
DoS-resistant Oblivious Message Retrieval from

Snake-eye Resistant PKE

Zeyu Liu1 Katerina Sotiraki1 Eran Tromer2 Yunhao Wang1

1Yale University
2Boston University

March 30, 2024

Abstract

Oblivious message retrieval (OMR) allows messages resource-limited recipients to outsource
the message retrieval process without revealing which messages are pertinent to which recipient.
Its realizations in recent works leave an open problem: can an OMR scheme be both practical
and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under
standard assumptions?

In this paper, we first prove that a prior construction OMRp2 is DoS-resistant under a
standard LWE assumption, resolving an open conjecture of prior works. Then, we present
DoS-PerfOMR: a provably DoS-resistant OMR construction that is 12x faster than OMRp2, and
(almost) matches the performance of the state-of-the-art OMR scheme that is not DoS-resistant.

As a building block, we analyze the snake-eye resistance property for general PKE schemes.
We construct a new lattice-based PKE scheme, LWEmongrass that is provably snake-eye resistant
and has better efficiency than the PVW scheme underlying OMRp2. We also show that the
natural candidates (e.g., RingLWE PKE) are not snake-eye resistant.

Of independent interest, we introduce two variants of LWE with side information, as com-
ponents towards proving the properties of LWEmongrass, and reduce standard LWE to them for
the parameters of interest.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Technical Overview . 5
1.3 Organization . 7

2 Related Works 7

3 Preliminary 9
3.1 Notation . 9
3.2 Hard Problems . 9
3.3 Public Key Encryption . 9
3.4 PVW PKE scheme . 10
3.5 shortLWE PKE scheme . 11
3.6 The Snake-eye Conjecture . 11
3.7 BFV Homomorphic Encryption Scheme . 12

4 Snake-eye Resistant Public Key Encryption 12
4.1 PKE Snake-eye Resistance . 12
4.2 Snake-eye resistance of PVW . 13

5 A More Efficient Snake-eye Resistant PKE 15
5.1 Short-key LWE is not snake-eye resistant . 15
5.2 LWEmongrass, New Snake-Eye Resistant PKE Construction 15

6 LWE Variants 19
6.1 LWE with Correlation . 19
6.2 LWE with Random Hints . 23
6.3 Discussion of other LWE variants with Side-information 26

7 Constructing OMR from Snake-eye Resistant PKE 26
7.1 DoS-resistant OMR Definition . 27
7.2 DoS-resistance of OMRp2 in [30] . 29
7.3 Non-DoS Resistance of PerfOMR in [32] . 29
7.4 New DoS-resistant OMR . 30

8 Evaluation 32

9 Extension of PKE Snake-eye Resistance 33
9.1 General-snake-eye-resistance of PVW and LWEmongrass 33

10 Open Questions 34

References 36

A Additional Evaluation 39

2

1 Introduction

Metadata privacy is gaining increasing attention, as a crucial complement to end-to-end encryption
of message contents. Metadata can leak sensitive information via traffic analysis and deductions
against auxiliary information, and thus protecting metadata is essential for applications such as
anonymous messaging [47, 17, 33, 7, 4], privacy preserving analytics [7], and privacy preserving
cryptocurrencies [37, 5, 10].

A particularly challenging component of metadata privacy is recipient privacy: no one should
know who is the recipient of a specific message, except for the sender and recipient. And yet,
recipients wish to efficiently retrieve their messages without downloading and scanning all the
messages carried by the communication system.

To address this issue, recent works introduced cryptographic schemes that let the recipient
outsource the job to an untrusted server. Fuzzy Message Detection [4] proposes a decoy-based
scheme: the server filters out some messages and sends a small set containing both the real messages
and false positives to the recipient. Although the false positives can to some extend reduce the
information learned by the server, the server narrows down the range of what the real messages could
be and thus this scheme only offers a relatively weak security guarantee [45]. Then, the follow-
up works [30, 35] independently introduce two similar primitives, that achieve stronger privacy:
Oblivious Message Retrieval (OMR) and Private Signaling (PS) respectively. We focus on OMR,
which is stronger than PS in terms of both functionality and privacy guarantees (see discussion in
Section 2).

While the existing OMR constructions [30, 31, 32] all achieve full privacy, there is one major
open issue: spamming in the malicious model (the so-called Denial-of-Service (DoS) model [30, Sec
8]). In more detail, in the DoS-model, a malicious sender can craft a malicious message deemed as
pertinent by numerous honest recipients (not just a single one, which is of course always possible
even if the sender generates the message honestly). Every affected recipient (and server) is then
forced to pay extra costs to handle such spamming (just like if a mailbox is full of spam, we need
to enlarge the mailbox to avoid not receiving regular mail).

Ideally, an OMR construction should be provably secure against such spamming attacks. In
[30], a Regev05 [44] ciphertext included in each message is used to indicate pertinency1 of that
message: if the ciphertext decrypts to 0 using a recipient’s secret key, this recipient deems the
corresponding message as pertinent. Thus, [30] proposes the snake-eye conjecture: any non-trivial
Regev05 ciphertext cannot be decrypted to zero under two different secret keys (except with a trivial
probability). Under this conjecture, the authors prove that such a spamming attack under the DoS
model does not work, and refer to this property as DoS-resistance. However, the correctness of this
conjecture has been an open problem. Fortunately, in this paper, we prove this conjecture to be
true under a standard Learning With Error (LWE) lattice hardness assumption.

Another issue with the original [30] construction is its efficiency, mainly concerning the server
runtime. To improve this, [32] proposes a new scheme with server runtime 15x faster than in [30].
While the efficiency is indeed greatly improved, [32] did not prove their construction to be DoS-
resistant. In fact, we show concrete attacks that can spam all recipients (i.e., a maliciously crafted
message can be detected as pertinent to all the honest recipients). Moreover, the attacks can be
easily generalized, so such malicious messages cannot be easily fully rejected.

This raises the following question:

1Or more generally, a PVW ciphertext [42].

3

Can we construct an OMR scheme that is both provably DoS-resistant (under standard assump-
tions) and as efficient as the state of the art (i.e., [32])?

In this paper, we indeed show such a sceheme.

1.1 Our Contributions

Proving the Regev05/PVW snake-eye conjecture. We prove the Regev05 [44] snake-eye
conjecture proposed in [30] under standard LWE assumption. Furthermore, [30] gives a corollary
that PVW [42] is snake-eye resistant only for some small parameter regime. Instead, we show a
stronger result that PVW is snake-eye resistant for any (polynomial) parameter under standard
LWE assumption.

Snake-eye resistance property of PKE. We generalize the snake-eye resistance property
defined against Regev05 in [30] to a general property against all PKE schemes. When seeking more
efficient lattice-based PKE schemes with snake-eye resistance, we show (by explicit attacks) that
the natural candidates like short-key LWE encryption, or its Ring-LWE variant [34], or similar
schemes like Crystals-Kyber [9], are all not snake-eye resistant. Consequentially, OMR schemes
that employ these PKE schemes (e.g., [32]) are not DoS-resistant.

Improved snake-eye resistant lattice-based PKE scheme. We then construct a new PKE
scheme LWEmongrass2 that is provable snake-eye resistant and has better efficiency than PVW [42].
Its CPA security, key privacy, and snake-eye resistance are all proven under standard LWE for the
parameters we need to instantiate our scheme. Thus, it is also plausibly post-quantum secure.

LWE variants. We introduce two new LWE variants: LWE with Correlation (corLWE) and LWE
with Random Hints (rhLWE), to prove the security and snake-eye resistance of the aforementioned
schemes. The two assumptions are both LWE variants with side information: corLWE gives out
two LWE samples under two secrets and the difference between the two secrets; rhLWE gives out
an LWE sample with a random linear transformation of the underlying secret. We show that for
the parameters needed to instantiate the schemes of interest, these two new variants are at least as
hard as standard LWE (except for some small parameter loss). We believe those two new variants
and the novel proof techniques we use for reductions are also of their own interest.

DoS-resistant OMR. Using the results above, we obtain for the first time practical OMR
constructions that are DoS-resistant under standard assumptions. In particular, we first prove the
DoS-resistance of the OMR construction in [30] under standard LWE hardness, and then obtain a
more efficient DoS-resistant OMR construction by combining the aforementioned improved snake-
eye-resistant PKE scheme LWEmongrass together with the techniques introduced in [32].

Implementation and evaluation. We implemented our OMR construction DoS-PerfOMR as
a open-sourced C++ library [20] and measured its concrete performance in comparison to prior
works. Compared to the OMR construction in [30], our construction is about 12x faster in terms
of server (detector) runtime with 28x smaller public key size. Compared to the OMR construction
in [32] (with no DoS-resistance), our construction has a comparable server runtime (about 1.24x
slower), and the public key is about 2.2x larger. We also experimentally show the effectiveness of
the attacks above for the short-key lattice-based PKE schemes.

2Lemongrass is folklore snake repellent.

4

1.2 Technical Overview

Proving the Regev05/PVW snake-eye conjecture. To prove [30, Conj 8.4], we introduce
a new variant of LWE, called LWE with correlation (corLWE), which gives out two regular LWE
samples under two different secrets and the difference between the two secrets. We later show
that corLWE is at least as hard as LWE. Now, we directly use corLWE to prove the snake-eye
conjecture. An adversary that breaks the snake-eye conjecture can generate a ciphertext ct = (⃗a, b)
that decrypts to 0 under two independent and valid secret keys, sk1 and sk2. Based on the linearity
of decryption (i.e., (b−⟨⃗a, sk⟩)), the adversarial ciphertext decrypts to 0 with noticeable probability
when using as key the difference of the two secrets, sk1−sk2. However, this is not the case if instead
of two valid public keys, the adversary is given uniform samples (except for a trivial ciphertext with
a⃗ = 0⃗). Thus, this adversary breaks the corLWE assumption.

Snake-eye resistance property of short-key LWE PKE schemes. We extend the original
snake-eye conjecture of [30] to a general snake-eye resistance property for PKE: any (non-trivial)
ciphertext cannot be decrypted to the same value under two honestly generated secret keys. We
analyze this property on existing lattice-based PKE schemes and show that the schemes that are
based on short secrets (e.g., [9, 34]) are not snake-eye resistant. When the secret keys are short, we
can construct wildcard ciphertexts that decrypt to 0 for most honestly generated secret keys. For
example, consider the ciphertext (⃗a = 1⃗, b = 2n/3) ∈ Zn+1

q (where n is the length of the secret key
and q ≫ n), a uniform ternary secret (i.e., a secret with values in {−1, 0, 1}) decrypts c to 0 with
high probability, since b − ⟨⃗a, sk⟩ ≈ 0 for any ternary sk. This attack easily generalizes to other
ciphertext forms (i.e., a⃗ ̸= 1⃗) and thus is hard to prevent.

A more efficient snake-eye resistant lattice-based PKE scheme. To achieve provable
snake-eye resistance while maintaning the efficiency of short-key LWE PKE schemes, we introduce
our new PKE scheme, LWEmongrass, that uses a hybrid of uniform and short secrets. The uniform
component of the secret guarantees the snake-eye resistance under corLWE (also with a hybrid
secret). To accommodate the uniform secret elements, the encryption procedure of LWEmongrass
needs to generate some noiseless LWE samples. Otherwise, the decryption error becomes too large
(as the error terms are multiplied by the secret key elements during decryption). Therefore, to
prove the security of LWEmongrass, we introduce another LWE variant LWE with random hints
(rhLWE), which gives a regular LWE sample together with some random linear combinations of the
secret (i.e., the noiseless terms). Under rhLWE (with short secrets), we prove that LWEmongrass is
CPA-secure and key-private. The right half of Fig. 1 shows how LWEmongrass achieves its desired
properties.

To prove the desired properties of our construction (and Regev05/PVW) under standard lattice
assumption, we show how to reduce standard LWE to the two variants we introduce. The high-level
summary is shown in the left half of Fig. 1.

Reducing standard LWE to corLWE. For corLWE with uniform secrets, the reduction incurs
almost no security loss: given a regular LWE sample with 2w components, we separate them into
two regular LWE samples each with w components, and randomly generate a uniform secret to
decouple the second sample by masking the underlying uniform secret. With these two samples
and the new uniform secret, we can construct a valid corLWE challenge. This thus proves [30, Conj
8.4] under standard LWE, combining with the result above.

