su-
persingular elliptic curves and ideals between maximal orders of quaternion
algebras, and more specifically its algorithms applications detailed in Ler-
oux’s thesis [27].

Contributions: Our main contribution is to turn the generalized lollipop attack
[10] over M-SIDH into not only a PKE but an UPKE, therefore overcoming the
mathematical limitations described in [20] when attempting to design SIDH
based UPKE. Our UPKE, named SILBE1 for Supersingular Isogeny Lollipop
Based Encryption, follows the same principle as SETA [16] where the Petit
torsion point attacks were used to design a PKE. However, this adaptation is not
without its challenges and necessitates numerous adaptations and optimizations.
The crux of the challenge lies in devising a key update mechanism that safeguards
against information leakage about the secret keys. This is achieved by leveraging
the diverse capabilities offered by various isogeny representations, coupled with
the pseudorandom nature of walks on the supersingular isogeny graph. We also
generate examples of secure prime for SILBE at different security levels.

Technical overview: Let ϕ : E0 → E1 be a secret isogeny in M-SIDH. The
images of torsion points of highly composite order N through the isogeny ϕ are
revealed up to a secret scalar α. Concretely, if E0[N ] = ⟨P,Q⟩, then public key
is (E1, [α]ϕ(P ), [α]ϕ(Q)), where α is a secret scalar. Due to the compatibility
between isogenies and pairings, it is sufficient to choose α as a square root of
unity modulo N . The SIDH attacks are avoided by choosing N in such a way
that the number of square roots of unity modulo N is exponential, meaning that
N is highly composite. We refer to [22] for further details.

In [10], Castryck and Vercauteren show that if the curve E0 is defined over
Fp, then one can use a generalisation of the so called “lollipop attack” to recover
the secret isogeny ϕ when given (E1, [α]ϕ(P ), [α]ϕ(Q)). One thing to note here is
that among all supersingular curves in characteristic p, very few are defined over
Fp. In fact, a uniformly random supersingular elliptic curve in characteristic p is
defined over Fp with probability ≈ p−1/2. Moreover, given a uniformly random
supersingular elliptic curve E, finding an isogeny connecting E to a supersingular
curve defined over Fp is known to be hard [17]. If the latter problem was solved,

1 “syllable” in German.
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it would lead to a sub-exponential quantum algorithm for computing isogenies
between supersingular elliptic curves [17], endangering the security of several
isogeny-based protocols on its way, non group action ones more precisely.

The above observation hints that one could use the generalised lollipop attack
to design a public key encryption scheme by proceeding as follows: the public
key is a uniformly random supersingular elliptic curve EA, and the secret key
is an isogeny connecting E to a supersingular curve defined E0 defined over Fp
and of known endomorphism ring, say ϕA : E0 → EA. To encrypt a message m,
a square root of unity modulo N , one translates this message into an M-SIDH
isogeny ϕB : EA → EB , and the ciphertext is (EB , [m]ϕB(P ), [m]ϕB(Q)) where
E[N ] = ⟨P,Q⟩. To decrypt a ciphertext (EB , [m]ϕB(P ), [m]ϕB(Q)), one runs the
generalized lollipop attack on the isogeny ϕB ◦ ϕA : E0 → EB using the masked
torsion point information available in the ciphertext. In practice, for the key
generation, one samples E by performing a very long walk from E0 (E0 can be
set to j(E) = 1728), then one uses the endomorphism ring of E0 to compute a
shorter isogeny ϕA : E0 → EA which is used in the decryption. The fact that N is
highly composite implies computing (higher dimensional) isogenies of relatively
large prime degrees (say few thousands), which makes the resulting scheme not
practical (yet). Nevertheless, the most interesting fact about this design is that
it can be turned into an UPKE.

In fact, since the public key is solely composed of a uniformly random super-
singular elliptic curve EA, updating the public key is straightforward: one simply
samples a very long uniformly random walk ρ : EA → E′

A, and set E′
A to be

the new public key. To update the secret key which consists of a relatively short
isogeny ϕA : E0 → EA with E0 defined over Fp and of known endomorphism
ring, one translates ρ◦ϕ : E0 → E′ into a relatively short isogeny ϕ′A : E0 → E′

A

(this requires the endomorphism ring of E0), and ϕ
′
A is the new secret key. This

leads to the very first secure isogeny-based UPKE which is not based on isogeny
group actions. Hence overcoming the limitations highlighted in [20].

Outline: The remainder of this paper is organised as follows. In section 2 we give
a detailed recall of isogenies, UPKE, M-SIDH and of the standard algorithms
that we utilize to define SILBE. In section 3, we detail how we construct the PKE
part of SILBE. In section 4 we explain how we build the key update mechanism
of SILBE and show that its security remains unchanged. Finally, in section 5,
we discuss how we find good public parameters and discuss SILBE’s efficiency.

2 Preliminaries

Throughout this paper, we denote as λ the security parameter. We also say that
f(x) ≤ negl(x) if |f(x)| ≤ x−c for any positive integers c for x big enough. A
PPT(x) is a probabilistic algorithm that is poly(x), meaning that that its running
time is polynomial in x. Let p be a prime, Fp be the finite field of characteristic
p and Fp its algebraic closure. Let E and E′ be elliptic curves over Fp.
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2.1 Isogenies Background

Here is a concise recapitulation of isogeny. For a more comprehensive exploration,
we recommend referring to De Feo’s notes [13] and Silverman’s book [36] for
a general understanding of elliptic curves and isogenies. For insights into the
Deuring Correspondence, Leroux’s thesis [27] is an excellent resource, while [35]
provides valuable details on Kani’s Lemma.

Basic Facts: An isogeny ϕ : E → E′ is given as a surjective projective rational
map between E(Fp) and E′(Fp) that preserves the group structure. The degree
of this rational map defines the degree of the isogeny. This induces that the
degree of a composition of isogeny is the product of the respective degree of each
isogeny. We will consider isogeny up to isomorphism, meaning that two isogenies
ϕ : E → F and ψ : E′ → F ′ are isomorphic if they are equal up to pre- and
post-composition of isomorphisms. Note that E and E′ are isomorphic induces
that they share the same j-invariant, with both notions being equivalent when
seen in Fp. For every isogeny ϕ : E → E′, there exists an unique dual isogeny

ϕ̂ : E′ → E such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [deg(ϕ)], with [n] the scalar multiplication
map for any n ∈ Z. Using duality, we can define the n-torsion group, noted
E[n] = ker([n]) with E[n] ∼= Z2

n for n coprime to p.
Additionally, an isogeny ϕ : E → E′ is separable if deg(ϕ) = | ker(ϕ)|. Fol-

lowing the fundamental theorem of isomorphism, we have that any separable
isogeny is defined up to isomorphism by its kernel, meaning that ϕ : E → E
and ψ : E → E/ker(ϕ) are isomorphic, we also have that for any isogeny,
ker(ϕ) ⊂ E[deg(ϕ)].

