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Abstract

Private Information Retrieval (PIR) is a two player protocol where the client, given some
query x ∈ [N ] interacts with the server, which holds a N -bit string DB in order to privately
retrieve DB[x]. In this work, we focus on the single server client-preprocessing model, initially
idealized by Corrigan-Gibbs and Kogan (EUROCRYPT 2020), where the client and server first
run some joint preprocessing algorithm, after which the client can retrieve elements of the
server’s string DB privately in time sublinear in N .

All known constructions of single server client-preprocessing PIR rely on one of the following
two paradigms: (1) a linear-bandwidth offline phase where the client downloads the whole
database from the server, or (2) a sublinear-bandwidth offline phase where however the server
has to compute a large-depth (Oλ(N)) circuit under FHE in order to execute the preprocessing
phase.

In this paper, we construct a single server client-preprocessing PIR scheme which achieves
both sublinear offline bandwidth (the client does not have to download the whole database of-
fline) and a low-depth (i.e. Oλ(1)), highly parallelizable preprocessing circuit. We estimate that
on a single thread, our scheme’s preprocessing time should be more than 350x times faster than
in prior single server client-preprocessing PIR constructions. Moreover, with parallelization, the
latency reduction would be even more drastic. In addition, this construction also allows for
updates in Oλ(1) time, something not achieved before in this model.
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1 Introduction

Private information retrieval (PIR) [14, 34] is an important cryptographic primitive, which allows
a client to fetch a data entry from the database without revealing which entry it is. However, one
major practical limitation of PIR is that to fetch an entry, it takes O(N) time, where N is the
number of data entries in the database [7]. In 2020, Corrigan-Gibbs and Kogan [18] introduced
the notion of online/offline PIR, where during the offline phase one server processes the database,
generates a hint, and sends it to the client. In the online phase, the client can then use this hint
to query the data entry it wants from another server. In this paradigm, the online time can be
sublinear in N . Subsequent to [18], many other works have pushed our understanding of this PIR
model [33, 41, 37].

One major limitation of the initial idea by [18] is that it requires two non-colluding servers.
The client cannot sends its queries to the same server that ran the preprocessing or this breaches
privacy. Thus, a series of work study how to get optimal complexities in the single server scenario
[17, 59, 36], using fully homomorphic encryption (FHE) and other sophisticated techniques to
transform two-server constructions into a single-server construction: the server generates the hint
using FHE and thus cannot see the hints.

While these works achieve near-optimal asymptotic complexities, the schemes are far from being
practical: the homomorphic circuit computed under encryption by the server requires Oλ(N) depth
[17, 36, 59], which concretely comes out to millions of levels of multiplication for most if not all
PIR use cases.1 The depth of a circuit is arguably the most impactful metric to optimize for, when
constructing a circuit to evaluate under FHE (other than its size, given that all the existing FHE
schemes are most efficient in the leveled setting, i.e., working over circuits with a small fixed depth).
It is an open question whether we can devise a low-depth (i.e. Oλ(1)) circuit with Oλ(N) gates
whose output can be used as the hints for a client-preprocessing PIR scheme.

To circumvent the need for such circuit, another line of work [60, 46] instead proposes to allow
the server to stream the whole database to the client during the offline phase. The client computes
the hints locally by itself under plaintext (in a streaming fashion, while maintaining o(N) storage
at all times). In this way, the server does not see the hints, and FHE is not required. Of course,
the major disadvantage of this approach is that there is a Ω(N) communication cost during the
offline phase.

So, the current state for client-preprocessing single server PIR is that one can either down-
load the whole database at the preprocessing step, or have the server evaluate an Oλ(N) depth
circuit encrypted gate-by-gate using FHE to compute the hints in near-linear time with sublinear
bandwidth.

This motivates the following question:
Can we construct a single-server offline/online PIR scheme that achieves (1) sublinear amor-

tized time, (2) sublinear offline communication, and (3) use a polylog/constant depth and linear
size circuit to compute the hints?

In this paper, we answer this question in the affirmative, by constructing such a scheme, which
additionally has constant update time.

1The circuit requires linear depth to compute parities of O(
√
N) subsets of O(

√
N) database indices in near-linear

time. Naively, one can achieve O(1) depth by blowing up the size of the circuit to O(N2), but the amortized time of
the PIR scheme in [17] would no longer be sublinear. We observe that it might be possible to achieve Oλ(

√
N) depth

by devising a circuit specific to some newer PIR schemes [60, 46] (although not explicitly constructed anywhere).
However, this is still significantly larger than our target depth.
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1.1 A Detailed Overview of our Contributions

A new single server PIR scheme (with constant update time). Our starting point is
to construct a new single server client-preprocessing scheme (with linear offline communication
following [60, 46], but constant update time), inspired by the two-server-PIR scheme introduced
in [35]. The scheme in [35] uses a different technique for its preprocessing phase than previous
approaches [46, 37, 18]: instead of sampling independent subsets of [N ], it splits the database in
Q chunks and permutes each chunk db1, . . . ,dbQ using permutations p1, . . . , pQ. Then, it computes
hints h1, . . . , hN/Q, where each hj =

⊕
i∈Q db[pi(j)] (i.e., XOR the corresponding database entries).

Notice that all the hints are now dependent (if an element appears in one hint it certainly does
not appear in another). Server 0 performs this computation for the client offline. Then online, the
client can manipulate the permutations to generate both a query to Server 1 (which will allow it to
retrieve its element of interest using hj), and a ‘refresh’ query to Server 0 (which allows it to edit
the permutations in a way that they look uniform to Server 1 for the next query).

Our scheme is different from [35] in the following aspects:

• Refined security requirement for permutations: first, we propose a scheme that does
not require pseudorandom permutations secure for adversaries given any number of queries.
We observe it is enough to use a pseudorandom permutation that is secure only against
adversaries given q = o(N) queries to the pseudorandom permutation. This allows us to
substitute the Fisher-Yates permutation used by [35] with a Thorp q-Shuffle [55], a shuffle
whose security only guarantees that it is indistinguishable from a permutation for adversaries
given at most q queries. The main benefit of using the Thorp q-Shuffle is that the depth of
the computation for evaluating it is actually O(λ) for q = o(N) [45], and also we can update
the hint with constant time (with also sublinear client-side storage).

• Eliminating the two-server requirement: after substituting the permutations for Thorp
q-Shuffles, we also eliminate the requirement for two servers by first, having the client down-
load the database offline and compute the hints locally, and second, modifying the query stage
carefully so it no longer relies on a refresh operation from Server 0 for the scheme’s security.
The former technique is known [60], but the edits to the query phase require scheme-specific
tailoring.

After all these changes, we have a single-server PIR that has (1) sublinear amortized query
time; (2) linear offline bandwidth; (3) low-depth preprocessing computation; (4) sublinear client
storage; (5) constant update time.

Notice that this scheme already brings benefits with respect to prior works in the same model,
as prior works cannot efficiently support updates natively, and require Oλ(

√
N) time per update,

while our scheme requires only Oλ(1) update time.

Improved Thorp Shuffle Bound. We further optimize our scheme by reducing the depth of
computation required to achieve a shuffle with our desired security through an improvement in the
Thorp Shuffle’s mixing time analysis. While the bound shown by [45] already provides depth O(λ),
the constants are still undesirable and so we set out to optimize them.

Specifically, in [43], with ∼4r log(N) rounds of Thorp shuffle, they show that any (adaptive)

q-query adversary to an indistinguishability experiment has an advantage of at most 2q
r+1

(
4qn
N

)r
of

distinguishing between the Thorp Shuffle and a real permutation. In our new bound, we prove that

4



with only 2(r+1) log(N) rounds, the adversary has an advantage of at most 2q
r+1

(
2qn
N

)r
. Practically,

for the same advantage, our bound reduces the depth of the permutation’s computation by about
2.5x.

Our proof technique refines the Markov chain coupling argument shown in [45]. Specifically, the
technique (both in our work and [45]) is to define a coupling between a Thorp Shuffle process and
a (carefully picked) uniform process, and show that after T Markov chain updates, the probability
that the chains are not coupled is very small. If the chains are coupled, then the Thorp Shuffle
is by definition indistinguishable from a uniform permutation. Although we use the same proof
setup, we refine the technique by uncovering additional conditions that would result in a coupling,
and then calculating the new probability that the chains are coupled after T steps.

Evaluating the Thorp Shuffle under FHE. Given our new scheme and the optimized Thorp
q-Shuffle, we now look into eliminating the linear offline bandwidth by having the server compute
the Thorp Shuffle obliviously under FHE. Although a circuit representing the Thorp Shuffle has
only O(λ) depth, there are still two important considerations we need to make when trying to
evaluate the Thorp Shuffle homomorphically using FHE and sublinear bandwidth:

1. How to generate random bits efficiently? A generic PRG can be very slow when
evaluated using FHE. For example, when evaluating AES using FHE, it takes ∼86 seconds
to generate 128 bits [58], which is almost a second per bit. This would mean that a Thorp
Shuffle that needs to sample 220 bits would take more than a week of computation to simply
generating these bits. We also cannot directly encrypt and send the bits since the number of
bits required is Ωλ(N).

2. How to perform swaps efficiently? For the best amortized efficiency, we focus on FHE
schemes with the SIMD (same instruction multiple data) feature, over finite field (the BFV
[13, 23], BGV [12] schemes). For such schemes, a single ciphertext encrypts D plaintext
elements at the same time and every operation over the ciphertext applies to all these D
encrypted elements. However, for Thorp shuffle, in each round, we need to move element
i < N/2 to position 2i or 2i + 1. This is very challenging for BFV/BGV as each plaintext
inside the same ciphertext needs to be moved to a very different position, potentially even
different ciphertexts.

With these two points in mind, we propose the following solutions, which may be of independent
interest.

A practical FHE-friendly PRG. As a building block towards our homomorphic oblivious
permutation, we build a PRG based on the learning with rounding assumption, which is very FHE-
friendly. Concretely, its runtime is only about 0.4 ms per bit, compared to 672 ms per bit when
homomorphically evaluating a general practical PRG like AES [58]. As mentioned, we focus on
the BFV [11, 23] and BGV [12] homomorphic encryption scheme, which render the best amortized
efficiency. As suggested in [2, Appendix A.1], BGV/BFV can be used interchangeably. Thus, later
in the paper, we use BFV only for simplicity.

Observe that BFV scheme works best (in terms of efficiency) over Zt where t is a small prime of
size 15-30 bits (we explain why in more detail in Section 4.1). Therefore, to fit this constraint, we
make our PRG work over Zt as well. A natural idea is thus to build it from a lattice assumption, as
lattice assumptions can work over prime fields of such size. Our PRG is thus based on the Learning
with Rounding (LWR) problem. At a high level, we compute R(As) where A ←$ Zm×n

t , s ←$ Zn
t
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and R(x) : Zm
t → Z2 checks if x ∈ [0, ⌈t/2⌉] return 0 and otherwise return 1. This gives us a PRG

that outputs 0 with probability ⌈t/2⌉t ≈ 1/2. However, this is not enough. Essentially, we need a
PRG that outputs 0 with probability 1/2 + negl(λ). To do this, we sample k independent Ai’s for
i ∈ [k] and compute R(Ais), for some k such that t−k = negl(n). Then, if Ais is 0 (for each single
Zt element among the m Zt elements), we check Ai+1s for i ∈ [k−1]. If all of them are 0, we return
0, but otherwise, we return R(Ais) where i is the smallest value such that Ais ̸= 0. In this case,
we obtain a PRG based on LWR.

To make it even more FHE-friendly, we design an alternative R(·) function, that instead maps
x to 0 iff x(t−1)/2 = −1, which can be computed in only log(t)− 1 multiplications. Essentially, this
function maps half of x ∈ Z∗t to either 0 and the other half to 1. Furthermore, checking whether
Ais = 0 is also easy: xt−1 = 0 iff x = 0. Putting all these together, our PRG only takes k · log(t)
multiplications, and the security relies on a variant of LWR with a special rounding function R(·)
described above.

