
Plan your defense: A comparative analysis of
leakage detection methods on RISC-V cores

Konstantina Miteloudi, Asmita Adhikary, Niels van Drueten, Lejla Batina, and Ileana Buhan
Digital Security Group, Radboud University

Nijmegen, The Netherlands
kmiteloudi@cs.ru.nl, asmita.adhikary@ru.nl, niels@vandrueten.nl, lejla@cs.ru.nl, ileana.buhan@ru.nl

Abstract—Hardening microprocessors against side-channel at-
tacks is a critical aspect of ensuring their security. A key step
in this process is identifying and mitigating “leaky” hardware
modules, which inadvertently leak information during the exe-
cution of cryptographic algorithms. In this paper, we explore
how different leakage detection methods, the Side-channel Vul-
nerability Factor (SVF) and the Test Vector Leakage Assessment
(TVLA), contribute to hardening of microprocessors. We conduct
experiments on two RISC-V cores, SHAKTI and Ibex, using two
cryptographic algorithms, SHA-3 and AES. Our findings suggest
that SVF and TVLA can provide valuable insights into identifying
leaky modules. However, the effectiveness of these methods can
vary depending on the specific core and cryptographic algorithm
in use. We conclude that the choice of leakage detection method
should be based not only on computational cost but also on the
specific requirements of the system and the nature of the potential
threats. Our research contributes to developing more secure
microprocessors that are robust against side-channel attacks.

Index Terms—Pre-Silicon Design, Side-Channel Analysis, Leak-
age Detection Methods, Hardening Microprocessors

I. INTRODUCTION

Microprocessors are at the heart of modern digital systems,
from everyday consumer electronics to critical infrastructure.
Ensuring their security against various forms of attacks is
crucial. One such form of attack, side-channel attacks, exploits
information leaked during the execution of cryptographic al-
gorithms, potentially compromising the system’s security. As
such, a key step in hardening microprocessors against side-
channel attacks is identifying and mitigating these “leaky”
hardware modules.

Several methods exist for detecting such leakages, each
with strengths and weaknesses. Two methods, the Side-channel
Vulnerability Factor (SVF) [1] and the Test Vector Leakage
Assessment (TVLA) [2], have been commonly used in the
field. SVF provides a measure of the potential exploitability
of a leak, while TVLA offers a statistical framework for
identifying whether a device under test is susceptible to infor-
mation leakage. However, the effectiveness of these methods
can vary depending on the specific hardware and algorithm in
use [3], [4]. In this work, we applied these leakage assessment
methods on two RISC-V cores: SHAKTI and Ibex. These cores,
popular in various applications for their open-source nature,
present a range of opportunities and challenges for security.

Our research question is: ”In which ways can two common
leakage detection methods contribute to hardening of micro-
processors against side-channel attacks?”. We aim to provide
insights into how SVF and TVLA can be used to identify

vulnerabilities in different RISC-V cores and how these findings
can enforce the best strategies for hardening these cores.
Through our experiments with different cryptographic algo-
rithms, i.e. SHA-3 and AES, we seek to offer a comprehensive
understanding of the ways these leakage detection methods can
contribute to the hardening of RISC-V cores. Our findings will
be of interest to security designers and architects, contributing
to the development of more secure microprocessors/tools [5].

II. RELATED WORK

Several approaches have been developed to identify and
eliminate leaks during the pre-silicon phase [6]. These ap-
proaches can be roughly divided based on which device layer
or development phase they aim to harden [7]. The level of
leakage can be detected at top architectural choices [8] or/and
can emerge from the micro-architectural behaviour [9].

De Mulder et al. [10] proposed a solution to protect an
AES implementation against side channel leakage related to
memory accesses on a RISC-V core. Gigerl et al. [11] in-
troduced COCO, a tool that can detect gate-level leakage by
simulating execution with Verilator. They annotate the registers
and memory that hold secret data and trace their flow through
the circuit to find possible sources of leakage. He et al. [12]
estimate the power profile of a hardware design using functional
simulation at the RTL level. Gao et al. [13] designed and
implemented an ISE (Instruction Set Extension) called FENL
that localizes and reduces microarchitectural leakage. The ISE
acts as a leakage fence that prevents interaction between
instructions. A similar approach is taken by Pham et al. [14],
which combines a diversified ISE with hardware diversification
through a co-processor to achieve leakage mitigation. Bloem et
al. [15] extended the concept of hardware-software contracts
to power-side channels and formally verified a wide range of
instructions for implementing cryptographic algorithms for the
RISC-V Ibex core. ACA [16] uses a gate-level model for a
target design, typically available after logic synthesis and a
side-channel leakage model. Kiaei and Schaumont proposed
Root Canal [17], a framework to help a designer with white-
box access to the embedded CPU system uncover the origin
of a side-channel leak. Root Canal can eliminate side-channel
leaks before tape-out. After tape-out, changes to the hardware
are no longer possible.