The characterisation of isogeny by their kernel enables to define the notion
of pushforwards. Let ϕ : E → F and ψ : E → F ′ be two isogenies of coprime
degree. The pushforward of ψ by ϕ is the isogeny ϕ∗ψ : F → E′ defined by
ker(ϕ∗ψ) = ϕ

(
ker(ψ)

)
.

Deuring Correspondence: Among isogenies, endomorphisms have important
additional properties. First, End(E), the set of all endomorphisms for an elliptic
curve E is an integral ring of characteristic zero, under the operations of point-
wise addition and composition. An elliptic curve is said to be ordinary if End(E)
is isomorphic to an order of a imaginary quadratic field. Otherwise, they are
supersingular and End(E) is isomorphic to a maximal order ofBp,∞ a quaternion
algebra ramified exactly at p and ∞. An order O of Bp,∞ is a subring such
that O ⊗Z Q = Bp,∞ with Bp,∞ of the form Q + Qi + Qj + Qij with j2 =
−p, i2 depending of p and such that ij = −ji. An important example is the
curve E0 with j-invariant 1728. If p = 3 mod 4, then it is supersingular and its
endomorphism ring correspond to the maximal order O0 = Z+iZ+ i+j

2 Z+ 1+ij
2 Z

with i : (x, y) → (−x,
√
−1y) and j = π the Frobenius endomorphism.

Supersingularity is an important property as is preserved by isogenies and as
all supersingular curves are defined in Fp2 and connected together. Importantly,
Deuring proved in [18] that there is an equivalence between supersingular curves
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and maximal orders of Bp,∞ such that an isogeny ϕ between two curves E0 and
E1, with End(E0) ∼= O0 and End(E1) ∼= O1, can be represented as a integral
ideal I connecting O0 and O1. Integral ideals are fractional ideals such that
I ⊆ OL(I), with OL(I) =

{
α ∈ Bp,∞

∣∣αI ⊆ I
}
. Similarly, there exists OR(I) ={

α ∈ Bp,∞
∣∣Iα ⊆ I

}
. All ideals can be seen as

(
OL(I),OR(I)

)
-ideal with both

OL(I) and OR(I) maximal orders whenever I is integral. The norm of an ideal
is defined as n(I) = gcd

({
n(α)

∣∣α ∈ I
})

.
Let ϕ : E → E′ be an isogeny between two supersingular curves. Let OE and

OE′ be the maximal orders of Bp,∞ corresponding to End(E) and End(E′). The
kernel ideal of ϕ is defined as Iϕ =

{
α ∈ OE

∣∣ α(ker(ϕ)) = 0
}
Conversely, given

I an (OE ,OE′)-ideal, it induces an isogeny ϕI : E → F given by kerϕI = E[I] ={
P ∈ E

∣∣ α(P ) = 0 ∀α ∈ I
}
. The Deuring correspondence induces the following

equivalences:

supersingular j-invariants over Fp2 maximal orders in Bp,∞

j(E) OE

ϕ ◦ ψ IψIϕ
deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ψ∗ϕ [Iψ]∗Iϕ = 1

n(Iψ)
Iψ(Iψ ∩ Iϕ)

γ ∈ End(E) OEγ

Kani’s Lemma: Lastly, an important recent notion in isogenies is Kani’s
Lemma [25] and especially its usage to break SIDH, as proposed in [8,30,35],
where it was used to embed isogenies between elliptic curve into higher dimen-
sional isogenies. Inside this paper, we soly focus on principally polarized abelian
varieties and therefore omit the notion of polarization. We refer the interested
reader to Milne’s book [31]. The only exception is that we denote the dual of
an high dimension isogeny ϕ as ϕ̃, its polarized dual. We give here the Kani’s
Lemma as defined in [35, lemma 3.2].

Lemma 1. : Let f : A → B, g : A → A′, f ′ : A′ → B′ and g′ : B →
B′, be polarized separable isogenies such that g′ ◦ f = f ′ ◦ g. Then, the map

F : B × A′ → A × B′ given by the matrix

(
f̃ −g̃
g′ f ′

)
is a polarised separable

isogeny with deg(F ) = deg(f) + deg(g), ker(F ) =
{(
f(P ),−g(P )

)∣∣ P ∈ A[D]
}

and ker(F̃ ) =
{(

− g̃(P ), f ′(P )
)∣∣ P ∈ A′[D]

}
.

Furthermore, given deg(F ) = d1d2, then we can write F = F2 ◦ F1 with
deg(F1) = d1 and deg(F2) = d2 such that

V

B ×A′ A×B′F

F1 F̃2

ker(F1) =
{(
f(P ), g(P )

)∣∣∣ P ∈ A[d1]
}

& ker(F̃2) =
{(
f̃(P ), g′(P )

)∣∣ P ∈ B[d2]
}
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2.2 UPKE

We base our definition of UPKE on the notion of symmetric UPKE of [20].

Definition 1. Given λ a security parameter, an UPKE scheme is given by a set
of 6 PPT(λ) together with a setup algorithm Setup(1λ) → pp with pp the public
parameters.

– KG(pp)
$−→ (sk, pk)

– Enc(pk,m)
$−→ ct

– Dec(sk, ct)−→m

– UG(pp)
$−→ µ

– Upk(pk, µ) −→ pk′

– Usk(sk, µ) −→ sk′

Likewise to PKE, they also must ensure correctness: For all i ∈ N, we have
that

P

Dec(ski,Enc(pki,m)
)
= m

∣∣∣∣∣ (sk0, pk0)
$←− KG(pp), µi

$←− UG(pp),(
ski, pki

)
←−

(
Usk(ski−1, µi),Upk(pki−1, µi)

)  = 1

We make a slight abuse of notation, as all algorithms know of pp, but this
choice is made to clarify already heavy notations. The idea behind the security
of an UPKE is to be a secure PKE with a key update mechanism that ensures
both Forward Security and Post-Compromise Security. The first notion means
that if the adversary learns about ski, then it can not use this information to
retrieve skj for j < i without knowing the update values µj+1, · · · , µi. Similarly,
the second notion induces that the adversary is not able to retrieve skj for j > i
without knowing the update values µi+1, · · · , µj .