However, for LWEmongrass, recall that we need corLWE to hold with short secrets. First,
observe that the above strategy fails for uniform binary secrets, since we cannot use a binary secret

5

corLWE

A1 B1

A2 B2

w

Standard LWE

A B2w

n’

n

Reduction
(Sec 6.1)

corLWE sk:
Uniform: n’ = n
Binary: n’ ≈ 2n
Ternary: n’ ≈ 9n/7

LWEmongrass
(Algorithm 1)

Snake-eye
Resistance

CPA security &
Key privacy

w

Reduction
(Thm 5.3)

sk1 - sk2
ℓ

Reduction
for any k > 0

(Thm 5.2)

rhLWE

B2 are noiseless hints

A1 B1

A2 B2

w

Standard LWE

noise bound = |𝛘|

A Bk+w

n

|𝛘|k = poly(n),
binary sk

k

Reduction
(Sec 6.2)

n

Figure 1: Overview of the security guarantee of our construction LWEmongrass (Corollary 6.6).
For standard LWE (Definition 3.1), (A,B) ≈c U (where U stands for uniform); for corLWE (Defini-
tion 4.2), (Ai, Bi)i∈{1,2} ≈c U , given (sk1 − sk2); for rhLWE (Definition 5.1), a regular LWE sample
(A1, B1) ≈c U given (A2, B2 = A2sk).

to mask another binary secret(the resulting secret is no longer binary). Instead, observe that if two
independently sampled secrets have the same bit (0 or 1) at location i, there is a one-bit entropy
even when the difference between the two secrets is given out (as the difference at location i is
always 0). Each such location then allows us to embed a uniform binary LWE secret element.
Hence, to embed an LWE secret of size n, we create a corLWE instance with secrets of size n′ ≈ 2n
(see Fig. 1).

Reduction for ternary secret is a bit more involved: using the same argument above for ternary
secret results in n′ ≈ 3n parameter loss, which is not tight. We observe that for ternary secrets,
the difference (of location i) being 0 preserves a log2(3)-bit entropy, and the difference being 1 or
−1 also preserves one-bit entropy. To leverage this observation, we reduce standard LWE with a
hybrid of ternary and binary secrets to corLWE with ternary secrets and obtain n′ ≈ 9n/7.

Reducing standard LWE to rhLWE. To reduce standard LWE (with binary secrets) to rhLWE
with binary secrets, we use a proof technique inspired by [24]: given an LWE sample with w + k
components, we guess the error of the last k components (again using the notation in Fig. 1).
If we guess it correctly, the error cancels out and we get a valid rhLWE sample. Otherwise, our
construction gives a random sample. As long as we guess correctly with 1/poly(n) probability, we
can break standard LWE using an adversary that breaks rhLWE.

With these two reductions, we show desired properties of LWEmongrass are proven under stan-
dard LWE assumption (Corollary 6.6).

Applying LWEmongrass to construct OMR. To construct an efficient OMR scheme, we follow

6

the framework introduced in [30]. a LWEmongrass ciphertext is included in a message to (implicitly)
indicate its recipient (ciphertexts decrypting to 1 indicate pertinency). The untrusted server uses
FHE to homomorphically decrypt the ciphertext and learn whether the recipient performing the
retrieval is the intended recipient. Since LWEmongrass has a similar setup as regular short-key LWE
PKE schemes, we can leverage the optimizations (particularly designed for short-key LWE PKE
schemes) introduced in [32] for the homomorphic retrieval circuit. Combining all these, we obtain
our OMR scheme DoS-PerfOMR that is about 12x faster than the constructions in [30, 31] (proven
to be DoS-resistant by our result).

1.3 Organization

The rest of the paper is organized as follows. In Section 3, we introduce the main preliminary
knowledge needed for our paper. In Section 4, we formally define the snake-eye resistance property
and prove that Regev05/PVW is snake-eye resistant. In Section 5, we show that some other efficient
LWE-based PKE schemes are not snake-eye resistant, and construct a new PKE scheme that is
snake-eye resistant and more efficient than PVW. In Section 6, we show the two LWE variants
proposed are equivalent to LWE under the parameters of interest. In Section 7, we recall the
definition of DoS-resistant OMR and show how to apply our results about snake-eye-resistant PKE
scheme to achieve DoS-resistant OMR. In Section 8, we implement our DoS-resistant OMR and
compare it with prior constructions; we also demonstrate our attack on prior constructions. In
Section 9, we discuss some extensions on the snake-eye resistance property. In Section 10, we
discuss some open questions.

2 Related Works

Oblivious Message Retrieval. OMR [30] proposes a message retrieval primitive with full re-
cipient privacy. Later GOMR [31] extends it to the group setting. Both works rely on a hybrid
use of the PVW encryption scheme and BFV-leveled homomorphic encryption scheme. The DoS-
resistance of both works is conjectured without proof under standard assumptions.

PerfOMR [32] replaces the PVW encryption scheme with a tailored RLWE encryption scheme
and modifies the underlying BFV-based retrieval circuit. It achieves a better efficiency compared
to [30, 31] in terms of detector runtime, clue key size, and clue size. However, PerfOMR is not
DoS-resistant. We show an attack to it in Section 5.1.

One recent concurrent and independent work [8] proposes a general DoS-resistant OMR con-
struction using FHE and commitment schemes. However, unfortunately, their construction relies
on heavy machinery: their clue includes encryption of an FHE public key and a commitment to
that public key. Thus, the clue needs to be at least megabytes, compared to the schemes above
mainly with clue < 1KB. The detector needs to perform a decryption of the encrypted public
key, a commitment on the decrypted public key, and a comparison between the new commitment
and the original one in the clue, all homomorphically. In contrast, other OMR works [30, 31, 32]
only require a homomorphic decryption of ℓ bits for some small constant ℓ (e.g., ≤ 6). Based on
our conservative estimation, realizing their scheme requires ≫ 200 levels of multiplication, while a
practical OMR scheme like [30, 31, 32] requires only about 20 levels; the number of homomorphic
operations is even worse. Therefore, the runtime and the clue size of concretely realizing this work
can be orders of magnitude worse than [30, 31, 32] (either with or without using bootstrapping).

7

Therefore, while [8] provides an interesting theoretical possibility, due to its inherent heaviness, it
is far from being practical.3

A concurrent and independent work [27] shows an OMR-like construction that is DoS-resistant
(among other features), based on two non-colluding servers OMR construction. However, it achieves
a weaker security notion: for privacy, it assumes that each individual server is semi-honest even
without collusion (i.e., not only they do not collude with each other, but they also cannot collude
with a recipient or simply pretend to be a recipient). Violations of these assumptions would lead
to undetectable privacy failure. Conversely, our work together with all the prior works [30, 31, 32,
8, 35, 26] and the private signaling papers below [35, 26] ensure privacy against malicious servers
(and assume semi-honest servers just for correctness, whose violation may be detected or prevented
by other mechanisms such as consistency checking of SNARK proofs). Also, their construction is
not compact (i.e., communication linear in the board size) and needs an additional round of PIR
to fetch the payloads. They introduce another additional interesting notion called “deletion”: that
the servers delete the messages they store for every certain period. This operation can improve
efficiency as the size of the bulletin board. However, this operation allows the servers to know
which messages are retrieved during this period, which may lead to extra information leakage.

Fuzzy Message Detection. FMD [4, 43] mainly focuses on decoy based security. While this
primitive has highly efficient constructions, we consider the security notion relatively weak as
analyzed in [45]. Therefore, we do not compare these constructions directly.

Private Signaling. Like OMR, PS [35, 26] provides full security, but it only supports detection
instead of retrieval (i.e., letting the recipients know the indices of pertinent messages instead of the
payloads). Furthermore, PS as introduced in [35] does not require any form of key-unlinkability;
this is in contrast to the OMR security guarantees. For instance, in the OMR setting detection-
key-unlinkability as defined in [31] states that retrievals cannot be linked to a particular recipient.
Later works [26] enhanced the definition of [35] to offer detection-key-unlinkability, but still not
full-key-unlinkability as requires in [30] (i.e., OMR allows a recipient to hold multiple clue keys
that cannot be linked). Lastly, PS does not require the property of DoS resistance, which is the
main topic of this work. See also [30, Sec 2.3] for a detailed comparison between OMR and PS.

In terms of constructions, prior works on private signaling have constructions using a Trusted
Execution Environment (TEE), which is a strong environment assumption since a lot of work shows
that the existing TEEs have side-channels that can leak secrets easily [46]. Therefore, while the
construction in [26] provides a construction with great scalability (the runtime growth is only poly-
logarithmic in the number of messages), we do not directly compare to them as we are assuming
a standard environment. [35] provides a solution assuming two communicating but non-colluding
servers, which is also a strong environment assumption. Moreover, this construction also scales
linearly the number of messages and is concretely slower than [30] and our constructions. Therefore,
we do not compare with this construction directly either.

Other private retrievals primitives. There are other related problems like (batch) Private
Information Retrieval (PIR) [16] and its variant (batch) Keyword PIR [15] and Private Stream
Search (PSS) [40, 19, 6, 23]. They share some similarities with OMR but are also very different
from it as discussed in [30, 31, 32].

LWE variants. The two LWE variants we introduced are with side information, while sharing
similarities with variants in prior works [39, 2, 13, 1, 29, 14, 28, 25, 24, 12], our variants differ in

3Motivated by another application, their construction provides a stronger DoS guarantee: it holds even if the
attacker knows recipients’ secret keys.

8

terms of definition and proof techniques. We discuss the relationship between those variants and
our variants in Section 6.3 in more detail, after we formally define the two variants we introduce.

3 Preliminary

3.1 Notation

Let D denote an arbitrary distribution, B denote the binary distribution, T denote the ternary
distribution (i.e., the uniform distribution over {−1,0,1}), U denote the uniform distribution. Let

x
$←− P denotes a uniformly random sample from space P , x ← D denotes a uniform sample from

distribution D. Let Dβ denote a distribution with norm bound β, s.t. Prx←Dβ
[|x| > β] ≤ negl(λ)

for security parameter λ. Let |χ| denote the norm bound of a symmetric distribution χ such that
Pr[x = i] = Pr[x = −i] for all 0 ≤ i ≤ |χ|. Finally, Dℓ represents the product distribution
D ×D × · · · × D (e.g. if x⃗← D ∈ Zn

q , then X ← Dℓ ∈ Zn×ℓ
q).

For x ∈ Zq, let |x| denote the norm of x when lifted to [−⌊q/2⌋, ⌊q/2⌋]; in other words, |x| = |z|
where z ∈ [−⌊q/2⌋, ⌊q/2⌋] satisfying z + x mod q = 0. Let z⃗ for z ∈ Z denote a vector with all
elements being z, i.e. (z, z, z, . . . , z, z) (e.g., 1⃗ := (1, 1, 1, . . . , 1, 1)). Let 0k be a vector of k ∈ Z+

zeros. Similarly, 0k×k
′
is a matrix of k × k′ zeros for k, k′ ∈ Z+. For a vector x⃗, x⃗[a, b] denotes a

vector containing the a-th element up to the b-th element in x⃗. For a matrix A ∈ Zm×n
t , A⊺ ∈ Zn×m

t

denotes its transpose.

3.2 Hard Problems

Definition 3.1 (Decisional Learning With Error Assumption). Let n, ℓ, w, q,D, χ be parameters
dependent on λ. The (decisional) learning with error (LWE) assumption LWEn,ℓ,w,q,D,χ states the
following: any PPT adversary cannot distinguish (A,AS + E) and (A,B) (except with negligible

advantage), where A
$←− Zw×n

q , S ← Dn×ℓ, E ← χw×ℓ and B
$←− Zw×ℓ

q .

3.3 Public Key Encryption

Definition 3.2 (Public Key Encryption (PKE)). A PKE scheme consists of PPT algorithms
(PKE.GenParam,PKE.KeyGen,PKE.Enc,PKE.Dec) defined as follows:

• pp← PKE.GenParam(1λ, aux): takes a security parameter λ, an auxiliary parameter aux with
|aux| = poly(λ); outputs a public parameter pp.

• (pk, sk)← PKE.KeyGen(pp): takes the public parameter pp; outputs a key pair (pk, sk).

• ct← PKE.Enc(pp, pk,m): takes the public parameter pp and the public key pk, generates the
ciphertext c for the message m; outputs ct.

• m ← PKE.Dec(pp, sk, ct): takes the public parameter pp, decrypts the ciphertext ct into a
plaintext message m based on the secret key sk; outputs the message m.

The scheme must satisfy the following properties:

• (Correctness) For any valid aux, let pp← PKE.GenParam(1λ, aux), let (pk,sk)← PKE.KeyGen(
pp) and for any message m, let ct ← PKE.Enc(pp, pk,m) and m′ ← PKE.Dec(pp, sk,ct). It
holds that if pp ̸= ⊥, Pr[m = m′] ≥ 1− negl(λ).