To our knowledge, none of the previous work investigates the
impact of the leakage detection methods on identifying leaky
modules. Arsath et al. [18] developed a framework, PLAN,



that analyzes the RTL description of a processor and reports
the information leakage in each of the processor modules.
In PLAN, they use a modified version of SVF as a leakage
detection method, and they apply this method to a simulated
RISC-V core running different cryptographic algorithms. The
results of their analysis provide a ranking of the hardware
modules based on their contribution to the overall leakage.
In our work, we replicate the experimental setup of [18],
applying both the SVF and the TVLA methods to compare their
effectiveness in identifying leaky modules. This replication is
the foundation for further exploration and comparison of these
two leakage detection methods.

III. PRELIMINARIES

A. Leakage detection methods
Let X (N, d) be a set of N traces. A trace is a time series

with d samples recorded during the processing of an algorithm
on a given device (e.g., an encryption operation) for a given
input x.
Test Vector Leakage Assessment (TVLA) [2] is the most
popular leakage detection method due to its simplicity and
relative effectiveness. It comes in two flavours: specific and
non-specific. The ‘fixed-vs-random’ is the most common non-
specific test and compares a set of traces acquired with a
fixed plaintext with another set of traces acquired with random
plaintext. In the case of a specific test, the traces are divided
according to a known intermediate value tested for leakage.
Welch’s two-sample t-value for equality of means applies to
all trace samples in both cases. A difference between two sets
larger than a given threshold is evidence of a leak’s presence.
Side-channel Vulnerability Factor (SVF) [1] measures side-
channel information leakage by recognizing leaked execution
patterns. SVF quantifies the similarity between patterns in the
observations of the attackers or side-channel traces (S, defined
in (1), with the actual execution patterns of the victim or oracle
traces (O, defined in (2).

S = {(xi; s
i
1, s

i
2, ...s

i
d),where 1 ≤ xi ≤ N} (1)

O = {(xi; o
i
1, o

i
2, ...o

i
d),where 1 ≤ xi ≤ N} (2)

where sij (and oij) is sample j in side channel trace (and oracle
trace, respectively) corresponding to input xi.

The original version of the SVF algorithm proposed in [1],
which we denote with SVFtime, quantifies patterns in the time-
domain between an oracle and a side-channel trace. Arsath et
al. [18] implemented a modified version of SVFinput that is
adapted to capture patterns related to changes in the input
data, the typical cause of side-channel vulnerabilities. After
data collection, both algorithms extract patterns in parallel for
the oracle and side-channel trace. The difference between the
implementation of SVFtime and SVFinput is apparent in the
construction of the similarity matrices as shown in equation (3),
(4) and (5), (6) respectively.

MS
time(s

i
j , s

i
k) =

{
D(sij , s

i
k), if j < k

0, if not.
(3)

and

MO
time(o

i
j , o

i
k) =

{
D′(oij , o

i
k), if j < k

0, if not.
(4)

When computing SVFtime, the first step is to construct MS
time,

the similarity matrix for a side-channel trace, using equa-
tion (3), where D is a distance (of choice) between samples
sij , s

i
k. The next step is to compute the similarity matrix, MO

time,
for the oracle trace by computing the distance D′ between the
samples in the same power trace oi, oj , using equation (4).
The correlation between MS

time and MO
time will give the SVFtime

value.

MS
input(s

i
t, s

j
t ) =

{
D̄(sit, s

j
t ), if i < j

0, if not.
(5)

and

MO
input(o

i
t, o

j
t ) =

{
D̃(oit; o

j
t ), if i < j

0, if not.
(6)

For computing SVFtime, one side-channel trace is sufficient
however for computing SVFinput, multiple side-channel traces
are required (to capture changes in the input). The procedure for
computing SVFinput is very similar to SVFtime. The difference
is in the choice of samples for computing the similarity matrix
is illustrated in equations (5) and (6). We first construct MS

input,
the similarity matrix for the side-channel traces by computing
the distance D̃ between the sample st corresponding to different
input values xi, xj . In the same way, we calculate MO

input,
the similarity matrix for the oracle traces, by computing the
distance D̄ between the sample ot and the input xi, xj . All
similarity matrices are triangular, as the main diagonal, which
contains only zero values, is removed, and distance measures
are commutative. In this work we implement SVFinput.