Perfoming swaps with FHE. Now we address the second issue: swapping under FHE. As
mentioned, performing the Thorp Shuffle with BFV naively is not very efficient. However, by [20,
Lemma 1], n rounds of the Thorp Shuffle are equivalent to n rounds of a butterfly network, and
the update rule of the butterfly network is much more BFV-friendly.

In particular, at round k ∈ [log(N)], position i is swapped with position i + 2k−1. This is
easily doable by BFV since all these pairs get swapped have the same interval in terms of positions.
Therefore, we implement that instead.

Another difficulty that comes up is that even with our tightened Thorp Shuffle bound, we still
require hundreds of levels of multiplication under FHE. If we directly use regular BFV without
bootstrapping, the parameters to support this many levels are too large.

In addition, the naive alternative, regular BFV bootstrapping is very slow (hundreds of mil-
liseconds per element). We circumvent both by leveraging a recent advancement in relaxed BFV
bootstrapping (which requires only a couple of milliseconds per element bootstrapped) [40]. Al-
though the relaxed bootstrapping only guarantees correctness when each plaintext element is in
a predetermined fixed subset of the plaintext space, it works in our use case since we only need
encrypted bits.

Putting everything together. Finally, we can combine our PIR scheme with the homomorphic
Thorp Shuffle to achieve a client-preprocessing scheme with sublinear bandwidth and low-depth,
highly parallelizable server computation in the offline phase. We discuss its performance in Sec-
tion 5.

1.1.1 Why not sorting networks?

A simple solution to performing a shuffle given a generic FHE scheme and a generic PRG g :
{0,1}λ → {0,1}∗ is for the client to generate a PRG seed s, encrypt it under FHE, and send it
to the server. It also sends its public key. The server then homomorphically evaluates g(s) and
assigns a random value (encrypted under FHE) to each database entry. It then uses a sorting
network to sort the database elements according to the random values, where each gate in the
network is encrypted under FHE. We already went into the difficulty of how to evaluate a PRG
under FHE (and our proposed solution). However, it is still unclear why we go through the trouble
of using a q-Thorp Shuffle when there exists low-depth sorting networks that can be used to solve
the problem. The sorting network solution poses two additional major drawbacks.
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1. Although there exist known sorting networks with optimal O(N logN) size and O(logN)
depth [1, 51, 15], these sorting networks are notoriously complex and incur huge constant
factors in the depth (the best known sorting network with O(logN) depth has depth about
1800 logN). Sorting networks with O(N log2N) gates and O(log2N) depth [6, 49, 54] perform
better empirically, but still are asymptotically suboptimal, and furthermore suffer from the
drawback below.

2. The ciphertexts randomly assigned by the server to each block must encrypt plaintext values
of at least λ bits to ensure the sorting network generates a computationally random permuta-
tion (to avoid being assigned to the same random element except with 2λ probability). This
restriction imposes an additional λ multiplicative factor to the depth of the FHE computa-
tion of a permutation on any sorting network, since comparing between these two elements
homomorphically requires a circuit of depth and size O(λ). Thus combining with item (1),
the total depth is Ω(λ log(N)).2

We also compare our solution with this naive solution in Table 1 in terms of both depth and
estimated runtime.

1.2 Related Work

1.2.1 Oblivious Shuffles.

Oblivious shuffles have been studied under different definitions and contexts. Informally, we define
a shuffle to be oblivious if the access pattern of the shuffling does not reveal any information about
the shuffle itself. This definition is different than what is seen in [30, 44], whose schemes does
not satisfy the definition above. Oblivious permutations (as defined above) have been studied
to a large amount in the client server model, where the client wants to shuffle some N encrypted
blocks stored at the server according to some pseudorandom permutation σ which should be hidden
from the server. Works in this model [47, 50, 3] achieve near-optimal asymptotics with very little
client storage usage, however, all known works require the client and server to communicate O(N)
information to perform these shuffles. In our work, we want to avoid the O(N) communication,
although for scenarios with very large database elements, it might be worth looking into performing
an oblivious permutation with linear bandwidth that is perhaps independent of element size.

1.2.2 Permutation Networks.

Permutation networks are networks supposed to shuffle its inputs. There are two best known net-
works: Butterfly networks (which can equivalently be seen as the Thorp Shuffle [55] or a maximally
unbalanced Feistel network), and Benes networks [8]. Known mixing times for the Thorp Shuffle are
tighter than those for Benes networks [25], so we focus on the Thorp Shuffle in this work. Another
permutation network, proposed by Waksman [56], achieves optimal size and depth, but it requires
random access on a permutation matrix of size N ×N which is costly when trying to evaluate the
circuit under FHE.

2Notice that we cannot simply assign random output to each comparison in the sorting network. The output of
the sorting network for this case would not necessarily be equivalent to sampling a permutation uniformly (although
it certainly is true that every possible permutation can be output in this method, the distribution of each is not
uniform). It is an open question whether there exists a low-depth sorting network that can be used with random
comparators to output something indistinguishable from a uniformly sampled permutation.
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1.2.3 Private Information Retrieval.

PIR has been studied in a series of different contexts and models. Other than the client prepro-
cessing model studied in this work, another popular model is the server preprocessing model. In
the server preprocessing model, the server runs one very expensive preprocessing and stores ad-
ditional bits at the server which it can then use to respond to queries by any client in sublinear
time. This has been studied in a series of works using non-standard assumptions or trusted setups
[31, 10]. Recently Lin et al. [39] pushed a breakthrough on the server preprocessing model, achiev-
ing near-optimality under standard assumptions. Although this model is very appealing, the costs
in preprocessing time and server storage are still prohibitive [48], however it is still very recent work
and there are likely many more practical improvements to be made. PIR has also been extensively
studied with the simplifying assumption of requiring two non-colluding servers. Using the scheme
by [27, 9, 28] we can run extremely efficient non-preprocessing PIR at rates very close to optimal,
with the caveat of the non-colluding servers assumption.

Other works have studied single server PIR in the context of preprocessing with a smaller
client hint [29, 21]. These works still incur linear server time during the query phase, however,
all expensive operations are performed offline and the online phase can be viewed as a single scan
through the database. Another emerging interesting line of work within PIR is the line of work
on Authenticated PIR [16, 22, 57]. In this line of work, the client can be guaranteed that the
server followed the protocol honestly, a guarantee not inherent in standard PIR (in the standard
PIR definition, although privacy holds against malicious servers, correctness only holds for a server
behaving honestly).

2 Preliminaries

Notation. Let Bern(p) for 0 ≤ p ≤ 1 denote the Bernoulli distribution with probability p: i.e.,
Px←Bern(p)(x = 0) = p and Px←Bern(p)(x = 1) = 1− p. [x] := {1, . . . , x} for x ∈ Z+.

2.1 Hard Problems

Definition 2.1 (Decisional learning with rounding problem). Let n, q, p be parameters dependent
on λ, and R : Zq → Zp be a function. The learning with rounding (LWR) problem LWRn,q,p,R

states the following: for any m = poly(λ), distinguish (A,R(s⃗A)) and (A,R(⃗b)) (with noticeable
advantage), where A←$ Zn×m

q , s⃗←$ Zn
q and b⃗←$ Zm

q .

Let ⌊·⌉(x) := ⌊p · x/q⌉ (for the p, q above), then LWR·,·,·,⌊·⌉ is the standard decisional learning
with rounding problem introduced in [5].

2.2 Pseudorandom Generator

Definition 2.2. A (t,m, p)-PRG is a deterministic and polynomial-time computable function f :
Zn
t → {0,1}m, such that for any PPT adversary A, |Pr[A(f(s)) = 1]− Pr[A(R)]| ≤ negl(n), where

s←$ Zn
t , R←$ Bern(p)m, and m > n⌈log(t)⌉.

A standard PRG is simply a (t,m, 1/2)-PRG, and we denote it as (t,m)-PRG and ignore 1/2
for simplicity.
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2.3 FHE

Fully Homomorphic Encryption (FHE), introduced by Rivest et al. [53] and first constructed by
Gentry [26], enables evaluation of a circuit on encrypted data, such that the result is the encryption
of the corresponding output.

BFV FHE scheme. We use the Brakerski/Fan-Vercauteran (BFV) homomorphic encryption
scheme [11, 23] in all constructions.

BFV scheme consists of the following PPT algorithms: GenParams(1λ),KeyGen(ppBFV),Enc(
ppBFV,pk,m),Dec(ppBFV, sk, c) as normal PKE schemes. BFV is unconditionally correct and sound.
Under the Ring-LWE hardness assumption, it also fulfills the standard definitions of semantic
security (IND-CPA) for FHE schemes.

Given a polynomial from the cyclotomic ring Rt = Zt[X]/(XD+1) (where D is a power-of-two,
t ≡ 1 mod 2D), the BFV scheme encrypts it into a ciphertext consisting of two polynomials, each
of in a larger cyclotomic ring RQ = ZQ[X]/(XD +1) for some Q > t. Here, t, Q, and D are called
the plaintext modulus, the ciphertext modulus, and the ring dimension, respectively.

Plaintext encoding. In practice, instead of having a polynomial in Rt = Zt[X]/(XD+1) directly
as input, applications usually hold a vector of messages m⃗ = (m1, . . . ,mD) ∈ ZD

t . Thus, to encrypt
such input messages, BFV first encodes the messages into a polynomial in Rt (via Inverse Number
Theoretic Transform). We say that a BFV ciphertext has D slots, each of which is a Zt element.

For simplicity, we assume BFV.Enc takes a vector of form ZD
t as an input, and BFV.Dec outputs

a vector of form ZD
t , and will handle encode and decode implicitly.

Operations. BFV supports the following operations.

• (Additions) For any two BFV ciphertexts ct1, ct2, and ct← ct1+ct2, it holds that BFV.Dec(ct) =
BFV.Dec(ct1) + BFV.Dec(ct2) (element-wise).

• (Multiplication) For any two BFV ciphertexts ct1, ct2, and ct ← ct1 × ct2, it holds that
BFV.Dec(ct) = BFV.Dec(ct1)× BFV.Dec(ct2) (element-wise).

• (Rotation) For any BFV ciphertexts ct, and ct′ ← BFV.Rotate(ct, k) for some k ∈ [D], let
BFV.Dec(sk, ct)[i] = BFV.Dec(sk, ct′)[i+ k mod D].

2.4 Private Information Retrieval

We first formally define correctness and privacy for PIR.

Definition 2.3 (Interaction). A PIR interaction between client and server for PIR scheme =
(Preprocess, Query, Answer, Reconstruct) is as follows:

• Client requests the database and runs Preprocess locally.

• For each query xt, for t ∈ [T ], client runs a1, . . . ,aq = Query(st,xt) and sends a1, . . . ,aQ to the
server.

• Server returns {dbi(ai)}i∈[Q] to the client.

• Client outputs Reconstruct(st, {dbi(ai)}i∈[Q], xt).

9



After T queries, client must re-run the preprocessing to perform the next query. In addition, st is
the client’s state with which it can access variables across algorithms.

Definition 2.4 (PIR correctness). A PIR scheme (Server,Client) is correct if, for any polynomial-
sized sequence of queries x1, . . . ,xQ, the honest interaction of Client with Server (Definition 2.3)
that stores a polynomial-sized database DB ∈ {0,1}N , returns DB[x1],. . . , DB[xQ] with probability
1− negl(λ).

This definition of interaction above assumes that the client runs the preprocessing. We slightly
abuse the definition and allow the server to run the preprocessing for one of our theorems. In this
case, the client runs an additional algorithm Init whose output it sends to the server, and saves the
hints output from the server’s preprocessing.

We now define correctness and privacy according to the interactions above.

Definition 2.5 (PIR privacy). A PIR scheme (Server,Client) is private if there exists a PPT
simulator Sim , such that no PPT adversary A can distinguish the following experiments with
non-negligible probability:

• Expt0: Client interacts with A who acts as Server. At every step t, A chooses the query index
xt, and Client is invoked with input xt as its query.

• Expt1: Sim interacts with A who acts as Server. At every step t, A chooses the query index
xt, and Sim is invoked with no knowledge of xt.

In the above definition our adversary A can deviate arbitrarily from the protocol.