9

• (IND-CPA Security) For any PPT algorithm A = (A1,A2): let pp← PKE.GenParam(1λ,aux),
(pk,sk) ← PKE.KeyGen(pp); A1 chooses two messages and remembers state: (m0,m1, st) ←
A1(pp, pk); sample b

$←− {0,1} and ct← PKE.Enc(pp,pk,mb); let b
′ ← A2(st, ct); it holds that:

Pr[b = b′] ≤ 1/2 + negl(λ).

• (Key privacy) For any PPT algorithm A = (A1,A2): let pp ← PKE.GenParam(1λ,aux),
and (pk0,sk0) ← PKE.KeyGen(pp), (pk1,sk1) ← PKE.KeyGen(pp); A1 chooses a message and

remembers its state: (m, st) ← A1(pp, pk0, pk1); then sample b
$←− {0,1} and let ct ←

PKE.Enc(pp,pkb,m); let b′ ← A2(st, ct); it holds that: Pr[b = b′] ≤ 1/2 + negl(λ).

3.4 PVW PKE scheme

Definition 3.3. We describe the PVW scheme introduced in [42] (adapted according to [30]).

• pp = (n,ℓ, w, q, p, χ,r) ← PVW.GenParam(1λ, aux = (ℓ, q, p, χ)): Choose a secret key dimen-
sion n and public key dimension w = poly(λ, n, ℓ, q) as in [42], where q is the ciphertext
modulus, p is the plaintext modulus, and ℓ is the number of Zp elements in plaintexts. Fi-
nally, set r to be minimum r > 0 such that Pr

ei
$←−χ

[
∑

i∈[w] |ei| > r] ≤ negl(λ), where χ is the

input noise distribution; if r > q
2p , output pp = ⊥4.

• (pk, sk) ← PVW.KeyGen(pp): If pp = ⊥, output (pk, sk) = (⊥,⊥). Otherwise, sample a

random secret key sk ← Zn×ℓ
q , a random A

$←− Zw×n
q and an error matrix E ← χw×ℓ

σ , and
compute pk = (A,P = A sk+ E).

• ct = (⃗a, b⃗)← PVW.Enc(pp, pk, m⃗): If pp = ⊥, output ct = ⊥. Otherwise, to encrypt a vector

m⃗ ∈ Zℓ
p, define a vector t⃗ = ⌊ qp⌋·m⃗ ∈ Zℓ

q. Sample a random row vector x⃗
$←− {0,1}1×w. Output

(⃗a, b⃗) = (x⃗A, x⃗P + t⃗) ∈ Z1×n
q × Z1×ℓ

q as the ciphertext.

• m⃗ ← PVW.Dec(pp, sk, ct = (⃗a, b⃗)): If pp = ⊥, output m⃗ = ⊥. If a⃗ = 0n, output m⃗ = ⊥.
Otherwise, let d⃗ = (⃗b− a⃗sk)⊺ ∈ Zℓ

q, output m⃗ ∈ Zℓ
p, where m⃗[i] = v if there exists v ∈ Zp such

that:
∣∣∣⌊d⃗[i] · pq⌋− v

∣∣∣ ≤ r; otherwise, m⃗[i] = ⊥.

This PVW PKE scheme is correct, CPA-secure, and key-private as shown in [42, 30] under
LWEn,ℓ,w,q,Un,χσ . Fixing ℓ = 1 gives the Regev05 [44] scheme.

Remark 3.4. The two major differences between this variant and the original PVW [42] are: (1)
r in [42] is strictly q/2p while in this variant, it can be smaller; (2) when a⃗ = 0n, this variant
rejects to decrypt the ciphertext. Both changes are proposed in [30]: change (1) is to reduce the
range to check for efficiency (smaller r reduces ℓ in the application of [30]); change (2) avoids a
trivial ciphertext that decrypts to the same plaintext for any secret key. It is straightforward that
(1) does not affect correctness, CPA-security, or key-privacy. For (2), since an honestly generated
ciphertext under an honestly generated public key gets rejected with probability q−n = negl(n), it
has negligible effect over correctness, CPA-security, or key-privacy.

4In [30], r is chosen based on the condition Pr
ei

$←−χσ,xi
$←−{0,1}

[
∑

i∈[w] xi · |ei| > r] ≤ negl(λ). We simplify this

which suffices for our applications.

10

3.5 shortLWE PKE scheme

Now we recall the shortLWE PKE scheme introduced in [34] (adapted according to [32]). This
scheme follows the blueprint of PVW except that the secrets are sampled from a distribution Dβ

with some (small) norm bound β ≪ q. Also, instead of sampling a subset-sum of the public key
inside Enc, the encryption procedure samples an LWE secret to generate new LWE samples. We
show these differences (with respect to Definition 3.3) in blue color.

Note that in [34, 32], the scheme is constructed based on the Ring-LWE assumption. For the
purpose of this paper, we adapt the scheme to regular LWE.

Definition 3.5. shortLWE is defined as follows.

• pp = (n,ℓ, q, p, χ,r) ← shortLWE.GenParam(1λ, aux = (ℓ, q, p,Dβ, χ)): Choose a secret key
dimension n so that the LWEn,ℓ,n+ℓ,q,Dn

β ,χ
assumption holds, where q is the ciphertext mod-

ulus, p is the plaintext modulus, ℓ is the number of Zp elements in plaintexts, χ is noise
distribution, and Dn

β is the secret key distribution. Finally, set r to be minimum r > 0 such
that Pr

xi
$←−χσ

[
∑

i∈[2n+1] |xi| · β > r] ≤ negl(λ) where β is the bound of the distribution Dβ; if

r > q
2p , output pp = ⊥. 5

• (pk, sk) ← shortLWE.KeyGen(pp): If pp = ⊥, output (pk, sk) = (⊥,⊥). Otherwise, sample a

random secret key sk← Dn×ℓ
β , a random A

$←− Zn×n
q and an error matrix E ← χn×ℓ

σ . Compute
pk = (A,P = A sk+ E).

• ct = (⃗a, b⃗) ← shortLWE.Enc(pp, pk, m̃): If pp = ⊥, output ct = ⊥. Otherwise, to encrypt a

vector m⃗ ∈ Zℓ
p, define a vector t⃗ = ⌊ qp⌋ · m⃗ ∈ Zℓ

q. Sample x⃗
$←− D1×n

β , e⃗1 ← χ1×n
σ , e⃗2 ← χ1×ℓ

σ .

Output (⃗a, b⃗) = (x⃗A+ e⃗1, x⃗P + e⃗2 + t⃗⊺) ∈ Z1×n
q × Z1×ℓ

q as the ciphertext.

• m⃗ ← shortLWE.Dec(pp, sk, ct= (⃗a, b⃗)): If pp = ⊥, output m⃗ = ⊥. If a⃗ = 0n, output m⃗ = ⊥.
Otherwise, let d⃗ = (⃗b − a⃗sk)⊺ ∈ Zℓ

q, output m⃗ ∈ Zℓ
p, where for all i ∈ [ℓ], m⃗[i] = v if there

exists v ∈ Zp such that:
∣∣∣⌊d⃗[i] · pq⌋− v

∣∣∣ ≤ r; otherwise, m⃗[i] = ⊥.

The shortLWE PKE scheme is correct, CPA-secure, and key-private under LWEn,ℓ,n+ℓ,q,Dn
β ,χ

.

3.6 The Snake-eye Conjecture

We state the snake-eye conjecture introduced in [30, Conj 8.4]. This conjecture motivates our
general snake-eye definition for PKE schemes and we later prove a slightly different version of
this conjecture (Remark 4.4). The conjecture essentially says that for Regev05 PKE scheme [44]
(which can also be seen as the PVW scheme [42] with ℓ = 1), any non-trivial ciphertext cannot
be decrypted to 0 for two different keys except with trivial probability. As discussed in [30], this
property is not implied by standard security notions like CPA or CCA security or key privacy.

Conjecture 3.6 (Regev05 is snake-eye resistant). For any PPT algorithm A, for Regev05 encryp-
tion with modulus q and remaining parameters for which semantic security holds, for any 1 ≤ r <

5In [32], r is chosen by Pr
ei,ej

$←−χσ,xi
$←−Dβ

[
∑

i∈[2n] xi · |ei| +
∑

j∈[ℓ] |ej | > r] ≤ negl(λ). The simplified condition

suffices for our results.

11

q/4, key pairs (sk, pk)← KeyGen(1λ), (sk′, pk′)← KeyGen(1λ) and ciphertext (⃗a, b)← A(pk, pk′, r),
it holds that

Pr

[
|⃗a sk+ b| ≤ r
∧ |⃗a sk+ b| ≤ r

∧ a⃗ ̸= 0⃗

]
≤ (2r + 1)/q + negl(λ) .

Then, [30, Lemma 8.5] shows that PVW [30] is snake-eye resistant given that Conjecture 3.6
holds, for ((2r + 1)/q)−ℓ = poly(λ), which means ℓ = O(log(λ)) (as ((2r + 1)/q) ≥ 2 is needed for
correctness, and it can be even smaller if (2r + 1)/q is ω(1)), formally stated as follows.

Lemma 3.7 ([30] PVW is snake-eye resistant). Under Conjecture 3.6, for any PPT adversary
A, for PVW encryption with ciphertext modulus q and plaintext space Zℓ

2, and r such that ((2r +
1)/q)−ℓ = poly(λ) and remaining parameters for which semantic security hold, for any 1 ≤ r <
q/4, for key pairs (sk, pk) ← PVW.KeyGen(pp) and (sk′, pk′) ← PVW.KeyGen(pp), for ciphertext
c = (⃗a, b⃗)← A(pk, pk′, r), letting m⃗← b⃗⊺ − sk⊺a⃗⊺ and m⃗′ ← b⃗⊺ − sk′⊺a⃗⊺, it holds that:

Pr
[
(∀i ∈ [ℓ] : |m[i]| ≤ r ∧ |m′[i]| ≤ r) ∧ a⃗ ̸= 0⃗

]
≤ ((2r + 1)/q)ℓ + negl(λ) .

3.7 BFV Homomorphic Encryption Scheme

The BFV [11, 22] homomorphic encryption scheme is a PKE scheme (Definition 3.2) that also allows
homomorphic evaluation. That is, for two BFV ciphertext ct1, ct2 encrypting m1,m2 ∈ Zt for some
t respectively, let ct′ ← ct1 ◦ ct2, it satisfies that Dec(ct′) = m1 ◦m2 where operation ◦ ∈ {×,+}
(homomorphic evaluation on op is done using the BFV public key BFV.pk). We assume that BFV
is unconditionally correct and secure (under Ring-LWE assumption) in this paper. We basically
use BFV as a black box for our OMR construction and thus omit further details.

4 Snake-eye Resistant Public Key Encryption

To prove Conjecture 3.6, we prove a more general version: PVW PKE scheme (Definition 3.3) is
snake-eye resistant (which implies that Regev05 is snake-eye resistant). To accomplish the proof,
we first generalize it into a formal property of all PKE schemes. Since this property is generalized
from the snake-eye conjecture, we call it PKE snake-eye resistance.

4.1 PKE Snake-eye Resistance

At a high-level, we define δ-snake-eye resistance to be that any ciphertext cannot be decrypted
into the same plaintext under two honestly generated keys except with δ probability (see Fig. 2 for
visualization). The formal version is as follows.

Definition 4.1 (δ-snake-eye resistance of PKE). A PKE scheme is δ-snake-eye-resistant if the
following holds: let pp ← PKE.GenParam(1λ, aux), (pk1, sk1) ← PKE.KeyGen(pp), (pk2,sk2) ←
PKE.KeyGen(pp); for any PPT adversary A, let ct← A(pp, pk1, pk2):

Pr [PKE.Dec(pp, sk1, ct) = PKE.Dec(pp, sk2, ct) ̸= ⊥] ≤ δ.

Further generalizing snake-eye resistance. One may wonder whether this property can be
further generalized. We discuss it in more detail in Section 9.

12

Figure 2: Overview of definition of δ-snake-eye resistance, where δ is the success probability that
the adversary wins the game in the figure. m is any plaintext in the plaintext space.

4.2 Snake-eye resistance of PVW

We now turn our eyes to the open question raised in [30]: whether Regev05 and its variant PVW
(Definition 3.3) are provably snake-eye resistant under standard LWE hardness assumption. We
answer this question firmly by proving that PVW is (4r+1

q)ℓ-snake-eye-resistant (which directly

implies that Regev05 is (4r+1
q)-snake-eye-resistant).

