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Abstract

Accumulation schemes are a simple yet powerful primitive that enable highly efficient constructions
of incrementally verifiable computation (IVC). Unfortunately, all prior accumulation schemes rely on
homomorphic vector commitments whose security is based on public-key assumptions. It is an interesting
open question to construct efficient accumulation schemes that avoid the need for such assumptions.

In this paper, we answer this question affirmatively by constructing an accumulation scheme from
non-homomorphic vector commitments which can be realized from solely symmetric-key assumptions
(e.g. Merkle trees). We overcome the need for homomorphisms by instead performing spot-checks over
error-correcting encodings of the committed vectors.

Unlike prior accumulation schemes, our scheme only supports a bounded number of accumulation
steps. We show that such bounded-depth accumulation still suffices to construct proof-carrying data (a
generalization of IVC). We also demonstrate several optimizations to our PCD construction which greatly
improve concrete efficiency.
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1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that enables mutually distrustful
parties to perform distributed computations that run indefinitely, while ensuring that the correctness of every
intermediate step can be verified efficiently. PCD is a generalization of the prior notion of incrementally-
verifiable computation (IVC) [Val08].1

PCD has found numerous applications in both theory and practice, including enforcing language se-
mantics [CTV13], complexity-preserving succinct arguments [BCCT13; BCTV17], verifiable MapReduce
computations [CTV15], image provenance [NT16], and consensus protocols and blockchains [Mina; KB20;
BMRS20; CCDW20; BCG24]. It is thus of great interest to design efficient PCD schemes and to understand
the minimal assumptions they can rely on. Existing efforts on this front fall into two categories.

PCD from succinctly verifiable arguments. The standard construction of PCD is via recursive composition
of succinct non-interactive arguments of knowledge (SNARKs) [BCCT13; BCTV14; BCTV17; COS20].
Informally, to prove a t-step computation, the PCD prover proves that the t-th step is correct, and there
exists a valid proof for the first t− 1 steps. The culmination of this line of works is Fractal [COS20], which
constructs PCD from SNARKs in the random oracle model.2 This means that we can achieve PCD from cheap
symmetric-key cryptography, but at the cost of relying on the existence of SNARKs, which are complex to
construct, impose high proving overheads, and additionally face barriers in instantiantiations from falsifiable
assumptions [GW11].

PCD from accumulation. A recent popular approach to avoid this reliance on SNARKs is to construct
PCD via accumulation schemes [BCMS20; BCLMS21; KST22]. Roughly speaking, instead of recursively
checking proofs as above, the PCD prover “accumulates” the proof for each step into a running accumulator,
and then the PCD verifier performs a single expensive check on the final accumulator. This line of work
has led to simple and efficient PCD schemes with low prover overhead, and so has seen much interest in
new constructions and deployments [BCLMS21; KST22; BC23; EG23; KS23b; KS23a]. Unfortunately, all
known accumulation schemes incur overheads due to their reliance on relatively expensive homomorphic
vector commitments that are only known to exist under public-key assumptions. Additionally, because
existing homomorphic vector commitments are not known to achieve post-quantum security, the resulting
accumulation schemes are also quantum-insecure.

Our question. We are thus left in a curious state of affairs: on the one hand we have PCD from symmetric-
key-based SNARKs, and on the other we have PCD from accumulation that does not rely on SNARKs, but
which instead introduces public-key assumptions. This motivates the questions we tackle in this paper: can
we design PCD that does not rely on SNARKs, and also does not require public-key assumptions? That is,
can we design non-trivial accumulation schemes that depend only on symmetric-key cryptography?

1.1 Our contributions

We answer these questions positively: (1) We introduce a new notion of bounded-depth accumulation
schemes that support a limited number of accumulations. (2) We show that the latter implies bounded-depth
PCD, which, by known results [BCCT13], suffices for obtaining polynomial-depth IVC. (3) We construct
efficient bounded-depth accumulation schemes from any (non-homomorphic) vector commitment scheme
(e.g. random-oracle based Merkle trees) and any linear code. As we show in Table 1, the resulting PCD

1IVC is the special case of PCD where the distributed computation graph is a line.
2The concrete PCD construction makes non-black-box use of the SNARK verifier, which requires us to heuristically instantiate

the random oracle.
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scheme prover overhead verifier supported IVC length

Fractal [COS20] O(λ log n) O(λ log n) poly(λ)

this paper O(dλ) O(dn) md

+ batch comm. (Sec 2.5) O(dλ/m) O(dmn) md

+ low-overhead IVC (Sec 2.6) O(dλ/m2) O(dmn) md

ours up to depth d⋆ + Fractal (Sec 2.7) O(d⋆λ/m2 + λ log n⋆/md⋆

) O(λ log n⋆) poly(λ)

Table 1: Comparison of IVC schemes constructed from PCD over a tree of depth d and arity m. All costs are
number of vector commitment openings, and prover overhead is per-step of IVC. Above n is the size of the
recursive circuit, and n⋆ = O(d⋆mn) is the circuit size of the accumulation decider for the recursive circuit.

construction asymptotically reduces the prover overhead compared to the best prior random oracle based
construction, and achieves plausible post-quantum security.3 (4) We provide several optimizations for
the instantiated PCD scheme, including support for ‘batch’ accumulation, a new low-overhead compiler
from low-depth PCD to IVC, and a new hybrid PCD scheme that combines our low-depth PCD with any
SNARK-based PCD scheme to achieve the best of both worlds.

1.2 Related work

PCD from symmetric-key assumptions. As noted in Section 1, the only end-to-end construction of PCD
from symmetric-key assumptions is that of Chiesa, Ojha, and Spooner [COS20]. We provide a quantitative
comparison in Table 1, and focus here on a qualitative comparison. Their construction is based on the Fractal
SNARK, which they prove secure in the random oracle model.4

Boneh, Drake, Fisch, and Gabizon [BDFG21] propose an optimization of the foregoing approach that
batches the most expensive component, the low-degree test, across multiple proofs. While this concretely
reduces prover cost, it does not lead to an asymptotic improvement in the prover overhead.

Like Fractal and similar SNARKs, our construction is able to take advantage of recent advances in
the design of efficient code-based Interactive Oracle Proofs (IOPs) [BCS16; RRR21]. For example, like
recent work [Sta21; Pol; DP23b], we can greatly improve efficiency by relying on extension fields of small
characteristic. Furthermore, unlike existing works, our fields do not need to have any special algebraic
structure (e.g. large multiplicative subgroups).

PCD from public-key assumptions. Except the foregoing, all existing concretely-efficient IVC/PCD
constructions [BCTV17; BGH19; BCMS20; BCLMS21; BDFG21; KST22; KS23b; KS23a; BC23; EG23]
rely on public-key assumptions, and in particular rely on the hardness of computing discrete logarithms
over elliptic curve groups, which forces the usage of cryptographically large fields. Furthermore, efficient
implementations require cycles of elliptic curves, which have proved unwieldy to implement correctly in
practice [NBS23]. In comparison, our construction avoids the need for public-key assumptions and this
additional algebraic structure, and is able to use non-cryptographic field sizes.

Remark 1.1 (security of bounded-depth PCD). All PCD schemes (including ours) only provably support
computation graphs of depth O(1). However, while there are no known attacks that break the security of prior

3We only claim plausible post-quantum security, as we prove our construction in the random oracle model, instead of the quantum
random oracle model [BDFLSZ11].

4Like us, to achieve PCD, they must instantiate the random oracle with a concrete hash function, which results in only heuristic
security.

4



schemes when the depth is ω(1), the same is not true for our scheme. As we explain in Section 2.1, our scheme
is vulnerable to a relatively straightforward attack that obviates any security guarantees when the depth of the
computation graph exceeds an a priori fixed constant. We emphasize that even such bounded-depth PCD
is already powerful enough to support many interesting applications, including the primary application of
constructing polynomial-length IVC [BCCT13]. See Remarks 2.1 and 2.2 for a more detailed discussion.
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2 Techniques

We begin by reviewing the definition of an accumulation scheme [BCMS20; BCLMS21].5 At a high level, it
is used to perform batch verification of a predicate which, for us, will be a non-interactive argument’s verifier
V . In other words, an accumulation scheme is used to check that V(x1, π1), . . . ,V(xn, πn) all accept, more
efficiently than the naive approach of individually verifying each instance xi and proof πi.

The workflow of an accumulation scheme is as follows. There are three main algorithms: a prover
P, verifier V, and decider D. The prover is initialized with an empty accumulator acc0, which is used to
accumulate an input (x1, π1) into a new accumulator acc1. The prover additionally outputs a proof; we
write this as (acc1, pf1) ← P(x1, π1, acc0). Later, acc1 can be used to accumulate a second input, i.e.
(acc2, pf2) ← P(x2, π2, acc1), and so on. The correctness of a sequence of accumulations can then be
established by checking that: (a) each accumulation step is valid, i.e. V(xi, πi, acci−1, acci, pfi) = 1; and
(b) the final accumulator is valid, i.e. D(accn) = 1.

Notice that the decider only acts on the final accumulator, whereas the verifier acts on each accumulation
step. Therefore, the crux of an accumulation scheme is making verification as cheap as possible. Towards
this, we require that an accumulator acc can be split into a short instance part acc.x and a (possibly) long
witness part acc.w; we use acc = (acc.x, acc.w) as shorthand. Similarly, we require that an argument proof
can be split into instance and witness parts π = (π.x, π.w). The point is that the verifier can only look at the
instance parts; we write this as V(xi, πi.x, acci−1.x, acci.x, pfi).

Definition. An accumulation scheme must satisfy the following properties.

• Completeness: The honest accumulation (acc′, pf) ← P(x, π, acc) of any valid input and accumulator
should pass both the verifier’s and decider’s checks. That is, if V(x, π) = 1 and D(acc) = 1, then
V(x, π.x, acc.x, acc′.x, pf) = 1 and D(acc′) = 1.

• Knowledge soundness: If a new accumulator acc′ passes the verifier’s and decider’s checks, then an
efficient extractor can find a valid input and old accumulator that explains acc′. That is, if D(acc′) = 1
and V(x, π.x, acc.x, acc′.x, pf) = 1, then an efficient extractor can find the witness part of the proof, π.w,
and the witness part of the old accumulator, acc.w, such that V(x, π) = 1 and D(acc) = 1.

• Efficiency: The cost of running the accumulation verifier n times plus the cost of running the accumulation
decider once should be lower than the cost of running the argument verifier n times.

Accumulation schemes can be generalized to handle multiple inputs and accumulators in each step. For
example, the prover’s syntax would be P([xi, πi]

m1
i=1, [acci]

m2
i=1), where m1 and m2 are the arities; see

Section 4 for a comprehensive definition.

Prior constructions. All prior accumulation schemes [BCMS20; BCLMS21; KST22; BC23; EG23;
KS23b; KS23a] crucially use additively homomorphic vector commitment schemes. Informally, a vector
commitment scheme allows one to construct a succinct commitment cm to a vector v ∈ Fn. The scheme is
additively homomorphic if, given cm1 = Commit(v1) and cm2 = Commit(v2), cm3 = α · cm1 + β · cm2

is a commitment to αv1 + βv2. We remark that all known additively homomorphic vector commitment
schemes, e.g. Pedersen commitments [Ped92], rely on public-key assumptions.

The general blueprint for an accumulation scheme is as follows. An accumulator witness acc.w ∈ Fn is
a vector, and the corresponding instance acc.x is a commitment to acc.w. For simplicity, suppose the prover
claims that acc1 and acc2 accumulate into acc3. Roughly speaking, we want to guarantee that the output

5We restrict our presentation to split accumulation schemes, as defined in [BCLMS21].

6



accumulator is a random linear combination of the input accumulators. The verifier checks this by computing
the linear combination of the input commitments acc1.x and acc2.x, and checking that the result equals the
output commitment acc3.x [KST22; BC23]. Later, the decider will check that acc3.w is a “good” vector, and
that acc3.x commits to acc3.w. Since commitments are binding, acc3 must be the correct linear combination
of acc1 and acc2.

We have omitted many details, most notably how to accumulate argument proofs. However, from this
description alone we can observe two key properties of the vector commitment scheme. First, it has succinct
commitments; this allows the verifier to be efficient. Second, it is additively homomorphic; this allows the
verifier to perform meaningful checks. As noted earlier, this combination of properties unfortunately seems
to require public-key assumptions.

2.1 Checking linearity

To overcome the foregoing limitation, we make a key observation: to verify that the output accumulator is a
linear combination of the input accumulators, it is not necessary to directly compute a linear combination of
the input commitments. Instead, it suffices to check that the output accumulator commits to a vector that is a
linear combination of the vectors committed by the input accumulators. This idea is a natural one, and has
appeared before under the name of “linear combination schemes” [BDFG21].

Recall that we want to check that acc3.w = α · acc1.w + β · acc2.w, where α, β ∈ F are previously
chosen scalars. More precisely, we want to check that v3 = αv1 + βv2, where v1, v2, and v3 are the
underlying committed vectors of acc1.x, acc2.x, and acc3.x (and since commitments are binding, these
vectors correspond with the accumulator witnesses). A linearity check is a protocol between the prover and
the verifier that convinces the verifier of this claim. Assuming the verifier is public-coin, this can be made
non-interactive using random oracles.

Our goal is to construct a linearity check which does not require homomorphic vector commitments.
Instead, we require vector commitments with local openings. Informally, these allow the prover to generate
a succinct proof that the underlying committed vector’s i-th element is some claimed value. For example,
Merkle tree commitments support local openings with proof size O(λ log n).

Distance spot checks. The key tool that we will be relying on is a protocol for convincing the verifier that
two committed vectors are at most a constant distance apart. Concretely, let cm1 and cm2 be commitments to
vectors v1 and v2 respectively. We say that v1 and v2 are δ-far apart if they differ in at most δn locations. To
show that v1 and v2 are at most δ-far apart, the prover and verifier engage in the following protocol:
1. The verifier uniformly samples an index i ∈ [n] and sends it to the prover.
2. The prover responds with the purported i-th elements of v1 and v2, along with opening proofs.
3. The verifier accepts if these opening proofs are valid and the claimed elements are equal.
Clearly, if v1 and v2 are δ-far apart, then the verifier will reject with probability δ. For any constant δ > 0,
this soundness error can be made negligible with Θ(λ) parallel repetitions.

Linearity spot checks. This protocol easily generalizes to testing any kind of element-wise property, and in
particular we can use it to check that v3 is δ-close to the “virtual vector” αv1 + βv2. Unfortunately, we need
to ensure that the two vectors are equal at all locations. Suppose a cheating prover commits to a vector that
only differs from αv1+βv2 at a single location j. Detecting this would require Θ(λn) repetitions (essentially
opening the entire commitment), which violates the accumulation verifier’s efficiency requirement.
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2.1.1 Error-resilient linearity checks from codes

It seems that we are at an impasse: our spot check can only guarantee that two vectors are δ-close, but the
accumulation scheme requires exact agreement. To overcome this issue, we need to make our accumulation
scheme resilient to a constant δ-fraction of corruptions. We do so by relying on linear codes, and in particular
those which enjoy good distance properties, such as the Reed–Solomon code [RSM60].