2.5 Thorp Shuffle

The Thorp Shuffle is a shuffling algorithm introduced in [55]. It works as follows. We start with
the ordered set [1, . . . , N ] for some even N . Then, for every pair of cards i, i + N/2, we flip a
coin that decides which one will be placed in position 2i, and which one will be placed in position
2i + 1 on the next round. This is then repeated for multiple rounds. As the number of rounds
t approaches infinity, the output of the Thorp Shuffle approaches the distribution of a uniformly
sampled permutation [43]. We describe the algorithm below in Algorithm 1.

Algorithm 1 Thorp Shuffle. Parameters t,N ∈ N, N even, n = ⌈log2N⌉.
1: procedure Thorp Shuffle(A1, . . . AN ∈ [N ])
2: for t steps do
3: Let Fi = Ai for i ∈ {1, . . . , N/2}
4: Let Si = Ai+N/2 for i ∈ {1, . . . , N/2}
5: for j in [1, . . . ,N/2] do
6: Sample bit b uniformly at random
7: if b then
8: Let A2j−1 = Sj , A2j = Fj

9: else
10: Let A2j−1 = Fj , A2j = Sj

11: return A1, . . . , AN
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Algorithm 1 describes a ’perfect’ version of the Thorp Shuffle, using perfect randomness. We
will denote this perfect version of the Thorp Shuffle Tht, and abuse notation slightly to also allow
point queries and inverse queries to the this perfect Thorp Shuffle, which tell us where a specific
element landed at the end or where it began. We define these operations in the context of a Thorp
Shuffle using computational randomness below (using a PRG to seed the bits utilized in each step)
below.

Definition 2.6. A Thorp Shuffle Th is a tuple of three algorithms:

• Gen(λ,N ∈ N, q ∈ [N ])→ s ∈ {0,1}O(λ): This algorithm takes in a security parameter and a
set size N and outputs a PRG seed s to be used to both generate the Thorp Shuffle secure
for q queries and also includes the number of rounds t to run for.

• Eval(s,x ∈ [N ]): Takes in a seed s and an index x ∈ N and outputs its Thorp Shuffle
evaluation y in O(λ) steps using s and a PRG to generate the bits necessary.

• Inv(s,y ∈ [N ]): Takes in an index x ∈ N and outputs its inverse Thorp Shuffle evaluation x
in O(λ) steps using s (outputs x such that Th.Eval(s,x) = y.

Concretely, the seed s is just a PRG seed of size λ and a description of how many rounds to
run the protocol for, which is also a function of λ. We then use the seed s to generate the bits b in
each step.

For efficiency reasons, we would like to minimize t, the number of rounds of Thorp Shuffle to
run, especially if it will be run under FHE. Next, we will look at how to bound the Thorp Shuffle’s
distance from a true permutation. In this bound, we use Tht(·) and Th−1t (·) to point queries to
the perfect Thorp Shuffle and its inverse for a shuffle run for t steps (i.e., Thorp shuffle using true
randomness instead of a PRG). For any N,λ ∈ N, q ∈ [N ] = o(N), t ≥ 1, [45] prove that for any
adaptive q-query CCA adversary A, it follows that:∣∣∣P(ATht(·),Th−1

t (·)(λ, q) = 1
)
−P

(
Aπ(·),π−1(·)(λ, q) = 1

)∣∣∣ ≤ 2q(4n+ t)

4n− 4

(
4qn

N

)t/(4(n−2))
.

where n = log(N) and π is a random permutation. Note that this is the best-known concrete bound
on the number of rounds for q ≈ O(

√
N). The bound says that approximately every 4n rounds

of Thorp allows us to reduce the adversary’s advantage by a factor of (4qn/N); given q ≈
√
N ,

this fraction is approximately 1/
√
N . Looking ahead, in Section 4 we show how to improve this

bound to cut down the number of rounds required to achieve computational indistinguishability
and greatly reduce the computation depth needed for the Thorp Shuffle.

3 A Permutation-Based Single Server PIR Scheme

Our starting point is the 2-server client-preprocessing PIR scheme from [35]. For completeness, we
include the original scheme in Appendix B (see a high-level summary in Section 1.1). This scheme
is relevant to us because in the offline phase, Server 0 samples Q permutations of N/Q elements
(seeded by a client-sent seed), computes parities based on these permutations and returns them to
the client. The client then uses a second server (Server 1) to perform queries, since sending the
queries to the same server that saw its permutations would breach privacy (client still uses Server
0 for refreshing its hints).

11



Here, we propose a series of changes to the scheme in [35] to construct a single server scheme
using the idea of sampling Q permutations of N/Q elements. First, we construct our scheme in
the framework of client preprocessing single server PIR that allows linear bandwidth offline. In
this model, previously explored in [60, 46], the server streams the database to the client in the
offline phase, which computes (with sublinear storage) hints that can then be used at query time to
perform queries that take o(N) time. Looking ahead, this scheme will serve as a stepping stone to
later construct a scheme that does not need linear bandwidth offline, by constructing a primitive
that allows the shuffle to be sampled at the server obliviously.

3.1 Building a Single Server PIR Scheme.

Algorithm 2 defines our scheme variant with linear offline bandwidth. Our scheme is inspired by
[35], but differs in several important aspects. We will first give a high level intuition and present
our scheme. Later we delve into the major differences between our scheme and [35].

3.1.1 Intuition.

At a high level, our scheme works as follows. Initially, the server streams the database to the client
one element at a time. For each database element it sees, it finds the appropriate hint (i.e., which
chunk of data the element is to-be XOR-ed with) this element belongs to (it can do this using
the Thorp Shuffle permutation in O(λ) time) and xors this element into the appropriate hint. It
repeats this for every element in the database.

For all j ∈ [N/Q], each hint hj represents the XOR of dbi[τi(j)] for all i ∈ Q (where dbi
represents the i-th chunk of db which is divided into Q equally sized chunks). At the end of the
preprocessing phase, the client stores the permutations and hints permanently.

Online, for the first query to x = (q,k) ∈ ([Q] × [N/Q]), the client first computes j = τ−1q (k),
and uses this j to find all the other database elements it needs to recover DB[x] from the hint. In
more detail, compute oi ← τi(j) for i ̸= q. Then, the client can compute DB[x] = h⊕i ̸=q dbi[τi(j)]
where h is the hint when getting dbi[oi] back by sending oi = τi(j). These oi’s are indistinguishable
from uniformly at random from [K] by the property of the underlying Thorp shuffle, and thus leaks
nothing about (q,k). Note that, however, it should also send oq, as otherwise, the server learns
that x = (q, ·). Thus, the client samples oq uniformly at random from [K] and sends it. After
querying, the client simply stores dbi[oi] in USEDi (some dictionary storing USEDi[oi] = dbi[oi]) for
all i ∈ [Q].

Now, for the following queries, the client first obtains oi as in the first query. However, note
that now the server might have seen oi already, which may leak some information (e.g., for the same
x = (q,k) as the first query, oq can be different but everything else remains the same). However, not
that for the oi that is already seen, the client know what dbi[oi] is as it is stored in USEDi. Thus,
instead of directly sampling oi, resample oi uniformly at random from [K] \ USEDi. Send the oi’s
after resampling. For the ones that are not resampled, they are indistinguishable from [K] \USEDi

by the property of the Thorp shuffle. Again, every query stores dbi[oi] in USEDi.
With all these intuitions, we show our construction in Algorithm 2, and can show the following

theorem.

Theorem 3.1. The PIR scheme defined in Algorithm 2 is correct (Definition 2.4) and private
(Definition 2.5) for T = o(N) queries, and runs with the following complexities:
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Algorithm 2 Single Server PIR scheme

1: procedure Preprocess(DB ∈ {0,1}N , λ, T)
2: Let K := N/Q. DB = db1, . . . ,dbQ where each dbi ∈ {0,1}K .
3: Let s1, . . . ,sQ be seeds generated with Th.Gen(λ,N, T ).
4: ▷ The number of rounds t for the Thorp shuffle is chosen according to Theorem 3.2, such that

the adversary has advantage ≤ 2−λ.
5: Initialize h1, . . . , hk = 0.
6: for t in [1, . . . ,Q] do
7: for j in [1, . . . ,N/Q] do
8: Let k = Th.Inv(si,j).
9: Let hk = hk ⊕ dbi[j].

10: Initialize empty dictionaries Usedi for i ∈ [Q].
11: return st = (H = (h1, . . . ,hN/Q), (Usedi)i∈[Q], (s1, . . . , sQ)).

12: procedure Query(st,x = (q,k) ∈ [Q]× [K])
13: Let y = Tht.Eval(sq, k) and add y to st.
14: Let Di denote the set of all the keys of st.Usedi for i ∈ [Q].
15: Let oi ← Th.Eval(si, y) for i ∈ [Q] \ {q} and oq ←$ [K] \Dq.
16: For each i ∈ [Q]: if oi ∈ Di then oi ←$ [K] \Di.
17: return o1, . . . , oq.

18: procedure Answer((DB = (db1, . . . , dbQ), (o1, . . . , oQ))
19: return (db1[o1], . . . , dbQ[oQ]).

20: procedure Reconstruct(st,{dbi[oi]}i∈[Q], pp, x = (q,k))
21: Let st.Usedi[oi]← dbi[oi] for all i ∈ [Q].
22: ai ← Th.Eval(si, st.y) for i ∈ [Q] \ {q}.
23: Let DB[x] = dbq[k] =

(⊕
i∈[Q],i ̸=q st.Usedi[ai]

)
⊕ st.hy.

24: return DB[x].
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• Oλ(N) preprocessing time.

• O(N) offline bandwidth.

• Oλ(Q) online client time.

• O(Q logN) online bandwidth

• O(Q) online server time.

• O(N/Q+ T ·Q) client storage.

• Oλ(1) update time

We prove this theorem in Appendix A. The proof requires new techniques to adapt to the Thorp
Shuffle instantiation only secure for q queries against adaptive adversaries.

Note that after T queries we can just re-run the scheme from scratch to achieve a scheme with
the same amortized complexities that runs for unlimited queries.

Parameter setting. For our scheme to be sublinear across all complexities, we must pick Q,T
such that Q · T = o(N). For example, for Q = T = N1/3, we get a single server PIR scheme with
O(N2/3) amortized server time, O(N2/3) offline and total bandwidth, O(N1/3) online bandwidth
and query time, and O(N2/3) client storage. By using the Thorp Shuffle permutation, we actually
circumvent the linear storage constraint present in [35] due to using the Fisher-Yates construction
[24]. See Appendix A for why the update time is Oλ(1).

3.1.2 Comparison to [35]

The main differences between our scheme and the scheme presented in [35] are as follows:

1. Our permutations are now q-shuffles sampled using the Thorp Shuffle [55, 45]. This means,
on one hand, that we can only show at most q points of each permutation sampled to the
adversary before our shuffle’s security no longer holds. However, this also means that we
greatly reduce the depth of the computation, since Fisher-Yates is a sequential algorithm
with O(N) depth.

2. The server now streams the database to the client upon request. Then, the client computes
the hint itself.

3. We eliminate completely the refresh operation. This requires changing the entire query step
to work differently. Previous works have ported two-server schemes to single server schemes
before by storing backup hints during the offline phase to later replace used hints [17, 36, 59].
This approach does not directly work in this case, since the hint at the client is not comprised
of independent subsets of the database. Instead, we take a different approach and store
elements seen, performing dummy queries when repeated elements are queried. This requires
quite a few modifications to the online phase to ensure that the distribution the server sees
is always uniform and independent of the queries.

4. Our scheme needs to be re-run from scratch every T queries. This is also true for previous
single server client preprocessing scheme [17, 36, 59] and a consequence of not being able to
refresh our state with the help of a second server as is the case for two-server schemes.
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Condition (1) causes us to incur an extra λ factor in the preprocessing when compared to [35]. How-
ever, it also decreases the depth of the preprocessing computation from O(N) to Oλ(1). Conditions
(2) and (3) are what allow us to eliminate completely the role of Server 0 in the original scheme
and are what allow us to transform it into a single server scheme. Condition (4) is a consequence of
eliminating Server 0. Since we can no longer receive fresh random elements to replace the ones we
used, we can only support a limited number of queries before having to re-run the preprocessing.