To prove this property, a new LWE assumption variant called LWE-with-correlation (corLWE)
is used. Later in Section 6.1, we show that this LWE-variant is equivalent to standard LWE
(Definition 3.1) except for some small parameter loss. Looking ahead, all the properties we prove
in this paper are under the standard LWE assumption. Meanwhile, we still formally define this
variant due to the following reasons: (1) this new assumption is of its own interest and might have
other applications; (2) we only prove that this assumption is equivalent to standard LWE under
certain parameters, and for other parameter choices, it may worth further exploration; (3) it is more
straightforward to prove the snake-eye resistance property directly under this new assumption (and
later argue its equivalence to regular LWE under the parameters of interest).

At a high-level, corLWE says that given two LWE samples under two different secrets, together
with the difference of the two secrets, the LWE samples are still indistinguishable from uniformly
random samples. It is formally defined as follows.

Definition 4.2 (LWE with Correlation). Let n, ℓ, w, q,D, χ be parameters dependent on λ.The
decisional LWE with correlation assumption corLWEn,ℓ,w,q,D,χ states the following: any PPT adver-
sary cannot distinguish (A1, A1 sk1 +E1, A2,A2 sk2 +E2, sk1− sk2) from (A1, B1, A2, B2, sk1− sk2)

(except with negligible advantage), where A1, A2
$←− Zw×n

q , sk1, sk2 ← Dℓ, E1, E2 ← χw×ℓ, and

B1, B2
$←− Zw×ℓ

q .

We then prove that PVW is snake-eye resistant under corLWE with secret key distribution
D = Un (i.e., secrets are drawn uniformly at random from Zn

q)
6, For simplicity, we focus on the

6Interestingly, for uniform secrets, there is almost no security loss when reducing regular LWE to corLWE. See

13

ℓ = 1 case: by definition, the adversary breaking PVW snake-eye resistance gives out a ciphertext
(⃗a, b) that satisfies |⃗a ski − b| ≤ r + d for i ∈ {1,2}, and d being (the encoding of) some plaintext.
If we know the difference sk1 − sk2 (which is given in the corLWE challenge) and the maliciously
crafted ciphertext, it is simple to test whether |⃗a (sk1 − sk2)| ≤ 2r. If the corLWE challenge is
random, this happens with probability 4r+1

q . Therefore, if A has noticeable advantage over 4r+1
q

for a normal corLWE challenge, it breaks the corLWE assumption. This naturally extends to the
ℓ > 1 case. We formalize the lemma and the proof as follows.

Lemma 4.3 (PVW is (4r+1
q)ℓ-snake-eye resistant). For any λ > 0, ℓ = poly(λ), q, p > 0 and error

distribution χ, let aux = (ℓ, q, p, χ), the PVW PKE scheme, is (4r+1
q)ℓ-snake-eye resistant under

corLWEn,ℓ,w,q,Un,χ with corresponding parameters in Definition 3.3.

Proof. Given a PPT adversary A that breaks the snake-eye resistance property of PVW, we con-
struct an adversary that breaks corLWEn,ℓ,w,q,Un,χ as follows.

Given (A1, b⃗1, A2, b⃗2, sk1 − sk2), we directly feed pk1 = (A1, b⃗1), pk2 = (A2, b⃗2) into A. Upon
receiving (⃗a, b⃗), if |⃗a (sk1,j − sk2,j)| ≤ 2r for all j ∈ [ℓ], output “the input is a valid LWE sample”;
otherwise, output “the input is a random sample”.

If the original (A1, b⃗1), (A2, b⃗2) are valid LWE samples, it satisfies that |⃗a ski,j − b⃗j | ≤ r for
i ∈ {1,2}, j ∈ [ℓ], and thus |⃗a (sk1,j − sk2,j)| ≤ 2r via triangle inequality. On the other hand, if the

original (A1, b⃗1), (A2, b⃗2) are random samples, A receives no information about sk1, sk2 (which are
both uniformly randomly sampled). Thus, for a⃗ ̸= 0⃗, we have Pr[∀j ∈ [ℓ], |⃗a (sk1,j − sk2,j)| ≤ 2r] =
(4r+1

q)ℓ.
Therefore, for any A with a noticeable advantage of breaking snake-eye resistance, the adversary

we construct has the same advantage of breaking corLWE.

Remark 4.4. Our lemma is a slightly different version of Conjecture 3.6 introduced in [30]. The
main differences are that (1) Conjecture 3.6 is with respect to Regev05 (which can be seen as
a version of PVW with ℓ = 1) instead of PVW, and (2) it conjectures δ = 2r+1

q . [30] further

proved that for (2r+1
q)−ℓ = poly(λ), PVW is (2r+1

q)ℓ-snake-eye resistant under Conjecture 3.6 (see
Lemma 3.7).

Our proof, instead, directly shows that PVW with arbitrary ℓ = poly(λ) is δ = (4r+1
q)ℓ snake-eye

resistant. Thus, our Lemma 4.3 is more general (allows any polynomial size ℓ) but also has larger
δ. However, since δ can be easily reduced by enlarging ℓ, this is not an issue in practice: one can
simply enlarge ℓ and pad dummy plaintexts with little efficiency loss to achieve the desired δ (e.g.,
δ = negl(λ); note that this is not achievable by [30] even under Conjecture 3.6).

Another small difference is that in [30], r can be arbitrary between 0 and q/4 but in our case
r is a parameter output by PVW. Our proof can be extended to arbitrary r without any change,
but for the generalized snake-eye resistance of PKE definition to make sense, we leave r for the
underlying scheme to decide.

Together with Lemma 6.1 (showing that corLWE with uniform secrets is equivalent to regular
LWE with uniform secrets), we resolve the open question stated in [30] asking whether the snake-eye
resistance property for some widely-used lattice-based PKE scheme (such as Regev05 [44] and its
variant PVW [42]) holds under the standard LWE assumption.

Lemma 6.1 for details.

14

5 A More Efficient Snake-eye Resistant PKE

Although the PVW encryption scheme already satisfies the PKE snake-eye resistance defined in
Definition 4.1, two major issues limit its efficiency: 1) its public key size is wℓ log q = ω(ℓn log2 q)
(as to guarantee the scheme is CPA-secure and key-privacy, it needs to use leftover hash lemma and
thus w = ω(n log(q))); 2) since w = ω(n log(q)) is large, the error range r used for decryption needs
to to be large enough to satisfy Pr

xi
$←−χσ

[
∑

i∈[w] |xi| > r] ≤ negl(λ). Naturally, with a larger error

range r, we need a larger ciphertext modulus q, which harms the efficiency of the PKE scheme.
Furthermore, in the application of OMR, the algorithm requires a homomorphic decryption of
the underlying PKE scheme. As discussed in [32], smaller r leads to more efficient homomorphic
decryption circuits, which greatly boost the efficiency of the OMR construction.

5.1 Short-key LWE is not snake-eye resistant

Due to these limitations, the most widely-used lattice-based PKE schemes are based on short secret
keys, such as the short-key LWE scheme (Definition 3.5) or its ring-variant [34], and other similar
schemes, such as Crystal-Kyber [9]. For the short-key LWE scheme, the public key size is reduced
to nℓ log(q). Furthermore, by choosing r based on condition Pr

xi
$←−χσ

[
∑

i∈[n] |xi| · β > r] ≤ negl(λ),

r could be much smaller if β is small (e.g., for ternary secrets, β = 1).
Thus, it is natural to ask whether such short-secret schemes are snake-eye-resistant. Unfor-

tunately, we show that this is not the case. Specifically, we show that the short-key LWE PKE
scheme and similar schemes are not snake-eye resistant by presenting some attacks.

Snake-eye attack over short-key LWE. For simplicity, let us start with the binary secret key
distribution, i.e. Dβ = B, and ℓ = 1, q > r > n. Then, the attacker directly outputs a ciphertext
(⃗a, b) = (⃗1⊺, ⌊n/2⌉). For any sk← Dn

β , we have |b− a⃗ sk| ≤ ⌊n/2⌋. Hence, this ciphertext decrypts
to 0 for all honestly generated secret keys as long as n/2 < r. For schemes with parameters r < n/2,
the attacker can instead set a⃗ to be 2r ones and b = r; thus, |b− a⃗ sk| ≤ r.

Furthermore, this attack is easily generalizable: (⃗a = 2⃗, b = ⌊n⌉), or (⃗a
$←− [−β, β]n, b = 0) for

some small β, or even (⃗a = q/2 · 1⃗, b = q/2) (which works for any even q instead of just q ≫ n), and
so on and so forth. With similar arguments, these wildcard ciphertexts can break the snake-eye
resistance property. Therefore, it seems infeasible to rule out all possible wildcard ciphertexts to
make the scheme snake-eye resistant.

Such attacks can all be extended to ℓ > 1, as well as to Ring-LWE and Module-LWE, and
to any short secrets distributions, which thus affects other LWE-based PKE schemes with short
secrets (e.g., [34, 9]). In later sections, we also show that such attacks break the DoS-resistance
of OMR constructions based on shortLWE (or similar schemes) like [32] and we implement a demo
(see Section 8) and show that the attack indeed works for the construction in [32].

5.2 LWEmongrass, New Snake-Eye Resistant PKE Construction

We propose a new lattice-based PKE construction that enjoys efficiency comparable to shortLWE
(Definition 3.5) and is snake-eye resistant. Later shown in Section 7, this PKE scheme gives a new
OMR construction that is both provably DoS-resistant and has similar efficiency to the state-of-
the-art non-DoS-resistant OMR [32].

15

The attacks above fully rely on the fact that all secret key elements are short (with small norms).
Therefore, our first key insight is to utilize a mix of short and uniform secrets. In other words,
instead of solely sampling a short key or a uniform key, we sample both and then concatenate
them together (i.e., sk ← Dn

β ||Uk for some small β). For simplicity, let ℓ = 1. The public key

pk = (A
$←− Zw×(n+k)

q , P = A sk+ e⃗) where e⃗ is an error vector sampled from χσ and the ciphertext

ct = (⃗a, b) ∈ Z1×(n+k)
q × Zq. The intuition is that as long as the last k elements of a⃗ are non-zero,

the snake-eye resistance property holds similarly to the PVW scheme.
However, similarly to shortLWE, to make the public key size smaller (i.e., make w ≈ n), the

security proof of the scheme needs to use the LWE assumption instead of the leftover hash lemma.
In other words, the encryption scheme samples a short key x⃗ ← D1×w

β and computes ct = (x⃗A +
e⃗1, x⃗P +e2+t) where e⃗1, e2 are error vectors from χσ. The decryption algorithm computes x⃗(A sk+
e) + e2 + t− (x⃗A+ e⃗1)sk = x⃗ e+ e2− e⃗1 sk+ t (where t is the encoding of the plaintext). However,
since the last k elements of sk are uniformly sampled from Zq, the errors together can be as large
as q/2, which breaks the correctness.

To fix this issue, the encryption procedure instead sets the last k elements of e⃗1 to 0, i.e., the
LWE sample generated by the encryption procedure has some error-free terms. In this case, even
if the last k elements of the secret key are uniformly sampled, the error range r is bounded by
only using β (i.e., the norm bound of the short part of the secret key), and thus guarantees correct
decryption.

An immediate question is then whether the scheme is secure. To prove its security, we introduce
another LWE variant LWE with random hints (rhLWE). At a high-level, in rhLWE, we are given a
standard LWE sample, and additionally some random linear combinations of the secret.

Definition 5.1 (LWE with Random Hints). Let n, ℓ, w, q,D, χ be parameters dependent on λ,
and let k > 0. The decisional LWE with hints (rhLWE) assumption rhLWEn,ℓ,w,q,D,χ,k states the
following: any PPT adversary cannot distinguish (A1, A1S + E,A2, A2S) and (A1, B,A2, A2S)

(except with negligible advantage), where A1
$←− Zw×n

q , A2
$←− Zk×n

q , S ← Dn×ℓ, E ← χw×ℓ, and

B
$←− Zw×ℓ

q .

In Lemma 6.1, we show that rhLWE with binary secret distribution is equivalent to standard
LWE (for some small k), as needed to instantiate our scheme.

We formalize the new PKE construction with the above intuition which naturally extends to
ℓ > 1 in Algorithm 1. In Theorem 5.2, we show that our new construction is indeed a key-private
PKE scheme, satisfying correctness, IND-CPA security, and key privacy, as defined in Definition 3.2.
Finally, in Theorem 5.3 we show that it is snake-eye resistant (Definition 4.1).

Theorem 5.2. For any λ > 0, ℓ = poly(λ), q, p, k > 0, secret distribution Dβ1 ,Dβ2, and error
distribution χ, let aux = (ℓ, q, p,Dβ1 ,Dβ2 , χ,k), LWEmongrass defined in Algorithm 1 is a key-private
PKE scheme, under rhLWEn2,1,n1+ℓ−k,q,Dn2

β2
,χ,k and LWEn1,ℓ,n2,q,Dn

β1
||Uk,χ where n1, n2 are chosen in

Algorithm 1.7

Proof. To prove that LWEmongrass is a key-private PKE scheme, we prove its correctness, CPA
security, and key privacy, as follows.