To ensure that those security notions are respected and to enable the ad-
versary to adaptively choose updates, we use the following oracles and lists. We
denote as Oracles the list of all oracles.

– Upd list and Cor list are two lists that respectively store the updates made
by the adversaries and what keys are corrupted.

– Fresh Upd: The Fresh-Update oracle samples a random update µi, computes
the updated keys (ski+1, pki+1) and return pki+1.

– Given Upd: The Given-Update oracle computes the keys (ski+1, pki+1) cor-
responding to a given update µi and return pki+1. The update (i, i + 1) is
added to Upd list.

– Corrupt: The Corruption oracle that receive an index j and return skj . It
marks j as corrupted together with all others keys of index i such that there
is no fresh update in-between.

– Plaintext Check the plaintext checking oracle that receives a plaintext and a
ciphertext and returns if the ciphertext is a valid encryption of the plaintext.

We use the later oracles to construct the security notion of One-wayness
One-Wayness under Plaintext Checking Attack with Updatability (OW-PCA-U).
Here, instead of distinguishing between the ciphers of two chosen messages, as it
is done in IND-CPA-U [20, Figure 1], the adversaries have to decrypt a challenge
ciphertext. An UPKE is OW-PCA-U secure if for any given (A1,A2) poly(λ)
adversaries, we have that
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AdvIND-PCA-U(A1,A2) = P
[
GOW-PCA-U(A1,A2) = 1

]
⩽ negl(λ)

with GOW-PCA-U the cryptographic game given by figure 1.

GOW-PCA-U(A1,A2)

1 : i = 0

2 : Upd list = Cor list = ∅

3 : sk0, pk0
$←− KG(1λ)

4 : j, st←− AOracles
1 (pk0)

5 : if j > i do

6 : return ⊥

7 : m
$←−M

8 : ct
$←− Enc(pkj,m)

9 : n←− AOracles
2 (ct, st)

10 : if IsFresh(j) do

11 : return m
?
= n

12 : return ⊥

Plaintext Check(m, c, i)→ b

1 : if m /∈M do

2 : return ⊥
3 : else do

4 : return m
?
= Dec(ski, c)

IsFresh(j)

1 : return not j
?
∈ Cor list

Fresh Upd()→ pki

1 : µ
$←− UG(1λ)

2 : ski+1
$←− Usk(ski, µ)

3 : pki+1
$←− Upk(pki, µ)

4 : i← i+ 1

5 : return pki

Given Upd(µ)→ pki

1 : ski+1
$←− Usk(ski, µ)

2 : pki+1
$←− Upk(pki, µ)

3 : Upd list←− Upd list ∪ {(i, i+ 1)}
4 : i← i+ 1

5 : return pki

Corrupt(j)→ skj

1 : Cor list = Cor list ∪ {j}
2 : i, k ← j

3 : while (i− 1, i) ∈ Upd list do :

4 : Cor list = Cor list ∪ {i− 1}
5 : i← i− 1

6 : while (k, k + 1) ∈ Upd list do :

7 : Cor list = Cor list ∪ {k + 1}
8 : k ← k + 1

9 : return skj

Fig. 1. OW-PCA-U Game
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2.3 Used Algorithms

SILBE often alternate between different representations of isogenies, more specif-
ically its kernel, ideals and higher dimensional representations. To do so, we use
the following standard algorithms in Isogeny Based Cryptography:

– KernelToIsogeny: Takes as input E,K with E a supersingular curve and
K ∈ E[d] and return ϕ the isogeny of degree d whose kernel is generated by
K together with E′, its codomain. To do so, it uses Vélu’s Formulas [37] and
factorises ϕ as a composition of prime degree isogenies. To be efficient, this
requires for d to be smooth.

– CanonicalTorsionBasis: Takes as input E a supersingular curve and N an
integer such that N |(p2 − 1) and return ⟨P,Q⟩ = E[N ]. To do so, it simply
samples points at random in E(Fp2) or its quadratic twist and multiplies
it by the right cofactor. To ensure that this method is deterministic, the
sampling is performed deterministically.

– PushEndRing [12, algorithm 8]: Takes as input OE an evaluation basis of
End(E), φ : E → F an isogeny of degree d that is efficiently computable
together with its ideal Iφ. It outputs OF a d-evaluation basis of End(F ).
An evaluation basis [12, definition A.4.1] consist in an isomorphism between
the endomorphism ring and a maximal order such that every element of the
basis is efficiently computable [12, definition 1.1.1].

– KernelToIdeal[12, algorithm 9]: Takes as input OE a N -evaluation basis
of End(E) and K a generator of the kernel of an isogeny ϕ of smooth degree
d coprime to N and return Iϕ.

– EvalTorsion[12, algorithm 11]: It takes as input OF an evaluation basis of
End(F ), ρ1 : F → E of degree d1, ρ2 : F → E′ of degree d2, both efficiently
computable isogenies together with their respective ideals I1 and I2. It also
takes as input J an (OE ,OE′)-ideal of norm N coprime to d1 and d2. It
outputs ϕJ(P ), with P any point whose order is coprime to d1d2.

– RandomEquivalentIdeal[27, algorithm 6]: It takes as input a (OE ,OF )-
ideal I and returns J another (OE ,OF )-ideal such that n(J) is a “small”
prime, meaning that n(J) ∈ [

√
p log(p)−1,

√
p log(p)] with extremly high

probability, as shown by [27, lemma 3.2.3 & 3.2.4].

– ConstructKani [34]: It takes as input d the degree of an isogeny ϕ : E → E′

together with N1 and N2 two divisors of N such that N1N2 ≥ d. It also takes
as input P,Q, ϕ(P ), ϕ(Q) with the first two points a basis of E[N ]. It returns
F an isogeny of dimension 2g with g = 1, 2 or 4 that is in fact the Kani’s
isogeny induced by the following diagram:

Eg F g

Eg F g

ϕg

α

ϕg

α
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with α an endomorphism of dimension 1, 2 or 4 depending of N1N2 − d. We
also denote as EvalKani the algorithm that uses this high dimension isogeny
to evaluate ϕ(R) for any R ∈ E.