3.2 An Improved Thorp Shuffle Bound

We know that the output of the Thorp Shuffle converges to a uniformly sampled permutation as
the number of rounds we shuffle for approaches infinity [43]. More than that, [45] have analyzed
the Thorp Shuffle and specifically looked at exactly how well a set of N = 2n cards are shuffled
after t rounds of the the Thorp Shuffle. We define “how well” as the advantage an adversary would
have in distinguishing the shuffled elements from a truly random permutation given q queries to it.
Specifically, [45] bounds the total variational distance between the q queries of the Thorp Shuffle
and q queries from a uniform permutation over N elements. We improve on the bound on [45] that
was aforementioned with the following theorem.

Theorem 3.2. Let N = 2n and q ∈ {1, . . . , N}, {Th : t ≥ 1} be the Thorp Shuffle of [N ] after t
rounds. Then, for adaptive, q-query PPT adversary A:∣∣∣P(ATht(·),Th−1

t (·)(λ, q) = 1
)
−P

(
Aπ(·),π−1(·)(λ, q) = 1

)∣∣∣ ≤ 2q(n+ t)

n+ 1

(
2qn

N

)t/(2(n+1))

.

where π is a uniformly sampled permutation.

Recall Tht denotes the perfect shuffle run for t rounds and we allow for oracle point queries and
inverse queries to the shuffle (for a total of q queries adaptively). Notice that compared to the bound

achieved before (stated in Section 2.5), our bound is smaller by about a factor of (2qn/N)t/(2n),
which allows to use about half as many rounds while maintaining the same security. This directly
reduces the depth of the computation for the shuffle.

At a high level, our technique used, inspired by [45], is to define a Markov chain coupling that
correctly models the Thorp Shuffle and a uniform distribution, and try to bound how fast these
chains couple together.

Now, we provide an overview of the techniques used in our new bound’s proof.

Techniques. The proof in Morris et al. and subsequently ours uses a coupling argument. We
briefly give some intuition about what this is. A Markov chain can be defined by a transition matrix
P and initial state x. We denote P t(x) to mean the resulting state of applying the transition on
initial state x for t times, sequentially. Let π be the stationary distribution over the group, where, for
our purposes, the group is the group of all permutations of N cards, and the stationary distribution
is a uniform sample from this group (a uniform permutation). The relevant measurement that we
would like to minimize is the total variational distance between P t(x) and π, denoted ∆

(
P t(x), π

)
.

In specific, if we can show that the distance is 0, then we can say that after t steps our initial state
is indistinguishable from uniform. The first thing to verify is that the Thorp Shuffle, starting from
any initial distribution, eventually converges to the stationary distribution after enough steps. This
was shown in [43].
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The technique to bound the total variational distance is is to define two pair processes, meaning
two Markov chains with the same transition matrix P , but different starting states (where one gets
the desired x and the other some sample from π). This makes it so such that if for any t, the two
pair processes hit the same state, then they are the same from then onwards (since they are both
updated in the same way).

In [45], they show that for pair processes {Xt} and {Yt} such that X1 = x, Y1
$← π, both with

transition matrix P , it holds that:

∆
(
P t(x), π

)
≤ P(Xt ̸= Yt) = P(T > t),

where T is a random variable, T = min{t : Xt = Yt}. The insight here is that since Y1
$← π and

P is a probabilistic transition matrix, Yt
$← π for any t. Then, if after T steps, XT = YT , we can

conclude that XT is indistinguishable from a uniform sample from the group.
For improved readability, we defer the full proof for Theorem 3.2 to Section 6.

4 Homomorphic Thorp Shuffle

We have already motivated why the Thorp Shuffle is the best candidate shuffling algorithm to
perform under FHE. However, we have not seen yet how exactly to deal with the problems alluded
to in Section 1. Here, we recall the two main problems one faces when attempting to evaluate the
Thorp Shuffle under FHE, and how we propose to deal with them.

The first issue comes from the homomorphic PRG evaluation. Evaluating a commonly used
PRG like AES homomorphically is very slow. The state-of-the-art homomorphic AES evaluation
takes 86 seconds to generate 128 random bits [58]. Thus, even if only 220 random bits are needed,
it would take 704512 seconds to generate these bits using this solution. The second issue is that
the homomorphic permutation algorithm needs to be oblivious.

The second issue is the a naive realization of Thorp Shuffle is very FHE-unfriendly and can be
very costly in terms of runtime (as it needs to map elements inside the same ciphertext to different
locaitons and potentially different ciphertexts).

4.1 LWR-based FHE-friendly PRG

We start by addressing the first issue: constructing a scheme that can efficiently and obliviously
generate pseudorandom bits under FHE.

Recall that operations over small finite fields are more FHE-friendly, since FHE supports only
multiplications and additions over Zt for some prime t.3 Thus, with the motivation of building an
FHE-friendly PRG, we focus on lattice-based constructions, as they can indeed work over some
finite field Zt. Our goal is to construct a (t,m, p)-PRG with only multiplications and additions.

Construction with p = r/t for r ∈ Zt. We start with a simpler requirement: sampling bits
with distribution Bern(r/t) for r ∈ Zt. At a high level, the core idea is to rely on the Learning-
with-rounding assumption: the seed is simply a vector s←$ Zn

t . Then, the sampling is easy: first
randomly sample A←$ Zw×n

t and compute Rr(As), where Rr : Zt → {0,1} is defined as

Rr(x) =

{
1 if x ∈ [0, r − 1]
0 o.w.

3Technically, BFV also works with tr where t is a prime and r > 1. However, this reduces the amortized efficiency
and we do not consider such parametrization.
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Algorithm 3 (t,m, r/t)-PRG for r ∈ Zt

1: procedure fA(s) ▷ A←$ Zm×n
t

2: Define

Rr(x) =

{
1 if x ∈ [0, r − 1]
0 o.w.

3: return Rr(As)

Here the Rr can be evaluated via a degree-(t− 1) polynomial function (interpolated using Rr). Of
course, one restriction is that we need LWRn,q,2,Rr to be hard, which is assumed to hold as long as
r is large enough.

Security of LWRn,q,2,Rr . While the rounding function Rr is not a standard rounding function,
for a lot of values of r, we can in fact reduce a regular LWRn,q,q′,⌊·⌉ instance for some q′ ≥ 2 to our
LWR assumption with this special rounding function. We formalize it with the following lemma.

Lemma 4.1. For any n, q > 0, and r, q′ > 0 such that ⌊(r− 1) · (q/q′)⌋ = 0 and ⌊r · (q/q′)⌋ = 1, it
hold that LWRn,q,q′,⌊·⌉ ≤ LWRn,q,2,Rr .

Proof. To prove this lemma, given an adversary A that breaks LWRn,q,2,Rr , we construct the fol-
lowing adversary that breaks LWRn,q,q′,⌊·⌉.

Given an LWRn,q,q′,⌊·⌉ sample (A, b⃗) ∈ Zw×n
q × Zw×1

p , let b⃗′[i] ← 1 if b⃗′[i] ̸= 0 and b⃗[i] ← 0

otherwise, for i ∈ [w]. Send (A, b⃗′) to A and returns whatever returned from A.
If the input is a valid LWRn,q,q′,⌊·⌉ input, and b⃗[i] = 0, we know that Ask ∈ [0, r−1] and otherwise

b⃗[i] ̸= 0. This thus gives us a valid LWRn,q,2,Rr sample. Otherwise, we obtain a random sample.

With this intuition, we define our algorithm in Algorithm 3.

Theorem 4.2. For any n > 0, t > 0 being a prime, m > n⌈log(t)⌉, and r ∈ Zt, and A ←$ Zm×n
t ,

fA in Algorithm 3 is a (t,m, r/t)-PRG (Definition 2.2), under LWRn,t,2,Rr is hard.

Proof. The proof is straightforward. We design a hybrid scheme: replacing fA with uniformly
sampling u ← Bern(r/t)w and return u. The adversary that can distinguish this hybrid and the
original scheme breaks LWRn,t,2,Rr .

Achieving p = 1/2. We have achieved values of p ̸= 1/2, the choices are relatively restricted.
The main obstacle to achieving arbitrary p is the finite field size t that we work over: it can be
arbitrary and thus may not be compatible with p (i.e., there doesn’t exist r ∈ Zt such that r/t = p).
One trivial solution, of course, is to choose t according to p. However, in the context of FHE, t
is subject to certain constraints. Specifically, since we want to use FHE to evaluate the PRG, t is
decided by the underlying FHE scheme, which can be constrained by other factors and has to be a
prime for best efficiency (also, since LWRn,t,2,R is trivially insecure for t = 2, that is not an option
for us).

For our construction, we need to achieve p = 1/2 for an arbitrary prime t.
One natural idea is that if t is a prime of size Ω(2λ), we can pick r = ⌈t/2⌉, and it holds that

r/t − 1/2 = negl(λ). However, if t is too large, it cannot be used as an FHE plaintext modulus
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in practice, as normally the FHE plaintext modulus < 230 for best efficiency: the noise growth of
BFV is linear in t, which means that for a larger plaintext field t, the number of levels that can be
supported is much smaller. Furthermore, another issue with this idea is that our PRG circuit has
a depth in log(t), and thus if log(t) is too large, the PRG circuit also becomes impractical. Thus,
to avoid these issues, we devise ways to obtain p = 1/2 for any small t.

Achieving p = 1/2 with small t. We can output bits with distribution arbitrarily close to
uniform while maintaining a small t using the following algorithm which takes in a seed s ∈ Zn

t :

1. Sample a⃗←$ Zn
t . Let x = ⟨⃗a, s⟩.

2. If x = 0, go to step 1. Else output x > (t− 1)/2.

To make this algorithm deterministic, we can set a maximum number of k runs. If after k times,
⟨⃗a, s⟩ is 0 for all k repetitions, return 0. In this case, the probability of sampling 0 ≤ 1/2 + t−k

and thus we can simply let k = O(λ/ log(t)) to obtain the exact security. With this intuition, we
can construct a PRG with p = 1/2. For our PRG, it will also be important to make this algorithm
oblivious by fixing the number of runs.

A more FHE-friendly circuit. Our goal is to make the sampling process FHE-friendly. Un-
fortunately, most FHE schemes only support multiplications and additions natively. Therefore,
to evaluate a comparison to 0 (as above), requires transforming the circuit into a degree-(t − 1)
function. Evaluation of this function would cost at least t multiplications for the comparison.
Furthermore, when repeating k times as above, we need k · t multiplications.

To reduce such computation cost, we design an alternative function R : Zt → Z2 that can be
evaluated much more efficiently. Observe that for any prime t, f(x) := x(t−1)/2 can only be 1,−1, 0,
and it is 0 if and only if x = 0. Thus, if x ∈ Z∗t , x(t−1)/2 is 1 or −1. Moreover, half of the elements
in Z∗t are mapped to 1 and the other half to −1 [52]. With these observations, we construct the
following function: R(x) = (f(x)+ 1) · 2−1. Using repeated squaring, computing this function only
takes log(t) multiplications. Therefore, even repeating the process k = O(λ/ log(t)) times, it only
takes k · log(t) = O(λ/ log(t) · log(t)) = O(λ) multiplications (with a depth of O(λ/ log(t)+ log(t))).
Moreover, to check whether x is 0 also becomes easy: simply compute 1 − f(x)2, which returns 1
if x is 0 and returns 0 otherwise.

With these optimizations, we formalize our construction as in Algorithm 4.