IV. EXPERIMENTAL SETUP

Simulation setup. In our setup, we use two different 32-
bit RISC-V cores, SHAKTI-C and Ibex, and two different
algorithms, AES and SHA-3. SHAKTI-C [19] is a 5-stage
pipeline in-order processor, while Ibex [20] is a 2-stage in-order
processor. From each core, we selected specific modules to
examine. We targeted the ones responsible for processing data
and instructions and we excluded those that do other work, such
as error checking. Specifically, for SHAKTI-C, we examine:
1) RF (Register File): implements integer and floating point

registers.
2) CSR (Control and Status Register): handles special RISC-V

instructions to raise interrupts on the processor.
3) ALU (Arithmetic Logic Unit): part of the execute stage

and performs the arithmetic and logic operations of the
processor.

4) FPU (Floating Point Unit): part of the ALU and handles
instruction operations with floating points.

5) Dcache: stores data values in a cache and is part of the
memory hierarchy closer to the ALU.

6) MBOX: implements the multiplication and division instruc-
tions.



7) BPU(Branch Prediction Unit): part of the fetch stage and
decides the next program counter.

8) ITLB (Instruction Translation-Look aside Buffer): keeps
track of instructions addresses recently used to avoid
second access to memory.

9) DTLB (Data Translation Look aside Buffer): keeps track of
data addresses recently used to avoid second access to
memory.

For Ibex, we examine modules with the same functionality:
1) RF(Register File): implements integer register files.
2) CSR (Control and Status Register): handles special RISC-V

instructions to raise interrupts on the processor.
3) ALU (Arithmetic Logic Unit): part of the Instruction De-

code and Execute (ID/EX) stage and performs the integer
computational instructions and the comparison operations.

4) MULT/DIV (Muliplier/Divider Block): under Arithmetic
Logic Unit (ALU), a state machine, that performs mul-
tiplication and division.

5) PF-BUF (Prefetch Buffer): part of the Instruction Fetch (IF)
stage, fetches instructions from the memory for optimal
performance.

6) LSU (Load-Store Unit): interfaces with the main memory to
deal with memory accesses via load and store operations.

We run simulations of every algorithm with Verilator v4.210
simulator for 256 different inputs, randomly generated. For each
simulation run, we take one Value Change Dump (VCD) file.
VCD files show the value of every signal, of every module of
the RISC-V core for every timestamp of an implementation.
We process the vcd files, as well as analyze them, using
Python. We parse every file, and for each module, signals are
concatenated for each timestamp, creating a composite signal.
This signal represents the collective behaviour of all signals
and the module’s state at that specific point in time. Then, all
the concatenated signals for all the selected timestamps, are
processed differently, depending on the methodology selected.
SVF computation. For SVF computation, the concatenated
signals are retained in their original form. These signals serve
as a complex representation of the module’s state. Each module
contains N rows of signal values per timestamp st. Computing
SVF requires the generation of oracle traces, which contain
the intermediate values of the cryptographic algorithm during
its execution. They are the expected values that the algorithm
will produce at each time step given a particular input. We run
simulations with the gcc compiler on a Linux system, using the
same 256 inputs that we used in the simulations on RISC-V. We
record different intermediate values in order to examine how
the choice of the oracle trace affects the SVF. For the oracle
set, we use the Hamming distance metric to compute MO

input, as
described in 5 and 6. The oracle set will contain one sample
for each input, so the size of O is N .