At a high level, we make the following changes to the accumulation scheme blueprint. Let C be a linear
code, and let δ be a constant which is smaller than the unique decoding radius of C. The accumulator witness
is a codeword C(w), and the corresponding instance acc.x is a commitment to acc.w. The accumulation
verifier checks that the output accumulator is δ-close to a random linear combination of the input accumulators
by running the linearity spot check. Later, the decider will check that acc3.w is the encoding of a good vector,
and that acc3.x commits to acc3.w.

Knowledge soundness. We would like our linearity spot check to satisfy the following knowledge soundness
property. Suppose a (possibly malicious) prover outputs commitments cm1, cm2, and cm3 which pass the
check. Furthermore, suppose that cm3 commits to a vector v3. Then an efficient extractor can find vectors v1

and v2 such that (a) αv1+βv2 is δ-close to v3; and (b) cm1 and cm2 commit to v1 and v2. Notice that if we
can extract vectors that satisfy (b), then our previous analysis of the spot check implies (a). Extraction turns
out to be fairly straightforward: if we use Merkle commitments with a random oracle as the hash function,
then we can find v1 and v2 by observing the prover’s random oracle queries [Val08].6

Returning to accumulation, suppose that a (possibly malicious) prover outputs acc1.x, acc2.x, acc3 which
pass the verifier’s and decider’s checks. Since the verifier runs the spot check, we can extract accumulator
witnesses acc1.w and acc2.w such that α · acc1.w + β · acc2.w is δ-close to acc3.w. Since the decider
accepts acc3.w, we know that acc3.w is a codeword C(w3). Similarly, we need acc1.w and acc2.w to be
codewords in order for the decider to accept acc1.w and acc2.w. Unfortunately, this is simply not the case.
For example, a cheating prover can always choose acc1.w which agrees with a codeword at all but one
location, and this will almost certainly go undetected.

Can we still say something meaningful about the extracted witnesses? We argue that intuitively, since
α and β are (possibly correlated) random scalars, with high probability acc1.w and acc2.w are themselves
δ-close to codewords. Moreover, acc1.w and acc2.w decode to w1 and w2 such that α ·w1 + β ·w2 = w3.
This intuition can be formally proven using a suitable “proximity gap” result [BCIKS23], which exists for a
variety of parameter regimes.

The upshot is that we extract accumulators acc1 and acc2 which are only accepted by a relaxed decider.
Namely, given an accumulator acc, this decider checks that acc.x commits to acc.w, and moreover that
acc.w is δ-close to the code.

Recursive extraction. The foregoing analysis suffices for a single step of accumulation. However, in
order to construct PCD, we will have to recursively extract from old accumulators. It is straightforward
to see that a recursively extracted accumulator is only guaranteed to be 2δ-close to the code, since we are
extracting from an accumulator that may already be δ-far from the code. More generally, k steps of recursion
will only guarantee accumulators that are kδ-close to the code. We will see that once kδ is larger than the
unique decoding radius, extraction is no longer meaningful. In particular, this leads to the following concrete
attack: a cheating prover can start with a bad codeword (rejected by the decider) and, over the k accumulation
steps, incrementally move it to a good codeword (accepted by the decider). This motivates our notion of
“bounded-depth” accumulation, which is not captured by existing definitions [BCLMS21].

6To be precise, we must also consider a malicious prover that does not commit to a full vector; see Remark 3.5.
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2.2 Defining bounded-depth accumulation

To describe our construction which only supports accumulation up to a certain (constant) depth, we introduce
a new, relaxed knowledge soundness property; the key differences are highlighted in blue. We say that an
accumulation scheme has bounded-depth knowledge soundness (with maximum depth d) if there exists a
family of deciders {Ds}ds=0, where D is equivalent to D0, such that the following holds. If Ds−1(acc

′) = 1
and V(x, π.x, acc.x, acc′.x) = 1, then an efficient extractor can find π.w and acc.w such that V(x, π) = 1
and Ds(acc) = 1.

This is a meaningful definition. In addition to generalizing standard knowledge soundness, which can be
recovered by setting d =∞ and using a single decider D, it captures our construction based on error-resilient
linearity checks: Ds is the decider that only accepts if the accumulator is at most sδ-far from the code, and in
particular D0 only accepts codewords. The depth bound d is the maximum number of recursive extractions
that we can perform before dδ exceeds the unique decoding radius of the code.

2.3 Bounded-depth PCD from bounded-depth accumulation

Existing theorems that build PCD from accumulation [BCLMS21; BDFG21; KST22] do not immediately
translate to the bounded-depth setting. To see why, let us recall a simplified version of the construction
from [BCLMS21]. Suppose we have an accumulation scheme for a non-interactive argument of knowledge
(NARK). Informally, a PCD proof for zi, which consists of a NARK proof πi and accumulator acci, certifies
that zi = F i(z0), where z0 is some initial value. We maintain the invariant that if πi and acci are valid, then
the computation is correct up to the i-th step.

• The PCD prover receives a proof (πi, acci) for zi, and wants to output a proof for zi+1. First, it accumulates
πi and acci into a new accumulator acci+1, generating an accumulation proof pfi+1. Next, it generates
a NARK proof πi+1 for the following claim, expressed as a circuit R (see Figure 1): “zi+1 = F (zi),
and there exists a NARK proof πi, old accumulator acci, and accumulation proof pfi+1 which correctly
accumulate into acci+1.” The proof for zi+1 is (πi+1, acci+1).

• The PCD verifier checks a proof (πi, acci) for zi by running the NARK verifier on πi and the decider on
acci.

R(x = (zi+1, acci+1.x),w = (zi, πi.x, acci.x, pfi+1)) :
1. Check that zi+1 = F (zi).
2. Set xi = (zi, acci.x).
3. Check that V(xi, πi, acci.x, acci+1.x, pfi+1) = 1.

Figure 1: Recursion circuit for PCD.

Now suppose we replace the accumulation scheme with one that only has bounded-depth knowledge
soundness. The construction remains the same, but we must provide a new soundness analysis.

PCD knowledge soundness. We need to construct an extractor which, given an accepting proof (πT , accT )
for zT , extracts a sequence of values z0, . . . , zT such that zi+1 = F (zi) for all i. [BCLMS21] gives the
following strategy, which interleaves the NARK extractor and accumulation extractor. Suppose we have zi+1,
πi+1, and acci+1. First, we invoke the NARK extractor to obtain (zi, πi.x, acci.x, pfi+1). Second, we invoke
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the accumulation extractor to obtain (πi.w, acci.w). This gives us πi and acci, and the process continues.
We maintain the invariant that in the i-th step, πi and acci are valid.

With bounded-depth accumulation, we need to maintain a slightly weaker invariant: in the i-th step,
instead of requiring that acci is accepted by the strict decider D, we only require that it is accepted by the
i-th relaxed decider Di. This discussion only provides a high-level overview of the proof strategy, and only
describes an IVC construction; we describe the full PCD construction that supports arbitrary (bounded-depth)
computation graphs, along with a full soundness analysis, in Section 5.

Remark 2.1 (bounded-depth PCD suffices). As presented, our PCD scheme supports up to d steps of
computation, where d is the maximum depth of the accumulation scheme. We call this bounded-depth PCD.
Since d will realistically be a small constant, this seems to be of limited use: most computations require more
than a constant number of steps! Fortunately, even such a limited PCD scheme can be used to construct IVC
for any polynomial-length computation [BCCT13]. The idea is for the PCD prover to receive multiple proofs
in each step, yielding a computation tree. In particular, if we can accumulate m inputs and m accumulators in
a single step, then our PCD scheme can support computation trees of size md. Setting m = λ and d = O(1)
allows us to support polynomial-size computations.

Remark 2.2 (bounded-depth vs. constant-depth PCD). Perhaps surprisingly, even with standard (unbounded)
accumulation, [BCLMS21] is only able to construct constant-depth PCD.7 This is because the size of the
PCD extractor grows exponentially in the computation’s depth, regardless of the accumulation scheme’s
knowledge soundness property. We remark that this limitation is largely theoretical: there is no known
attack which exploits unbounded recursive proof composition. In contrast, the depth bound in bounded-depth
PCD is not merely an artifact of the analysis: there exists a concrete attack that can be mounted against our
construction when the depth exceeds d. This means that the tree-based strategy described in Remark 2.1 is
necessary for real-world implementations, unlike in prior work.

PCD.ℙ

AS.P

NARK.P for R

acc⊥

(acc, π)

PCD.ℙ

(acc, π)

PCD.ℙ

PCD.ℙ
(acc, π)

π⊥ acc⊥ π⊥

Depth 

d

Number of steps = mdFigure 2: Construction of PCD from bounded-depth accumulation.

7This is slightly different from bounded-depth PCD, where the maximum depth must be fixed in advance.

10



2.4 Constructing bounded-depth accumulation

Our starting point is the ProtoStar and ProtoGalaxy accumulation schemes [BC23; EG23]. They support a
general class of non-interactive arguments whose verifier consists of three steps: (a) compute Fiat–Shamir
challenges; (b) open vector commitments; and (c) evaluate a polynomial over the instance, challenges, and
openings. The key insight of ProtoStar [BC23] is that the accumulation verifier can cheaply perform the first
step, while batching the remaining steps and deferring it to the decider.

Let us recall ProtoGalaxy’s strategy [EG23]. An accumulator witness is a vector w ∈ Fn, and an
accumulator instance consists of a (homomorphic) vector commitment to w and an error term e ∈ F. The
decider accepts an accumulator if p(w) = e, where p is a polynomial in n variables. Now suppose the prover
wants to accumulate m accumulators acc1, . . . , accm. Consider the univariate polynomial

p

(
m∑
i=1

Li,H(X) · wi

)
−

m∑
i=1

Li,H(X) · ei,

where Li,H is the i-th Lagrange polynomial of some m-sized set H ⊂ F. Notice that this polynomial is zero
on H , and hence factors into vH(X) · q(X), where vH(X) is the vanishing polynomial on H and q is some
quotient polynomial. The prover sends q, and the verifier tests this equality at a random point α ∈ F. In
particular, the prover constructs a new accumulator acc where the new vector is w :=

∑
i Li(α) · wi and

the new error is e := v(α) · q(α) +
∑

i Li(α) · ei. The verifier checks that acc was computed correctly by
homomorphically computing the new vector commitment, and directly computing the new error term. The
decider finishes the test by checking that p(w) = e.

Our construction. We follow the same strategy, except we replace homomorphic computations with
error-resilient linearity checks. Concretely, we make the following changes. An accumulator witness is a
codeword f ∈ C, and an accumulator instance consists of a vector commitment to f and an error term e ∈ F.
The decider accepts an accumulator if f is the encoding of a vector w ∈ Fn such that p(w) = e. Finally,
as discussed in Section 2.1, the verifier uses a linearity check to ensure that the new accumulator acc is
sufficiently consistent with the old accumulators acc1, . . . , accm.

Overall, our construction inherits many desirable properties from ProtoStar and ProtoGalaxy, including
support for arbitrary arity m = poly(λ), which is crucial for constructing PCD (see Remark 2.1), and efficient
support for degree d gates.

Security. Our construction naturally corresponds with an interactive oracle proof (IOP) [BCS16], where
the codewords are now given as oracles instead of vector commitments. Indeed, we prove knowledge
soundness of the accumulation scheme by proving soundness of the underlying IOP, and then applying the
BCS transformation [BCS16] (with some technical subtleties).

Remark 2.3 (choosing the linear code). A key parameter in our construction is the linear code. We use
Reed–Solomon codes because they display a proximity gap when the coefficients are Lagrange evaluations
L1(α), . . . , Lm(α). However, our construction can be adapted to support arbitrary linear codes which display
any proximity gap (e.g. uniformly random coefficients). See Section 6.4 for details.

Efficiency. The cost of the accumulation verifier is dominated by that of the linearity checker. Recall that to
achieve negligible knowledge soundness error at depth d, the latter checks that two code words are d · δ close
via k = O(d · λ) spot checks, where δ is such that d · δ is less than the unique decoding radius of the code.
Overall, when instantiated with the Merkle tree-based vector commitment, the accumulation verifier checks
O(d · λ) Merkle tree paths.
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When applying this construction to the PCD scheme in Section 2.3, the latter cost becomes the recursive
overhead of the PCD prover. As noted in Table 1, this cost is asymptotically better than the O(log n · λ) cost
of prior SNARK-based PCD schemes [COS20].

A keen reader may notice that a disadvantage of our construction is that recursive overhead scales with
the depth of the PCD computation graph. We now present several optimizations that reduce the depth of the
PCD tree and significantly improve the efficiency of the resulting PCD scheme in practice.

2.5 Optimization: Batch commitments

Recall from Remarks 2.1 and 2.2 that for our PCD construction, reducing the depth of the computation graph
is essential for achieving provable security guarantees, and the standard depth-reduction technique for the
case of IVC [BCCT13] works by constructing a PCD tree whose leaves comprise the actual computation
being performed. To achieve constant computation depth, Bitansky et al. [BCCT13] set the arity m of this
tree to be super-constant (i.e., m = λ). The per-node recursive overhead of our PCD construction in this
setting is the cost of performing linearity checks on m codewords of size n, which costs O(m · λ · log n)
hashes when using Merkle trees. We now describe an optimization that reduces this to just O(λ(log n+m))
hashes.

Recall that the linearity checker opens all m codewords at the same locations. This means that for each
spot-check, each of the m Merkle trees is opened at the same leaf. We take advantage of this repetitive
structure by committing to all m codewords using a single Merkle tree whose i-th leaf is the concatenation of
the i-th symbols of the codewords. Each spot-check now requires opening only a single Merkle tree path
(and checking the leaf hash), leading to a cost of O(λ(log n+m)) hashes for O(λ) spot checks, as required.

However, this modification comes at a cost: it requires us to commit to all codewords together at the same
time. While this is straightforward at the leaf layer, it gets more complex at higher layers. For example, even
committing to a new accumulator now requires waiting for the batch of “sibling” new accumulators, which in
turn means that we must wait for m accumulations (each of size m) to complete before we can compute the
commitments to the m new accumulators. Overall, across the entire tree, this requires the PCD prover to
maintain a state of O(m2) “pending” accumulators. The resulting PCD scheme is illustrated in Figure 3, and
we provide more details in Section 7.1.

PCD.ℙ

(𝖺𝖼𝖼
π )

PCD.ℙ

(𝖺𝖼𝖼
π )

PCD.ℙ

AS.BatchP

NARK.BatchP for R

(𝖺𝖼𝖼
π )

(𝖺𝖼𝖼⊥
π⊥ )

acc accBatch 
commitment

(𝖺𝖼𝖼⊥
π⊥ )

PCD.ℙ

Figure 3: PCD with batch commitments.
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2.6 Optimization: Low-overhead IVC from accumulation

We give a generic optimization which improves on the PCD-to-IVC compiler of Bitansky et al. [Val08;
BCCT13]. They construct a (polynomial-length) IVC scheme for a function F by using a (constant-depth)
PCD scheme for a related function F ′. In particular, F ′ computes F (at leaf nodes) and performs consistency
checks (at internal nodes). This is wasteful: even though we do not need to prove anything about F at internal
nodes, the PCD prover still generates a proof for F ′ (which is dominated by F ).