7See Corollary 6.6 for LWEmongrass’s security under standard LWE.

16

Algorithm 1 Snake-eye Resistant PKE LWEmongrass

1: procedure LWEmongrass.GenParam(1λ, aux = (ℓ, q, p,Dβ1 ,Dβ2 , χ, k))
2: Set p to be the plaintext modulus, q to be the ciphertext modulus. Treat ℓ as the number

of Zp elements in plaintext, Dβ1 as secret key distribution, Dβ2 as the distribution used in
encryption, and χ as the error distribution.

3: Set minimum n (let n1 = n+ k) and n2 such that Theorems 5.2 and 5.3 assumptions hold.
Let k′ = n2 − n.

4: Set the minimum r > 0 s.t Pr
xi

$←−χ
[
∑

i∈[n+n2+1] |xi| · β > r] ≤ negl(λ) for β = max(β1, β2)

5: If r > q
2p , output pp = ⊥.

6: return pp = (n1, n2, ℓ, q, p, χ, r,Dβ1 ,Dβ2 , k)

7: procedure LWEmongrass.KeyGen(pp) ▷ If pp = ⊥, output ⊥ and same below.
8: sk← (Dℓ×n

β1
∥U ℓ×k)⊺

9: E ← χn2×ℓ

10: A
$←− Zn2×n1

q

11: pk := (A,A sk+ E) = (A,P) ∈ Zn2×n1
q × Zn2×ℓ

q

12: return (pk, sk)

13: procedure LWEmongrass.Enc(pp, pk, m⃗)
14: x⃗← D1×n2

β2

15: If (x⃗A)[n+ 1, n1] = 0⃗, back to the previous step.
16: e⃗1 ← χ1×n∥01×k, e⃗2 ← χ1×ℓ

17: a⃗ = x⃗A+ e⃗1, b⃗ = x⃗P + e⃗2 + m⃗⌊ qp⌋
18: return (⃗a, b⃗) ∈ Z1×n1

q × Z1×ℓ
q

19: procedure LWEmongrass.Dec(pp, sk, ct)
20: If a⃗[n+ 1 : n1] = 0⃗, return ⊥.
21: compute d⃗ = a⃗ sk− b⃗
22: for i ∈ [ℓ] do

23: If there exists v ∈ Zp such that:
∣∣∣⌊d⃗[i] · pq⌋− v

∣∣∣ ≤ r, m⃗[i] = v

24: otherwise, m⃗[i] = ⊥
25: return m⃗

• (Correctness) Correctness is straightforward: we start with ℓ = 1. For any m ∈ P, let
ct = (⃗a, b) ← LWEmongrass.Enc(pp, pk,m), a⃗[n + 1 : n1] ̸= 0⃗. Furthermore, b − a⃗ sk =
m · ⌊q/p⌋+ x⃗P + e2− (x⃗A+ e⃗1)sk = m · ⌊q/p⌋+ x⃗(Ask+E) + e2− x⃗Ask+ e⃗1sk = m · ⌊q/p⌋+
x⃗E + e2 + e⃗1sk = m · ⌊q/p⌋ + e′. Note that since the last k elements of e⃗1 are zeros, the
first n elemens of sk are from Dβ1 , x⃗ are from Dβ2 , the first n elements of e⃗1, and all the
e⃗, e2 elements are from χ, |e′| < r except with negligilble probability by line 4. Thus, the
correctness holds. Furthermore, since ℓ = poly(λ), this extends to ℓ > 1 trivially.

• (CPA security) To prove CPA security, we define the following hybrids.

hyb0: same as LWEmongrass.

hyb1: same as hyb0 but during KeyGen, instead of computing P as in LWEmongrass.KeyGen,

sample it uniformly at random, i.e., P
$←− Zn2×ℓ

q .

17

hyb2: same as hyb1 but during Enc, instead of computing (⃗a, b⃗) as in LWEmongrass.KeyGen,

sample it uniformly at random, i.e., (⃗a, b⃗)
$←− Z1×n1

q × Z1×ℓ
q (if a⃗[n+ 1,n1] = 0⃗, resample) and

then set b⃗← b⃗+ ⌊q/p⌋ · m⃗.

Note that hyb2 trivially satisfies CPA security. hyb1 and hyb0 are indistinguishable by the
hardness of LWEn1,ℓ,n2,q,Dn

β ||Uk,χ. hyb2 and hyb1 are indistinguishable by the hardness of

rhLWEn2,1,n1+ℓ−k,q,Dn2
β ,χ.

• (Key privacy) Key privacy can be proved the same way as CPA security, as hyb2 trivially
satisfies key privacy.

We now show that our scheme is snake-eye resistant. Similarly to PVW, we rely on corLWE;
we later show that the corLWE with the parametrization of interest is equivalent to LWE except for
some small parameter loss.

Theorem 5.3 ((4r+1
q)ℓ-snake-eye Resistance of LWEmongrass). For any λ > 0, ℓ = poly(λ), q, p, k >

0, secret distributions Dβ1 ,Dβ2, and error distribution χ, let aux = (ℓ, q, p,Dβ1 ,Dβ2 , χ,k), LWEmongrass

(Algorithm 1) is
(
4r+1
q

)ℓ
-snake-eye resistant, under corLWEn1,ℓ,n2,q,Dn

β∥Uk,χ with n1, n2, r in Algo-

rithm 1.8

Proof. The proof of LWEmongrass snake-eye resistance remains almost the same as for PVW in
Lemma 4.3. The only change is that now a⃗[n + 1 : n1] ̸= 0⃗ instead of a⃗ ̸= 0⃗ and our secret
key has only the last k elements being uniform (using the notations of the proof in Lemma 4.3).
Thus, we simply change the last sentence of the second last paragraph of the proof to “Thus, for
a⃗[n + 1 : n1] ̸= 0⃗, we have Pr[∀j ∈ [ℓ], |⃗a(sk1,j − sk2,j)| ≤ 2r] = (4r+1

q)ℓ”. Everything else remains
the same.

Therefore, similarly, for any A with a noticeable advantage, the adversary we construct has the
same advantage breaking corLWE.

Remark 5.4. Note that our construction works for any k > 0 such that rhLWE holds. However,
the larger k is, the easier the underlying rhLWE is, since we basically give out more random linear
combinations of the secret as hints. Therefore, for the best security, we simply set k = 1. The only
drawback in this case is that the sender needs to re-do the encryption with probability 1

q (see line
15). For most applications, this is not an issue as q is relatively large, and the rejection sampling
takes little time. However, some applications might prefer larger k, and thus we present our scheme
in its most general form.

Remark 5.5. One natural question is whether the scheme can instead be realized using Ring-
LWE for better efficiency while maintaining the snake-eye resistance. Unfortunately, it seems hard:
extending our scheme to Ring-LWE-based in the most natural way does not work.

The intuition is that encoding a plaintext of ℓ bits for most Ring-LWE-based encryption schemes
simply puts the ℓ bits into the first ℓ coefficients of a ring element m ∈ Rt (ring elements are
represented as a polynomial), where 1 is encoded as t/2 and 0 is encoded as 0. The decryption
process for a ciphertext a, b ∈ R2

t is m′ ← b− as (w.l.o.g., ignore the error term) for some honestly

8See Corollary 6.6 for LWEmongrass’s snake-eye resistance under standard LWE.

18

generated secret key s. Let S be the matrix representation of s (and let Si denote the i-th column),
b[i] be the i-th coefficient of b, and a⃗ be the vector of all coefficients of a. Then, we have m′[i] ←
b[i]− a⃗Si. However, since Si’s are highly correlated, the adversary can craft some a and then predict
the highly correlated m′[i], even if s is unknown and has some uniform coefficients.

6 LWE Variants

In this section, we formally prove that the LWE variants proposed in the previous section are indeed
equivalent to standard LWE for the parametrization needed to instantiate our scheme (the left half
of Fig. 1). Even though previous works have considered LWE variants with side information, either
their formulations do not suit our needs or the reductions have larger parameter loss (e.g. they
might consider a stronger variant). We define new LWE variants to achieve tighter reductions with
better concrete efficiency and discuss in more detail their comparison with other LWE variants in
Section 6.3.

6.1 LWE with Correlation

As in Definition 4.2, corLWE states that two LWE samples under two different LWE secrets are
indistinguishable from random samples even given the difference between the two LWE secrets.

We prove that this variant is at least as hard as standard LWE (summary shown in the upper
left of Fig. 1) under three popular secret distributions: uniform secrets U , binary secrets B, and
ternary secrets T . Among all, U has essentially no security loss (except for w to 2w which is
inherent since corLWE has two LWE samples each with size w). The binary secret distribution
B has the largest parameter loss (but still relatively small). Intuitively, secret keys drawn from
binary distribution have much less entropy than the ones drawn uniformly at random; therefore,
their correlations leak a higher portion of their original randomness, thus suffering larger parameter
loss.

Uniformly random secrets. For uniformly random secrets, there is almost no parameter loss
when reducing LWE to corLWE, except for requiring the LWE sample to have 2w rather than w rows,
which is intuitively the tightest scenario, as corLWE by definition includes two LWE samples, each
with w components, under two different secrets. The idea behind the proof is straightforward: given
a single LWE sample with size 2w, we construct two LWE samples under two different uniformly
sampled secret keys, each with size w by splitting the original sample into two and sampling a new
uniform secret masking the original secret of one in the two samples. We formalize this intuition
into the following lemma.

Lemma 6.1. For any n, ℓ, w, q > 0, and error distribution χ, let Uq denote the uniform distribution
over q, it holds that LWEn,ℓ,2w,q,Un

q ,χ ≤ corLWEn,ℓ,w,q,Un
q ,χ.

Proof. Given an adversary A that breaks corLWEn,ℓ,w,q,Un
q ,χ, we construct the following adversary

to break LWEn,ℓ,2w,q,Un
q ,χ.

For simplicity, we start with ℓ = 1. Given LWE challenge A ∈ Z2w×n
q , b⃗ ∈ Z2w×1

q , divide (A, b⃗)

into (A1, b⃗1), (A2, b⃗2) ∈ Zw×n
q × Zw×1

q . Sample sk′ ← Un
q . Compute b⃗′2 ← b⃗2 + A2sk

′, and feed

(A1, b⃗1, A2, b⃗
′
2,−sk′) to A; return the output of A.

If the input challenge is an LWE sample with secret key sk, the constructed challenge is a
valid corLWE sample: the first secret key is sk, the second secret key is sk+ sk′, which is a freshly

19

drawn secret key uniformly sampled from Uq, and their difference is −sk′. If the input challenge is a
uniform random sample, then b⃗′2 is also a uniformly sampled vector independent of (A1, A2, b⃗1,−sk′)
as b⃗2 is a uniformly sampled vector independent of these parts. The proof trivially extends to any
ℓ > 1.

Binary secrets. For the binary distribution, the proof is more involved as one cannot simply
mask one uniform binary secret with another uniform binary secret key (the resulting secret key is
no longer uniform binary). Thus, we devise new proof techniques.

Again, for simplicity, assume ℓ = 1. The intuition behind this proof is as follows: the difference
between the two secrets is a ternary vector β⃗ = sk1 − sk2 ∈ {−1,0,1}n. Then, if β⃗[i] = −1, it
is obvious that sk1[i] = 0, sk2[i] = 1. Similarly, β⃗[i] = 1 means that sk1[i] = 1 and sk2[i] = 0.
Therefore, these two scenarios fully leak the corresponding elements of the secrets. However, when
β⃗[i] = 0, the only information leaked is that sk1[i] = sk2[i], which still provides 1-bit of entropy,
just like an element in a uniformly binary LWE secret. Note that Pr[β⃗[i] = 0] = 1/2. Therefore,
if the two secrets have length ≈ 2n, the entropy of the two secrets conditioned on their difference
is roughly the same as the entropy of one regular binary LWE secret with length n. To leverage
such entropy equivalence, we embed the regular binary LWE secret with length n to two uniformly
sampled binary secrets with length n′ > 2n (n′ needs to be large enough so that there are at least
n zeros in β⃗).

This results in a larger parameter loss: rhLWE has a secret length > 2x larger than the LWE
secret length. Of course, this is still a relatively small security loss as it is only a small constant
factor. To formalize this intuition, the following lemma and its corresponding proof are presented.