The next step is to calculate a similarity matrix for the
oracle trace and a similarity matrix for the side channel trace
as described in III-A. This step is necessary for correlation
because the two traces contain different information and cannot
be compared directly. We get two lists of Hamming distance
values, and for each timestamp, we compute the Pearson

correlation value between the oracle list and the side-channel
list. This value shows whether there is a linear correlation
between the two lists in our implementation. The SVF value
of a module and an oracle is the maximum of all Pearson
correlation values. A module’s final SVF value is the oracles’
maximum SVF value. Arsath et al. [18] use 4 categories to
show how much a module leaks: (1) 0.0 - 0.1: No leakage, (2)
0.1 - 0.3: Mild leakage, (3) 0.3 - 0.6: Medium leakage, (4) 0.6
- 1.0: Severe leakage.
TVLA computation. Our TVLA computation is based on
the nonspecific fixed versus random test as specified in [2].
Since we work on simulated executions, we need a hypothet-
ical power consumption model. This model is implemented
with the Hamming weight (HW), and every timestamp of the
concatenated signals takes an HW value. To calculate the t-
value per timestamp, we use from the SciPy Python library
the ttest ind function that calculates the t-value for the means
of two independent samples of values. The non-specific fixed
versus random test executes the fixed set multiple times to
eliminate noise during a run. In our case, the runs do not contain
noise because the run is simulated, and we know exactly all the
signal values at any given time. Once all data for TVLA have
been collected, we compute a t-value per cycle. This t-value is
calculated from the fixed set of size one and the random set of
size N = 128 for SHAKTI and N = 256 for Ibex.

A. Target cryptographic implementations
We chose unprotected implementations without any coun-

termeasures, as our goal is to examine how leaks impact the
different hardware modules.
AES: We use the Tiny-AES1 implementation, written in C. It
provides options for 128-bit, 192-bit, or 256-bit key sizes and
options for ECB, CTR, and CBC modes. We use a key size of
128 bits in the ECB mode, and we encrypt one block of data.
SHA-3: We use the tiny sha32 implementation, written in C.
SHA-3 is a sponge function with the KECCAK-f[1600] as
permutation function. We provide 832 bits of data as input,
so we do not need padding. The output of SHA-3 is 384 bits.

V. EXPERIMENTAL RESULTS

To determine whether the choice of the leakage detection
function influences the decision about the leakiness of a mod-
ule, we use the experimental setup described in IV. We select
nine and six modules for the SHAKTI core and the Ibex core,
respectively, that target processing instructions and data. We
determine how “leaky” a module is by recording the maximum
SVF value.

In addition, we run TVLA in fixed versus random mode. As
this is a nonspecific test, we do not explicitly target intermediate
variables. When comparing the results of TVLA with the results
of SVF, we expect that TVLA will reveal more leaky points
since our SVF procedure does not target all the intermediates.

AES. For experiments, we chose the typical candidate in-
termediate variables as the target: the first byte of the S-
box output, sbox_out1, fifth byte of the S-box output,

1https://github.com/kokke/tiny-AES-c
2https://github.com/mjosaarinen/tiny sha3



sbox_out5, and the first byte of the S-box input, p ⊕ k
(sbox_in1). For the round output, we have oracles for the
full round output (mc_out) and for the first byte of the round
output (mc_out1).

SHA3. SHA-3 is the other implementation we analyze. From
the first round of the Keccak permutation function, we target χ
as the only nonlinear operation. We define three oracles based
on the χ step: bc, a SHA-3 implementation-specific operation
bc[i] = st[j + i] where i = 0 and j = 0, not operation in
x← x⊕ (¬y&z) where i = 0 and j = 0 and xor operation in
x← x⊕ (¬y&z) where i = 0 and j = 0.

A. Case study: the SHAKTI Core

Figure 1 shows the leakage in ALU from the SHAKTI core,
for both AES and SHA-3. The first plot shows the evolution
in time of the SVF value, during the first round of AES. We
represent the different target intermediates with different unique
symbols. Horizontal dotted lines are drawn to indicate leakage
thresholds. The yellow dotted line at 0.3 shows the minimum
threshold for what we consider to be medium leakage. The red
dotted line at 0.6 shows the minimum threshold for what we
consider to be a severe leak according to [18]. The oracles are
highlighted with yellow where the SVF value is ≥ 0.3 and red
when SVF ≥ 0.6. The second plot shows the combined SVF
with the t-value for the same module, i.e., ALU. In TVLA,
we see leaks in almost all cycles and for most of the cycles,
it shows leaks unrelated to the SVF oracles. For example,
during the execution of the SubBytes operation (cycle 23.000
- 25.000), the SVF only finds leaks when the first or fifth
S-box is computed. TVLA looks at all S-box operations and
shows more leaks in cycles 23.000 - 25.000. This observation
also holds for the cycles after SubBytes. TVLA indicates leaks
in cycles where SVF does not show leakage. There are two
possible explanations for this behaviour. The first is that TVLA
shows false positives. The second is that the Hamming distance
between the power traces and the oracles, that were used to
calculate the SVF values, does not capture all the relations
between the samples. The third plot shows the evolution in time
of the SVF value, during the first round of the first execution of
KECCAK-f, the SHA-3 permutation, for ALU. The fourth plot
shows the combined SVF with the t-value for the same module
and implementation, i.e., ALU and SHA3. We observe that
SHA-3 is extremely leaky, according to TVLA. While SHA-
3 executes the KECCAK-f function multiple times, and one
execution of KECCAK-f takes multiple rounds, SVF will only
find leaks in the intermediate values we target. TVLA finds
multiple leaks during the whole execution of SHA3.