We improve this compiler by constructing an IVC scheme with minimal overhead. The core idea is
that we first construct a tree of accumulators for F , i.e. a tree the leaf nodes are proofs for F , and each
parent accumulates its children. Then, we construct a PCD tree which proves that the accumulation tree was
constructed correctly. When the PCD scheme is instantiated with our accumulation-based construction, the
PCD circuit now checks two accumulation verifiers: one that checks the correctness of the accumulation tree,
and one that helps check the correctness of the PCD tree.

Accumulating separately means that we no longer have to generate NARK proofs for F at internal nodes.
Additionally, because we only need to show that internal nodes of the accumulation tree were constructed
correctly, our PCD tree has one fewer layer than before. This further reduces cost, in particular for higher
arities (as m grows, the leaf layer of a tree contains a higher fraction of nodes). The resulting IVC scheme is
illustrated in Figure 4, and we provide more details in Section 7.2.

PCD.ℙ

AS.P 
for φ

NARK.P for S

(accS, acc , πS)φ

PCD.ℙ

PCD.ℙ

P P

PCD.ℙ

NARK.P
for φ

NARK.P
for φ

Depth 

d

(accS, acc  , πS)φ

(accS, acc  , πS)φ

πφπφ

AS.P 
for S

acc⊥ π⊥ acc⊥ π⊥

Number of steps = md+1

Figure 4: PCD-to-IVC compiler that checks the correctness of an accumulation tree.

2.7 Optimization: PCD composition

The recursive overhead of our PCD scheme grows linearly with the maximum supported depth. This is
contrast with SNARK-based PCD schemes like Fractal [COS20], which do not suffer from such an efficiency
loss. However, these schemes pay a higher per-step cost anyway, and are thus asymptotically less efficient
than our PCD scheme for low recursion depths.
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We provide a generic optimization to combine SNARK-based PCD schemes with our PCD scheme to
achieve a scheme that is achieves better efficiency than either scheme alone. The core idea is to first use
our accumulation-based PCD up to some depth d1, and then prove the PCD verifier for the latter with a
SNARK-based PCD scheme on top. When invoked with tree PCD, this means that the SNARK-based PCD
scheme is invoked only every md1 steps. By choosing d1 appropriately, the resulting scheme achieves better
efficiency than either scheme alone. Furthermore, the resulting scheme supports arbitrary constant depth, as
opposed to our accumulation-based PCD scheme, which only supports an a priori fixed depth. See Figure 5
for an illustration of this idea, and Section 7.3 for more details.

Depth 

d1

Number of steps = md1+d2

PCDAS PCDAS PCDAS PCDAS

PCD 
for compliance predicate  

PCDAS.𝕍

Depth 

d2

Figure 5: PCD composition.
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3 Preliminaries

Indexed relations. An indexed relation R is a set of triples (i,x,w) where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L (R) is the set of pairs (i,x) for which there
exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable boolean circuits
consists of triples where i is the description of a boolean circuit, x is a partial assignment to its input wires,
and w is an assignment to the remaining wires that makes the boolean circuit output 0.

Security parameters. For simplicity of notation, we assume that all public parameters have length at least
λ, so that algorithms which receive such parameters can run in time poly(λ).

Random oracles. We denote by U(λ) the set of all functions that map {0, 1}∗ to {0, 1}λ. A random oracle
with security parameter λ is a function ρ : {0, 1}∗ → {0, 1}λ sampled uniformly at random from U(λ).
In our random oracle definitions, we assume that all algorithms (except generators and setup algorithms),
adversaries, and extractors have access to the random oracle.

Adversaries. All of the definitions in this paper should be taken to refer to non-uniform adversaries. An
adversary (or extractor) running in expected polynomial time is then a Turing machine provided with a
polynomial-size non-uniform advice string and access to an infinite random tape, whose expected running
time for all choices of advice is polynomial. We sometimes write (o; r) ← A(x) when A is an expected
polynomial-time algorithm, where o is the output of A and r is the randomness used by A (i.e. up to the
rightmost position of the head on the randomness tape).

Hamming distance. Let Σ be an alphabet, typically F ∪ {⊥}. The relative Hamming distance between two
vectors f, g ∈ Σn, denoted ∆(f, g), is the number of locations where f and g disagree, divided by n. The
distance between a vector f ∈ Σn and a subset S ⊂ Σn, denoted ∆(f, S), is equal to ming∈S ∆(f, g).

Polynomials. For any field F and subset H = {a1, . . . , ak} ⊂ F, let Li,H denote the i-th Lagrange
polynomial, i.e. the unique polynomial of degree less than k such that Li,H(ai) = 1 and Li,H(aj) = 0 for
all j ̸= i. Let vH denote the vanishing polynomial on H , i.e. vH(X) =

∏m
i=1(X − ai). When clear from

context, we omit the set H .

3.1 Non-interactive arguments of knowledge

In the standard definition of a non-interactive argument of knowledge (NARK), completeness and knowledge
soundness hold for the same verifier. We introduce a “relaxed” verifier, for which only knowledge soundness
must hold. In other words, an extractor must be able to extract a witness for any proof accepted by the
relaxed verifier, but completeness only needs to hold for the original verifier. Concretely, a tuple of algorithms
ARG = (G,P,V) is a non-interactive argument of knowledge in the random oracle model for an indexed
relation family {Rpp}pp if the following properties hold.

Completeness. For every (unbounded) adversary A,

Pr

 (i,x,w) ∈ Rpp

⇓
V(pp, i,x, π) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
(i,x,w)← A(pp)
π ← P(pp, i,x,w)

 = 1.

Knowledge soundness. We say that ARG has knowledge soundness for a relaxed verifier V̂ , i.e. V accepting
implies V̂ accepting, if there exists an expected polynomial time extractor E such that for every expected
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polynomial time adversary P̃ , and auxiliary input distribution D, the following probability is negligibly close
to 1:

Pr


V̂(pp, i,x, π) = 1

⇓
(i,x,w) ∈ Rpp

∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
pp← G(1λ)
ai← D(1λ)

(i,x, π; r)← P̃(pp, ai)
w← E P̃(pp, ai, r)


Remark 3.1. Clearly, any standard NARK satisfies our definition by setting the relaxed verifier to be the
original verifier. However, our accumulation construction will require a non-trivial relaxation.

Multi-instance extraction. As in [BCLMS21], we also define a weaker notion of knowledge soundness
which is implied by the earlier definition. For every expected polynomial time adversary P̃ and auxiliary
input distribution D, there exists an expected polynomial time extractor EP̃ such that for every set Z,

Pr

 (pp, ai, i⃗, x⃗, ao) ∈ Z
∀j ∈ [ℓ], (ij ,xj ,wj) ∈ Rpp

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
ai← D(1λ)

(⃗i, x⃗, w⃗, ao)← EP̃(pp, ai)



≥Pr

 (pp, ai, i⃗, x⃗, ao) ∈ Z
∀j ∈ [ℓ],V(ij ,xj , πj) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

pp← G(1λ)
ai← D(1λ)

(⃗i, x⃗, π⃗, ao)← P̃(pp, ai)

− negl(λ).

3.2 Proof-carrying data

Before we define proof-carrying data (PCD), we recall some terminology. A transcript T is a directed
acyclic graph where each vertex u ∈ V (T) is labeled by local data z

(u)
loc and each edge e ∈ E(T) is labeled

by a message z(e) ̸= ⊥. The output of a transcript T, denoted o(T), is z(e) where e = (u, v) is the
lexicographically-first edge such that v is a sink.
Compliance. A vertex u ∈ V (T) is φ-compliant for some compliance predicate φ : {0, 1}∗ → {0, 1} if
for all outgoing edges e = (u, v) ∈ E(T) ∈ E(T), one of the following holds. If u has no incoming edges,
φ(z(e), z

(u)
loc ,⊥, . . . ,⊥) accepts. If u has incoming edges e1, . . . , em, φ(z(e), z(u)loc , z

(e1), . . . , z(em)) accepts.
We say that a transcript is φ-compliant if all of its vertices are φ-compliant.
Depth. The depth of a transcript T is the largest number of nodes on a source-to-sink path in T, minus two
(to ignore the source and sink). The depth of a compliance predicate φ, denoted d(φ), is defined to be the
maximum depth over all φ-compliant transcripts.

A tuple of algorithms PCD = (G, I,P,V) is a proof-carrying data scheme for a class of compliance predicates
F if the following properties hold.
Completeness. For every (unbounded) adversary A,

Pr


φ ∈ F

φ(z, zloc, z1, . . . , zm) = 1
∀i, zi = ⊥ ∨ ∀i,V(ivk, zi, πi) = 1

⇓
V(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ)

(φ, z, zloc, [zi, πi]
m
i=1)← A(pp)

(ipk, ivk)← I(pp, φ)
π ← P(ipk, z, zloc, [zi, πi]mi=1)

 = 1 .
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Knowledge soundness. For every expected polynomial time adversary P̃ there exists an expected polynomial-
time extractor EP̃ such that for every auxiliary input distribution D and set Z,

Pr

 φ ∈ F
(pp, ai, φ, o(T), ao) ∈ Z

T is φ-compliant

∣∣∣∣∣∣
pp← G(1λ)
ai← D(1λ)

(φ,T, ao)← EP̃(pp, ai)



≥ Pr

 φ ∈ F
(pp, ai, φ, o, ao) ∈ Z

V(ivk, o, π) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
ai← D(1λ)

(φ, o, π, ao)← P̃(pp, ai)
(ipk, ivk)← I(pp, φ)

− negl(λ) .

Efficiency. The generator G, prover P, indexer I, and verifier V run in polynomial time. A proof π has size
poly(λ, |φ|); in particular, it is not permitted to grow with each application of P.

Remark 3.2. In this paper, we are interested in PCD for bounded-depth compliance predicates. Concretely,
pick an arbitrary constant d ∈ N. We construct PCD for a class {φ : d(φ) < d}. In contrast, prior work
construct PCD for the class of constant-depth compliance predicates {φ : d(φ) = O(1)}. Intuitively, this is a
change in the order of quantifiers; instead of saying “there exists a PCD scheme for predicates of arbitrary
(constant) depth,” we say “for any c, there exists a PCD scheme for predicates of depth at most c.” In general,
compliance predicates can be engineered to have bounded depth, e.g. by incrementing a counter in the
transcript.

3.3 Instantiating the random oracle

As in prior work [BCMS20; BCLMS21], almost all definitions and constructions in this paper are in the
random oracle model. The sole exception is our PCD definition, as we do not know how to build secure
PCD schemes in the random oracle model. Instead, we show how to construct PCD in the standard (CRS)
model, assuming we have a accumulation-compatible NARK (for circuit satisfiability) in the standard (CRS)
model. This can be heuristically realized from our constructions by instantiating the random oracle as a hash
function.

3.4 Reed–Solomon codes

A linear code of blocklength n over a field F is a linear subspace C ⊂ Fn. The dimension of the code is the
dimension of the subspace. The rate of the code is R = dim(C)/n. Given an evaluation domain L ⊂ F and
degree bound k < |L|, the Reed-Solomon code RS[F, L, k] is defined to be the set of all evaluations over L
of polynomials of degree at most k:

RS[F, L, k] :=
{
f̂(L) : f̂ ∈ F[X], deg(f̂) ≤ k

}
This is a linear code with blocklength n = |L| and dimension k + 1. Given a codeword f , we let f̂ denote
the corresponding polynomial. We will often interpret f̂ as a coefficient vector in Fk+1, and vice versa.

Decoding. Let C = RS[F, L, k] be a Reed-Solomon code with rate R = (k + 1)/n. There exists a
polynomial-time decoding algorithm which, given a vector f ∈ (F ∪ {⊥})n,∆(f, C) ≤ (1− R)/2, finds
the unique codeword g ∈ C such that ∆(f, g) ≤ (1− R)/2. If f does not satisfy the closeness condition,
the algorithm rejects. We refer to (1−R)/2 as the unique decoding radius of the code.
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Proximity gaps. Reed-Solomon codes enjoy a number of so-called proximity gap results. Informally, these
say the following. Suppose you have vectors f1, . . . , fm ∈ Fn, of which at least one is δ-far from the code,
i.e. ∆(fi, C) ≥ δ. Then with high probability, a random linear combination of these vectors will also be δ-far
from the code. The exact kind of random linear combination is somewhat flexible. Besides uniformly random
coefficients, [BCIKS23] show that one can sample a single field element α ← F and set the coefficients
to be the monomial evaluations 1, α, α2, . . . , αm−1. In our accumulation scheme, we set the coefficients
to be the evaluations L1(α), . . . , Lm(α) of the Lagrange polynomials of some set of size m. Although the
corresponding proximity gap result is not proven in [BCIKS23], it is a straightforward generalization as
illustrated in Theorem 3.3.

Theorem 3.3. Let C = RS[F, L, k] be a Reed–Solomon code with rate R and blocklength n, and suppose
δ ≤ (1−R)/2. Let L0, . . . , Lℓ be the Lagrange polynomials for an arbitrary set of ℓ+ 1 points in F. Let
u0, . . . , uℓ : L→ F be functions. Define the set

S =
{
z ∈ F : ∆

(∑ℓ
i=0 Li(z) · ui, C

)
≤ δ
}

and suppose |S| > ℓ · n. Then for all z ∈ F we have

∆
(∑ℓ

i=0 Li(z) · ui, C
)
≤ δ,

and furthermore there exist v0, . . . , vℓ ∈ C such that for all z ∈ F,

∆
(∑ℓ

i=0 Li(z) · ui,
∑ℓ

i=0 Li(z) · vi
)
≤ δ,

and in fact |{x ∈ L : (u0(x), . . . , uℓ(x)) ̸= (v0(x), . . . , vℓ(x))}| ≤ δ|L|.

Proof. This is a direct adaption of Theorem 6.1 from [BCIKS23]. The only difference between the statement
of Theorem 3.3 and theirs is the choice of parameterized curve. In particular, their theorem statement is for
the curve u0+zu1+ · · ·+zℓuℓ, whereas ours is for the curve L0(z) ·u0+L1(z) ·u1+ · · ·+Lℓ(z) ·uℓ. Their
proof essentially goes through, since it only depends on the degree of x and z; these are identical in both
curves. The only change is how we interpret the final polynomial P (X,Z), which recovers the candidate
codewords v0, . . . , vℓ. In particular, instead of writing P (X,Z) as v0(X) + Zv1(X) + · · ·+ Zℓvℓ(X), we
use a change of basis: P (X,Z) = L0(Z) · v0(X) + L1(Z) · v1(X) + · · ·+ Lℓ(Z) · vℓ(X).

The following lemma is immediately implied by Theorem 3.3.