Algorithm 4 (t,m, 1/2)-PRG

1: f(x) := x(t−1)/2

2: procedure fA1,...,Ak
(s) ▷ Ai ←$ Zm×n

t for i ∈ [k]
3: for i ∈ [k] do
4: tmpi ← f(Aisi)
5: Rndi ← (tmpi + 1) · 2−1 ∈ Zt

6: Indi ← tmp2i ∈ Zt

7: res← Rnd1 · Ind1 + (1− Ind1)(Rnd2 · Ind2) + · · ·+ (
∏

i∈[k−1](1− Indi))(Rndk · Indk)
8: return res

We will prove the security of Algorithm 4 through a series of hybrid experiments. For each
Hybrid i, for i ∈ [k], we will show indistinguishability from the previous hybrid by showing that
LWRn,t,2,Ri holds, where for each i ∈ [k], we define Ri(x) as:
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Ri(x) =


1 if x(t−1)/2 = 1

0 if x(t−1)/2 = t− 1
ui otherwise

where ui ←$ Bern(pi) for pi =
(tk−i−1)/2+1

tk−i , for i ∈ [k − 1]; and ui = 0 for i = k. We formalize the
theorem as follows.

Theorem 4.3. For any n > 0, t > 0 being a prime, k > 0 such that t−k = negl(n), m > n⌈log(t)⌉,
then fA1,...,Ak

in Algorithm 3 is a (t,m)-PRG (Definition 2.2) under LWRn,t,2,R1 , . . . , LWRn,t,2,Rk

are hard.

Proof. To prove this security, we design the following hybrids.
Hyb0 : a rearrangement of our actually scheme, as follows.

1. If A1s1 ̸= 0: output (R1(A1s1), d)

2. If A2s2 ̸= 0: output (R2(A2s2), d)

3. . . .

4. If Ak−1sk−1 ̸= 0: output (Rk−1(Ak−1sk−1), d)

5. output (Rk(Aksk), d)

Hyb1 Same as Hyb0, except that line 5 in Hyb0 is replaced with: output (Rk(u), d) where
u←$ Zw

t .
Hyb2 : Same as Hyb1, except that line 4 in Hyb0 is replaced with: output (Rk−1(u), d) where

u←$ Zw
t .

. . .
Hybk−1 : Same as Hybk−2, except that line 2 in Hyb0 is replaced with: output (R2(u), d) where

u←$ Zw
t .

Hybk : Same as Hybk−1, except that line 1 in Hyb0 is replaced with: output (R1(u), d) where
u←$ Zw

t .
Clearly Hyb0 is equivalent to our original scheme. Then, Hybi and Hybi−1 for i ∈ [k] are indis-

tinguishable under LWRn,t,2,Ri is hard. Furthermore, Hybk is by itself sampling from Bern(1/2m)
except with O(t−k) = negl(λ) probability. Lastly, k = poly(λ), our original scheme is indistinguish-
able from Hybk, our scheme is a (t,m)-PRG.

4.2 Shuffling via BFV

To perform the Thorp Shuffle obliviously, we will require an FHE scheme. The best performing
scheme for this scenario is BFV. BFV encrypts a plaintext of form ZD

t whereD is the ring dimension.
This means that a random vector of D random bits is generated using Random Sampling under
BFV. Furthermore, directly realizing Thorp Shuffle is not very efficient using BFV, as it requires
mapping an element at slot i to slot 2i or 2i + 1 for all i ∈ [N/2]. To do this in BFV, one needs
to extract each element from the ciphertext and rotate it accordingly, which is very inefficient.
Therefore, instead of directly realizing Thorp Shuffle, we use a butterfly shuffle: for round ℓ ∈ [n],
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position j is swapped with position j + 2ℓ−1 for all j ∈ [N ] such that ⌊ j
2ℓ−1 ⌋ is odd. As discussed

in [20, Lemma 1], every n rounds of butterfly shuffle is equivalent to n rounds of Thorp Shuffle.
Then, the swapping becomes easy: for level ℓ, if 2ℓ−1 < D, it means that every elements are

swapped with another element in the same ciphertext; thus, we separate a single ciphertext into
two ciphertexts, use the random bits to swap them, and then recombine them. For example, if
ℓ = 1, we simply separate a ciphertext into two ciphertexts, where the first one contains all the odd
slots of the original ciphertext while the second one contains all the even slots. Then, swap the
two ciphertexts using the encrypted random bits. Note that one ciphertext contains D elements,
but a swap inside a ciphertext requires only D/2 random bits. Thus, a ciphertext of random bits
containing D bits can serve two swaps for two different ciphertexts. If 2ℓ ≥ D, simply swap two
ciphertexts using a ciphertext containing D random bits.

The algorithm is formally presented below in Algorithm 5.
We then briefly discuss two optimizations.

Leveraging relaxed bootstrapping. Naively realizing Algorithm 5 requires (r+1) log(N) levels
for shuffling plus log(t)+λ/ log(t) levels for PRG evaluation. This can cause the BFV parameters to
be very large without bootstrapping. However, a direct application of regular BFV bootstrapping
is very costly. To avoid this issue, we employ the relaxed bootstrapping technique introduced in
[40]. Essentially, relaxed bootstrapping says that the correctness of bootstrapping holds only when
the input is a fixed subset of the plaintext space, and its (amortized) efficiency can be orders
of magnitude faster than regular BFV bootstrapping. This is exactly our case: we know that
each ciphertext is encrypting a single bit instead of an arbitrary plaintext ∈ Zt after the PRG
evaluation is done. Therefore, we can set BFV parameters such that we can evaluate log(t) + c
levels where c is the number of levels that we can compute using BFV after bootstrapping. Then,
apply bootstrapping for every c levels for (r + 1) log(N)/c times.4

Encrypting with more than one bit. Instead of performing the shuffle one bit at a time, we
can instead encode p > 1 bits at a time without increasing the runtime of the shuffle by much.
However, note that since we are applying relaxed bootstrapping, we need p < log(t) (i.e., for relaxed
bootstrapping above, we need a fixed subset of the plaintext space needed which is smaller than
the real plaintext space). The exact value of p is decided by other BFV parameters as discussed in
detail in [40], and we leave it for Section 5 to choose.

4.3 Putting Everything Together for Homomorphic Thorp Shuffle

With all these tools, we now present our homomorphic Thorp Shuffle algorithm in Algorithm 6.
Essentially, we use the PRG we presented in Algorithm 4 as the PRG needed for Thorp Shuffle
(so sample s ←$ Zn

t as seed, where n is some security parameter). Then, we use this seed to
homomorphically generate (r + 1) log(N) · N bits. Lastly, we use these bits to homomorphically
perform the Thorp Shuffle.

Theorem 4.4. If BFV with ring dimension D and plaintext t and among public parameters ppBFV
is correct and semantically secure, for any database db of size N = poly(λ) being a power of two
and that N/D is even, if fA1,...,Ak

is a (t,m)-PRG (Definition 2.2) where m chosen in line 12, then
for any adversary A, any q < N , let pp, sk← Setup(1λ, q,N) and ct← HomomorphicThorp(db, pp)

4For PRG, we can simply use fresh ciphertexts to evaluate, which can evaluate all the log(t) + λ/ log(t) levels
without bootstrapping.
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Algorithm 5 Homomorphic Thorp Shuffle via BFV. BFV ring dimension D being a power of two,
plaintext modulus t. Shuffling parameters r,N ∈ N, and N/D is an even integer. n = log2(N).

1: procedure SingleShuffle1(pkBFV, ctbits, ctdb1 , ctdb2 , ℓ) ▷ All operations are under BFV

2: Let l⃗← 1L||0L||1L|| . . . ||0L ∈ ZD
t where L← 2ℓ−1

3: ctdb1,1 ← ctdb1 · l⃗
4: ctdb1,2 ← Rotate(ctdb1 − ctdb1,1,−L)
5: ctbits,1 ← ctbits · l⃗
6: ct′db1,1 ← ctdb1,1 · ctbits,1
7: ct′db1,2 ← ctdb1,2 · (1− ctbits,1)
8: ct′db1 ← ct′db1,1 + ct′db1,2 + Rotate(ctdb1,1 − ct′db1,1 + ctdb1,2 − ct′db1,2, L)

9: ctdb2,1 ← ctdb2 · (⃗1− l⃗)
10: ctdb2,2 ← Rotate(ctdb2 − ctdb2,1, L)
11: ctbits,2 ← ctbits − ctbits,1
12: ct′db2,1 ← ctdb2,1 · ctbits,2
13: ct′db2,2 ← ctdb2,2 · (1− ctbits,2)
14: ct′db2 ← ct′db2,1 + ct′db2,2 + Rotate(ctdb2,1 − ct′db2,1 + ctdb2,2 − ct′db2,2,−L)
15: Return ct′db1 , ct

′
db2

16: procedure SingleShuffle2(pkBFV, ctbits, ctdb1 , ctdb2) ▷ All operations are under BFV
17: ctdb1,1 ← ctdb1 · ctbits
18: ctdb1,2 ← ctdb1 − ctdb1,1
19: ctdb2,1 ← ctdb2 · (⃗1− ctbits)
20: ctdb2,2 ← ctdb2 − ctdb2,1
21: ct′db1 ← ctdb1,1 + ctdb2,1
22: ct′db2 ← ctdb1,2 + ctdb2,2
23: Return ct′db1 , ct

′
db2

24: procedure bfvThorp(db = (db[1], . . . , db[N ]), r, ppBFV, pkBFV, (ctbits,i,j)i∈[(r+1)n],j∈[N/D/2]))
25: ctdb,j ← BFV.Enc(pkBFV, (db[D · j + 1], . . . , db[D · (j + 1)− 1]) for j ∈ [0, N/D − 1]
26: for t in [1, . . . ,r + 1] do
27: for ℓ in [1, . . . , n] do
28: if 2ℓ−1 < D then
29: for j in [1, . . . , N/D/2] do
30: ct′db,2j−1, ct

′
db,2j ← SingleShuffle1(pkBFV, ctbits,(t−1)·n+ℓ,j , ctdb,2j−1, ctdb,2j , ℓ)

31: else
32: L← 2ℓ−1/D
33: for j in [1, . . . , N/D/2/L] do
34: for k in [1, . . . , L] do
35: ct′db,2((j−1)L+k)−1, ct

′
db,2((j−1)L+k) ← SingleShuffle2(pkBFV, ctbits,(t−1)·n+ℓ,(j−1)L+k,

ctdb,(j−1)L+k, ctdb,jL+k)
ctdb,· ← ct′db,·

36: return (ctdb,j)j∈[N/D]
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Algorithm 6 Oblivious Permutation

Database db size N ∈ N if a power of two. n = log2(N).

1: procedure Setup(λ, q,N)
2: Select BFV parameter ppBFV = (D, t, . . . ) such that the following computation can be done

homomorphically and is semantically secure. ▷ BFV parameters other than D, t are irrelevant
to us so we ignore it for simplicity.

3: Generate BFV key pairs pkBFV, sk.BFV.
4: Choose the minimum k such that t−k = negl(λ)
5: Choose the minimum n = poly(λ) such that LWRn,t,2,Ri holds for i ∈ [k].
6: ▷ Ri defined in Theorem 4.3
7: s← Zn

t ▷ The PRG random seed.
8: cts ← BFV.Enc(pkBFV, s)

9: Choose the minimum r such that q
r+1

(
2qn
N

)r
is negligible in λ.

10: return pp = (ppBFV, pkBFV, ppExactSampler, cts, r), sk.BFV

11: procedure HomomorphicThorp(db, pp; d)
12: Let m = N log(N)r
13: A1, . . . , Ak ←d Zm×n

t (sample using randomness source d)
14: Homomorphically evaluate fA1,...,Ak

to generate (ctbits,i,j)i∈[(r+1) log(N)],j∈[N/D/2]) ciphertexts
each containing N random bits.

15: dbct ← bfvThorp(db, r, ppBFV, pkBFV, (ctbits,i,j))
16: return dbct

(both procedures in Algorithm 6), and db2 ← π(db) where π is a truly random permutation, let
db1 ← BFV.Dec(sk, ct), it holds that |Pr[AO(db1,q)(pp, ct, db) = 1]− Pr[AO(db2,q)(pp, ct, db) = 1]| =
negl(λ), where O(db, q) means an oracle access to an arbitrary location of string db for at most q
times adaptively.

Proof. This proof is trivial it is directly implied by the correctness of BFV, semantic security of
BFV, (t,m)-PRG, and Theorem 3.2.