2.4 M-SIDH

Following the breaking of SIDH in [8,30,35], some countermeasures were por-
posed among which is the Masked-SIDH or M-SIDH [21,22]. The central idea
comes from the fact that masking the sent torsion points in the SIDH still en-
ables to compute the pushforwards while protecting against EvalKani, as the
received torsion points describe the isogeny [m]ϕ whose degree is greater than N .
Nevertheless, using Weil pairing and given [m]ϕ

(
P
Q

)
with P,Q a basis of E[A], we

can retrieve m2 mod A. Finding the mask m is therefore equivalent to finding
the right square root of m2 in ZA. Thus, to be secure, we need for A to be such
that ZA has many roots of the unity, i.e. that A =

∏n
i=1 pi with n large and pi

distinct odd primes. This is the general idea behind the M-SIDH that we now
describe as presented in [22]. The M-SIDH is given in figure 2 and its public
parameter be as follows:

– p = ABf − 1 a prime number such that with A =
∏nA
i=1 pi and B =

∏nB
j=1 qj

coprime such that A ≃ B and nA ≃ nB .
– E a starting supersingular curve with ⟨PA, QA⟩ a basis of E[A] and ⟨PB , QB⟩

a basis of E[B].
– Both Alice and Bob that can efficiently sample at random over µ2(A) ={

x ∈ ZA
∣∣x2 = 1

}
and µ2(B).

It was shown in [22] that the key security of M-SIDH reduces to the following
problem with adequate N and d.

Problem 1. Supersingular isogeny problem with masked torsion point informa-
tion: Let ϕ : E → E′ be an isogeny of degree d, let ⟨P,Q⟩ be a basis of E[N ]
with N =

∏n
i=1 pi coprime to d and let m ∈ µ2(N) be a random element. Given

P,Q, [m]ϕ(P ), [m]ϕ(Q), compute ϕ.

Importantly, it is not sufficient to ask for nA and nB to be around λ, as
following [22, Theorem 7], it suffices to find m mod Nt, with Nt =

∏n
i=t pi such

that Nt ≥
√
d. This is because we have enough torsion points on Nt to use

EvalKani efficiently and thus retrieve ϕ. Then, as m ∈ µ2(N), we have that
m mod Nt ∈ µ2(Nt) with |µ2(Nt)| = 2n−t, meaning that we have significantly
diminished the numbers of possible masks. To ensure the security of M-SIDH,
we need for A and B to be such that for all At =

∏nA
i=t pi, we have that At ≥√

B ⇒ nA − t ≥ λ and similarly for B. This induces that, in the case of SIDH,
we need around nA + nB ≃ 4.5λ.

Another important attack on M-SIDH and problem 1 is the generalized lol-
lipop attack, as detailed in [10]. It requires that the domain2 of the mask isogeny

2 or codomain, using duality.
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M-SIDH

Alice(pp) Bob(pp)

sA ←$ ZA, α←$ µ2(B) sB ←$ ZB , β ←$ µ2(A)

RA ← PA + [sA]QA RB ← PB + [sB ]QB

ϕA, EA ← KernelToIsogeny(E,RA) ϕB , EB ← KernelToIsogeny(E,RB)

SA ← [α]ϕA(PB) SB ← [β]ϕB(PA)

TA ← [α]ϕA(QB) TB ← [β]ϕB(QA)

EA, SA, TA

EB , SB , TB

UA ← SB + [sA]TB UB ← SA + [sB ]TA

ψA, EK ← KernelToIsogeny(EB , UA) ψB , EK ← KernelToIsogeny(EA, UB)

K ← KDF
(
j(EK)

)
K ← KDF

(
j(EK)

)

Fig. 2. M-SIDH protocol

ϕ is defined over Fp to construct a new unmasked isogeny ψ, use EvalKani over

ψ to retrieve ker(ψ) and extract ker(ϕ̃) from ker(ψ).
To be more specific, let ϕ : E0 → E be an isogeny of degree d, with E0

defined over Fp. Let ⟨P,Q⟩ be a basis of E0[N ] and S, T to be the masked image

of those points, i.e.
(
S
T

)
= [m]ϕ

(
P
Q

)
. We then consider the following diagram,

where we denote as ϕ(p) the pushforward π∗ϕ. Because E0 is defined over Fp, we
have that π ∈ End(E0) and its pushforward is well-defined. We set ψ = ϕ(p) ◦ ϕ̂.

E

E0

E(p)

ϕ

π π

ϕ(p)

ψ

We then use the following lemma.

Lemma 2. [10, Lemma 3]: Using the above notation, assume that the matrix
Mπ̂ is such that π̂

(
P
Q

)
= Mπ̂

(
P
Q

)
Then, we can compute ψ(E[N ]) as

ψ

(
S

T

)
= dp−1Mπ̂π

(
S

T

)
mod N

As we can evaluate ψ over E[N ] and we have that deg(ψ) = d2 ≤ N2, we can
use EvalKani over ψ to evaluate ψ over any points and in particular over E[d].
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We can then extract ker(φ̂) from ker(ψ)[d], depending on the relation between
d and p, as detailed in [10, section 3.2].

3 Constructing a PKE from the generalized lollipop
attack

The core concept behind SILBE is to leverage the generalized lollipop attack
over the M-SIDH as a deciphering mechanism, akin to how the original lollipop
attack was employed in designing SETA [16]. This endeavor will make usage of
all the different isogeny representations that we detailed in section 2.1. SILBE
is in fact related to [10, section 4.3] and the idea of M-SIDH with trapdoor
curves, although there are substantial changes. The PKE part of SILBE works
as follows:

– Setup: We find the adequate β and N to construct a base prime p = 3βNf+1
such that p = 3 mod 4 and N =

∏n
i=1 pi with n big enough such that it is

secure. We also compute P0, Q0 a basis of E0[N ] and U0, V0 a basis of E0[3
β ].