Lemma 3.4. Let C = RS[F, L, k] be a Reed-Solomon code with rate R and blocklength n, and suppose
δ ≤ (1−R)/2. Let L1, . . . , Lm be the Lagrange polynomials for an arbitrary set of m points in F. Consider
arbitrary vectors f1, . . . , fm ∈ Fn. If

Pr
α←F

[
∆

(
m∑
i=1

Li(α) · fi, C

)
≥ δ

]
>

n(m− 1)

F
,

then there exists a subdomain L′ ⊂ L and codewords g1, . . . , gm ∈ C such that the following holds. First,
|L′|/|L| ≥ 1− δ. Second, for all i, fi and gi agree on L′.
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3.5 Vector commitments

An extractable vector commitment scheme in the random oracle model is a tuple of algorithms VC =
(VC.Setup,VC.Commit,VC.Open,VC.Answer) with the following syntax and properties.

• VC.Setup(1λ,Σ) → vp: On input a security parameter λ and alphabet Σ, outputs public parameters vp
which allow for committing to arbitrarily-length vectors over Σ.

• VC.Commit(vp,m)→ (cm, aux): On input public parameters vp, message m ∈ Σℓ, outputs a commitment
cm and auxiliary data aux.

• VC.Open(vp, aux,Q)→ op: On input public parameters vp, auxiliary data aux, and a query set Q ⊆ [ℓ],
outputs a partial opening op for the commitment.

• VC.Answer(vp, cm, op,Q) → ans: On input public parameters vp, commitment cm, partial opening op,
and query set Q ⊂ [ℓ], outputs an answer ans : Q → Σ ∪ {⊥}, which can also be interpreted as a vector of
length |Q|. If ans[i] = ⊥ for some i ∈ Q, this implies that op does not contain an opening for that location.

Completeness. For every alphabet Σ, message length ℓ, message m ∈ Σℓ, and query set Q ⊂ [ℓ],

Pr

 VC.Answer(vp, cm, op,Q) = m[Q]

∣∣∣∣∣∣∣∣
ρ← U(λ)

vp← VC.Setup(1λ)
(cm, aux)← VC.Commit(vp,m)

op← VC.Open(vp, aux,Q)

 = 1.

Extractability. There exists a polynomial time extractor E such that for every alphabet Σ, message length ℓ,
polynomial time adversaries A,B, and auxiliary input distribution D, the following is negligibly close to 1:

Pr


Q ⊂ [ℓ]
⇓

∀i ∈ Q, ans′[i] ∈ {ans[i],⊥}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
vp← VC.Setup(1λ,Σ)

ai← D(1λ)
(cm; r)← A(vp, ai)
op← EA(vp, ai, r)

(op′,Q)← B(vp, ai)
ans← VC.Answer(vp, cm, op,Q)

ans′ ← VC.Answer(vp, cm, op′,Q)


The extractor implicitly receives Σ and ℓ as input.

Remark 3.5. Informally, extractability says that the extractor outputs a “maximal” opening, in the sense that
no adversary can open to a value outside or inconsistent with the extractor’s opening. This subsumes the
standard position binding property of vector commitments.

Remark 3.6. We assume that the expected vector length ℓ is implicitly provided to VC.Answer. In our
constructions, we assume that VC.Answer accepts auxiliary data aux and interprets it as a full opening to the
vector; this can always be done by first calling VC.Open(vp, aux, [ℓ]). In this case, we omit the query set Q.

Extractable vector commitments can be realized with Merkle trees which use the random oracle as a hash
function. Valiant’s extractor [Val08] satisfies the extractability property.

19



4 Bounded-depth accumulation

Let ARG = (G,P,V) be a non-interactive argument with knowledge soundness for a relaxed verifier V̂ .
Suppose proofs can be split into two parts, i.e. π = (π.x, π.w). Let qx denote (x, π.x), where x is an
instance of the relation; call this the verifier input instance. Let qw denote π.w; call this the verifier input
witness. We write V(pp, i, qxi, qwi) as shorthand for the verifier running on x and π. We write acc as
shorthand for the tuple (acc.x, acc.w). An accumulation scheme in the random oracle model for ARG is a
tuple of algorithms AS = (G, I,P,V,D) with the following syntax and properties.

• G(1λ) → ppAS: On input a security parameter λ, the generator G samples and outputs accumulation
parameters ppAS.

• I(ppAS, pp, i)→ ppAS: On input accumulation parameters ppAS and argument parameters pp, the indexer
I deterministically computes and outputs a proving key apk, verification key avk, and decision key dk.

• P(apk, [qxi, qwi]
m1
i=1, [acci]

m2
i=1) → (acc, pf): On input the proving key apk, verifier inputs [qxi, qwi]

m1
i=1,

and accumulators [acci]m2
i=1, the accumulation prover P outputs a new accumulator acc and proof pf. Here,

m1 and m2 are fixed arities which may be functions of λ.

• V(avk, [qxi]
m1
i=1, [acc.xi]

m2
i=1, acc.x, pf)→ {0, 1}: On input the verifying key avk, verifier input instances

[qxi]
m1
i=1, accumulator instances [acc.xi]

m2
i=1, new accumulator instance acc.x, and proof pf, the accumula-

tion verifier V outputs a bit indicating whether acc.x correctly accumulates the other instances.

• D(dk, acc)→ {0, 1}: On input the decision key dk and accumulator acc, the decider outputs a bit indicating
whether acc is a valid accumulator.

Completeness. For every (unbounded) adversary A,

Pr


∀i ∈ [m1],V(pp, i, qxi, qwi) = 1
∀i ∈ [m2],D(dk, acci) = 1

⇓
V(avk, [qxi]

m1
i=1, [acci.x]

m2
i=1, acc.x, pf) = 1

D(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
(i, [qxi, qwi]

m1
i=1, [acci]

m2
i=1)← A(ppAS, pp)

(apk, avk, dk)← I(ppAS, pp, i)
(acc, pf)← P(apk, [qxi, qwi]

m1
i=1, [acci]

m2
i=1)

 = 1.

To bootstrap accumulation, we also assume the prover can efficiently construct a dummy accumulator and
proof, denoted acc = P(apk,⊥), which the decider accepts.
Knowledge soundness. We say that AS has bounded-depth knowledge soundness (with maximum depth
ds) if there exists a family of deciders {Ds}dss=0, where D is equivalent to D0, such that the following holds.
There exists an expected polynomial time extractor E such that for every depth parameter s ∈ [ds], expected
polynomial time adversary P̃, and auxiliary input distribution D, the following probability is negligibly close
to 1:

Pr


Vρ(avk, [qxi]

m1
i=1, [acci.x]

m2
i=1, acc.x, pf) = 1

Ds−1(dk, acc) = 1
⇓

∀i ∈ [m1], V̂(pp, i, qxi, qwi) = 1
∀i ∈ [m2],Ds(dk, acci) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
ai← D(1λ)

(i, [qxi]
m1
i=1, [acci.x]

m2
i=1, acc, pf; r)← P̃(ppAS, pp, ai)

([qwi]
m1
i=1, [acci.w]m2

i=1)← EP̃(ppAS, pp, ai, r)
(apk, avk, dk)← I(ppAS, pp, i)


The extractor implicitly receives s as input.
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Remark 4.1. We can also define a bounded-depth version of completeness with a separate family of deciders.
In the completeness definition, valid accumulators for the i-th decider accumulate to a valid accumulator for
the (i+ 1)-th decider. This is important in settings where even an honest prover can only perform a bounded
number of accumulations.

Multi-instance extraction. As in [BCLMS21], we also define a weaker notion of knowledge soundness
which is implied by the earlier definition. For every expected polynomial time adversary P̃ and auxiliary
input distribution D, there exists an expected polynomial time extractor EP̃ such that for every set Z,

Pr


(ppAS, pp, ai, i⃗, q⃗x, a⃗x, a⃗cc, ao) ∈ Z

∀j ∈ [ℓ],Vρ(avk,qxj ,axj , accj .x, pfj) = 1
∀j ∈ [ℓ],Ds−1(dkj , accj) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
ai← D(1λ)

(⃗i, q⃗x, a⃗x, a⃗cc, p⃗f, ao)← P̃(ppAS, pp, ai)
∀j ∈ [ℓ], (apkj , avkj , dkj)← I(ppAS, pp, ij)



≥Pr


(ppAS, pp, ai, i⃗, q⃗x, a⃗x, a⃗cc, ao) ∈ Z

∀j ∈ [ℓ],∀i ∈ [m1], V̂(pp, ij , qx(j)i , qw
(j)
i ) = 1

∀j ∈ [ℓ],∀i ∈ [m2],Ds(dkj , acc
(j)
i ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
ai← D(1λ)

(⃗i, q⃗x, q⃗w, a⃗x, q⃗w, a⃗cc, ao)← EP̃(ppAS, pp, ai)
∀j ∈ [ℓ], (apkj , avkj , dkj)← I(ppAS, pp, ij)

− negl(λ).

Here, we write qxj as shorthand for [qx(j)i ]m1
i=1, and similarly for qwj = [qw

(j)
i ]m1

i=1, axj = [acc
(j)
i .x]m2

i=1,

and awj = [acc
(j)
i .w]m2

i=1.
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5 PCD from bounded-depth accumulation

We construct PCD from bounded-depth accumulation (Section 5.1), and analyze its knowledge soundness
(Section 5.2). To simplify our analysis, we only consider compliance predicates which correspond with
regular m-ary trees, i.e. φ(z, zloc, z1, . . . , zm) only accepts if either ∀i ∈ [m], zi = ⊥ or ∀i ∈ [m], zi ̸= ⊥.
We omit an analysis of completeness and efficiency, as these follow with minimal or no change from the
analyses in prior work [BCLMS21].

5.1 Construction

LetH(λ) be a family of collision-resistant hash functions which map to λ bits. Let {Rpp}pp be an indexed
relation family which encodes circuit satisfiability, e.g. R1CS over a field specified by the public parameters.
Let ARG = (G,P,V) be a NARK for {Rpp}pp. Let AS = (G, I,P,V,D) be an accumulation scheme for
ARG, with bounded-depth knowledge soundness for maximum depth d. We construct a PCD scheme PCD =
(G, I,P,V), shown in Figure 7, for the class of bounded-depth compliance predicates F = {φ : d(φ) < d}.

R
(λ,N)
V,φ,H

(
h, (avk, z, acc.x, zloc, [zi, πi.x, acci.x]

m
i=1, pf)

)
:

1. Check that h = H(avk, z, acc.x).
2. Check that the compliance predicate φ(z, zloc, z1, . . . , zm) accepts.
3. If there exists i ∈ [m] such that zi ̸= ⊥, check that the NARK accumulation verifier accepts:

V(λ,m,N)(avk, [qxi]
m
i=1, [acci.x]

m
i=1, acc.x, pf) = 1 where qxi :=

(
(avk, zi, acci.x), πi.x

)
.

Here, V(λ,m,N) refers to the circuit representation of V with input size appropriate for security
parameter λ, arity m, and circuit size N .

4. If the above checks hold, output 1; otherwise, output 0.

Figure 6: Recursion circuit for PCD.

Remark 5.1 (accumulator instance size). As noted in [BCLMS21, Remark 5.4], the size of an accumulator
instance must be independent of the size of an argument instance. This is not the true for the construction
presented in Section 6; to avoid this issue, they suggest converting it into a new scheme, where the accumulator
instance is hashed and appended to the accumulator witness/proof. We take an alternative approach (also in
[KST22]) where the circuit’s instance is hashed and appended to the witness. This means that the argument
instance is always λ bits, irrespective of the accumulation scheme.

5.2 Knowledge soundness

The extracted transcript T will be a tree, so each vertex u has a unique outgoing edge e. For convenience, we
associate the label z(e) with the vertex u itself by writing z(u) = z(e). In our extractors, we will also label a
vertex u with a NARK proof π(u) and accumulator acc(u). We recursively construct a sequence of extractors
E0, . . . ,Ed, where Ej outputs a tree of depth j. The overall PCD extractor EP̃ is (essentially) Ed.
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• G(1λ):
1. Sample pp← G(1λ).
2. Sample ppAS ← G(1λ).
3. Sample H← H(λ).
4. Output pp := (pp, ppAS,H).

• I(pp, φ):
1. Compute the integer N := N(λ, |φ|,m, ℓ), as defined in [BCLMS21, Lemma 5.5].
2. Construct the circuit R := R

(λ,N)
V,φ,H, as defined in Figure 6.

3. Compute the accumulation keys (apk, dk, avk) := I(ppAS, pp, i = R).
4. Output the proving key ipk := (pp, i, apk) and verification key ivk := (pp, i, dk, avk).

• P(ipk, z, zloc, [zi, (πi, acci)]mi=1):
1. If zi = ⊥ for all i ∈ [m] then set acc = P(apk,⊥) and pf = ⊥.
2. If zi ̸= ⊥ for some i ∈ [m] then:

(a) set predicate input instance qxi := ((avk, zi, acci.x), πi.x);
(b) set predicate input witness qwi := (acci.w, πi.w);
(c) let (acc, pf)← P(apk, [(qxi, qwi)]

m
i=1, [acci]

m
i=1).

3. Sample π ← P
(
pp, i,H(avk, z, acc.x), (zloc, [zi, πi.x, acci.x]

m
i=1, pf)

)
.

4. Output (π, acc).
• V(ivk, z, (π, acc)): Accept if both V(pp, i,H(avk, z, acc.x), π) and D(dk, acc) accept.

Figure 7: PCD algorithms.

We first construct E0 using the PCD adversary P̃:

E0(pp, aiPCD = ai):
1. Get the prover’s output (φ, o, (π, acc), ao)← P̃(pp, ai).
2. Initialize a transcript T with two nodes u, v and an edge (u, v), labeled with z(u) := o.
3. Label u with π(u) and acc(u).
4. Output (φ,T, aoPCD = ao).

Suppose we have the extractor Ej−1. We show how to construct Ej in several steps. First, we construct an
adversary for ARG:

P̃j(pp, aiARG = (ppAS,H, ai)):
1. Run the extractor (φ,T, aoPCD = ao)← Ej−1(pp = (pp, ppAS,H), aiPCD = ai).
2. Construct the circuit R := R

(λ,N)
V,φ,H.

3. Run the accumulator indexer (apk, dk, avk) := I(ppAS, pp, R).
4. Initialize an empty set SARG.
5. For each vertex v in the (j + 1)-th layer of T:

• Compute the hash h := H(avk, z(v), acc(v).x).
• Set iv := R,xv := h, πv := π(v).

6. Output (⃗i, x⃗, π⃗, aoARG = (φ,T, ao, SARG)).
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Next, letting EP̃j
be the extractor for P̃j according to the multi-instance knowledge soundness property of

ARG, we construct an adversary for AS:

P̃j(ppAS, pp, aiAS = (H, ai)):
1. Run the extractor (⃗i, x⃗, w⃗, aoARG = (φ,T, ao, SARG))← EP̃j

(pp, aiARG = (ppAS,H, ai)).

2. Construct the circuit R := R
(λ,N)
V,φ,H.

3. Run the accumulator indexer (apk, dk, avk) := I(ppAS, pp, R).
4. For each vertex v in the (j + 1)-th layer of T:

• Parse avk′, z′, acc′.x, local data zloc, incoming data [zi, πi.x, acci.x]i∈[m], and accumulation proof
pf from the witness w(v).