4.4 Removing the Linear Bandwidth Constraint in Our PIR Scheme

In this subsection, we formalize how to remove the linear bandwidth constraint from our scheme
in Algorithm 2. Notice that all we have to do is apply our oblivious permutation construction
from Section 4 to the preprocessing phase. Specifically, rather than download the whole database
and compute the hints itself, the client can sample public parameters and send these to the server.
The server can then obliviously compute the permutation using Algorithm 6. We then define the
following theorem.

Theorem 4.5. The PIR scheme described in Algorithm 2 where the preprocessing is run by the
server using Algorithm 6 is correct Definition 2.4 and private Definition 2.5 for T queries, and
runs with the following complexities:

• Oλ(N) preprocessing time with Oλ(1) computation depth.

• O(Q+N/Q) offline bandwidth.
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Prior works
[17, 59, 36]

Solution with sorting
networks Section 1

Our solution
Theorem 4.5

[1, 51, 15] [6, 49, 54]
Old Bound

[45]
Our Bound
Theorem 3.2

Asymptotic
Depth

O(N) Oλ(log(N)) Oλ(log
2(N)) Oλ(1) Oλ(1)

Concrete
Depth

> 220 > 220 > 21,160 930 416

Estimated
time (hrs)

w/ AES
w/ Algorithm 4

1,579,453
140,160

N/A
N/A

87,703
25,102

N/A
892

N/A
399

Table 1: Comparison between the preprocessing procedure of our construction (Theorem 4.5) and
our naive solution with sorting networks in Section 1, and prior works [17, 59, 36]. All the numbers
are estimated with database size N = 223, each with 3 bits, on a single thread CPU. Our depth
includes both the Thorp Shuffle depth and the PRG circuit depth.

• Oλ(Q) online bandwidth and query time.

• O(N/Q+ T ·Q) client storage.

• Oλ(1) update time

Proof. The proof follows directly from the proof of Theorem 3.1 and Theorem 4.4.

5 Concrete Efficiency

Here, we discuss concrete efficiency of the techniques shown in the paper.
We estimate the depth and runtime of (1) our construction (Theorem 4.5), (2) our naive solution

with sorting networks (Section 1), and (3) prior works and present them in Table 1.

Parameter selection. We estimate times on a database of N = 223 entries, each with 3 bits
(for ease of comparison with prior works; we discuss how our runtime scales with the number of
bits per entry later). We choose q = Q = 27,K = 216 as the parameters for our PIR scheme; and
choose r according to Theorem 3.2 such that the adversary querying for q queries have at most 2−40

advantage. For the underlying BFV, we choose D = 215 for the ring dimension; 860 bits for the
ciphertext modulus; and t = 65537 for the plaintext modulus. These parameters guarantee greater
than 128 bit security by [19]. With [40], such parameter setting allows a relaxed bootstrapping
in about 50 seconds with plaintext space being 3 bits, with about 450 bits noise budget left after
bootstrapping. Since there are no concrete LWR security estimators, we heuristically estimate the
security of our construction using the LWE estimator [19]. To do this, we make two heuristic
assumptions: (1) LWRn,t,2,Ri is equivalent to LWRn,t,2,⌊·⌉ for any Ri (i ∈ [k]) in Algorithm 4; and
(2) LWRn,t,2,⌊·⌉ is equivalent to LWE with secret dimension n, ciphertext modulus q, and error from
Gaussian distribution with standard deviation σ such that Pre←χσ [|e| < t/2] > 1− negl(λ). Under
these two heuristic assumptions, we set and n = 220, t = 65537 (and we use σ = 128 which is more
than sufficient to satisfy the conditions). Additionally, we set k = logt(2

80) = 5 (i.e., the number
of repetitions for random bit sampling), to obtain a statistical security parameter of > 40-bits even
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after sampling N log(N)λ = 223 · 23 · 40 ≈ 233 random bits5. With these parameters, we estimate
our construction’s cost accordingly. Our runtime are based on GCP instance N2 with CPU Intel
Xeon Gold 6268, 64GB RAM. We estimated using the single-thread runtime.

Estimation for other constructions. We estimate the runtime of prior works [17, 59, 36]
generously. In particular, we estimate their cost using the depth that could theoretically be achieved
by following the observation noted in Section 1. This greatly reduces their runtime. We also
estimate the sorting network evaluation’s runtime generously by considering a comparison of two
λ-bit integers to be just λ homomorphic multiplications, and estimate the sorting network’s runtime
fixing the depth of the computation to log2(N)/2 levels (requiring only N log2(N)/2 multiplications
to sort an array of any n > 0 bit elements). We do not use the numbers of [32] as this real
implementation scales much worse than our estimation (thus giving us more advantages compared
to prior works and the naive solution)6. Even given generous estimations, our new scheme greatly
improves on all previous approaches. We give two separate numbers for every estimate using either
AES as the PRG to sample encrypted bits (numbers taken from [58]), or our new FHE-friendly
PRG (Algorithm 4).

Depth. As shown in the Table 1, our depth is both asymptotically and concretely better than
an prior works by a large margin. This gives two main benefits: (1) to perform our computation
over FHE, we need to bootstrap a lot less times, which greatly increases our efficiency; (2) since
the circuit is inherently parallelizable.

Runtime. In terms of runtime, we perform orders of magnitude than prior works and than our
naive solution using sorting networks, even on a single thread. One may use a GPU to accelerate
FHE [4], which results in a ≈ 50x speedup, which means our preprocessing can be finished within
3.6 hours.

Our PRG. To generate 215 random bits, our construction only takes about 13.1 seconds, and for
220 random bits, it only takes about 420 seconds. This is more than 3 orders of magnitudes faster
than homomorphically evaluating AES to generate random bits, which takes > 700000 seconds for
220 bits [58].

Scalability with entry size. Our runtime is not greatly affected by increasing the number of
bits in each entry. In particular, with 90 bits per entry, the runtime estimation is only increased
from a factor of 1.54x, and for 180 bits per entry, the runtime is increased by 2.1x with respect to
our number for 3 bits.

6 Proof of the Improved Mixing Time of the Thorp Shuffle

Now we give the proof for Theorem 3.2. The initial setup of the proof follow closely the setup of
Morris et al. [45].

Proof. First, we setup some variables and definitions we will need.
Let µ and ν be probability distributions on an event space Ω, where Ω is any finite non-empty

set. We say that a pair of random variables W = (X,Y ) is a coupling of µ and ν if its marginal

5More precisely, we need N log(N)R/2 bits, where R = O(λ) is the number of levels for the underlying Thorp
shuffle. However, this difference does not change this parameter choice since the hidden constant is small, as shown
in Table 1.

6For example, with 15625 elements, [32] sorts in 295 minutes per 32 thread, and our estimation gives 67 minutes,
not to mention larger sizes.
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distributions (i.e., distributions of X and Y ) and µ and ν respectively. That is, for any S ⊆ Ω we
have P(X ∈ S) = µ(S) and P(Y ∈ S) = ν(S). The total variation distance between µ and ν can
be expressed as:

∆(µ, ν) := max
S⊆Ω
|µ(S)− ν(S)| = min

(X,Y ): X∼µ and Y∼ν
P(X ̸= Y ) (1)

where X ∼ µ means that X has the distribution µ. The minimum is thus taken over all possible
couplings of µ and ν. Further explanation on these statements can be found on standard texts on
Markov Chains such as the book by Levin et al. [38, Section 4].

Now, let Mt be the Markov chain representing the Thorp Shuffle with N cards at step t, where
we define a card to be an element in C := {0,1}n (recall N = 2n is a parameter)7. Then, the
state space of Mt is any bijection from C to {0,1}n. Let us define Mt(z) to be the position of a
card z at time t.

Since the adversary we are considering only ever sees a subset of q elements in the shuffle, we
only need to bound the rate at which all q-subsets of the shuffle are indistinguishable from q-subsets
of a real permutation. Let z1, . . . ,zq be distinct cards. We define Xt to be the vector of random
variables for the positions of cards z1, . . . ,zq at time t on the Thorp Shuffle Mt. For j ∈ {1, . . . ,q},
Xt(j) will represent the position of card zj at time t.

Recall that we defined our process Xt as the position of a q-tuple vector of cards in Mt after t
steps. Now we explicitly define the update rule from Xt to Xt+1 in a self-contained fashion (without
requiring knowledge of other cards’ positions). X1 is defined as the vector of the initial position
of the q cards selected. Then, we will update each card’s position according to the Thorp Shuffle
definition (Algorithm 1). To define Xt+1 in a self-contained fashion, we have to decide each card’s
next position in the q-tuple using only the information in Xt. To do this, we define an equivalent
rule for generating Xt+1 from Xt as follows.

We define two cards zi and zj to be matched8 at a timestep t if their positions, uti and utj
respectively, satisfy uti = utj mod (N/2).

For every card zj , j ∈ {1, . . . ,ℓ+ 1}, for each timestep t, we sample a coin cjt
$← Bern(1/2). We

determine the position of card zj at time t+ 1 as follows.

• If card zj is not matched to any card zi where i < j, it is moved to position 2(utj mod N/2)+

cjt .

• Else If card zj is matched to a card zi where i < j, it is moved to 2(utj mod N/2) + ¬cit.

For each card zj , j ∈ {1, . . . ,ℓ + 1}, and each round t, we will also define a new variable djt ,
where:

• djt = cjt if zj is not matched to any zi with i < j.

• djt = ¬cit if zj is matched to a card zi with i < j, for i ∈ {1, . . . ,ℓ+ 1}.

We say that djt is the coin associated with card zj at time t.

7More generally, C can be any set of cardinality N , but here we restrict it to {0,1}n for concreteness.
8Two cards being matched at timestep t means that they will be placed next to each other in the next round.
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Next, we define another random process, Ut, to behave exactly as Xt, except we define U1 to
be q uniform samples without replacement from {0,1}n, rather than to be defined from the cards’
true initial state as in X1.

Recall that our goal is to show that the Thorp shuffle (Algorithm 1) is indistinguishable from
a real random permutation given only q (parallel) accesses.

Now, in order to bound the total variation distance between q-subsets of the Thorp Shuffle
and a uniform permutation using the coupling above, we will introduce a lemma that relates
the distance between the distributions to the expected distance betwen two distributions over
conditional distributions.

Before introducing the lemma, we introduce some notation. For a distribution ν on distinct
q-tuples of Ω, and (Z1, . . . Zℓ) ∼ ν, we will use the following notation (at the risk of a slight abuse
of notation):

ν(u1, . . . uℓ) = P(Z1 = u1, . . . , Zℓ = uℓ),

and

ν(uℓ | u1, . . . ,uℓ−1) = P(Zℓ = uℓ | Z1 = u1, . . . Zℓ−1 = uℓ−1).

Note that ν(Zℓ|u1, . . . ,uℓ−1) is the distribution of Zℓ conditioned on (Z1 = u1,...,Zℓ−1 = uℓ−1)
and thus ν(Zℓ+1|Z1, . . . ,Zℓ) is a random variable over conditional distributions. For two q-tuple
distributions µ and ν we will use the notation ∆(µ(Zℓ+1|Z1, . . . ,Zℓ), ν(Zℓ+1|Z1, . . . ,Zℓ)) to de-
note the random variable representing the distance between the conditional distributions (not to
be confused with the distance between the two random variables over conditional distributions),
i.e. for any assignment (u1,...,uℓ) to Z1,...,Zℓ this random variable takes on a real-valued number
∆(µ(Zℓ+1|u1, . . . ,uℓ), ν(Zℓ+1|u1, . . . ,uℓ)).