We compute a matrix Mπ that represent the action of π over P0, Q0.
– KG: Alice computes a long isogeny between E0 and EA. Using EvalKani,

it retrieves the representing ideal I and use the RandomEquivalentIdeal
algorithm to find a short connecting isogeny ϕA : E0 → EA. EA is then used
as the public key while ϕA is the secret key.

– Enc: Bob computes ϕB : EA → EB an isogeny. It then sends the masked
image by ϕB of a basis EA[N ], where the mask is the message m.

– Dec: Using its knowledge of ϕA, Alice uses the generalized lollipop attack

over ϕB ◦ϕA to retrieve ker(ϕ̂B) and using the discrete logarithm, it retrieves
m.

The public parameters of SILBE are constructed using the following Setup
algorithm. It uses EvalImageMatrix, a small subroutine based on Weil’s pair-
ing that given P,Q a basis of E[N ], with N smooth and X,Y ∈ E[N ] compute
M the matrix such that

(
X
Y

)
= M

(
P
Q

)
. We discuss more thoroughly how we

construct p in section 5. We also denote as O0 the efficient evaluation basis of
End(E0), that we detailed in section 2.1, with E0 the curve with j-invariant 1728
defined over Fp.

3.1 Key generation

As touched earlier, the key generation of SILBE constructs a long isogeny walk
with starting curve E0. This is done to use the following proposition.

Proposition 1. [12, proposition B.2.1]: Let ϕ : E → E′ be an ℓh-isogeny ob-
tained from a non-backtracking random ℓ-isogeny walk over Gℓp. Then, for all

ϵ ∈]0, 2], the distribution of E′ has statistical distance O(p−ϵ/2) to the uniform
distribution in the supersingular isogeny graph, provided that h ≥ (1+ ϵ) logℓ(p).
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Algorithm 1 SILBE.Setup

Input: 1λ

Output: pp =
(
p, (P0, Q0), (V0, U0),Mπ, t

)
with p a prime, ⟨P0, Q0⟩ = E0[N ],

⟨U0, V0⟩ = E0[3
β ], Mπ ∈ GL2(N) and t an integer such that 3βt ≥ p2.

1: Take p a prime of the form p = 3βNf +1 such that p = 3 mod 4 and N =
∏n

i=1 pi
with pi distinct odd small prime numbers such that N ⩾ 3βp1/2 log(p)2, N is
coprime to 3 and n big enough such that for all Nk =

∏n
i=k pi, we have that

Nk ≥
√
3β ⇒ n− k ≥ λ.

2: P0, Q0 ← CanonicalTorsionBasis(E0, N)
3: U0, V0 ← CanonicalTorsionBasis(E0, 3

β)
4: Mπ ← EvalImageMatrix(E0, P0, Q0, π(P0), π(Q0)).

5: t←
⌈

2 log2(p)

β log2(3)

⌉
6: pp←

(
p,N, P0, Q0, U0, V0,Mπ, t

)
.

7: return pp

By constructing a path of length t of 3β-isogenies ρ1, · · · , ρt, we get that the
degree of their composition is greater than p2 and the end curve distribution will
be O(p−1/2) statistically close from the uniform distribution, meaning that it will
be computationally indistinguishable from an uniform random sampling. We call
the end curve EA. To compute I1, · · · It the ideals corresponding to ρ1, · · · , ρt.
we use the following recursive mechanism:

E0 E1 · · · Et−1 EA
ρ1 ρ2 ρt−1 ρt

J1

Jt−1

Jt

IϕA

Fig. 3. Diagram of the Key Generation of SILBE

1. Assume knowledge of κi : E0 → Ei together with its representative ideal Ji
such that n(Ji) is prime and coprime to 3. Furthermore, assume knowledge
of OEi a T -evaluation basis over Ei with T ̸= 3 prime. Finally, assume
knowledge of Ij with 1 ≤ j ≤ i.

2. Using KernelToIsogeny, we can construct ρi+1 and find Ei+1 and using
OEi we can find Ii+1 with the KernelToIdeal.

3. Then, we have that JiIi+1 is a (O0,OEi+1
)-ideal, using RandomEquiv-

alentIdeal, we find an ideal Ji+1 such that n(Ji) ̸= n(Ji+1) and n(Ji+1) ∈
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[
√
p log(p),

√
p log(p)] is prime. To speed-up computations, we consider Ñ =∏x

i=1 pi with x minimal such that Ñ ≥ p1/4 log(p)1/2 and ask for Ñ2−n(Ji)
to be prime and equal to 1 mod 4.

E0 Ei

Ei+1

Ji

ρi+1
Ji+1

κi

κi+1
Ii

4. Now, using EvalTorsion over the above triangle, we evaluate κi+1 = ϕJi+1

over ⟨P0, Q0⟩ = E0[N ]. We then have constructed a high dimension repre-
sentation of κi+1.

5. UsingConstructKani over (P0, Q0, κi+1(P0), κi+1(Q0)) in dimension 4 thanks
to Ñ , we get a Kani’s isogeny Fi+1 and can therefore evaluate κi+1 over any
points. This is then used to apply the PushEndRing over κi+1 and Ji+1

to retrieve OEi+1
a n(Ji+1)-evaluation basis over Ei+1.

Using this mechanism, we compute Ii for i = 1, · · · , t. Additionally, we also
compute OEA a n(Jt)-EvaluationBasis of End(EA). To speed up the decryp-
tion part of SILBE, we use RandomEquivalentIdeal over Jt to find another
(O0,OEA)-ideal IϕA such that N ′−n(IϕA)232β = 1 mod 4 and is a prime num-
ber, withN ′ = p1·

∏n
i=2 p

2
i . This ensures that the EvalKani inGeneralisedlolli

is performed in dimension 4. The reason behind the choice of N ′ and not N2

comes from the fact N2 −n(IϕA)
232β = (N −n(IϕA)3

β)(N +n(IϕA)3
β) and can

therefore never be prime.
Once found, we use EvalTorsion over ρt ◦ · · · ◦ ρ1 and I1 · · · It to evaluate

ϕA
(
P0

Q0

)
and use EvalImageMatrix, to compute the matrix MϕA

such that

ϕA
(
P0

Q0

)
= MϕA

(
PA
QA

)
.

We then set EA as the public key and OEA , IϕA ,MϕA
as the secret key. We

construct ρi in such a way that our walk cannot be backwards. To do so, we
use Ui, Vi a basis of Ei[3

β ] such that ρi(Ei−1[3
β ]) = ⟨Vi⟩. As we set ker(ρi+1) =

⟨Ui+ [ηi+1]Vi⟩, we have that it can be any cyclic isogeny of degree 3β except ρ̂i.