Lemma 6.2. For any n,w, q > 0 and ℓ = poly(n), and error distribution χ, for any constant
0 < ϵ < 1, let n′ = 2n/ϵ, it holds that LWEn,ℓ,2w,q,Bn,χ ≤ corLWEn′,ℓ,w,q,Bn′ ,χ.

Proof. Given an adversary A that breaks corLWEn′,ℓ,w,q,Bn′ ,χ, we construct the following adversary
that breaks LWEn,ℓ,2w,q,Bn,χ.

For simplicity, we start with ℓ = 1. Given LWE challenge (A, b⃗) ∈ Z2w×n
q × Z2w×1

q , sample two

binary vectors sk1, sk2 ← Bn
′
. Let β⃗ ← sk1 − sk2, and let m denote the number of zeros in β⃗. If

m < n, abort and return a random bit to the challenger.
We w.l.o.g. assume β⃗[1 : n] are zeros. (and discuss how to proceed if this is not the case in the

next paragraph). Then, if m ≥ n, divide (A, b⃗) into (A1, b⃗1), (A2, b⃗2) ∈ Zw×n
q ×Zw×1

q . For j ∈ [1,2],

draw A′j
$←− Zw×(n′−n)

q ; let A′′j := Aj ||A′j ∈ Zw×n′
q ; let skj [1 : n] ← 0n; compute b⃗′j ← b⃗j + A′′j skj .

Feed (A′′1, b⃗
′
1, A

′′
2, b⃗
′
2, β⃗) to A. Return the output of A.

If β⃗[1 : n] ̸= 0n, simply permute sk1, sk2, β⃗ so that β⃗[1 : n] = 0n before all these steps. Then,
when feeding the challenge to A, reverse this permutation to β⃗ and apply it to A′′1, A

′′
2 accordingly.

We first argue that this adversary aborts (and returns a random bit) with negl(n) probability.
Note that β⃗[i] = 0 with probability 1/2 (when sk1[i] = sk2[i] which are both uniform binary
elements). In expectation, β⃗ has µ = n′

2 = n
ϵ zeros and by Chernoff bound, Pr[m ≤ n] = Pr[m ≤

ϵµ] =
(
e1−1/ϵ

ϵ

)n
. For constant ϵ, this happens with negl(n) probability.

If (A, b⃗) is an LWE sample with secret sk (unknown to our adversary), we argue that (A′′1, b⃗
′
1, A

′′
2, b⃗
′
2, β⃗)

is a valid corLWE sample. By construction, (A′′1, b⃗
′
1) and (A′′2, b⃗

′
2) are valid LWE samples with keys

sk′1 := sk||sk1[n + 1 : n′] and sk′2 := sk||sk2[n + 1 : n′], respectively, such that sk′1 − sk′2 = β⃗. So,
it suffices to show that the keys sk′1 and sk′2 are uniform and independent binary vectors. Since

20

sk ∈ {0,1}n and for j ∈ {1,2}, skj ∈ {0,1}n
′
, the secrets sk′1 and sk′2 are binary. To show that sk′1

and sk′2 are independent, suppose we first sample independently sk1 and sk2 from Bn, we select
the first n positions where they share the same bit (which w.l.o.g. we assume to be the n first
positions), and we replace those n bits with n independently randomly chosen bits; it is easy to
see that the resulting two secrets are still independently sampled from Bn′

. This can be achieved
as long as sk1, sk2 have at least n identical bits, which happens with 1 − negl(n) as argued above.
This is exactly what happens in the construction of the corLWE challenge, where the n bits used
for replacement are the bits in sk.

If (A, b⃗) is uniform, the challenge we construct is a random corLWE challenge, since b⃗′′1, b⃗
′′
1 are

masked by b⃗1, b⃗2 which are sampled uniformly at random.
Therefore, the adversary we construct has the same advantage as the advantage of A except

with negl(n) probability.
When ℓ > 1, since ℓ = poly(n), by union bound, the argument above holds for all these ℓ

columns of secrets except with ℓ · negl(λ) = negl(λ) probability.

Ternary secrets. For ternary secrets, using the same proof strategy (i.e., embed the LWE chal-
lenge secret into the positions with difference being zero) results in a parameter loss of > 3x (i.e.,
LWEn,ℓ,2w,q,T n,χ ≤ corLWE3n/ϵ,ℓ,w,q,T n,χ where T is the uniform ternary distribution). This seems
quite loose, as intuitively ternary secrets should have less entropy loss compared to binary secrets
when the difference is given.

To obtain a tighter bound, we employ a slightly different strategy. Observe that, unlike binary
secrets, the difference of two ternary elements is in the set {−2, − 1, 0, 1, 2}. In this case, only
if β⃗[i] ∈ {−2, 2}, the secret elements are leaked fully, which happens with probability 2

9 . When

β⃗[i] = 0 (which happens with probability 1/3), the entropy left is equivalent to a uniform ternary
value, since again this difference only says that sk1[i] = sk2[i]. When β⃗[i] is in {−1, 1} (which
happens with probability 4/9), the entropy left is equivalent to a uniform binary value: when
β⃗[i] = 1, the two secret elements (sk1[i], sk2[i]) are either (1, 0) or (0,−1), and a similar argument
holds for β⃗[i] = −1. Therefore, to fully utilize this observation, we reduce LWE with secrets sampled
from a mix of uniform ternary and uniform binary elements (instead of a purely uniform ternary
secret) to corLWE with uniform ternary secret. This results in an overhead of ≈ 9

7x instead of 3x,
which greatly reduces the parameter loss. This intuition is formalized in the following lemma and
proof.

Lemma 6.3. For any n,w, q > 0 and ℓ = poly(n), and error distribution χ, for any constant
0 < ϵ < 1, let n′ = ⌈9n7ϵ ⌉, nt = ⌈3n7 ⌉, nb = n − nt, D := T nt ||Bnb, it holds that LWEn,ℓ,2w,q,D,χ ≤
corLWEn′,ℓ,w,q,T n′ ,χ.

Proof. Given an adversary A that breaks corLWEn′,ℓ,w,q,T n′ ,χ, we construct the following adversary
to break LWEn,ℓ,2w,q,D,χ.

For simplicity, we start with ℓ = 1. Given LWE challenge (A, b⃗) ∈ Z2w×n
q × Z2w×1

q , sample two

ternary vectors sk1, sk2 ← T n′
. Let β⃗ ← sk1 − sk2, m denote the number of zeros in β⃗, and m′

denote the number of {±1} in β⃗. If m < nt or m′ < nb, abort and return a random bit to the
challenger.

Again, we w.l.o.g assume that β⃗[1 : nt] = 0nt , and β⃗[nt + 1 : nt + nb] ∈ {±1}nb . Divide (A, b⃗)
into (A1, b⃗1), (A2, b⃗2) ∈ Zw×n

q × Zw×1
q . For j ∈ [1,2]:

21

• draw A′j
$←− Zw×(n′−n)

q

• let A′′j := Aj ||A′j ∈ Zw×n′
q

• let skj [1 : nt]← 0nt

• if j = 1, let sk1[nt + 1, nt + nb] = (β⃗ − 1)/2 (i.e., for i ∈ [nt + 1, nt + nb], sk1[i] = 0 if β⃗[i] = 1
and sk1[i] = −1 if β⃗[i] = −1)

• if j = 2, let sk2[nt + 1, nt + nb] = (−β⃗ − 1)/2 (i.e., for i ∈ [nt + 1, nt + nb], sk2[i] = −1 if
β⃗[i] = 1 and sk2[i] = 0 if β⃗[i] = −1)

• compute b⃗′j ← b⃗j +A′′j skj

Feed (A′′1, b⃗
′
1, A

′′
2, b⃗
′
2, β⃗) to A. Return the output of A. If β⃗[1 : nt] ̸= 0n, or β⃗[nt+1 : nt+nb] ̸= {±1},

simply permute sk1, sk2, β⃗ such that these two conditions are satisfied before all these steps. When
feeding the challenge to A, reverse this permutation to β⃗ and apply it to A′′1, A

′′
2 accordingly.

We first argue that this algorithm aborts with negligible probability. Similarly to the proof of

Lemma 6.2, Pr[m < nt] = Pr[m < ⌈3n/7⌉] ≤
(
e1−1/ϵ

ϵ

)3n/7
= negl(n). Similarly, Pr[m′ < nb] =

negl(n). By union bound, the total probability of aborting is negl(n).
If the input is indeed an LWE sample with hidden secret sk, the challenge we construct is a

valid corLWE sample. It suffices to show that the two secrets sk′1 and sk′2 of the LWE samples
(A′′1, b⃗

′′
1) and (A′′2, b⃗

′′
2) are independently sampled from T n′

. Assume that sk′1 and sk′2 are sampled
as follows: first, sample sk1, sk2 from T n′

; select the first nt positions where sk1[i] = sk2[i] and
replace those nt values with nt independently randomly chosen ternary values; then, select the
first nb positions where sk1[i] = sk2[i] ± 1; replace the positions where sk1[i] = sk2[i] + 1 with
(sk′1[i], sk

′
2[i]) := (γ, γ) + (0,−1) for some γ ← B (i.e., replace with the values (1,0) or (0,−1)

uniformly); replace the positions where sk1[i] = sk2[i]− 1 with (sk′1[i], sk
′
2[i]) := (γ, γ) + (−1, 0) for

some γ ← B (i.e., replace with the values (−1,0) or (0, 1) uniformly). It is easy to see that the two
resulting secrets are two independent vectors from the uniform ternary distribution T n′

. This can
be achieved as long as sk1, sk2 have at least nt equal elements, and at least nb elements differing
by 1 or −1, which happens with 1 − negl(n) as argued above. This is exactly what happens in
the construction of the corLWE challenge, where the nt values used for replacement are the ternary
values of sk and the nb values used for the replacement are the binary values of sk.

If the input is uniform, the challenge we construct is a random corLWE challenge since b⃗′′1, b⃗
′′
2

are masked by b⃗1, b⃗2 which are sampled uniformly at random.
Therefore, the adversary we construct has the same advantage as the advantage of A except with

negl(n) probability. The proof also generalizes to ℓ = poly(λ) > 1 as the proof for Lemma 6.2.

Hybrid use of secret distributions. Lastly, we prove a general lemma saying that if LWE can
be reduced to corLWE with secret distribution D′1, then it can be reduced to corLWE with secret dis-
tribution D′1||D′2 for any (efficiently sample-able) distribution D′2. Thus, one can arbitrarily extend
the secrets without hurting security. This is quite useful, as in our LWEmongrass (Algorithm 1), we
concatenate a short secret and a uniform secret.

Lemma 6.4. For any n1, n
′
1, n
′
2, w, q > 0, ℓ = poly(n), error distribution χ, and (efficiently sam-

pleable) distributions D1,D′1,D′2, where vectors of length n1, n
′
1, n
′
2 are sampled from D1,D′1 and

22

D′2 respectively. If LWEn1,ℓ,2w,q,D1,χ ≤ corLWEn′
1,ℓ,w,q,D′

1,χ
, then it holds that LWEn1,ℓ,2w,q,D1,χ ≤

corLWEn′
1+n′

2,ℓ,w,q,D′
1||D′

2,χ
.

Proof. To prove this, we simply need to show that corLWEn′
1,ℓ,w,q,D′

1,χ
≤ corLWEn′

1+n′
2,ℓ,w,q,D′

1||D′
2,χ

,
which is straightforward. Given adversary A that breaks corLWEn′

1+n′
2,ℓ,w,q,D′

1||D′
2,χ

, we construct
the following adversary that breaks corLWEn′

1,ℓ,w,q,D′
1,χ

as follows.

Given a corLWEn′
1,ℓ,w,q,D′

1,χ
sample (A1, B1, A2, B2, D = sk1 − sk2). Sample A′1, A

′
2 ∈ Zw×n′

2
q ,

and sk′1, sk
′
2 ← D′ℓ2 . Compute B′i ← Bi + A′isk

′
i for i ∈ {1,2}. Let D′ =

(
D

sk′1−sk′2

)
. Feed

(A1||A′1, B′1, A2||A′2, B′2, D′) to A. Return the output of A.
If the input is a valid corLWEn′

1,ℓ,w,q,D′
1,χ

sample, the input toA is trivially a corLWEn′
1+n′

2,ℓ,w,q,D′
1||D′

2,χ

sample. If the input is a random sample, the input to A is a random sample as B′i is masked by
uniformly random Bi.

6.2 LWE with Random Hints

To prove the CPA-security and key privacy of our new PKE construction (Algorithm 1), we relied
on a new LWE variant rhLWE (Definition 5.1). Essentially, a rhLWE sample consists of a regular
LWE sample, together with k random linear combinations of the secrets, which we call “hints”. We
provide a reduction from LWE with binary secrets to rhLWE with binary secrets (summary shown
in the bottom left in Fig. 1). Our proof is inspired by [2].