Lemma 6.1 (Lemma 2 in [45]). Fix a finite nonempty set Ω and let µ and ν be probability dis-
tributions supported on (ℓ + 1)-tuples of elements of Ω, and suppose that (Z1, . . . , Zq) ∼ µ. Then,

∆(µ, ν) ≤
q−1∑
ℓ=0

E (∆ (µ(Zℓ+1 | Z1, . . . ,Zℓ), ν(Zℓ+1 | Z1, . . . , Zℓ))) . (2)

The proof of this lemma is shown in [45] so we omit the details.
Next, we will use this lemma to upperbound the total variation distance between the q-subsets

of the Thorp Shuffle and a permutation. Define π to be the distribution of q uniform independent
samples without replacement from {0,1}n, and τt as the distribution of Xt. Note that with the
update we define previously, for any t ≥ 1, the distribution of Xt is exactly the same as the marginal
distribution of the Thorp Shuffle (Algorithm 1; trivially by how the two processes are defined) over
the q-subset. Furthermore, the distribution of Ut is always just π, since U1 is q uniform samples
and the Markov process converges to a uniform distribution with enough time [43]. Thus, by
Equation (1), for any ℓ < q and any u1, . . . ,uℓ, and (Z1, . . . ,Zℓ+1) ∼ τt, we have:

∆ (τt(Zℓ+1|Z1 = u1, . . . , Zℓ = uℓ),π(Zℓ+1|Z1 = u1, . . . , Zℓ = uℓ)) ≤ P(Xt ̸= Ut|Z1 = u1, . . . , Zℓ = uℓ))

= P(Tℓ+1 > t|Z1 = u1, . . . , Zℓ = uℓ).
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Treating P(Xt ̸= Ut|Z1, . . . , Zℓ) as a random variable over probabilities, we can summarize this
equation as:

∆ (τt(Zℓ+1|Z1, . . . , Zℓ),π(Zℓ+1|Z1, . . . , Zℓ)) ≤ P(Xt ̸= Ut|Z1, . . . , Zℓ))

By definition of our Ut and Xt processes, we have that:

P (Xt ̸= Ut | Z1, . . . , Zℓ) = P(Tℓ+1 > t | Z1, . . . , Zℓ),

where we define Tℓ+1 = min{t : Xt = Ut}, and again, the right-hand side is a random variable.
With this, we conclude that the expected value of the variational distance is less than or equal to
the unconditional probability that Tℓ+1 > t, written as follows:

E (∆ (τt(Zℓ+1 | Z1, . . . Zℓ), π(Zℓ+1 | Z1, . . . , Zℓ)))

≤
∑

(u1,...,uℓ)∈{0,1}n
P (Tℓ+1 > t | Z1 = u1, . . . ,Zℓ = uℓ)P(Z1 = u1, . . . , Zℓ = uℓ)

= P (Tℓ+1 > t) .

(3)

Applying Lemma 6.1 to and Equation (3), we get that:

∆ (τt, π) ≤
q−1∑
ℓ=0

E (∆ (τt(Zℓ+1 | Z1, . . . ,Zℓ), π(Zℓ+1 | Z1, . . . , Zℓ))) ≤
q−1∑
ℓ=0

P(Tℓ+1 > t), (4)

therefore, for the rest of this proof this is what we will attempt to bound.
An important equation. Crucial to our proof will be the following equation [45, Page 8, eq

3], for any t > n:

P(zi and zj are matched at time t) ≤ 21−n. (5)

Recall that at each step t, for each card zj , we flip a coin ctj for this card. If zj is not matched
to any zi where i < j, then dtj , the card associated with zj at round t is defined to be ctj ; else, we

define djt to be ¬cit. We will use Equation (5) to bound the probability that djt ̸= cjt in the following
equation.

In this equation, we bound the probability that card that the coin associated with card zj at
time t, dtj is not its own coin ctj to be less than or equal to 2−n. Formally, for any t > n, for any
j ∈ {1, . . . q},

P(djt ̸= cjt ) ≤ (j − 1)2−n (6)

Proof. By definition, whenever zj is not matched to any coin of smaller index, ctj = djt . Furthermore,
even if zj is matched to some card of zi where i < j, notice that if cti = ¬ctj , it is still the case that

djt = cjt . So djt ̸= cjt if and only if both (1) zj is matched to some zi for i < j and (2) cit = cjt .
Notice that we can bound the probability of (1) to be less than or equal to (j−1)2−n using a union
bound and Equation (5).
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Also, the coins cit, c
j
t are sampled from Bern(1/2), so the probability of (2) is 1

2 . Finally, the

the positions of zi and zj at timestep t are independent from coins cit, c
j
t , (since their positions are

defined by timesteps up to t − 1). Therefore, the events (A) cti = ctj and (B) whether zi and zj
are matched are independent. So the probability of both happening is simply the product of the
probability of each which is upper bounded by (j − 1)21−n

(
1
2

)
= (j − 1)2−n.

Next, we will look at a second important lemma which, combined with Equation (6), will allow
us to bound P (Tℓ+1 > t) for all ℓ ∈ {0, . . . ,q − 1}. This lemma tells us that a card’s position is
uniquely defined by that past n coins associated with that card, and any coin before that is not
necessary to derive its position.

Lemma 6.2. The past n coins associated with a card z uniquely define its current position u.

Proof. This follows straight from the update rule defined. Consider a card z with position ut+1 at
time t+1, with coins dt−n+1, . . . , dt used to update its position in the previous n timesteps. Then,

ut+1 = 2((2 ((2(ut−n+1 mod N/2) + dt−n+1) mod N/2)

+ dt−n+2) . . . mod N/2) + dt

=

(
2n(ut−n+1) +

n∑
i=1

2n−idt−n+i

)
≡

n∑
i=1

2n−idt−n+i mod N.

Remark. ▶An alternative view of Lemma 6.2 using bitwise operations may be help understanding.
Given a card’s current position as an n−bit string and its t−th coin dt, each update chops off the
most significant bit of the string, left shifts it by one position, and xors the bit dt into it. From
this perspective, it is clear to see that all the bits of a card’s current position will be erased within
n updates. ◀

Notice that Lemma 6.2 implies that, if zℓ+1 is assigned using the same coins in both the X and
U processes for n consecutive timesteps, then it must be that zℓ+1 is in the same position in both
processes. By what we just saw above, this means that if this happens, then Xt = Ut

We define event Aa:b to be the probability that for some timestep t in {a, . . . , b}, for any
i ∈ {1, . . . , ℓ}, zℓ+1 is associated with a different coin in processes X and U .

Recall from Equation (6), for any t > n, we have that P(dℓ+1
t ̸= cℓ+1

t ) ≤ ℓ · 2−n. We can then
bound that the probability that card zℓ+1 is not assigned cℓ+1

t in any of the two processes, over
any of the b− a+ 1 steps (for a ≥ n) to be less than or equal to 2ℓ · (b− a+ 1) · 2−n (using union
bound).

By definition of our Markov processes, once zℓ+1 is the same position in both processes, it will
remain in the same position in both processes from then onwards. Thus, we can bound:

P(Tℓ+1 > 2n) ≤ P(An:2n−1) ≤ 2ℓn · 2−n. (7)

Recall that Tℓ+1 = min{t : Xt = Ut}.9
Next, we will try to amplify this bound by considering what happens after more rounds. To do

this, we need some more inequalities. Consider the probability of the cards zi and zj being matched
for some timestep t > kn given that event A(k−1)n:kn−1 has taken place for any k ≥ 2.

9Up to now, our result and argument is very similar to before, with an improvement of a factor of two w.r.t. [45].
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Lemma 6.3. For any k ≥ 2, t > kn− 1:

P
(
zi and zj are matched at time t | A(k−1)n:kn−1

)
≤ 21−n.

Proof. By definition, zi and zj are matched if and only if the last n− 1 coins associated with their
positions is the same.

For each timestep t > kn− 1, conditioned on A(k−1)n:kn−1, recall that the coins associated with

zi and zj ’s position are (dit−1, . . . , d
i
t−n) and (djt−1, . . . , d

j
t−n), respectively. We will then bound the

probability of these sets of coins being equal using two cases.

Case 1: zi and zj are matched for some time step m ∈ {t − 1, . . . ,t − n + 1}. First,

notice that if for any m ∈ {t− 1, . . . ,t−n+1}, zi and zj are matched, then by definition, dim ̸= djm
and therefore the probability of (dit−1, . . . , d

i
t−n) being equal to (djt−1, . . . , d

j
t−n) is 0 conditioned on

zi being matched to zj at some m ∈ {t− 1, . . . ,t− n+ 1}.
Case 2: zi and zj are not matched for any time step m ∈ {t − 1, . . . ,t − n + 1}. Let

us bound the probability of dim = djm for each step m ∈ {t− 1, . . . ,t− n+ 1} individually. We will
show that for every m ∈ {t− 1, . . . ,t−n+1}, dim and djm are defined by independent samples from
Bern(1/2).

W.l.o.g. consider zi. In each step, zi is either matched to no cards with index smaller than it, in
which case its coin is sampled from Bern(1/2) or it is matched to some card of smaller index than
it, in which case it gets assigned the negation of that card’s coin, which is a sample from Bern(1/2).

The same is true for zj , but notice that (1) we are restricting to the case that zi and zj are not
matched, and (2) even if zi and zj are both matched to cards of smaller indices, they cannot be

matched to the same card.10 Then, it follows that in this case, dim and djm are always defined by
distinct samples of Bern(1/2) and therefore the probability that they are equal is 1/2.

Let B be the event that at time t, zi and zj were matched in any of the past n − 1 steps. We
have shown that:

P
(
zi and zj are matched at time t | A(k−1)n:kn−1,¬B

)
= 21−n.

And we have also shown that:

P
(
zi and zj are matched at time t | A(k−1)n:kn−1, B

)
= 0.

These two equations suffice to prove our lemma.

Now, given Lemma 6.3, we can show the following for any t ≥ kn, for any j ∈ {1, . . . q} :

P
(
dtj ̸= ctj | A(k−1)n:kn−1

)
≤ (j − 1)2−n (8)

This holds by the same argument as in Equation (6), given Lemma 6.3.
Finally, by the same arguments as previously, we can use a union bound to get that for any

k ≥ 2 :,

P
(
Akn:(k+1)n−1 | A(k−1)n:kn−1

)
≤ 2ℓn

(
2−n

)
= p. (9)

10This follows from the pigeonhole principle. If three cards share the same last n−1 bits, then at least two of them
must have shared those n− 1 bits in the previous round, and therefore have a distinct last bit. A contradiction.
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Since two coins’ adjacency is defined by its coins at the past n− 1 timesteps, it is also straight-
forward that any event that happened further than n steps ago does not affect the probability of
adjacency between two cards. In other words,

P
(
Akn:(k+1)n−1 | A(k−1)n:kn−1, A(k−2)n:(k−1)n−1

)
(10)

= P
(
Akn:(k+1)n−1 | A(k−1)n:kn−1

)
≤ p. (11)

Applying this more generally, we have that, for any k > 0:

P(An:2n−1 ∧A2n:3n−1 ∧ . . . ∧Akn:(k+1)n−1)

= P(An:2n−1) ·P(A2n:3n−1 | An:2n−1) · . . . ·P(Akn:(k+1)n−1 | An:2n−1, . . . , A(k−1)n:kn−1)

= P(An:2n−1) ·P(A2n:3n−1 | An:2n−1) · . . . ·P(Akn:(k+1)n−1 | A(k−1)n:kn−1) ≤ pk

We can go from the second line to the third line by Equation (10). Then, the inequality on the
third line follows by Equation (9). Looking back to our original goal of bounding P (Tℓ > t), notice
that unless A happens in every n interval, the two processes will be coupled. Therefore, we can
now say that for any r > 0, for any ℓ ∈ {0, . . . ,q − 1}, P (Tℓ > (r + 1)n) ≤ pr.

Finally, we put it all together to get:

∆
(
τt=(r+1)n, π

)
≤

q−1∑
ℓ=0

P (Tℓ+1 > (r + 1)n) ≤
q−1∑
ℓ=0

(
2ℓn

N

)r

≤ q

r + 1

(
2qn

N

)r

=
q(n+ t+ 1)

n+ 1

(
2qn

N

)t/(n+1)

.

The first line holds by a union bound, the second line holds because we take the integral (we
define t = (r + 1)n to facilitate integration) and then just plug in. By [45], the total variational
distance between two distributions is exactly equal to the CPA advantage of any stateful non-
adaptive adversary distinguishing between them.