3.2 Encryption & Decryption

The underlying architecture behind the PKE part of SILBE is given in figure 4

Encryption
As explained, the message space of SILBE is µ2(N) =

{
x ∈ ZN

∣∣x2 = 1
}
. As

N =
∏n
i=1 pi, we have that |µ2(N)| = 2n and we can furthermore construct

an efficient mapping between {0, 1}n and µ2(N) using the Chinese remainder
theorem. To encrypt m, Bob starts to compute a random isogeny ϕB : EA → EB
of degree 3β . Then, similarly to M-SIDH, we compute the image of the N torsion
points through this isogeny and mask those points using the message m. The
ciphertext is therefore EB , [m]ϕB(P ) and [m]ϕB(Q).
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Algorithm 2 SILBE.KG

Input: pp =
(
p, (P0, Q0), (V0, U0),Mπ, t

)
Output: pk, sk a public/secret key pair.

1: J0 ← O0

2: for 1 ⩽ i ⩽ t do
3: Sample ηi ∈$ Z3β .
4: Ei, ρi ←− KernelToIsogeny

(
Ei−1, (Ui−1 + [ηi]Vi−1)

)
▷ Already in pp if

i = 1.
5: Ii ←− KernelToIdeal

(
OEi−1 , (Ui−1 + [ηi]Vi−1)

)
6: Deterministically compute Ui, Vi a basis of Ei[3

β ] with ⟨Vi⟩ = ρi(Ei−1[3
β ]).

7: Ji ←− RandomEquivalentIdeal(Ji−1Ii)

8: if n(Ji) = n(Ji−1) or and Ñ2 − n(Ji) ̸= 1 mod 4 or is not prime do go back
to line 7.

9: Si, Ti ←− EvalTorsion(O0, ρi ◦ κi−1, Ji−1Ii, id, Ji, {P0, Q0})
10: Fi ←− ConstructKani

(
n(Ji), Ñ , Ñ , (P0, Q0, Si, Ti)

)
11: OEi ←− PushEndRing(O0, κi, Ji) ▷ κi ← Fi(0, 0,−, 0)3
12: IϕA ←− RandomEquivalentIdeal

(
Jt
)

13: if N ′ − n(IϕA)
232β ̸= 1 mod 4 or is not prime do go back to line 12.

14: K,L←− EvalTorsion(O0, ρt ◦ · · · ◦ ρ1, I1 · · · It, 1, IϕA , P0, Q0)
15: MϕA ←− EvalImageMatrix(Et, N, Pt, Qt,K, L)
16: pk←−

(
Et = EA

)
17: sk ←−

(
OEt , IϕA ,MϕA

)
18: return pk, sk.

EA EB

E0

E
(p)
A E

(p)
B

[π]∗IϕA

IϕA

π π

ϕB

ϕ
(p)
B

π ψ

Fig. 4. Diagram of the encryption/decryption of SILBE, Alice in red and Bob in blue

Decryption
As previously stated, we use the generalized lollipop over ϕB ◦ϕA to decipher

our message. Indeed, using the torsion points in ct, we can define
(
S
T

)
= [m]ϕB ◦

ϕA
(
P0

Q0

)
. Theses points are easily computable using sk as

[m]ϕB ◦ ϕA
(
P0

Q0

)
= [m]MϕA

ϕB

(
PA
QA

)
= MϕA

(
R1

R2

)
We modify the generalized lollipop attack of [10, section 4] such that it just

computes ker(ϕ̂B) and not the whole ker( ̂ϕB ◦ ϕA). This speed up the decryption.
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Algorithm 3 SILBE.Enc

Input: pp, pk,m =
(
p, (P0, Q0), (V0, U0),Mπ, t

)
, EA with m ∈ µ2(N)

Output: ct = (EB , R1, R2) with R1, R2 ∈ EB [N ].

1: PA, QA ←− CanonicalTorsionBasis(EA, N)
2: UA, VA ←− CanonicalTorsionBasis(EA, 3

β)
3: Sample rB ∈$ Z3β

4: EB , ϕB ←− KernelToIsogeny
(
EA, (UA + [rB ]VA)

)
5:

(
R1
R2

)
←− [m]ϕB

(
PA
QA

)
6: ct←− (EB , R1, R2)
7: return ct

We consider the following isogeny

ψ : EB −→ E
(p)
B

ψ = (ϕB ◦ ϕA)(p) ◦ ϕA ◦ ϕB = ϕ
(p)
B ◦ ϕ(p)A ◦ ϕA ◦ ϕB

Using lemma 2, we can evaluate ψ over EB [N ] as

ψ

(
S

T

)
= n(IϕA)3

βMπ
−1π

(
S

T

)
= n(IϕA)3

βMπ
−1MϕA

π

(
R1

R2

)
We then use EvalKani over ψ to evaluate ψ̂ over E

(p)
B [3β ]. Due to the nature

of N ′ − n(IϕA)
232β , this is done in dimension 4. We then have, following [10,

section 3.2] that ψ̂(E
(p)
B [3β ]) = ker(ψ)[3β ] = ker(ϕ̂B). The reason comes from

our good choice of public parameters, as p− 1 = 0 mod 3 and thus
(−p

3

)
= −1,

meaning that 3 is inert inside Z[
√
−p] and in Z[√χ] with χ ∈ End(E) a lollipop

endomorphism defined as χ = π̂ ◦ ϕ(p)A ◦ ϕ̂A = [−1]ϕA ◦ π ◦ ϕ̂A such that χ2 =

[−p(deg ϕA)2]. We thus know ker(ϕ̂B), so we can thus use KernelToIsogeny

to compute ϕ̂B(R1) = [m3β ]PA and retrieve m using the discrete logarithm over
E[N ].