B. Case study: the Ibex Core

Figure 2 shows the leakage in ALU from the Ibex core for
both AES and SHA-3. The first plot shows the evolution in
time of the SVF value, during the first round of AES. Similar
to SHAKTI, the second plot shows combined the SVF with
the t-value. Also, the third plot shows the evolution in time
of the SVF value during the first execution of SHA3 and the
fourth plot shows the combined SVF with the t-value for the
same module, ALU. As we observed in SHAKTI, for ALU,

TVLA shows leakage in almost all cycles, while SVF shows
only at some. We also observe that both methods find the same
pattern of leaky cycles. This might indicate that the leakage
is not caused only by one instruction but by a sequence of
instructions as they progress over time.

Figure 3 shows the leakage in the Register File from Ibex
core for both AES and SHA-3. The second plot shows the SVF
combined with the t-value for the same module. The Register
File and ALU identify the same sequence of leaky operations.
Again, TVLA shows more leaky points than SVF. The third
plot shows the leakage value for SHA3, and the fourth plot,
the combined SVF-TVLA. We observe that SVF shows severe
leakage in the second half of this execution timing window.
Specifically, the oracle not shows the same leaky points as
TVLA, while in the first half of the execution, it identifies only
a couple of leaky instructions. We also observe that oracle xor
identifies leaky instructions, while oracle bc does not.

Figure 4 shows the combined SVF-TVLA on module MBOX
from SHAKTI and Mult/Div from Ibex. Both modules are
responsible for multiplication division. The first two plots show
AES and SHA-3, respectively, for MBOX, while the last two
show AES and SHA3, respectively, for Mult/Div. If we compare
these plots with the plots from ALU, we observe a similar
pattern of leakage. This is unexpected since we do not have
any multiplications or divisions in our code. Our hypothesis
is that there are common connections between the ALU and
multiplier modules inside the datapath.

C. Performance results

All experiments, for both the SHAKTI and the Ibex core,
were done on an AMD Ryzen THREADRIPPER 3990X
4.3GHz CPU with 128 cores and 256GB RAM. On this PC,
the run-time of the two methods is significantly different. For
the SHAKTI core, the SVF computation of all the modules
for the AES case study took around 30k cycles, which lasted
approximately eight hours. The same experiment for the SHA-
3 case study took around one day of computation. On the other
hand, TVLA computation lasted about an hour for all modules
for all case studies. For the Ibex core, the SVF computation
of the algorithms took about twice the time compared to the
SHAKTI core. The TVLA computation lasted less than an hour
for all the modules of AES and SHA3. We can easily observe
the contrast in run-time efficiency between the SVF and TVLA,
which is crucial when choosing the appropriate method.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we compare the performance of two different
leakage detection methods in detecting leaky modules on mi-
croprocessors. We have conducted experiments on two different
RISC-V cores, SHAKTI and Ibex, using two cryptographic
algorithms, AES and SHA3.

Our results are presented in Table I and Table II for SHAKTI
and Ibex core, respectively, for all modules that have been
examined. We did not observe leaks in the BPU and ITLB
module on SHAKTI or the Prefetch buffer on Ibex, with both
algorithms. Our findings suggest that both SVF and TVLA
can provide valuable insights into identifying leaky modules



Fig. 1. SVF AES, combined SVF-TVLA AES, SVF SHA-3, combined SVF-TVLA SHA-3. For ALU module on SHAKTI core (left to right).

Fig. 2. SVF AES, combined SVF-TVLA AES, SVF SHA-3, combined SVF-TVLA SHA-3. For ALU module on Ibex core (left to right).