• If (avk′, z′, acc′.x) ̸= (avk, z(v), acc(v).x), this constitutes a hash collision; abort.
• Label v with z

(v)
loc := zloc in T.

• If there exists i ∈ [m], zi ̸= ⊥:
– Add vertices u1, . . . , um to T.
– For each i ∈ [m], add an edge (ui, v), labeled with z(ui) := zi, to T; this is the i-th incoming

edge to v.
– For each i ∈ [m], compute the hash hi := H(avk, z(ui), acci.x) and set qxi := (hi, πi.x).
– Set qxv = [qxi]

m
i=1,axv := [acci.x]

m
i=1, accv := acc(v), pfv := pf.

5. Output (⃗i, q⃗x, a⃗x, a⃗cc, p⃗f, aoAS = (φ,T, ao)).

Let EP̃j
be the extractor for P̃j according to the multi-instance knowledge soundness property of AS. We use

the latter to construct the PCD extractor Ej :

Ej(pp = (pp, ppAS,H), aiPCD = ai):
1. Run the extractor (⃗i, q⃗x, q⃗w, a⃗x, a⃗w, a⃗cc, aoAS = (φ,T, ao))← Ej(ppAS, pp, aiAS = (H, ai)).
2. For each vertex v in the (j + 1)-th layer of T:

• Parse [qxi = (hi, πi.x)]
m
i=1 from qx(v).

• Parse [qwi = πi.w]mi=1 from qw(v).
• Parse [acci.x]

m
i=1 from ax(v).

• Parse [acci.w]mi=1 from aw(v).
• Let u1, . . . , um be the children of v.
• For each i ∈ [m]:

– Combine πi.x and πi.w into a NARK proof π.
– Combine acci.x and acci.w into an accumulator acc.
– Label ui with π(ui) := π and acc(ui) := acc.

3. Output (φ,T, aoPCD = ao).

Finally, we construct the overall PCD extractor:

EP̃(pp, ai):
1. Run the extractor (φ,T, aoPCD = ao)← Ed+1(pp, aiPCD = ai).
2. Remove any unnecessary labeling, such as π(v) and acc(v), from each vertex v in T.
3. Output (φ,T, ao).
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Running time of the extractor. It follows from the extraction guarantees of ARG and AS that Ej runs in
expected time polynomial in the expected running time of Ej−1. Since d is constant, the overall extractor
runs in expected polynomial time.
Correctness of the extractor. Fix a set Z, and suppose

Pr

 φ ∈ F
(pp, ai, φ, o, ao) ∈ Z
V(ivk, o, (π, acc)) = 1

∣∣∣∣∣∣∣∣
pp← G(1λ)
ai← D(1λ)

(φ, o, (π, acc), ao)← P̃(pp, ai)
(ipk, ivk)← I(pp, φ)

 = µ. (1)

Throughout our proof, we will reference the index R, verification key avk, and decision key dk with the
understanding that these can be deterministically derived from pp and φ via the PCD indexer. We show
by induction that, for all j ∈ {0, . . . , d}, the extractor Ej(pp, ai) outputs (φ,T, aoPCD = ao) such that the
following holds with probability µ− negl(λ) (over the public parameters, auxiliary input, and the extractor’s
randomness):
• φ ∈ F and (pp, ai, φ, o(T), ao) ∈ Z.
• T is a transcript tree of depth at most j (and hence there are at most j + 2 layers). Moreover, the vertices in

the first j + 1 layers of T are φ-compliant.
• For all u in the (j + 2)-th layer of T, both V̂(R, h, π(u)) and Dj(dk, acc

(u)) accept, where h :=
H(avk, z(u), acc(u).x).

For the base case E0, this is implied by Equation (1). In particular, the sink v is trivially φ-compliant, since it
has no outgoing edges. Since the PCD verifier accepts, the strict decider D and verifier V accept. Hence, D0

and V̂ accept. For the inductive step, suppose that Ej−1 satisfies the inductive hypothesis.

Correctness of Ej . The set ZARG is defined as follows: (pp, aiARG = (ppAS,H, ai), i⃗, x⃗, aoARG = (φ,T, ao))
is an element of ZARG if and only if the following holds:
• φ ∈ F and (pp = (pp, ppAS,H), ai, φ, o(T), ao) ∈ Z.
• T is a transcript tree of depth at most j − 1 (and hence there are j + 1 layers). Moreover, the vertices in the

first j layers of T are φ-compliant.
• For all v in the (j + 1)-th layer of T, Dj−1(dk, acc

(v)) accepts. Moreover, i(v) = R and xv =
H(avk, z(v), acc(v).x).

By construction, with probability µ − negl(λ), the adversary P̃j(pp, aiARG) outputs (⃗i, x⃗, π⃗, aoARG) such
that (pp, aiARG, i⃗, x⃗, aoARG) ∈ ZARG and for all v, V̂(iv,xv, πv) accepts. By (multi-instance) knowledge
soundness of ARG, with probability µ− negl(λ), the extractor EP̃j

(pp, aiARG) outputs (⃗i, x⃗, w⃗, aoARG) and

we have that (pp, aiARG, i⃗, x⃗, aoARG) ∈ ZARG and for all v, (iv,xv,wv) ∈ Rpp.

Correctness of Ej . Define the set ZAS as follows:

(ppAS, pp, aiAS = (H, ai), i⃗, q⃗x, a⃗x, a⃗cc, p⃗f, aoAS = (φ,T, ao)) ∈ ZAS

if and only if the following holds:
• φ ∈ F and (pp = (pp, ppAS,H), ai, φ, o(T), ao) ∈ Z.
• T is a transcript tree of depth at most j (and hence there are j + 2 layers). Moreover, the vertices in the

first j + 1 layers of T are φ-compliant.
• For each non-source vertex v in the (j + 1)-th layer of T, v has children u1, . . . , um such that iv = R and
axv = [accui .x]mi=1 such that qxv = [hi, πi.x]

m
i=1 for hi = H(avk, z(ui), acci.x).

Suppose Ej obtains (⃗i, x⃗, w⃗, aoARG) such that (pp, aiARG, i⃗, x⃗, aoARG) ∈ ZARG and for each v, (iv,xv,wv) ∈
Rpp. By membership in ZARG, for each v in the (j + 1)-th layer of the tree, we have the following:
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• H(avk′, z′, acc′.x) = xv.
• If v has no children φ(z′, z

(v)
loc ,⊥, . . . ,⊥) accepts.

• If v has children u1, . . . , um, φ(z′, z(v)loc , z
(u1), . . . , z(um)) accepts and V(avk′,qxv,axv, accv, pfv) ac-

cepts.
By membership in ZARG, we also have H(avk, z(v), acc(v).x) = xv. Since H is collision-resistant, we
conclude that avk = avk′, z(v) = z′, and acc(v).x = acc′.x. The rest of the argument follows from construc-
tion: with probability µ− negl(λ), the adversary P̃j(ppAS, pp, aiAS) outputs (⃗i, q⃗x, a⃗x, a⃗cc, p⃗f, aoAS) such
that (ppAS, pp, aiAS, i⃗, q⃗x, a⃗x, a⃗cc, p⃗f, aoAS) ∈ ZAS, and for all v, both V(avkv,qxv,axv, accv, pfv) and
Dj−1(dkv, accv) accept. Here, avkv and dkv are derived from iv. By (multi-instance) knowledge soundness
of AS, with probability µ− negl(λ), the extractor Ej(ppAS, pp, aiAS) outputs (⃗i, q⃗x, q⃗w, a⃗x, a⃗w, a⃗cc, aoAS)

such that (ppAS, pp, aiAS, i⃗, q⃗x, a⃗x, a⃗cc, p⃗f, aoAS) ∈ ZAS and for all v and i ∈ [m], both V̂(iv, qx(v)i , qw
(v)
i )

and Dj(dkv, acc
(v)
i ) accept. Here, dkv is derived from i.

Correctness of Ej . By construction, with probability µ − negl(λ), the extractor Ej satisfies the inductive
hypothesis. The key requirement is that the NARK proof π(u) and accumulator acc(u) are related by the hash,
which is guaranteed by membership in ZAS. This concludes our proof by induction.

Correctness of EP̃. With probability µ−negl(λ), EP̃ outputs (ϕ,T, ao) such that φ ∈ F, (pp, ai, o(T), ao) ∈
Z, and the first d+ 2 layers of T are φ-compliant. Since the depth of φ is at most d, we conclude that all of
the vertices in the (d + 2)-th layer are trivially accepted by the compliance predicate, and their incoming
edges must all be labeled with ⊥. Hence, T is φ-compliant.
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6 Constructing bounded-depth accumulation

We construct a bounded-depth accumulation scheme, which supports (possibly distinct) arities m1 = poly(λ)
and m2 = poly(λ), for a general class of non-interactive arguments. Across all of our constructions, we
fix the following global constants: depth bound ds, code rate R ∈ (0, 1), and distance δ ≤ (1 − R)/2ds;
this guarantees that dsδ is smaller than the unique decoding radius of a Reed–Solomon code with rate R.
Additionally, we use domain separation on the random oracle ρ to model three disjoint oracles: ρH for Merkle
trees and hashing, ρARG for the argument verifier’s randomness, and ρAS for the accumulation verifier’s
randomness. When querying ρARG and ρAS, we assume the random oracle’s output is used to sample from
the verifier’s challenge set.

Notation. If x, y, z are vectors, we will often interpret tuples like (x, (y, z)) as a vector consisting of x, y, z
concatenated together. Given a codeword f ∈ C, let f̂ denote the corresponding message which encodes
to f . We write f as shorthand for the tuple (f (1), . . . , f (µ)) and C as shorthand for the Cartesian product
C(1)×· · ·×C(µ). Similarly, let f̂ = (f̂ (1), . . . , f̂ (µ)) and ∆(f ,g) = maxj∈[µ]∆(f (j), g(j)). When querying
locations in a codeword, let Q = (Q(1), . . . ,Q(µ)) and f [Q] = (f (1)[Q(1)], . . . , f (µ)[Q(µ)]). We use arrow
notation as shorthand for tuples of commitment data, e.g. c⃗m = (cm(1), . . . , cm(µ)). Vector commitment
functions map over tuples, e.g. (c⃗m, a⃗ux)← VC.Commit(vp, f) should be interpreted as saying “for each
j ∈ [µ], let (c⃗m(j), a⃗ux(j))← VC.Commit(vp, f (j)).”

6.1 Non-interactive argument

Our starting point is any special-sound interactive proof with an algebraic verifier. By this, we mean that the
verifier’s check can be expressed as a sequence of degree d polynomials (derived from the index) which take
the transcript as input. The verifier accepts if all of the polynomials evaluate to zero.

In more detail, we require an interactive proof for some indexed relation R(F). Let µ be the number of
rounds in the protocol; this may be a function of the index. For simplicity, we assume that the instance x,
the prover’s messages m(1), . . . ,m(µ), and the verifier’s challenges r(1), . . . , r(µ) are all vectors over F; their
lengths may be a function of the index. From the index, the verifier derives degree d polynomials p1, . . . , pℓ
over F. It accepts if, for all i, pi(x, r,m) = 0.

Compressing the verifier. Without loss of generality, we can assume that the algebraic verifier consists of a
single polynomial. This is because multiple polynomial checks can be compressed into a single check, e.g.
by using the following technique due to [EG23; BC23].

Let Π be an interactive proof where the verifier’s check consists of ℓ polynomials p0, . . . , pℓ−1, each of
degree d. We transform this into an interactive proof CV[Π] for the same relation, where the verifier’s check
is a single polynomial

p(X⃗, Y⃗ ) =
ℓ−1∑
i=0

powi(Y⃗ ) · pi(X⃗).

Here, powi is the unique degree log ℓ polynomial satisfying powi(1, β, β
2, β4, . . . , βℓ/2) = βi for all β ∈ F.

It follows that p is of degree d + log ℓ. The interactive protocol is the same as before, except that the
verifier additionally samples a challenge y = (1, β, β2, β4, . . . , βℓ/2) where β ← F. The verifier accepts if
p(x, y) = 0, where x is the transcript from the original proof.

If Π is (k1, . . . , kµ)-special-sound, then CV[Π] is (k1, . . . , kµ, ℓ)-special-sound. To see why, suppose
we have a tree T of accepting transcripts for CV[Π]. Consider an arbitrary node in the penultimate layer
of the tree. Its children correspond with transcripts of the form (x, y1), . . . , (x, yℓ), each yi distinct. Since
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the transcripts are accepting, the degree ℓ− 1 univariate polynomial
∑ℓ−1

i=0 Z
i · pi(x) is zero at ℓ points. It

follows that f is the zero polynomial and, for all i, pi(x) = 0. Let T ′ denote T with its bottom layer removed.
We have shown that T ′ is a tree of accepting transcripts for Π. Hence, we construct an extractor for CV[Π] by
running the extractor for Π on T ′.

• G(1λ):
1. Choose a suitable field F, log |F| = Ω(λ).
2. Let vp← VC.Setup(1λ,F).
3. Output pp = (F, vp).

• Iρ(pp = (F, vp), i):
1. Query τ ← ρH(i).
2. From F and i, derive the following parameters, collected into p:

– The number of rounds, denoted µ.
– The length of the instance.
– For each j ∈ [µ], the length, denoted ℓ(j), of the prover’s j-th message.
– For each j ∈ [µ], the format of the verifier’s j-th challenge.

3. From F and i, derive the verifier’s check p.
4. For each j ∈ [µ], let C(j) be a Reed–Solomon code over F with dimension ℓ(j), rate R, and

evaluation domain L(j).
5. Output ipk = (F, vp, i, τ,p,C) and ivk = (F, vp, τ,p, p,C).

• Pρ(pp, i,x,w):
1. Compute the proving key ipk = (F, vp, i, τ,p,C) according to Iρ(pp, i).
2. For j ∈ [µ]:

– Compute the prover’s j-th message m(j) ← P (F, i,x,w, [m(i), r(i)]j−1i=1 ).
– Encode m(j) to f (j) ∈ C(j).
– Let (cm(j), aux(j))← VC.CommitρH (vp, f (j)).
– Query r(j) ← ρARG(τ,x, cm

(1), . . . , cm(j)).
3. Output π = (c⃗m, a⃗ux).

• Vρ(pp, i,x, π = (c⃗m, a⃗ux)):
1. Compute the verification key ivk = (F, vp, τ,p, p,C) according to Iρ(pp, i).
2. For each j ∈ [µ], query r(j) ← ρARG(τ,x, cm

(1), . . . , cm(j)).
3. Let f ← VC.AnswerρH (vp, c⃗m, a⃗ux).
4. Verify that f ∈ C.
5. Accept if p(x, r, f̂) = 0.

• V̂ρ(pp, i,x, π = (c⃗m, a⃗ux)):
1. Compute the verification key ivk = (F, vp, τ,p, p,C) according to Iρ(pp, i).
2. For each j ∈ [µ], query r(j) ← ρARG(τ,x, cm

(1), . . . , cm(j)).
3. Let f ← VC.AnswerρH (vp, c⃗m, a⃗ux).
4. Find g ∈ C by uniquely decoding f . If no such codeword exists, reject.
5. Accept if p(x, r, ĝ) = 0.