Algorithm 4 SILBE.Dec

Input: pp, sk, ct =
(
p, (P0, Q0), (V0, U0),Mπ, t

)
, (OEA , IϕA ,MϕA), (EB ,R1,R2)

Output: m

1: PA, QA ←− CanonicalTorsionBasis(EA, N)

2: UB , VB ←− CanonicalTorsionBasis(E
(p)
B , 3β)

3:
(
S
T

)
←−MϕA

(
R1
R2

)
4:

(
K
L

)
←− [n(IϕA)3

β ]M−1
π π

(
S
T

)
5: G,H ←− EvalKani

(
n(IϕA)

232β , N,N/p1, S, T,K,L, UB , VB

)
▷ ψ̂ = F (−, 0, 0, 0)1

6: ϕ̂B ←− KernelToIsogeny(EB , G+H) ▷ if G = H, take just G

7: return (3β)−1 ·
(
discretelog(PA, ϕ̂B(R1), N)

)
mod N
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3.3 Security

First and foremost, we see that SILBE is not IND-CPA secure. Indeed, To dis-
tinguish between two known messages m0 and m1, we simply have to multiply
R1 and R2 by m0 and use EvalKani in dimension 8. If we are able to retrieve
ϕB , then this means that the encrypted message was m0, as that would induce
that [m0]R1 = [m2

0]ϕB(P ) = ϕB(P ). Otherwise, this means that the encrypted
message was m1 with overwelming probability. That mechanism can be used to
know if a ciphertext ct is the encryption of a plaintext m or not. This induces
that any adversary of SILBE can simulate the oracle Plaintext Check. This will
be useful in the following proposition.

Proposition 2. The security of SILBE as an OW-PCA PKE reduces to problem
1 over random curves.

Proof. Using the previously explained method to simulate Plaintext Check, we
have that

SILBE is OW-PCA secure ⇐⇒ SILBE is OW-CPA secure

Following proposition 1, we have that the distribution of the public key EA is
O(p−1/2) close from the uniform distribution over supersingular curves, meaning
that it is computationally indistinguishable. Let AOW−CPA be any adversary for
SILBE. We can then construct an algorithm B that solve problem 1 over random
curves with the same advantage. B is defined as such:

1. B receives as input (P,Q, S, T ) with P,Q the canonical basis of E[N ] and(
S
T

)
= [m]φ

(
P
Q

)
with φ : E → E′ an isogeny of degree 3β .

2. It then calls AOW-CPA
(
E, (E′, S, T )

)
and receive n ∈ µ2(N).

3. It then compute [n]S, [n]T and use EvalKani in dimension 8 over theses
points to retrieve ker(φ). As 3β is smooth, using KernelToIsogeny, it can
compute φ.

We see that if AOW−CPA succeeds, then so does B, meaning that

P[B solve problem 1] ≥ AdvOW-CPA(AOW-CPA)

Thus, under the assumption that problem 1 over random curves is hard, then
SILBE is OW-PCA secure.

4 Extending this PKE into an UPKE

SILBE is thus OW-PCA secure3 and can be made IND-qCCA using for example
U ̸⊥ variant of the Fujisaki-Okamoto transform, as detailed in [24, section 4.2].
We can thus construct PKE from the generalized lollipop attack. We now make
of SILBE an UPKE.

3 and in reality OW-qPCA secure, as problem 1 is believed to be quantum resistant.
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4.1 Design

The idea behind SILBE key update mechanism comes from the fact that our
key generation mechanism has two excellent properties, namely that it can be
adapted to start over any curve E, provided that we know an isogeny ϕ : E0 → E
and that finding the public key can be done by just using KernelToIsogeny,
without knowledge of ϕ : E0 → E. Our key update mechanism is therefore an
adaptation of the key generation. Its architecture is given in figure 5 and is
performed as such:

E0

EA E1 · · · Et−1 EA
′

IϕA

I1, ρ1

Iϕ′
A

It, ρt

J1
Jt−1

I2, ρ2 It−1, ρt−1

Jt

Fig. 5. Diagram of the key update mechanism of SILBE, Alice in red and Bob in blue.
Black isogenies are used for the construction of SILBE.Usk.

– UG: Generate a seed µ ∈ {0, 1}4 log(p).
– Upk: Use a hash function over µ to generate a sequence of elements in Z3β .

Use this sequence to create kernels of an isogeny walk starting at the public
key EA. Thanks to KernelToIsogeny, we compute the end curve of that
walk, defined as E′

A, the updated public key.
– Usk: Use a hash function over µ to generate a sequence of elements in Z3β .

Use this sequence to create kernels of an isogeny walk starting at the public
key EA. Thanks to KernelToIsogeny, we compute the end curve of that
walk, defined as E′

A. Using the knowledge of ϕA : E0 → EA, we construct,
using EvalKani andRandomEquivalentIdeal, an isogeny ϕ′A : E0 → E′

A,
the updated secret key.

Algorithm 5 SILBE.UG

Input: pp =
(
p, (P0, Q0), (V0, U0),Mπ, t

)
Output: µ an update.

1: Sample µ ∈$ {0, 1}4 log(p) ▷ 4 log(p) ensures that H resists quantum attacks.
2: return µ
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Algorithm 6 SILBE.Upk

Input: pp, pk, µ =
(
p, (P0, Q0), (V0, U0),Mπ, t

)
, EA.

Output: pk′ the updated public key.

1: E0 ← EA U0, V0 ←− CanonicalTorsionBasis(EA, 3
β)

2: (η1, · · · , ηt)← H(µ) ▷ ηi ∈ Z3β

3: for 1 ⩽ i ⩽ t do
4: Ei, ρi ←− KernelToIsogeny

(
Ei−1, (Ui−1 + [ηi]Vi−1)

)
5: Deterministically compute Ui, Vi a basis of Ei[3

β ] with ⟨Vi⟩ = ρi(Ei−1[3
β ]).

6: pk′ ← Et = E′
A

7: return pk′

Algorithm 7 SILBE.Usk

Input: pp, sk , µ = (p, (P0, Q0), (V0, U0),Mπ, t
)
, (OEA , IϕA ,MϕA), µ

Output: sk′ the updated secret key.

1: E0 ← EA J0 ← Iϕ U0, V0 ← CanonicalTorsionBasis(EA, 3
β)

2: (η1, · · · , ηt)← H(µ) ▷ ηi ∈ Z3β

3: for 1 ⩽ i ⩽ t do
4: Ei, ρi ←− KernelToIsogeny

(
Ei−1, (Ui−1 + [ηi]Vi−1)

)
5: Ii ←− KernelToIdeal

(
OEi−1 , (Ui + [ηi]Vi)

)
6: Deterministically compute Ui, Vi a basis of Ei[3

β ] with ⟨Vi⟩ = ρi(Ei−1[3
β ]).