Fig. 3. SVF AES, combined SVF-TVLA AES, SVF SHA-3, combined SVF-TVLA SHA-3. For Register File on Ibex core(left to right).

Fig. 4. SVF-TVLA for: AES MBOX(SHAKTI), SHA-3 MBOX(SHAKTI), AES Mult/Div(Ibex) and SHA-3 Mult/Div(Ibex) (left to right).

TABLE I
RESULTS FOR AES AND SHA-3 ON SHAKTI CORE

AES SHA-3
Type max(SVF) TVLA max(SVF) TVLA

sbox_in1 sbox_out1 sbox_out5 mc_out1 mc_out bc not xor
Dcache 1 1 1 1 0.05 ✓ 0.99 1 1 ✓
RF 1 1 1 1 0.05 ✓ 1 1 1 ✓
CSR 0.98 0.98 0.98 0.98 0.05 ✓ 0.97 0.97 .97 ✓
ALU 1 1 1 1 0.05 ✓ 1 1 1 ✓
FPU 1 1 1 1 0.05 ✓ 1 1 1 ✓
MBox 1 1 1 1 0.05 ✓ 1 1 1 ✓
BPU 0 0 0 0 0 - 0 0 0 -
ITLB 0 0 0 0 0 - 0 0 0 -
DTLB 0.87 0.87 0.87 0.87 0.06 ✓ 0.3 0.3 0.31 ✓



TABLE II
RESULTS FOR AES AND SHA-3 ON IBEX CORE

AES SHA-3
Type max(SVF) TVLA max(SVF) TVLA

sbox_in1 sbox_out1 sbox_out5 mc_out1 mc_out bc not xor
RF 0.94 0.9 0.9 0.82 0.05 ✓ 0.59 0.81 0.58 ✓
CSR 0.97 0.97 0.97 0.95 0.05 ✓ 0.69 0.70 0.70 ✓
ALU 1 0.99 1 0.99 0.06 ✓ 0.70 0.70 0.70 ✓
MULT/DIV 0.99 0.99 1 0.84 0.04 - 0.63 0.63 0.64 ✓
PF-BUF 0 0 0 0 0 - 0 0 0 -
LSU 1 0.99 1 0.98 0.06 ✓ 0.96 0.96 0.96 ✓

in these cores. The effectiveness of these methods can vary
depending on the specific core and cryptographic algorithm
in use. The use of these methods must take into account the
level of granularity of the analysis for the side channel leakage.
For more coarse-grained analysis, TVLA is recommended as
the computation effort and time is smaller compared to SVF.
On the other hand, if fine-grained analysis is needed for the
examination of micro-architecture behaviour, SVF is the better
candidate. Regarding the timeline of the leaks, our results
indicate that TVLA and SVF show leaks in different cycles.
We have not yet verified which metric indicates the “correct”
leak, and we leave this for future work.

Another point that needs to be addressed is the selection
of oracles. As we noticed, not all oracles show leakage. For
example, we may choose an oracle that will show no leakage,
and we may erroneously think that the module is not leaky. In
order to select the proper oracles, one must know very well
the cryptographic algorithm being run on the target platform.
On the other hand, the generality of TVLA allows more
applications in different formats.

These findings underscore the importance of using multi-
ple leakage detection methods in hardening microprocessors.
Moving forward, we plan to investigate further the differences
between the SVF and TVLA methods and their implications
for the hardening of microprocessors. We also aim to explore
other leakage detection methods and the impact of different
implementations of cryptographic algorithms on the leakage
profile of microprocessors. Ultimately, our goal is to contribute
to developing more secure microprocessors that are robust
against side-channel attacks.

REFERENCES

[1] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel
vulnerability factor: A metric for measuring information leakage,” in
39th International Symposium on Computer Architecture (ISCA, 2012,
pp. 106–117.

[2] B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi et al., “A testing methodology
for side-channel resistance validation,” in NIST non-invasive attack testing
workshop, vol. 7, 2011, pp. 115–136.

[3] T. Zhang, F. Liu, S. Chen, and R. B. Lee, “Side channel vulnerability
metrics: the promise and the pitfalls,” in HASP 2013, The Second
Workshop on Hardware and Architectural Support for Security and
Privacy, Tel-Aviv, Israel. ACM, 2013, p. 2.

[4] V. Arora, I. Buhan, G. Perin, and S. Picek, “A tale of two boards: On the
influence of microarchitecture on side-channel leakage,” in Smart Card
Research and Advanced Applications - 20th International Conference,
CARDIS, ser. LNCS. Springer, 2021, pp. 80–96.