Figure 8: Our NARK construction.
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Committing to messages. In order to achieve efficient accumulation, we will instead have the prover
send commitments to messages. Only in the final move of the protocol does the prover send openings to
all of the commitments. Strictly speaking, this is only special-sound for an “augmented relation”; namely,
there exists an extractor which, given a tree of accepting transcripts, outputs either a witness or a break
of the commitment scheme. Nonetheless, assuming the scheme is computationally binding, applying the
Fiat-Shamir transformation yields a non-interactive argument of knowledge for the original relation. We refer
to [BC23] for a more detailed analysis.

Removing interaction. Given a special-sound interactive proof (P, V ), we apply the Fiat–Shamir transfor-
mation (with commitments) to get a non-interactive argument of knowledge [AFK23]. In order to achieve
efficient accumulation, we use a standard variant of the transformation where the index is first hashed to a
succinct value τ . The Fiat–Shamir transform outputs a non-interactive argument ARG = (G,P,V), shown in
Figure 8, for the indexed relation family {Rpp = R(F)}. We also define an indexer I as a helper algorithm.

Attema et al. [AFK23] prove that multi-round public-coin protocols can be compiled into non-interactive
arguments. However, their definition of knowledge-soundness is slightly different from ours: they require
that the extractor succeeds with non-negligible probability if the adversary succeeds with non-negligible
probability. Our definition, on the other hand, requires that the extractor succeeds with all but negligible
probability whenever the adversary succeeds. However, these definitions are equivalent as one can boost the
extractor’s success probability by running it until it succeeds. This works as the extractor is only required to
run in expected polynomial time.

Relaxed verifier. We use a specific commitment scheme to support accumulation: the prover sends a vector
commitment to a codeword of the message, along with the full auxiliary data. We relax the verifier in two
different ways to get V̂ (also shown in Figure 8). First, we allow it to decode noisy codewords. Second, we
allow it to accept partial openings to commitments; the missing positions correspond with erasure errors.
These changes do not affect knowledge soundness, since the prover is still bound to (decoded) messages.

6.2 Accumulation scheme

Fix a subset H ⊂ F of size m = m1+m2; this may be a function of λ. We construct an accumulation scheme
AS = (G, I,P,V,D) for ARG. The argument verifier inputs are split into qx = (x, c⃗m) and qw = a⃗ux.
Accumulators have a nearly identical structure; in fact, any verifier input (qx, qw) can be converted into an
accumulator acc by setting acc.w = qw and acc.x = CASTINPUTρ(τ, qx), which is defined below.

CASTINPUTρ(τ, qx = (x, c⃗m)):
1. For each j ∈ [µ], query r(j) ← ρARG(τ,x, cm

(1), . . . , cm(j)).
2. Collect x and r into a vector x.
3. Output acc.x = (0, x, c⃗m).

We also define a helper function which casts [qxi]
m1
i=1 and [acci.x]

m2
i=1 into a single list of m = m1 + m2

accumulator instances.

CASTρ(τ, [qxi]
m1
i=1, [acci.x]

m2
i=1):

1. Output [CASTINPUT(τ, qx1), . . . , CASTINPUT(τ, qxm1
), acc1.x, . . . , accm2 .x].

Finally, we define helper functions which perform the bulk of proving and verification.
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PROVEρ(apk, [ei, xi, c⃗mi, a⃗uxi]
m
i=1):

1. For each i ∈ [m], let fi ← VC.AnswerρH (vp, c⃗mi, a⃗uxi).
2. Compute the univariate polynomial q ∈ F[X] of degree at most d(m− 1)−m such that

p

(
m∑
i=1

Li,H(X) · (xi, f̂i)

)
= vH(X) · q(X) +

m∑
i=1

Li,H(X) · ei.

3. Query α← ρAS(τ, [acci.x]
m
i=1, q), where α ∈ F is a uniformly sampled field element.

4. Compute e = v(α) · q(α) +
∑

i Li(α) · ei.
5. Compute (x, f̂) =

∑
i Li(α) · (xi, f̂i).

6. Let (c⃗m, a⃗ux)← VC.CommitρH (vp, f).
7. Set acc.x = (e, x, c⃗m) and acc.w = a⃗ux.
8. Query Q← ρAS(τ, [acci.x]

m
i=1, q, acc.x), where Q(j) is a uniformly sampled t-sized subset of L(j).

9. For each i ∈ [m], let o⃗pi ← VC.OpenρH (vp, a⃗uxi,Q).
10. Let o⃗p← VC.OpenρH (vp, a⃗ux,Q).
11. Output acc and pf = (q, [o⃗pi]

m
i=1, o⃗p).

VERIFYρ(avk, [ei, xi, c⃗mi]
m
i=1, (e, x, c⃗m), (q, [o⃗pi]

m
i=1, o⃗p)):

1. Query α← ρAS(τ, [acci.x]
m
i=1, q).

2. Query Q← ρAS(τ, [acci.x]
m
i=1, q, acc.x).

3. For each i ∈ [m], let vi = VC.AnswerρH (vp, c⃗mi, o⃗pi). If vi[Q] contains ⊥, reject.
4. Let v = VC.AnswerρH (vp, c⃗m, o⃗p,Q). If v[Q] contains ⊥, reject.
5. Verify that e = vH(α) · q(α) +

∑n
i=1 Li,H(α) · e(i).

6. Verify that (x,v) =
∑m

i=1 Li,H(α) · (xi,vi).

See Figure 9 for a full description of AS, along with the family of deciders.

• G(1λ):
1. Choose a suitable spot check parameter t = Ω(λ).
2. Output ppAS = t.

• Iρ(ppAS = t, pp = (F, vp), i):
1. Obtain τ,p, p,C from Iρ(pp, i).
2. Output apk = (F, vp, t, τ,p, p,C), avk = (F, vp, t, τ,p,C), and dk = (F, vp,p, p,C).

• Pρ(apk, [qxi, qwi]
m1
i=1, [acc]

m2
i=1):

1. Let [ei, xi, c⃗mi]
m
i=1 ← CAST(τ, [qxi]

m1
i=1, [acci.x]

m2
i=1).

2. Parse [a⃗uxi]
m
i=1 = [qw1, . . . , qwm1

, acc1.w, . . . , accm2 .w].
3. Output PROVEρ(apk, [ei, xi, c⃗mi, a⃗uxi]

m
i=1).

• Vρ(avk, [qxi]
m1
i=1, [acci.x]

m2
i=1, acc.x, pf):

1. Let [ei, xi, c⃗mi]
m
i=1 ← CAST(τ, [qxi]

m1
i=1, [acci.x]

m2
i=1).

2. Accept if VERIFY(avk, [ei, xi, c⃗mi]
m
i=1, acc.x, pf) accepts.

• Dρ
s(dk, acc.x = (e, x, c⃗m), acc.w = a⃗ux):

1. Let f ← VC.AnswerρH (vp, c⃗m, a⃗ux).
2. Find g ∈ C,∆(f ,g) ≤ sδ by decoding f . If no such codeword exists, reject.
3. Accept if p(x, ĝ) = e.

Figure 9: Accumulation scheme algorithms.
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Completeness. Suppose A outputs i, [qxi, qwi]
m1
i=1, and [acci]

m2
i=1, where the inputs are accepted by V and

the accumulators are accepted by D. After casting, the prover holds [ei, xi, cmi, a⃗uxi]
m
i=1 such that, for all i,

the auxiliary data a⃗uxi opens to codewords fi ∈ C, p(xi, f̂i) = ei. Consider the degree d(m− 1) polynomial

p

(
m∑
i=1

Li,H(X) · (xi, f̂i)

)
−

n∑
i=1

Li,H(X) · ei.

At each evaluation point aj ∈ H ,
∑

i Li(aj) · (xi, f̂i) = (xj , f̂j), since Lj(aj) = 1 and Li(aj) = 0 for i ̸= j.
Similarly,

∑
i Li(aj) · ei = ej . It follows that the polynomial is zero at all points in H , and thus factors into

vH(X) · q(X). Since vH has degree m, q has degree d(m− 1)−m. It remains to be shown that the spot
check succeeds. Since the accumulators are valid, the prover can open the codewords at any location. Next,
recall that the prover computes f̂ =

∑
i Li(α) · f̂i. By linearity of the code, this relationship holds over the

entire codeword.

6.3 Soundness analysis

Our accumulation scheme can be viewed as a compiled interactive oracle proof, where the prover corresponds
with PROVE and the verifier corresponds with VERIFY plus Ds−1. The relation corresponds with Ds; in
particular, for field F and depth parameter s ∈ [ds], define the indexed language

L (F, s) = {(i, (e, x, f)) : ∃g ∈ C,∆(f ,g) ≤ sδ, p(x, ĝ) = e}.

Here, i is an index of R(F) from which p and C are implicitly derived. We construct a public-coin interactive
oracle proof IOP for the multi-instance language

L (F, s,m) = {(i, [ei, xi, fi]mi=1) : ∀i ∈ [m], (i, (ei, xi, fi)) ∈ L (F, s)}.

Note that all algorithms in IOP implicitly take as input the following protocol parameters: field F, depth
parameter s, arity m, and spot check parameter t. Since we are only interested in proving soundness, we omit
the prover’s description (it essentially matches the accumulation prover). The protocol is as follows.

1. The prover sends q ∈ F[X], a polynomial of degree at most d(m− 1)−m.
2. The verifier uniformly samples a field element α ∈ F.
3. The prover sends (e, x, f).
4. For each j ∈ [µ], the verifier uniformly samples a query set Q(j) ⊂ L(j) of size t.

The verifier then performs two sets of checks. The first set corresponds with the accumulation verifier:

• Verify that e = v(α) · q(α) +
∑

i Li(α) · ei.
• Verify that x =

∑
i Li(α) · xi.

• Verify that f [Q] =
∑

i Li(α) · fi[Q].

The second set corresponds with the decider:

• Find g ∈ C by decoding f . If no such codewords exist, reject.
• Verify that ∆(f ,g) ≤ (s− 1)δ.
• Verify that p(x, ĝ) = e.
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Theorem 6.1. IOP has round-by-round soundness error

ϵrbr(F,m, t, n) = max

(
n(m− 1)

|F|
,
d(m− 1)

|F|
, (1− δ)t

)
,

where n = maxj ℓ
(j)/R is the maximum blocklength.

Proof. We define a doomed set D as follows.

• ([ei, xi, fi]
m
i=1,∅) ∈ D if the instance is not in the language, i.e. there exists i ∈ [m] such that for all

g ∈ C, ∆(fi,g) > sδ or p(xi, ĝ) ̸= ei. Here, ∅ denotes the empty transcript.

• ([ei, xi, fi]
m
i=1, q|α) ∈ D if for all g ∈ C,

∆

(
m∑
i=1

Li,H(α) · fi,g

)
> sδ or p(x, ĝ) ̸= vH(α) · q(α) +

m∑
i=1

Li,H(α) · ei.

• ([ei, xi, fi]
m
i=1, q|α|(e, x, f)|Q) ∈ D if the verifier rejects the transcript.

The statement follows from Claims 6.2 and 6.3.

Claim 6.2. Suppose ([ei, xi, fi]
m
i=1,∅) is in the doomed set. Then

Pr
α
[(ei, xi, fi)

m
i=1, q|α) ̸∈ D] ≤ max

(
n(m− 1)

|F|
,
d(m− 1)

|F|

)
.

Proof. Suppose not. Let ϵ1 = n(m− 1)/|F|, ϵ2 = d(m− 1)/|F|, and define the events

E1(g, α) : ∆

(
m∑
i=1

Li,H(α) · fi,g

)
≤ sδ,

E2(g, α) : p(x, ĝ) = vH(α) · q(α) +
m∑
i=1

Li,H(α) · ei.

Our supposition is that Prα[∃g ∈ C, E1(g, α) ∧ E2(g, α)] > max(ϵ1, ϵ2). It follows that

Pr
α
[E1(g, α)] = Pr

α

[
∀j ∈ [µ],∆

(
m∑
i=1

Li,H(α) · f (j)i , C(j)

)]
> ϵ1.

For each j, by Lemma 3.4, there exist codewords g(j)1 , . . . , g
(j)
m ∈ C(j) and subdomain L′ ⊂ L(j), |L′|/|L(j)| ≥

1− sδ, such that, for all i, f (j)
i and g

(j)
i agree on L′. This implies the following.

• ∆(fi,gi) ≤ sδ. Since we start in the doomed set, this implies that, for some i, p(xi, ĝi) ̸= ei. Hence, the
degree d(m− 1) polynomial

z(X) = p

(
m∑
i=1

Li,H(X) · (xi, ĝi)

)
− vH(X) · q(X)−

m∑
i=1

Li,H · ei

is non-zero. By the Schwartz-Zippel lemma, Prα[z(α) = 0] ≤ ϵ2.
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• For all α ∈ F, ∆(
∑

i Li(α) · fi,
∑

i Li(α) · gi) ≤ sδ. In other words, E1(g, α) holds for g = g(α) =∑
i Li(α) · gi; moreover, since sδ is smaller than the unique decoding radius, this is the only satisfying

assignment. It follows that Prα[E2(g(α), α)] > ϵ2.

Notice that the events z(α) = 0 and E2(g(α), α) are equivalent. Thus, we have shown a contradiction.

Claim 6.3. Suppose ([ei, xi, fi]
m
i=1, q|α) is in the doomed set. Then

Pr
α
[((ei, xi, fi)

m
i=1, q|α|(e, x, f)|Q) ̸∈ D] ≤ (1− δ)t.

Proof. In order for the verifier to accept, f must decode to codewords g ∈ C,∆(f ,g) ≤ (s− 1)δ such that
p(x, ĝ) = e = v(α) · q(α) +

∑
i Li(α) · ei. Since we start in the doomed set, this implies that, for some j,

∆(
∑

i Li(α) · f (j)
i , g(j)) > sδ. Hence, ∆(

∑
i Li(α) · f (j)

i , f (j)) > δ. The probability that the vectors are
consistent at a random index is 1− δ, and the claim follows.

From IOP to Accumulation. We apply the BCS transformation [BCS16] to get a non-interactive argument
(P,V) which matches our accumulation scheme. At a high level, the transformation replaces each IOP
message with a vector commitment, and each challenge with a query to the random oracle. The prover then
includes partial openings to all of the verifier’s oracle accesses in the proof.

However, this does not immediately work. The most glaring issue is that the accumulation verifier does
not have full access to the IOP instance [ei, xi, fi]

m
i=1. We will instead treat the IOP instance as an oracle, in

the sense that P outputs a vector commitment to some instance and provides partial openings in the proof.
Recall that the BCS transformation uses Valiant’s extractor [Val08] to extract IOP messages from each vector
commitment in the proof. Similarly, we should be able to extract an instance from the proof, which is valid if
V accepts. Listed below are some additional modifications to the BCS transformation that we require. These
are relatively minor, and follow from a close reading of [BCS16].