The intuition of our proof is as follows. For simplicity, we focus on the ℓ = 1 case. Given

an LWE sample (A, b⃗) with A ∈ Z(w+k)×n
q and b⃗ ∈ Zw+k

q , we can guess the errors of the last k

components with probability (2|χ|+ 1)−k, where |χ| is the norm bound of the error distribution χ
(except with negligible probability).

If the input is a valid LWE sample and our guess is correct, we get a valid rhLWE sample.
Otherwise, if the input is a uniform random sample or the guess is wrong, we argue that the

input is of the form (A1, b⃗1, A2, b⃗2 := A2s⃗), where A1
$←− Z(w+k)×n

q , b⃗1
$←− Zw+k

q , A2
$←− Zk×n

q , and

s⃗
$←− {0,1}n. This is done by proving a reverse direction (Lemma 6.7) of a simplified leftover hash

lemma (i.e., (x⃗A,A) ≈s (u⃗, A) where x is uniform binary and A is uniform).
With the intuition above, for whatever advantage we have to break rhLWE, we can construct an

adversary with (2|χ|+1)−k smaller advantage. We formally capture the reduction in the following
lemma.

Lemma 6.5 (LWE ≤ rhLWE). For any w > 0, ℓ = poly(n), any prime q > 2, distribution χ,
k > 0 such that (2|χ| + 1)k = poly(n), and n = k · ω(log(q)), it holds that LWEn,ℓ,w+k,q,B,χ ≤
rhLWEn,ℓ,w,q,B,χ,k.

With all these (Theorems 5.2 and 5.3 and Lemmas 6.3 and 6.5), we conclude that LWEmongrass
is secure and snake-eye resistant under standard LWE assumptions, formalized as the following
corollary.

Corollary 6.6. For any λ > 0, ℓ = poly(λ), q, p > 0, secret distributions Dβ1 = T ,Dβ2 = B, error
distribution χ, and any k > 0 such that (2|χ| + 1)k = poly(λ), let aux = (ℓ, q, p,Dβ1 ,Dβ2 , χ, k),
LWEmongrass is a key-private PKE scheme under LWEn2,1,n1+ℓ,q,T n2 ,χ and LWEn1,ℓ,n2,q,T n||Uk,χ for

n = n1−k; furthermore, LWEmongrass is (4r+1)ℓ-snake-eye resistant, under LWEnt+nb,ℓ,2·n2,q,T nt ||Bnb ,χ,

23

where let n′ be the minimum such that n = ⌈9n′

7ϵ ⌉, then nt = ⌈3n
′

7 ⌉, nb = n′ − nt; for any constant
ϵ > 0 and n1, n2, r chosen in Algorithm 1.

Proof. Given an addversary A that breaks rhLWEn,ℓ,w,q,D,χ,k, we construct the following adversary
to break LWEn,ℓ,w+k,q,D,χ.

For simplicity, we start with ℓ = 1. Let w′ = w+k. Given LWE challenge (A, b⃗) ∈ Zw′×n
q ×Zw′×1

q ,

sample Y
$←− Zw′×k

q , r⃗
$←− [−|χ|, |χ|]k×1. Let Z = (0k×w∥Ik) ∈ Zk×w′

q .

Compute T := Y Z ± Iw′ ∈ Zw′×w′
q such that T is invertible. Note that det(Y Z + Iw′) =

det(Y Z − Iw′) + 2. Therefore, at least one of the two possible forms of T is invertible as q > 2 is
a prime. W.l.o.g., assume T := Y Z + Iw′ is invertible (the arguments below works similarly when
T := Y Z − Iw′ is invertible).

Let A′ ← TA, b⃗′ ← T b⃗−Y r⃗. Divide A′ =
(

A′
1∈Z

w×n
q

A′
2∈Z

k×n
q

)
, b⃗′ =

(
b⃗′1∈Z

w×1
q

b⃗′2∈Z
k×1
q

)
. Send (A′1, b⃗

′
1, A

′
2, b⃗
′
2− r⃗)

to A (replace b⃗′2 − r⃗ with b⃗′2 + r⃗ if T := Y Z − Iw′ is invertible), and return whatever returned by
A .

Now we analyze the sample we send to A. If the input is a valid LWE sample, we have

b⃗′ = T b⃗− Y r⃗

= T (As⃗+ e⃗)− Y r⃗

= (TA)s⃗+ T e⃗− Y r⃗

= (TA)s⃗+ Iw′ e⃗+ Y Ze⃗− Y r⃗

= (TAs⃗) + Iw′ e⃗+ Y e⃗[w + 1 : w′]− Y r⃗

Therefore, as long as e⃗[w + 1 : w′] = r⃗, then Y e⃗[w + 1 : w′] − Y r⃗ = 0, b⃗′ = A′s⃗ + Iw′ e⃗, and thus
b⃗′1 = A′1s⃗ + Iwe⃗[1 : w]. Moreover, we would also have b⃗′2 − r⃗ = b⃗′2 + Ike⃗[w + 1 : w′] − r⃗ = A′2s⃗,

which becomes a noiseless hint as expected. Thus, (A′1, b⃗
′
1, A

′
2, b⃗
′
2− r⃗) is a valid rhLWE sample. This

happens with probability 1/((2|χ|+ 1)k) = 1/poly(n).
Then, we need to argue that if e⃗[w+1 : w′] ̸= r⃗, we obtain a random sample. T is invertible and

thus A′ = TA is uniformly at random. Then, since Y is uniformly at random, Y (e⃗[w + 1 : w′]− r⃗)
is trivially uniformly at random, and thus b⃗′ is uniformly at random. The only thing left to argue is

that (A′2, b
′
2 − r⃗) is indistinguishable from (A2, A2sk) where A2

$←− Zk×n
q , sk← Bn. By Lemma 6.7,

this holds with probability 1− 2n−k log(q) = 1− negl(n) since n = k · ω(log(q)).
Lastly, we just need to argue that if the input is a random sample, the sample we feed to A is

also a random sample: T is invertible and thus TA, T b⃗ are both uniformly at random. Thus, A′1, b⃗
′
1

are both uniformly at random. Similar to before, (A′2, b⃗
′
2 − r⃗) is a valid hint with respect to some

uniform binary secret by Lemma 6.7.
Thus, if the input is a valid LWE sample, the adversary constructed above has an advantage of

ϵ/(2|χ|+ 1)k where ϵ is the advantage of the original adversary A breaking rhLWE.
Lastly, we discuss how to extend to ℓ > 1. Given an rhLWE with ℓ > 1, we create a hybrid that

replaces one of the ℓ components with uniform random samples and this hybrid is indistinguishable
from the original sample as otherwise rhLWE with ℓ = 1 is broken. The hybrid argument is
repeated for ℓ times with a loss of ℓ factor in terms of security. However, since ℓ = poly(n), this is
acceptable.

24

Lemma 6.7 (Simplified Reverse-LHL). For any prime p > 0, k > 0, k′ = kω(log q), let H(A, u⃗)
be defined as follows: given A ∈ Zk×k′

q and u⃗ ∈ Zk×1
q , define Xu := {x⃗∗ | Ax⃗∗ = u⃗, x⃗∗ ∈ {0,1}k′};

if Xu = ∅, output (2, 2, . . . , 2) (i.e., a non-binary vector); otherwise, output x⃗
$←− Xu. It holds that

the statistical distance between (H(A, u⃗), A) and (y⃗, A) is O(2−k
′+k log(q)), where A

$←− Zk×k′
q , u⃗

$←−
Zk×1
q , y⃗

$←− {0,1}k′.

Proof. Let U := {Ax⃗,∀x⃗ ∈ {0,1}k′} and P := Pr
u⃗

$←−Zk×1
q

[H(A,u⃗) ̸∈ {0,1}k′] =
∑

Zk
q\U

1
qk

(i.e., the

probability that Xu = ∅). By definition, the statistical distance between (H(A, u⃗), A) and (y⃗, A) is
computed as Q+ P where Q is defined as follows:

Q :=
∑

x⃗∈{0,1}k′

∣∣∣∣∣∣ Pr
u⃗

$←−Zk×1
q

[H(A,u⃗) = x⃗]− 1

2k′

∣∣∣∣∣∣
=

∑
u⃗′∈U

 ∑
x⃗∈Xu′

∣∣∣∣∣∣ Pr
u⃗

$←−Zk×1
q

[H(A,u⃗) = x⃗]− 1

2k′

∣∣∣∣∣∣


=
∑
u⃗′∈U

 ∑
x⃗∈Xu′

∣∣∣∣ 1

|Xu′ |
· 1
qk
− 1

2k′

∣∣∣∣


=
∑
u⃗′∈U

∣∣∣∣ 1qk − |Xu′ |
2k′

∣∣∣∣
From step one to two, we simply rearrange the summations from a summation over all possible

x⃗ to a summation over all the solutions of Ax⃗ from all possible values of Ax⃗ (which are equivalent).
From step two to three, since u⃗ is uniformly drawn and thus the probability of selecting exactly
the u⃗ = u⃗′ is q−k; and then for all the possible solutions, the probability of selecting x⃗ is 1/|Xu′ |
and these two events are independent. The last step is a formula simplification.

Now, LHL states that let A
$←− Zk×k′

q , x⃗
$←− {0,1}k′ , and u⃗

$←− Zk
q , it holds that the statistical

distance between (Ax⃗,A) and (A, u⃗) is O(2−k
′+k), which means

∑
u⃗∈Zk

q

∣∣∣∣∣∣ Pr
x⃗

$←−{0,1}k
[Ax⃗ = u⃗]− 1

qk

∣∣∣∣∣∣
=

∑
u⃗∈Zk

q

∣∣∣∣ |Xu|
2k′
− 1

qk

∣∣∣∣
=

∑
u⃗′∈U

∣∣∣∣ |Xu′ |
2k′
− 1

qk

∣∣∣∣+ ∑
Zk
q\U

∣∣∣∣0− 1

qk

∣∣∣∣
= Q+ P = O(2−k

′+k log(q))

Adversarially chosen A2. Note that above, the hints of the secrets (i.e., A2) are randomly cho-
sen, which is already enough to prove the security of our construction. However, an independently

25

interesting question is to consider whether a similar result would still hold under a maliciously
chosen A2. The answer is yes but only under qk = poly(n) instead of just (2|χ|+ 1)k = poly(n). A
similar result and proof are in [2], and we omit the details here. Our reduction is tighter tailored
to our LWE variant in terms of both theoretical result and concrete parameter choices.

6.3 Discussion of other LWE variants with Side-information

The LWE variants we propose are both LWE with side information. They share similarities with
LWE variants with side information introduced in prior works. However, those variants and reduc-
tions do not work well for our purposes, as we discuss below.

ExtLWE. In the extended-LWE problem (ExtLWE) [39, 2, 13, 1], we are given a regular LWE sample
together with ⟨r⃗, e⃗⟩+ e⃗ ′ for an adversarially chosen vector r⃗, where e⃗ is the error of the LWE sample
and e⃗ ′ is a newly sampled error. In other words, we are given a noisy linear combination of the
LWE error. [2, 13] remove the extra error term e⃗ ′ and show that LWE with uniform secrets can be
reduced to ExtLWE with e⃗ ′ = 0. Our proof for Lemma 6.5 is mostly inspired by the proof in [2],
except that our reduction is tighter given for our new LWE variant.

HintLWE. The Hint-LWE problem (HintLWE) [29, 14, 28] gives out e⃗ + e⃗ ′ (instead of a noisy
inner product as in ExtLWE) together with the LWE sample. As far as we know, all reductions
from LWE to HintLWE require e⃗ ′ to be non-zero, and thus do not suit our needs.

EntLWE. The Entropic LWE problem (EntLWE) [25, 24, 12] focuses on how LWE with uniform
secrets can be reduced to LWE with secrets from a distribution with certain min-entropy. Therefore,
the LWE assumption as defined in Definition 3.1 can be seen as the EntLWE assumption, since we
allow LWE to be parametrized by different secret distributions rather than specifically the uniform
distribution. However, we only focus on uniform, binary, and ternary cases, which are all widely
used secret distributions, and thus to avoid extra complexity, we introduce Definition 3.1 as the
standard LWE assumption instead of EntLWE.

7 Constructing OMR from Snake-eye Resistant PKE

In this section, we show the first practical provably DoS-resistant OMR. In particular, we demon-
strate that with Lemma 4.3, the original OMR construction in [30] is DoS-resistant. Moreover, using
the new PKE scheme LWEmongrass (Algorithm 1), we construct an OMR scheme with proven DoS
resistance that is much more efficient than the one in [30], combined with the techniques introduced
in [32].