[5] P. SLPSK, P. K. Vairam, C. Rebeiro, and V. Kamakoti, “Karna: A gate-
sizing based security aware EDA flow for improved power side-channel
attack protection,” in Proceedings of the International Conference on
Computer-Aided Design, 2019, pp. 1–8.

[6] A. V. Lakshmy, C. Rebeiro, and S. Bhunia, “FORTIFY: analytical pre-
silicon side-channel characterization of digital designs,” in 27th Asia and
South Pacific Design Automation Conference, ASP-DAC. IEEE, 2022,
pp. 660–665.

[7] I. Buhan, L. Batina, Y. Yarom, and P. Schaumont, “Sok: Design tools
for side-channel-aware implementations,” in ASIA CCS ’22: ACM Asia
Conference on Computer and Communications Security, Nagasaki, Japan.
ACM, 2022, pp. 756–770.

[8] A. Althoff, J. McMahan, L. Vega, S. Davidson, T. Sherwood, M. B.
Taylor, and R. Kastner, “Hiding intermittent information leakage with
architectural support for blinking,” in 45th ACM/IEEE Annual Interna-
tional Symposium on Computer Architecture, ISCA, Los Angeles, CA,
USA, 2018, pp. 638–649.

[9] B. Marshall, D. Page, and J. Webb, “MIRACLE: micro-architectural
leakage evaluation A study of micro-architectural power leakage across
many devices,” IACR Trans. Cryptogr. Hardw. Embed. Syst., pp. 175–220,
2022.

[10] E. D. Mulder, S. Gummalla, and M. Hutter, “Protecting RISC-V against
side-channel attacks,” in Proceedings of the 56th Annual Design Automa-
tion Conference 2019, DAC, Las Vegas, NV, USA, 2019, p. 45.

[11] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem, “Coco: Co-
design and co-verification of masked software implementations on cpus,”
in 30th USENIX Security Symposium, USENIX, 2021, pp. 1469–1468.

[12] M. T. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. M. Tehranipoor,
“RTL-PSC: automated power side-channel leakage assessment at register-
transfer level,” in 37th IEEE VLSI Test Symposium, VTS Monterey, CA,
USA, 2019, pp. 1–6.

[13] S. Gao, J. Großschädl, B. Marshall, D. Page, T. H. Pham, and F. Regaz-
zoni, “An instruction set extension to support software-based masking,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., pp. 283–325, 2021.

[14] T. H. Pham, B. Marshall, A. Fell, S. Lam, and D. Page, “XDIVINSA:
extended diversifying instruction agent to mitigate power side-channel
leakage,” in 32nd IEEE International Conference on Application-specific
Systems, Architectures and Processors, ASAP, 2021, pp. 179–186.

[15] R. Bloem, B. Gigerl, M. Gourjon, V. Hadzic, S. Mangard, and R. Primas,
“Power contracts: Provably complete power leakage models for proces-
sors,” in Conference on Computer and Communications Security, CCS ,
Los Angeles, CA, USA. ACM, 2022, pp. 381–395.

[16] Y. Yao, T. Kathuria, B. Ege, and P. Schaumont, “Architecture correlation
analysis (ACA): identifying the source of side-channel leakage at gate-
level,” in International Symposium on Hardware Oriented Security and
Trust, HOST, San Jose, CA, USA. IEEE, 2020, pp. 188–196.

[17] P. Kiaei and P. Schaumont, “Soc root canal! root cause analysis of power
side-channel leakage in system-on-chip designs,” IACR Trans. Cryptogr.
Hardw. Embed. Syst., pp. 751–773, 2022.

[18] M. A. K. F, V. Ganesan, R. Bodduna, and C. Rebeiro, “PARAM: A
microprocessor hardened for power side-channel attack resistance,” in
International Symposium on Hardware Oriented Security and Trust,
HOST, San Jose, CA, USA. IEEE, 2020, pp. 23–34.

[19] SHAKTI, “Family of processors,” https://shakti.org.in/processors.html,
2021, online; accessed 21-01-2022.

[20] lowRISC, “Lowrisc/ibex-demo-system: A demo system for ibex including
debug support and some peripherals,” accessed 15-10-2023. [Online].
Available: https://github.com/lowRISC/ibex-demo-system