1. Our IOP prover sends certain values which will always be read by the verifier, namely q, e, and x.
Therefore, P should include these values directly in the proof. Similarly, P should output parts of the
instance without committing, namely [ei, xi]

m
i=1.

2. Our IOP prover sends many codewords f (1), . . . , f (µ) in the same round. Therefore, P should output
separate commitments for each codeword. Similarly, P should output separate commitments for each
codeword f

(j)
i in the instance.

3. Our IOP verifier accesses the codewords f twice: first for the spot check, and second for decoding to g.
Since these checks will be separated across the accumulation verifier and decider, P should send separate
openings for each access.

4. Suppose (a potentially malicious) P provides a partial opening which does not contain one of the locations
in the query set. Instead of rejecting, V should fill any missing locations with a default symbol ⊥ using
VC.Answer. This affords more flexibility to the IOP verifier, in particular when it attempts to decode f .

Items 1 and 2 guarantees that the committed IOP instance can be parsed as m accumulator instances
[acci.x]

m
i=1. Items 1 to 3 guarantee that a proof output by P can be parsed as an accumulator acc and

accumulation proof pf. Items 3 and 4 guarantees that V can be decomposed into VERIFY and Ds−1. Our
requirements are formally summarized in Claim 6.4.
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Claim 6.4. There exists a transformation BCS such that BCS[IOP,VC] = (P,V) satisfies the following
soundness property. There exists a polynomial time extractor E such that for every choice of protocol
parameters (F, s,m, t), polynomial time adversary P̃, and auxiliary input distribution D,

Pr


Vρ(vp, i, x̄, π) = 1

⇓
(i, [ei, xi, fi]

m
i=1) ∈ L (F, s,m)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
vp← VC.SetupρH (1λ)

ai← D(1λ)
(i, x̄ = [ei, xi, c⃗mi]

m
i=1, π; r)← P̃ρ(vp, ai)

[o⃗pi]
m
i=1 ← EP̃,ρ(vp, ai, r)

∀i ∈ [m], fi ← VC.AnswerρH (vp, c⃗mi, o⃗pi)


is negligibly close to 1− ϵrbr(F,m, t, n) ·Q.8 Here, n is an upper bound on the blocklengths derived from
any index output by P̃, and Q is an upper bound on the number of random oracle queries made by P̃. The
extractor implicitly receives the protocol parameters as input. Additionally, V can be implemented as follows.

Vρ(vp, i, x̄ = [ei, xi, c⃗mi]
m
i=1, π = (q, (e, x, c⃗m), (o⃗p1, . . . , o⃗pm, o⃗p, o⃗p′))):

1. Let (apk, avk, dk)← Iρ(ppAS = t, pp = (F, vp), iΦ = i).
2. Verify that VERIFYρ(avk, [ei, xi, c⃗mi]

m
i=1, (e, x, c⃗m), (q, [o⃗pi]

m
i=1, o⃗p)) accepts.

3. Verify that Dρ
s−1(dk, (e, x, c⃗m), o⃗p′) accepts.

Theorem 6.5. AS has bounded-depth knowledge soundness for depth ds.

Proof. Let P̃ be an adversary and D be an auxiliary input distribution for the accumulation scheme. Let E be
the BCS extractor. We first construct an auxiliary input distribution D′ and adversary P̃ for BCS[IOP,VC].

D′(1λ):
1. Sample ai← D(1λ).
2. Sample t according to G(1λ).
3. Sample F according to G(1λ).
4. Output ai′ = (ai,F, t).

P̃ρ(vp, ai′ = (ai,F, t)):
1. Let (i, [qxi]

m1
i=1, [acci.x]

m2
i=1, acc, pf = (q, [o⃗pi]

m
i=1, o⃗p))← P̃ρ(ppAS = t, pp = (F, vp), ai).

2. Query τ ← ρH(i).
3. Let x̄← CASTρ(τ, [qxi]

m1
i=1, [acci.x]

m2
i=1).

4. Output i, x̄, and π = (q, acc.x, (o⃗p1, . . . , o⃗pm, o⃗p, acc.w)).

By Claim 6.4, the following is negligibly close to 1− ϵrbr(F,m, t, n) ·Q:

Pr


Vρ(vp, i, x̄, π) = 1

⇓
(i, [ei, xi, fi]

m
i=1) ∈ L (F, s,m)

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
vp← VC.SetupρH (1λ)

ai′ ← D′(1λ)

(i, x̄ = [ei, xi, c⃗mi]
m
i=1, π; r)← P̃ρ(vp, ai′)

[o⃗pi]
m
i=1 ← EP̃,ρ(vp, ai′, r)

∀i ∈ [m], fi ← VC.AnswerρH (vp, c⃗mi, o⃗pi)


Since the adversary is polynomial-size, we have n = poly(λ) and Q = poly(λ). Setting |F| = Ω(λ),
m = poly(λ), and t = Ω(λ), we find that the probability is negligibly close to 1. Finally, we show that this

8If an IOP has round-by-round soundness error ϵrbr, then it has state-restoration soundness error ϵrbr ·Q against a Q-round prover
[Can+19; Hol19; COS20].
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probabilistic experiment is essentially equivalent to that of the accumulation scheme’s knowledge soundness
guarantee. Notice that calling VC.Answer and testing language membership corresponds with running the
relaxed decider; rewriting, we get

Pr


Vρ(vp, i, [ei, xi, c⃗mi]

m
i=1, π) = 1

⇓
∀i ∈ [m],Dρ

s(dk, (ei, xi, c⃗mi), o⃗pi) = 1

∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
vp← VC.SetupρH (1λ)

ai′ ← D′(1λ)

(i, [ei, xi, c⃗mi]
m
i=1, π; r)← P̃ρ(vp, ai′)

[o⃗pi]
m
i=1 ← EP̃,ρ(vp, ai′, r)


Since P̃ does not use any additional randomness, the randomness output by P̃ is the same as the randomness
output by P̃. Unwrapping the implementations of P̃, D′, and V, we get
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VERIFYρ(avk, [(ei, xi, c⃗mi)]
m
i=1, acc.x, pf) = 1

Dρ
s−1(dk, acc)
⇓

∀i ∈ [m],Dρ
s(dk, (ei, xi, c⃗mi), o⃗pi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
ai← D(1λ)

(i, [qxi]
m1
i=1, [acci.x]

m2
i=1, acc, pf; r)← P̃ρ(ppAS, pp, ai)

τ ← ρH(i)
[(ei, xi, c⃗mi)]

m
i=1 ← CASTρ(τ, [qxi]

m1
i=1, [acci.x]

m2
i=1)

[o⃗pi]
m
i=1 ← EP̃,ρ(vp, (ai,F, t), r)

(apk, avk, dk)← Iρ(ppAS, pp, i)


Notice that if the verification helper accepts the cast inputs, then the accumulation verifier accepts the original
inputs. Rewriting, we get
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Vρ(avk, [qx]m1
i=1, [acci.x]

m2
i=1, acc.x, pf) = 1

Dρ
s−1(dk, acc)
⇓

∀i ∈ [m],Dρ
s(dk, (ei, xi, c⃗mi), o⃗pi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
ai← D(1λ)

(i, [qxi]
m1
i=1, [acci.x]

m2
i=1, acc, pf; r)← P̃ρ(ppAS, pp, ai)

τ ← ρH(i)
[(ei, xi, c⃗mi)]

m
i=1 ← CASTρ(τ, [qxi)]

m1
i=1, [acci.x]

m2
i=1)

[o⃗pi]
m
i=1 ← EP̃,ρ(vp, (ai,F, t), r)

(apk, avk, dk)← Iρ(ppAS, ppΦ, i)


Similarly, if the relaxed decider accepts the cast inputs, then the relaxed verifier accepts the original inputs.
Hence, the following probability is negligibly close to 1:

Pr



Vρ(avk, [qx]m1
i=1, [acci.x]

m2
i=1, acc.x, pf) = 1

Dρ
s−1(dk, acc)
⇓

∀i ∈ [m1], V̂ρ(pp, i, qxi, qwi) = 1
∀i ∈ [m2],D

ρ
s(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ← U(λ)
ppAS ← G(1λ)

pp← G(1λ)
ai← D(1λ)

(i, [qxi]
m1
i=1, [acci.x]

m2
i=1, acc, pf; r)← P̃ρ(ppAS, pp, ai)

[o⃗pi]
m
i=1 ← EP̃,ρ(vp, (ai,F, t), r)

[qw1, . . . , qwm1
, acc1.w, . . . , accm2

.w] = [o⃗pi]
m
i=1

(apk, avk, dk)← Iρ(ppAS, pp, i)


We conclude that the following accumulation extractor satisfies knowledge soundness.

EP̃,ρ(pp = t, ppΦ = (F, vp), ai, r):
1. Let [o⃗pi]mi=1 ← EP̃,ρ(vp, (ai,F, t), r), where E implicitly receives (F, s,m, t) as input.
2. Parse [qw1, . . . , qwm1

, acc1.w, . . . , accm2 .w] = [o⃗pi]
m
i=1.

3. Output [qwi]
m1
i=1 and [acci.w]m2

i=1.
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6.4 Using arbitrary linear codes

At first glance, our accumulation scheme does not use any special properties of the Reed–Solomon code.
Because other codes might have desirable properties, e.g. linear-time encoding, this motivates the following
question: can we instantiate it with an arbitrary linear code, so long as it has good distance? Recall that the
accumulator’s vectors are a random linear combination of the input vectors. In particular, the coefficients are
Lagrange evaluations of a random field element; this is necessary for compressing the polynomial evaluation
claims. Unfortunately, existing proximity gaps for arbitrary linear codes [RVW13; AHIV17; DP23a] do not
support this specific distribution of coefficients.

Separating the proximity claim. In some sense, our construction accumulates two distinct claims for
the same vector: a polynomial evaluation claim, and a proximity claim. To overcome the foregoing issue,
we modify our accumulation scheme to separate these claims. Specifically, each accumulator now holds
two codewords: the first is a linear combination using Lagrange coefficients, and the second is a linear
combination using proximity gap coefficients. Accordingly, the accumulation verifier uses the first codeword
to compress evaluation claims, and the second codeword to maintain proximity. This will be roughly twice as
expensive as before.

Definition 6.6 (proximity gaps for linear codes). Let C be a linear code with relative distance d and
blocklength n. Let (r1, . . . , rℓ)← Coeffs(Γ) be a function that takes in randomness Γ. We say that C has a
proximity gap with respect to distribution Coeffs, error 0 ≤ ε(ℓ) ≤ 1, slack γ, relative error bound e < d/2,
if the following holds:

For any δ < e and vectors u1, . . . , uℓ ∈ Fn, if

Pr
Γ

[
∆
(∑ℓ

i=1 ri · ui, C
)
≤ δ : (r1, . . . , rℓ)← Coeffs(Γ)

]
> ε(ℓ)

Then, for all (r1, . . . , rℓ) in the support of the distribution Coeffs(Γ), we must have

∆
(∑ℓ

i=1 ri · ui, C
)
≤ δ.

and furthermore there exists v1, . . . , vℓ ∈ C such that for all (r1, . . . , rℓ) in the support,

∆
(∑ℓ

i=1 ri · ui,
∑ℓ

i=1 ri · vi
)
≤ δ,

and in fact |{i ∈ [n] : (u1,i, . . . , uℓ,i) ̸= (v1,i, . . . , vℓ,i)}| ≤ γδn.

Construction. We use linear codes with efficient decoding up to e = O(1), the error bound of the proximity
gap. Fix δ = e/

∑ds−1
i=0 γi, where γ is the slack of the proximity gap. The modified construction is shown

below; all changes are highlighted in blue.

CASTINPUTρ(τ, qx = (x, c⃗m)):
1. For each j ∈ [µ], query r(j) ← ρARG(τ,x, cm

(1), . . . , cm(j)).
2. Collect x and r into a vector x.
3. Output acc.x = (0, x, c⃗m, c⃗m′), where c⃗m′ are commitments to zero vectors.
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PROVEρ(apk, [ei, xi, c⃗mi, a⃗uxi, c⃗m
′
i, a⃗ux

′
i]
m
i=1):

1. For each i ∈ [m], let fi ← VC.AnswerρH (vp, c⃗mi, a⃗uxi), and f ′i ← VC.AnswerρH (vp, c⃗m′i, a⃗ux
′
i).

2. Compute the univariate polynomial q ∈ F[X] of degree at most d(m− 1)−m such that

p

(
m∑
i=1

Li,H(X) · (xi, f̂i)

)
= vH(X) · q(X) +

n∑
i=1

Li,H(X) · ei.

3. Query α,Γ← ρAS(τ, [acci.x]
m
i=1, q), where α ∈ F and Γ are sampled uniformly.

4. Compute e = v(α) · q(α) +
∑

i Li(α) · ei.
5. Compute (x, f̂) =

∑
i Li(α) · (xi, f̂i).

6. Let (r1, . . . , rm, r′1, . . . , r
′
m)← Coeffs(Γ). Compute f ′ =

∑m
i=1 ri · fi + r′i · f ′i .

7. Let (c⃗m, a⃗ux)← VC.CommitρH (vp, f), and (c⃗m′, a⃗ux′)← VC.CommitρH (vp, f ′).
8. Set acc.x = (e, x, c⃗m, c⃗m′) and acc.w = (a⃗ux, a⃗ux′).
9. Query Q← ρAS(τ, [acci.x]

m
i=1, q, acc.x), where Q(j) is a uniformly sampled t-sized subset of [n].

10. For each i ∈ [m], let o⃗pi ← VC.OpenρH (vp, a⃗uxi,Q), and o⃗p′i ← VC.OpenρH (vp, a⃗ux′i,Q).
11. Let o⃗p← VC.OpenρH (vp, a⃗ux,Q), and o⃗p′ ← VC.OpenρH (vp, a⃗ux′,Q).
12. Output acc and pf = (q, [o⃗pi, o⃗p

′
i]
m
i=1, o⃗p, o⃗p

′).

VERIFYρ(avk, [ei, xi, c⃗mi, c⃗m
′
i]
m
i=1, (e, x, c⃗m, c⃗m′), (q, [o⃗pi, o⃗p

′
i]
m
i=1, o⃗p, o⃗p

′)):
1. Query α,Γ← ρAS(τ, [acci.x]

m
i=1, q).

2. Query Q← ρAS(τ, [acci.x]
m
i=1, q, acc.x).

3. For each i ∈ [m], let vi = VC.AnswerρH (vp, c⃗mi, o⃗pi). If vi[Q] contains ⊥, reject.
4. Let v = VC.AnswerρH (vp, c⃗m, o⃗p,Q). If v[Q] contains ⊥, reject.
5. For each i ∈ [m], let v′i = VC.AnswerρH (vp, c⃗m′i, o⃗p

′
i). If v′i[Q] contains ⊥, reject.

6. Let v′ = VC.AnswerρH (vp, c⃗m′, o⃗p′,Q). If v′[Q] contains ⊥, reject.
7. Verify that e = vH(α) · q(α) +

∑n
i=1 Li,H(α) · e(i).