7: Ji ←− RandomEquivalentIdeal(Ji−1Ii)

8: if n(Ji) = n(Ji−1) or and Ñ2 − n(Ji) ̸= 1 mod 4 or is not prime do go back
to line 7.

9: Si, Ti ←− EvalTorsion(O0, ρi ◦ κi−1, Ji−1Ii, 1, Ji, P0, Q0) ▷ Use Mϕ if i = 1

10: Fi ←− ConstructKani(n(Ji), Ñ , Ñ , P0, Q0, Si, Ti)
11: OEi ←− PushEndRing(O0, κi, Ji) ▷ κi = F (0, 0,−, 0)3
12: Iϕ′

A
←− RandomEquivalentIdeal

(
Jt
)

13: if N ′ − n(Iϕ′
A
)232β ̸= 1 mod 4 or is not prime do go back to line 12.

14: K,L←− EvalTorsion(O0, κt, Jt, 1, Iϕ′ , P0, Q0)
15: Mϕ′

A
←− EvalImageMatrix(Et, N, Pt, Qt,K, L)

16: sk′ ←−
(
OEt , Iϕ′

A
,Mϕ′

A

)
17: return sk′.

4.2 Security

The reason behind the fact that SILBE remains secure as an UPKE comes from
the fact that, in the Random Oracle Model (ROM), we have that SILBE.Upk
is a one way mechanism such that the distribution of the updated public key
E′
A is statistically close from the uniform distribution and thus from the public

key distribution EA given by SILBE.KG. Therefore, any adversaries capable
of breaking SILBE in the OW-PCA-U scenario are also inherently capable of
breaking a fresh instance of SILBE in a OW-PCA scenario. 4 This leads us to
the following proposition.

4 More precisely, it is able to break a fresh instance of SILBE chosen among poly(λ)
many of them.
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Proposition 3. In the ROM,

SILBE is OW-PCA secure ⇐⇒ SILBE is OW-PCA-U secure

Therefore, under the assumption that the problem 1 is hard over random
curves, we have that SILBE is a OW-PCA-U secure UPKE.

Importantly, we could slightly change our update mechanism to not require
a hash function. This comes from the fact that it is very similar to the CGL
hash function [11]. We can thus adapt [11, section 5] and get that the problem
of finding µ such that SILBE.Upk(E,µ) = E′ reduces to the isogeny walk
problem [13, problem 3] and thus that our key update mechanism is one-way.
Nevertheless, we would require some modifications of the public key as we would
have to add Vt ∈ EA[3

β ] such that ⟨Vt⟩ = ρt(Et−1[3
β ]) to ensure that the update

long isogeny is not backtracking. To keep the same security level, we would also
need to compute a slightly longer isogeny. On that note, due to the size of p,
we see that we can shorten the length of our path such that our distribution is
not O(p−1/2) -statistically close from uniform, but just O(2−λ), which would be
sufficient.

To make of SILBE an IND-CCA-U UPKE, we use the transformation pro-
vided in [3, section 4]. It transforms a OW-CPA-U UPKE into an IND-CCA-U
UPKE5 in an IND) in the ROM.6 To do so, we need to show that SILBE is
λ-spread [3, definition 7] but this is a direct consequence of proposition 1 and of
the fact that 3β ≫ 2λ, as we now show.

5 Parameters & Efficiency

5.1 Finding “SILBE” friendly primes

As we previously explained when detailing SILBE’s public parameters, we have
that the cross relation between β and N forces N to have many prime factors.
To find good N and β, we do as follows:

– If N ≤ 3β
√
p log(p) ≃ 33β/2N1/2

(
log(N) + β log(3)

)
, we increase the size of

N .

– If Nt ≥ 3β/2 and n− t < λ, we increase the size of β.

Once we have found adequate N and β, we find a good cofactor f such that
p = 3βNf + 1 is prime. Using this method, we found the following parameters,
detailed in table 1.

We see that in SILBE, we need N to have slightly less than 7λ distinct prime
divisors.

5 and in reality, in our case, in an IND-qCCA-U, as we rely on problems that are
believed to be quantum resistant.

6 Using their security definition, we indeed have that SILBE is an OW-CR-CPA.



20 M. Duparc, T.B. Fouotsa and S. Vaudenay

λ β N f n log2(p)

128 2043 5× 7× 11× · · · × 6863 1298 881 13013

192 3229 5× 7× 11× · · · × 10789 1790 1312 20538

256 4461 5× 7× 11× · · · × 14879 16706 1741 28346

Table 1. Parameters for SILBE

5.2 Efficiency of SILBE

The main drawback with SILBE is its efficiency. This essentially comes from the
size of the parameters, together with performing Kani in dimension 4 with rela-
tively large primes. For example, the number of field operations needed to per-
form the EvalKani in SILBE.Dec is in the order of 75λ5 log(λ)4, which is, for
λ = 128, around 260. Nevertheless, we can improve the efficiency of SILBE.Usk
and SILBE.KG as follows:

– We could adapt the RigorousDoublePath [12, Algorithm 12] and replace
Kani’s Lemma by the KLPT [26] for key generation and update mechanism.
This would require a change of prime p, as we would need for p to be such
that 3βN |(p2 − 1) with N ≥ p3/2. This is very similar to the primes used
in SQISign [15]. Finding such primes would be difficult, which is the reason
we chose to present SILBE.Upk and SILBE.KG using high dimension
isogenies.

– We could also speed up the key generation by adapting RandIsogImages
algorithm of QFESTA [33] to directly construct an isogeny ϕA : E0 → EA,
this would nevertheless require additional assumption to ensure that the
distribution is computationally indistinguishable from uniform.

6 Further work and conclusion

We thus have constructed SILBE, the first isogeny-based UPKE not relying on
group actions. In addition to solving the issues highlighted in [20, section 5],
it makes an adequate demonstration of how to combine the multiple isogeny
representations to construct new cryptographic schemes.

Further work on SILBE should be directed to improving its efficiency. A piv-
otal question for exploration is the refinement of computing HD-isogenies as the
construction of a higher-dimensional analog akin to

√
élu [6] would demonstra-

bly improve SILBE, together with shedding light on novel possibilities to use
HD-isogenies in Isogeny Based Cryptography.
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