Furthermore, given a bound for non adaptive q-query adversaries in the CPA experiment, the
result by Maurer et al. [42] tells us that we can enhance the secure to hold for any adaptive, CCA
adversary with few additional rounds. Specifically, applying [42] to our work gives us that for any
adaptive q-query adversary, the probability that it can distinguish a Thorp shuffle over N = 2n

cards with t rounds from a true random permutation in a CCA experiment is less than or equal to

q(2n+ t+ 2)

n+ 1

(
2qn

N

)t/(2(n+1))

.
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A PIR Theorem Proof

In this section, we set out to prove Theorem 3.1.

A.1 A Privacy Theorem

We start by showing indistinguisability between two experiments which will exactly model our
privacy requirement. We separate this part out (i.e., separate it from correctness and efficiency)
since it is the most involved part of the proof. The privacy theorem we need is defined below in
Theorem A.1,

Theorem A.1. For any PPT adversary A, Experiment 0 and Experiment 2 in Figure 1 are indis-
tinguishable for any T = o(N) (except with negligible probability), as long as the underlying Thorp
shuffle is adaptive CCA secure with T queries (except with negligible probability) .

Proof. It is straightforward that Experiment 0 outputs are independent of (xi, yi)i∈[T ] thus guaran-
teeing perfect privacy. It is also straightforward that Experiment 2 is equivalent to our construction
in Fig. 1. To prove that these two experiments are indistinguishable to any PPT adversary A, we
define Experiment 1.

Note that the only difference between Experiments 1 and 2 is that we change all the indepen-
dently sampled Thorp shuffles to independently sampled perfect random permutations. Thus, if
there exists an A who can distinguish Experiments 1 and 2, we can construct an adversary A′
breaking the T -CCA-security of the Q Thorp shuffles (i.e., distinguishing Q Thorp shuffles from Q
random permutations using T adaptive queries to the shuffle and the inverse of the shuffle) as fol-
lows: given a T adaptive oracle accesses of each of Q permutations P1, . . . , PQ (and their inverses),
either Q Thorp shuffles or Q random permutations:

• Initialize USEDi = ∅ for all i ∈ [Q].

• For t ∈ [T ]:

– Upon receiving (xt, yt) from A,
– Call the oracle to get jt ← P−1xt

(yt)

– Call the oracle to get oi ← Pi(jt) for i ∈ [Q] \ {xt}
– If oi ∈ USEDi, sampled oi uniformly at random from [K] \USEDi for i ∈ [Q] \ {xt}, and

also sampled oxt ←$ [K] \ {xt}
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Experiment 0:

1. Experiment initializes USEDi = ∅ for i ∈ [Q].

2. For t ∈ [T ] :

(a) Sample zt uniformly from [K] \ USED.
(b) Adversary outputs (·, ·) ∈ [Q]× [K].

(c) Experiment samples oi uniformly random from [K] \ USEDi for i ∈ [Q] and adds oi
to USEDi.

(d) Output (o1, . . . , oQ).

Experiment 1

1. Experiment samples Q permutations p1, . . . ,pQ uniformly from the set of permutations
of [K].

2. Experiment initializes USEDi = ∅ for i ∈ [Q].

3. For t ∈ [T ] :

(a) Adversary outputs xt,yt ∈ [Q]× [K]

(b) Let jt = p−1xt
(yt).

(c) Let oi ← pi(jt) for i ∈ [Q] \ {xt}.
(d) If oi ∈ USEDi, sampled oi uniformly at random from [K] \USEDi for i ∈ [Q] \ {xt},

and also sampled oxt ←$ [K] \ {xt}.
(e) Add oi to USEDi for all i ∈ [Q].

(f) Output (o1, . . . , oQ).

Experiment 2

1. Experiment samples s1, . . . ,sQ where each si = Th.Gen(λ,N/Q, T ) (Q Thorp Shuffles).

2. Experiment initializes USEDi = ∅ for i ∈ [Q].

3. For t ∈ [T ] :

(a) Adversary outputs xt,yt ∈ [Q]× [K].

(b) Let jt = Th.Inv(sxt , yt).

(c) Let oi ← Th.Eval(si, jt) for i ∈ [Q] \ {xt}.
(d) If oi ∈ USEDi, sampled oi uniformly at random from [K] \USEDi for i ∈ [Q] \ {xt},

and also sampled oxt ←$ [K] \ {xt}.
(e) Add oi to USEDi for all i ∈ [Q].

(f) Output (o1, . . . , oQ).

Figure 1: Experiments, where Experiment 0 is the ideal world with no privacy loss, and Experiment
2 is our real construction in Algorithm 2. Experiment 1 is a hybrid we need in the proof.

36



– Add oi to USEDi for all i ∈ [Q].

– Feed (o1, . . . , oQ) to A

• If A returns Experiment 0, return that P1, . . . , PQ are uniformly random permutations; oth-
erwise, return that they are Thorp shuffles.

It is straightforward that if P1, . . . , PQ are uniformly random permutations, A sees exactly
Experiment 1; otherwise, it sees exactly Experiment 2. Thus, A′ distinguishes Q Thorp shuffles
with Q uniformly random permutations with the same non-negligible probability as A distinguishes
the two experiments, using T queries to each Thorp shuffle.11 Lastly, note that by the CCA security
of Thorp shuffle, one can distinguish a Thorp shuffle from a uniformly random permutation with
negl(λ) probability, and since Q = poly(λ), one can also only distinguishes Q Thorp shuffles with Q
uniformly random permutations with Q ·negl(λ) = negl(λ) probability, which reach a contradiction.
Thus, Experiments 1 and 2 are indistinguishable.

Thus, the only thing left to prove is that Experiments 0 and 1 are indistinguishable. To prove
this, we use a sequence of hybrids.

• Hyb1: same as Experiment 0, except that if t = 1, do step 3 in Experiment 1 instead of the
step 3 in Experiment 0.

• Hyb2: same as Hyb1, except that if t = 2, do step 3 in Experiment 1 instead of the step 3 in
Experiment 0.

• ...

• HybT−1: same as HybT−2, except that if t = T − 1, do step 3 in Experiment 1 instead of the
step 3 in Experiment 0.

• HybT : same as Experiment 1.

Experiment 1 and Hyb1 are indistinguishable due to the following (recall that t = 1): since p1, . . . , pQ
are independently drawn and all are uniformly random permutation, j1 is a random element in [K]
and indistinguishable from z1 even given (x1, y1), and thus pi(j1) is indistinguishable from pi(z1) for
i ̸= x1; thus (o1, p2(j1), . . . , pQ(j1)) is indistinguishable from (p1(z1), . . . , pQ(z1)), as o1 is sampled
uniformly at random from [K] independent of p2(j1), . . . , pQ(jq).

Then, Hyb1 and Hyb2 are indistinguishable as follows:

• if (x2, y2) = (x1, y1): then every oi is sampled from [K] \ USEDi

• else if x2 = x1 but y2 ̸= y1: j2 is indistinguishable from uniformly random from K \ {j1},
which means that pi(x2) for i ̸= x2 is uniformly at random from [K]\USEDi, and furthermore
ox2 is uniformly at random from [K] \ USEDx2 trivially

• else: j2 is uniformly at random from [K], and thus pi(j2) for i ̸= xt is uniformly at random
from [K], which means that oi is uniformly at random from [K] \USEDi (since if oi ∈ USEDi,
it is resampled from the rest), for i ̸= xt; and again, oxt is trivially uniformly at random from
[K] \ USEDxt

11Note that here we are using a Thorp shuffle using PRG-generated randomness, which should be indistinguishable
from a truly random Thorp shuffle for any PPT adversary.
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Inductively, for a similar argument, it is straightforward to see that Hybi−1 and Hybi are indistin-
guishable for i ∈ [3, T ]. Lastly, since HybT and Experiment 1 are indistinguishable, and T = poly(λ),
we have Experiments 1 and 0 are indistinguishable. Combining the argument that Experiments 1
and 2 are indistinguishable, we conclude that Experiments 0 and 2 are indistinguishable.

A.2 A Proof of Theorem 3.1

Below, we then proof of Theorem 3.1.

Proof. Correctness: Follows by construction of the scheme. At each step we either retrieve the
element by computing the correct result from our stored hints xored with the relevant elements
sent to the server during query time, or, we retrieve the element locally if it was seen in a previous
query request.

Efficiency: Preprocessing takes O(λN) time since the Thorp Shuffle requires λ rounds with N
operations. Our scheme saves at the client N/Q hints plus Q new elements for each of the T queries
performed, totaling N/Q + T · Q storage. Since the server streams the database to the client at
preprocessing, the bandwidth offline is O(N).

Note that evaluating the Thorp Shuffle or its inverse requires O(λ) operations, therefore, to
execute our query step, which requires taking one inverse Thorp Shuffle and Q − 1 normal Thorp
Shuffle evaluations. This takes O(λQ) time at the client, which then sends all the Q elements to
the server (which indexes them and returns the elements in O(Q) time). The client gets back the Q
database values, totaling Q logN +Q bandwidth. The reconstruct time requires O(Q) time to xor
the elements and store them. Furthermore, performing a ’swap’ requires an additional, separate
datastructure to keep track of the swap since they are not natively supported by the Thorp Shuffle.
Since we perform Q swaps in total, this adds an additional O(Q) storage.

Finally, to update element (q, k) ∈ [Q] × [K], the server sends q, k, x, x′ where x is the old
database element and x′ is the new element to be updated. The client computes j ← Th.Inv(sq, k),
and compute st.hk = st.hk ⊕ x⊕ x′. Then, it also computes st.Usedq[k] ← x′. This together takes
one inverse of Thorp shuffle, two xors, and a data structure update (e.g., a hash table), which
together takes only Oλ(1) time.

Privacy: Privacy, by Definition 2.5 requires defining an algorithm Sim which runs without knowl-
edge of queries and is indistinguishable from real client queries for any PPT adversary A. First,
note that in the preprocessing phase, the client simply downloads the whole database to com-
pute its hints so that cannot leak any information about the permutations it samples. Then, by
Theorem A.1, we can replace the online phase of scheme with Experiment 0 in Figure 1 and no
adversary can distinguish between interacting with our real scheme or Experiment 0 except with
negl probability.

B 2 Server PIR by [35]

In the two-server scheme by [35], Server 0 runs the hint procedure, after which the client, for each
query, sends q0 to Server 0 and q1 to Server 1, gets back the answer and reconstructs the desired
database value. Notice that access to Server 0 allows the client to swap every element that it
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shows to Server 1 with a random other element in the permutation, this way refreshing the state
completely. We provide the scheme in Algorithm 7.

Algorithm 7 The two-server PIR scheme from [35]. Let Q,N ∈ N such that Q|N . Let m ∈ N =
N/Q. Let DB be an array of N elements of size w. For i ∈ [Q], let DBi = DB[i ∗m : (i+ 1)m].

1: procedure Hint(DB)
2: Sample (P1, . . . ,PQ), permutations of N/Q elements, uniformly at random from the set of

all permutations.
3: Let h1, . . . , hm = 0.
4: for j in [1, . . . ,m] do
5: Let hj =

⊕
i∈Q Pi(j).

6: return (P1, . . . ,PQ),(h1, . . . ,hm).

7: procedure Query(x = (i∗,j∗) ∈ ([Q]× [m]), ck)
8: Find ind such that Pi∗(ind) = j∗.

9: Let S1 = [Pj(ind) : j ∈ [Q]]. Let S[i∗] = r∗
$← [m].

10: Sample r1, . . . ,rQ
$← [m]Q .

11: Let S0 = [Pi(ri) : i ∈ [Q]].
12: For i ∈ [Q], i ̸= i∗, swap Pi(ind) and Pi(ri).
13: return Output (ck, q0 = S0, q1 = S1).

14: procedure Answer((qb = (a1, . . . ,aQ))
15: return Ab = [DBi(ai) : i ∈ [Q]].

16: procedure Reconstruct((A0, A1, ck, {hj}j∈[m])

17: Let DB[x] = DBi∗ [j
∗] = hj∗ ⊕

(⊕
i∈[Q],i ̸=i∗ A1[i]

)
.

18: for i in [1, . . . ,Q], i ̸= i∗ do
19: Update hind = hind ⊕A1[i]⊕A0[i].
20: Update hri = hri ⊕A1[i]⊕A0[i].

21: return (DB[x], ck, h).
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