8. Verify that (x,v) =
∑m

i=1 Li,H(α) · (xi,vi).
9. Let (r1, . . . , rm, r′1, . . . , r

′
m)← Coeffs(Γ). Verify that v′ =

∑m
i=1 ri · vi + r′i · v′i.

Dρ
s(dk, acc.x = (e, x, c⃗m, c⃗m′), acc.w = (a⃗ux, a⃗ux′)):

1. Let f ← VC.AnswerρH (vp, c⃗m, a⃗ux).
2. Let f ′ ← VC.AnswerρH (vp, c⃗m′, a⃗ux′). If ∆(f ′,C) > (

∑s−1
i=0γ

i)δ, reject.
3. Find g ∈ C,∆(f ,g) ≤ (

∑s−1
i=0γ

i)δ by decoding f . If no such codeword exists, reject.
4. Accept if p(x, ĝ) = e.
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7 Optimizations

7.1 Batch commitments

The accumulation scheme in Section 6 enables accumulating m accumulators (or proofs) into one. Each
accumulator consists of a short commitment, e.g. a Merkle tree, and a long witness, the vector inside the
commitment. The most expensive step of the accumulation verifier requires opening a vector commitment, at
k locations of the accumulator’s codewords. Naively, this requires opening m · k Merkle proofs, which have
total size k ·m · log n, where n is the size of one accumulator witness. We can optimize the construction by
committing to all m codewords inside a single vector commitment. To do this we commit to a tuple of m
entries, one per codeword, at each position of the vector commitment. This enables opening all m vectors at
the same position using only a single Merkle proof. When performing the linearity check, we open the same
position for all codewords. This batch accumulator construction, now only requires a single Merkle proof per
opening. The total opening proof size is, thus, reduced from k ·m · log n to just k · (m+ log n). This is a
very significant saving, especially for larger values of m, which we use to build PCD trees with higher arity
m and lower depth.
Batch commitments and PCD. Using batch commitments naively is incompatible with our PCD con-
struction from Section 5.1. The reason is that each node containing an accumulator or proof is constructed
independently, thus committing to m accumulator witnesses or proof witnesses in one commitment isn’t
possible. Fortunately, there are many instances of PCD where it is possible to still take advantage of batch
commitments and batch accumulation. For example, consider the IVC construction from Section 7.2 with
uniform m-ary PCD and accumulation trees. Instead of constructing the PCD tree node by node, we can
construct m new PCD nodes and accumulators at the same time and use a batch commitment to commit
to the accumulator and proof witnesses. More formally, this is a PCD tree where the predicate φbig is m
concatenations of the original PCD predicate φsmall. Each accumulator now is a single batch commitment
with m witnesses and similarly, each proof consists of a batch proof with m witnesses. Each batch proof
proves φbig and the accumulation of m batch accumulators (m2 witnesses) into a single output batch accumu-
lator (m witnesses). More specifically, the m proof witnesses each prove one φsmall and the accumulation of
a batch accumulator (m witnesses) into the same output batch accumulator (localized to one index). The
construction is displayed in Figure 3. The big advantage is that the number of Merkle tree openings in the
recursive circuit is reduced by a factor of m. The downside is that the PCD prover’s memory (and the amount
of data needed to construct a new PCD node), now consists of at least m2 accumulator witness, a factor m
more than in the construction without batch commitments.

7.2 Low-overhead IVC from accumulation

As mentioned in Remark 2.2, constructing polynomial-length IVC from bounded-depth PCD requires a
tree-based strategy. Let us recall a simplified version of the construction from [Val08; BCCT13]. The idea is
to use a PCD scheme for the following compliance predicate.

φF (z, zloc, [zi]
m
i=1):

1. Leaf node. If z = (0, in, out) and each zi = ⊥:
• Parse zloc = w.
• Check that out = F (in, w).

2. Internal node. If z = (k, in, out) for some k ∈ [d] and each zi = (k − 1, ini, outi):
• Check that in = in1 and out = outm.
• Check that out1 = in2, out2 = in3, . . . , outm−1 = inm.

38



Suppose a transcript with output (k, in, out) is φF -compliant. Then out must be the result of mk applications
of F to in. Moreover, the leaf nodes of the transcript are labeled with the witness values. Using a PCD scheme
for φF , we construct IVC for computations of length at most md as follows. The IVC prover begins with an
empty m-ary tree of depth d. In each step, it adds a leaf node, which consists of the message (0, in, out) and
a PCD proof σ. Whenever there exists a full set of m nodes in a layer, the IVC prover creates a parent node
by running the PCD prover. This means that it only needs to keep track of the tree’s “frontier,” denoted τ ,
which consists of at most md nodes. At any step, the IVC verifier can check the computation by running the
PCD verifier on each node in the frontier.

In more detail, let PCD = (G, I,P,V) be a PCD scheme for the class of compliance predicates {φF }. A
full description of the IVC scheme is given below.

IVC.Generate(1λ):
1. Sample pp← G(1λ).
2. Output pp.

IVC.Index(pp, F ):
1. Compute (ipk, ivk) := I(pp, φF ).
2. Output ipk and ivk.

IVC.Prove(ipk, τ, in, w, out):
1. Generate a PCD proof σ ← P(ipk, (0, in, out), w, [⊥]mi=1).
2. Append (0, in, out, σ) to τ .
3. For each k ∈ [d]: if there are m nodes in the (k − 1)-th layer of the frontier, i.e. τ contains

[k − 1, ini, outi, σi]
m
i=1:

• Remove the nodes from τ .
• Generate a PCD proof σ ← P(ipk, (k, in1, outm),⊥, [(k − 1, ini, outi), σi]

m
i=1).

• Append (k, in1, outm, σ) to τ .
4. Output τ .

IVC.Verify(ivk, τ, x, T ):
1. If τ is empty, x is the initial value, and T = 0, accept.
2. Parse τ as a list of nodes [kj , inj , outj , σj ]ℓj=1.
3. For each j ∈ [ℓ], check that V(ivk, (kj , inj , outj), σj) accepts.
4. Check that in1 is the initial value and outℓ = x.
5. Check that out1 = in2, out2 = in3, . . . , outℓ−1 = inℓ.
6. Check that T =

∑ℓ
j=1m

kj .

This IVC scheme is somewhat wasteful, in the sense that the internal nodes of the tree do not use F . If
we were to instantiate PCD with the construction from Section 5, then the internal NARK proofs would be
proving F for nothing.

Accumulating separately. Our idea is to accumulate computations of F separately, and use PCD to
verify the accumulations. In particular, let ARG = (G,P,V) be a NARK for the indexed relation R =
{(F, (x, x′), w) : x′ = F (x,w)}. Let AS = (G, I,P,V,D) be an accumulation scheme for ARG. For
simplicity, we will assume that NARK proofs can be “cast” into accumulators (this is true for the construction
in Section 6). Finally, let PCD′ = (G′, I′,P′,V′) be a (not necessarily accumulation-based) PCD scheme for
the class of compliance predicates {φ′avk}, which is defined below.
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φ′avk(z, zloc, [zi]
m
i=1):

1. Leaf node. If z = (0, in, out, π.x) and each zi = ⊥, accept.
2. Internal node. If z = (k, in, out, acc.x) and each zi = (k − 1, ini, outi, acci.x) for some k ∈ [d]:

• If k = 1, check that each acci.x is cast from some π.x with instance (ini, outi).
• Check that in = in1 and out = outm.
• Check that out1 = in2, out2 = in3, . . . , outm−1 = inm.
• Pare zloc = pf.
• Check that V(avk, [acci.x]mi=1, acc.x, pf) accepts.

Similar to before, the IVC prover begins with an empty m-ary tree of depth d. In the T -th step, it adds a leaf
node, which consists of the message (0, in, out), a NARK proof certifying the computation out = F (in, w)
for some w, and a PCD proof σ. Whenever there exists a full set of m nodes in a layer, the IVC prover creates
a parent node by running the accumulation and PCD provers. A full description of the IVC scheme is given
below.

IVC.Generate(1λ):
1. Sample pp← G(1λ).
2. Sample ppAS ← G(1λ).
3. Sample pp← G′(1λ).
4. Output (pp, ppAS,pp).

IVC.Index((pp, ppAS,pp), F ):
1. Compute (apk, avk, dk) := I(ppAS, F ).
2. Compute (ipk, ivk) := I′(pp, φavk).
3. Output (pp, F, apk, ipk) and (pp, F, dk, ivk).

IVC.Prove((pp, F, apk, ipk), τ, in, w, out):
1. Generate a NARK proof π ← P(pp, F, (in, out), w) and cast it into an accumulator acc.
2. Generate a dummy PCD proof σ := ⊥.
3. Append (0, in, out, acc, σ) to τ .
4. For each k = 1, . . . , d: if there are m nodes in the (k − 1)-th layer of the frontier, i.e. τ contains

[k − 1, ini, outi, acci, σi]
m
i=1:

• Remove the nodes from τ .
• Accumulate (acc, pf)← P(apk, [acci]

m
i=1).

• Generate a PCD proof σ ← P′(ipk, (k, in1, outm, acc.x), pf, [(k − 1, ini, outi, acci.x), σi]
m
i=1).

• Append (k, in1, outm, acc, σ) to τ .
5. Output τ .

IVC.Verify((pp, F, dk, ivk), τ, x, T ):
1. If τ is empty, x is the initial value, and T = 0, accept.
2. Parse τ as a list of nodes [kj , inj , outj , accj , σj ]ℓj=1.
3. For each j ∈ [ℓ], check that V′(ivk, (kj , inj , outj , accj .x), σj) accepts. If kj = 0, recover πj from

accj and check that V(pp, F, (inj , outj), πj) accepts. Otherwise, check that D(dk, accj) accepts.
4. Check that in1 is the initial value and outℓ = x.
5. Check that out1 = in2, out2 = in3, . . . , outℓ−1 = inℓ.
6. Accept if T =

∑ℓ
j=1m

kj .
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We sketch the knowledge soundness extraction strategy for the IVC scheme. First, run the PCD extractor on
each node in the frontier to obtain all of the accumulator instances and proofs. Then, run the accumulation
extractor at each layer of the tree to obtain accumulator witnesses. The PCD compliance predicate guarantees
that the accumulators in the leaf layer are cast from NARK proofs. Run the NARK extractor on these proofs
to obtain each step of the computation.

Efficiency. We say that an IVC scheme’s proving cost is the amount of extra work the prover does, outside
of the original computation. Let Sd :=

∑d
i=0m

i be the number of nodes in a tree with height d and arity
m. In the old construction, the overhead is generating a tree of Sd PCD proofs. In the new construction, the
overhead is generating a tree of Sd accumulators and a tree of Sd−1 PCD proofs.

Recall that in accumulation-based PCD, a PCD proof consists of a NARK proof and accumulator. The
cost of generating a tree of Sd PCD proofs is roughly the cost of generating Sd NARK proofs, plus the cost
of generating Sd−1 accumulators (since the PCD prover outputs a dummy accumulator when there are no
incoming edges). Let R be the PCD circuit which consists of the compliance predicate and accumulation
verifier. We assume that the cost of generating a NARK proof or accumulator is roughly |R|. Hence, the cost
of generating a tree of md PCD proofs is roughly (Sd + Sd−1) · |R|.

In the old construction, the compliance predicate φ is dominated by the function F . The size of the circuit
R is roughly |F |+ |VR|, where VR denotes the accumulation verifier for R. Hence, the IVC scheme’s total
cost is (Sd + Sd−1) · (|F |+ |VR|).

In the new construction, the compliance predicate φ′ is dominated by VF , where VF denotes the
accumulation verifier for F . The size of the corresponding circuit R′ is roughly |VF |+ |VR′ |, where VR′

denotes the accumulation verifier for R′. Hence, the IVC scheme’s total cost is Sd · |F |+ (Sd−1 + Sd−2) ·
(|VF |+ |VR′ |).

To compare these costs, notice that VF is cheaper than VR, since the circuit R contains F . Assuming
F is sufficiently large, we can also reasonably expect that VR′ is cheaper than VR. This means that the
new construction’s overhead is bounded by Sd · |F |+ (Sd−1 + Sd−2) · 2|VR|. Hence, the new construction
reduces cost by at least Sd−1 · |F |+ (m− 2)(Sd−1 + Sd−2) · |VR|.

7.3 PCD composition

We show that combining our accumulation-based PCD scheme with a SNARK-based PCD scheme can yield
a new PCD scheme that is more performant than either scheme on their own.

Recursion overhead is linear in tree depth. In Section 5 we show that for every constant depth d predicate
there exists a PCD scheme. Note that this is a different order of quantifiers than prior unbounded accumulation
or SNARK-based schemes which showed that there exists a PCD scheme for any constant depth d predicate.
This change of quantifiers is not only interesting from a security point of view but also from an efficiency
perspective. The reason is that in our scheme the PCDs recursive overhead is linearly dependent on d. The
reason is that within each accumulation step, we prove that the output accumulator code is δ close to the input
accumulator code. After d steps the distance is d · δ. Even if the final accumulator is a codeword we need to
ensure that the accumulators at the leaves of the PCD tree are still within the unique decoding radius of the
code. If d increases, we, therefore, decrease δ by increasing the spot-checking parameter in our accumulation
scheme. The relationship is roughly linear, as we need to do the linearity check at O(λd) positions.

Reducing PCD depth. This relationship motivates the need for lower-depth PCD trees. One avenue is
using higher arity accumulation/PCD trees. Another optimization combines two PCD schemes. Let PCDacc

be a depth-bounded accumulation-based PCD scheme. Let PCDARG be a SNARK-based PCD scheme (that
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is not depth bounded). This second PCD scheme checks the original predicate φ as well as checking the PCD
proof output by PCDacc.

Let d∗ be the maximum depth supported by PCDacc and m it’s arity. We combine the schemes by first
building PCD trees up to depth d∗. Then we use PCDARG to combine the roots of these PCD schemes. Note
that we only need to use PCDARG every md∗ PCD step. Even for relatively small values of d∗ this is likely a
marginal cost compared to the cost of running PCDacc. In fact, we can even pick our parameters optimally.
Assume that PCDARG is c times as expensive as running PCDacc for a depth 1 predicate. Let n be the cost
of running PCDacc for a depth 1 predicate. Since PCDacc is linear in the maximum supported depth, we
have that the total PCD cost is proportional to d∗ · n + c·n

2d∗
. Setting d∗ = log c, we get a cost of log c · n,

significantly lower than either scheme on its own.
This optimization can be further used for code switching techniques, as the first PCD scheme could be

used using a linear-time code and the SNARK-based PCD scheme could be using Fractal [COS20] and FRI
[BBHR18] which are based on Reed–Solomon codes.

Compatibility. The optimization works for any depth-bounded PCD scheme with an arbitrary other PCD
scheme. It is even possible to stack two accumulation-based schemes. For instance, one could use a fast
linear-time encodable code for the first PCD and then use a Reed-Solomon code (which has longer encoding
time but shorter codes) for the second PCD. The optimization is also fully compatible with both batch
accumulators and the low-overhead IVC.
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