Overview of OMR system model. As a high-level overview, an OMR protocol works in an
anonymous message delivery system. A sender wants to send a message to a recipient, without a
direct secure channel or revealing the information about the recipient. So the sender broadcasts the
message (e.g., by putting it on a bulletin board). The recipient wants to retrieve all the messages
addressed to it (denoted as the pertinent messages) by outsourcing this task to a detector but
without revealing any information about the pertinent messages.

The workflow is as follows. The recipient publishes a clue key (used for message generation) and
a detection key (used for retrieval). The sender uses the clue key of a recipient to generate a clue
which together with a payload constitutes a message to be put on the bulletin board. The detector
uses the detection key of the recipient together with the board to generate a digest including all

26

the pertinent messages for the recipient. The recipient, who receives the digest from the detector,
uses its secret key to decrypt the digest and recovers all the pertinent messages.

The DoS threat model. Under the DoS attack model, the adversary tries to craft a single clue
that could be detected as “pertinent” by many recipients. The major issue with this attack comes
from an inherent problem: for efficiency, the digest size should be much smaller than the board
size. Ideally, its size should only be proportional to the number of pertinent messages. However,
the recipient itself does not know how many messages are pertinent without scanning the board.
Therefore, the recipient provides some bound m̄ on the number of pertinent messages. If the real
number of pertinent messages m ≫ m̄, OMR protocol returns “overflow” instead of the pertinent
messages. By the nature of the system model, an attacker can overflow a single recipient by sending
a lot of dummy messages (and paying the cost incurred by sending), such that the recipient would
under-estimate m by sending a small m̄. However, the DoS attack in this threat model is even
worse: the attacker might overflow many recipients at the same time. Furthermore, even if the
recipient knows the exact m and sends a large enough m̄, the runtime of the detector and the digest
size are both dependent on m̄ and thus can greatly affect the efficiency of the scheme for many
recipients. A DoS-resistant OMR aims to prevent such an attack.

7.1 DoS-resistant OMR Definition

OMR in DoS model is formally defined as follows, adapted from the definition in [30], with the
following five PPT algorithms. At a high level, the system has a GenParams to generate the general
parameters; each recipient uses KeyGen to generate their secret keys, clue keys, and detection keys;
each sender then uses GenClue together with the intended recipient’s clue key to generate a clue. To
perform a retrieval, the detector uses Retrieve together with the recipient’s detection key (and all
the messages on the bulletin board) to generate a digest. After receiving the digest, the recipients
use their secret key to Decode and obtain their pertinent messages.

• pp← GenParams(1λ, ϵp, ϵn): takes a security parameter λ, a false positive rate ϵp and a false
negative rate ϵn; outputs the public parameter pp.

• (sk, pk = (pkclue, pkdet))← KeyGen(pp) : outputs a secret key sk and a public key pk consisting
of a clue key pkclue and a detection key pkdet.

• c← GenClue(pp, pkclue, x) : takes a clue key and a payload x ∈ P; outputs a clue c ∈ C.

• M ← Retrieve(pp,BB, pkdet, m̄) : takes as input a board BB = {(x1,c1), . . . , (xN ,cN)} for some
size N , a detection key pkdet, and an upper bound m̄ on the number of pertinent messages
addressed to that recipient; outputs a digest M .

• PL← Decode(pp,M, sk) : takes the digest M and corresponding secret key sk; outputs either
a decoded payload list PL ⊂ Pk or an overflow indication PL = overflow.

To define the completeness and soundness, we first define an indicator I(pp, x, c, pkclue, sk),
which serves as the ground truth for whether a given clue c is pertinent to a given user with
respect to its clue key pkclue and/or its secret key sk. For honestly generated clues, the indicator
should give the natural answer (output 1 for the key used to generate the clue except with ϵn
probability). For otherwise-generated clues, the indicator may answer arbitrarily, except that it

27

must still make up its mind, i.e., not claim more than one honest recipient as the intended one,
except with ϵp probability. This collision resistance property means that, while a malicious sender
can (inevitably) craft a message that is considered pertinent by one user, it is difficult for it to
spam multiple users with a single message. The OMR DoS-completeness and DoS-soundness are
then defined against this indicator.

Definition 7.1 (DoS-resistant OMR, [30]). Let OMR be a scheme with the five PPT algorithms
above with input security parameter λ and error rates ϵn, ϵp. An indicator for OMR is a function
b← I(pp, x, c, pkclue, sk) on a public parameter pp, a message (x, c), a clue key pkclue, and a secret
key sk, that outputs b ∈ {0,1}, such that:

• (Indicator completeness) For pp← GenParams(1λ, ϵp, ϵn), honest-generated key pair (sk, pk =
(pkclue,·)) ← KeyGen(pp), for any payload x and honestly-generated clue c ← GenClue(pp,
pkclue, x), it holds that:

Pr[I(pp, x, c, pkclue, sk) = 1] ≥ 1− ϵn − negl(λ) .

• (Collision resistance) For any PPT adversary A, let pp← GenParams(1λ, ϵp, ϵn), two honest-
generated key pairs (sk, pk = (pkclue, ·))← KeyGen(pp,) and (sk′, pk′ = (pk′clue, ·))← KeyGen(pp,),
and adversarially-generated (x,c)← A(pk, pk′), for b← I(pp, x, c, pkclue, sk) and b′ ← I(pp, x, c, pk′clue, sk

′),
it holds that:

Pr[b = 1 ∧ b′ = 1] ≤ ϵp + negl(λ) .

An OMR scheme OMR is DoS-resistant for ϵn and ϵp if there exists an indicator I with
an indicator false negative rate ϵin for OMR such that for any PPT adversary A, for pp ←
GenParams(1λ, ϵp, ϵn), (sk, pk = (pkclue, pkdet)) ← KeyGen(pp), and adversarially-generated board
BB ← A(pp,pk) where BB = ((x1,c1), . . . , (xN ,cN)), (xi)i∈[N] all unique, for any 0 < m̄ ≤ N , let
M ← Retrieve(pp,BB, pkdet, m̄), PL← Decode(M, sk):

• (DoS-completeness) Let m =
∑N

i=1 I(pp, xi, ci, pkclue, sk). Then either (m > m̄) ∧ (PL =
overflow), or Pr[xj ∈ PL | I(pp, x, c, pkclue, sk) = 1] ≥ 1− negl(λ) for all j ∈ [N].

• (DoS-soundness) Pr[xj ∈ PL | I(pp, x, c, pkclue, sk) = 0] ≤ negl(λ) for all j ∈ [N].

Furthermore, it satisfies the following computational security property:

• (Computational privacy) For any PPT adversaryA = (A1,A2): let pp← GenParams(1λ, ϵp, ϵn),
(sk, pk = (pkclue, ·)) ← KeyGen(pp) and (sk′, pk′ = (pk′clue,·)) ← KeyGen(pp). Let the ad-
versary choose a payload x and remember its state: (x,st) ← A1(pp, pk, pk

′). Let c ←
GenClue(pp, pkclue, x) and c′ ← GenClue(pp, pk′clue, x), then |Pr[A2(st, c) = 1]− Pr[A2(st, c

′) = 1]| ≤
negl(λ).

We omit two properties for simplicity. The first is compactness, which is an efficiency require-
ment on the digest size |M | ≪ |BB|. The second one is a security notion called key-unlinkability,
which essentially says that a recipient can generate multiple clue keys and detection keys using
the same secret key while all these keys are unlinkable. For both properties, we achieve exactly
the same guarantee as in what is achieved in [30, 32] since our construction is based on the same
framework used in [30] and these properties are orthogonal to the main point of the paper. See
Remark 7.3 for details.

28

7.2 DoS-resistance of OMRp2 in [30]

Using Lemma 4.3, we prove that the OMR construction in [30] is indeed DoS-resistant as conjec-
tured. Here we first recall how OMRp2 ([30, Alg.8]) is constructed, which also serves as the general
framework we use to construct our own OMR.

OMRp2 (OMR with PVW). The construction OMRp2 is proposed in [30], which is based on
PVW encryption (Definition 3.3) and BFV homomorphic encryption (Section 3.7).

Each recipient first generates a pair of PVW keys (pkPVW, skPVW) and a pair of BFV keys
(pkBFV, skBFV). The recipient publishes pkclue = pkPVW as the clue key and the sender uses pkclue
to encrypt 1⃗ ∈ Zℓ

2 into a ciphertext (⃗a, b⃗). The ciphertext, serving as the clue, is published with
the corresponding payload onto the bulletin board. Thus, the PVW scheme (or more generally,
the underlying PKE scheme) is used to implicitly convey the pertinency of a message on the public
bulletin board. To retrieve the pertinent messages, a recipient encrypts its own PVW secret key
skPVW under pkBFV, denoted as ctsk, and sends pkdet = (pkBFV, ctsk) as the detection key to the
detector. The detector uses pkdet to homomorphically decrypt all clues into ℓ bits (the design of
this homomorphic circuit will be discussed later), and performs a homomorphic multiplication of
all ℓ bits.

After this step, withN clues on the bulletin board, the detector will getN bits. All the pertinent
messages have the corresponding bits being 1 (except with negl probability) and the others being
0 except with δ probability (recall that PVW is δ-snake-eye resistant). For simplicity, consider
δ = negl(λ).

With this (sparse) bit vector of size N and the N payloads in BB, the detector generates
a digest containing only the payloads of the messages with the corresponding bits being 1, by
homomorphically evaluating an encoding scheme. The recipient, after receiving the digest back,
decrypts the digest and performs a decoding procedure to obtain all the payloads.

We skip the details of this encoding procedure on the detector side and the decoding scheme
on the recipient side since they are irrelevant to our work and refer readers to [30] for details.

DoS resistance of OMRp2. [30] shows that the construction OMRp2 is DoS-resistant under the
conjecture that PVW is snake-eye resistant with δ = ((2r+ 1)/q)ℓ ([30, Thm 9.3]). In Lemma 4.3,
we prove that PVW is indeed snake-eye resistant with δ = ((4r + 1)/q)ℓ. Therefore, the original
OMR scheme given in [30] is now formally proven to be DoS-resistant with a false positive rate
ϵp = ((4r + 1)/q)ℓ (instead of ((2r + 1)/q)ℓ as originally conjectured); for a specific ϵp, this means
that ℓ needs to be slightly increased.

7.3 Non-DoS Resistance of PerfOMR in [32]

PerfOMR, OMR with shortLWE. Following the aforementioned framework, [32] proposes shortLWE
(Definition 3.5) inplace of PVW and constructs PerfOMR.9 This gives two advantages: (1) the clue
key size is now greatly reduced due to a smaller PKE public key; (2) the detector runtime is faster
as r is greatly reduced and thus a more efficient homomorphic decryption circuit can be designed.

The DoS attack. Unfortunately, as shown in Section 5.1, the PKE scheme shortLWE is not snake-
eye resistant. Hence, the resulting OMR scheme PerfOMR ([32, Alg.4 &5]) is not DoS-resistant:

9[32] used the Ring-LWE version of shortLWE, but the main advantages and disadvantages are unaffected, so
we illustrate using the scheme we defined in Definition 3.5. Also, [32] has two OMR constructions PerfOMR1 and
PerfOMR2, mainly differing in parameter choice and suffering from the same DoS attacks. For the ease of illustration,
we refer to them as PerfOMR.

29

the attacker can generate the ciphertext we propose in the attack as the clue, and then many, if not
all, honest recipients will detect it as pertinent. We implement and demonstrate that such attacks
indeed work as expected in Section 8.

As mentioned at the beginning of this section, such an attack means that an adversary can
generate m clues, which will be detected as pertinent by a large number of recipients. Unless these
recipients set m̄ > m, the decoding protocol after retrieval outputs “overflow”. However, if m̄ is set
to be too large, since the detector computation time and the communication cost are dependent
on m̄ (polylog and linear dependency respectively), the efficiency is greatly affected.

7.4 New DoS-resistant OMR

However, with our new PKE scheme LWEmongrass, we are able to embrace the advantages of both
works: the DoS-resistance property as the scheme in [30] and a comparable efficiency as the scheme
in [32].

The application of our PKE scheme to OMR is straightforward. Each recipient generates
a LWEmongrass.pk as the clue key, and the sender generates LWEmongrass.Enc(pp,pk,1ℓ) as the
clue. Again, the recipient generates ctsk encrypting LWEmongrass.sk under BFV.pk, and uses the
homomorphic decryption circuit proposed in [32] to homomorphically decrypt each clue. The rest
proceeds exactly the same as in [30, 32], so we omit the details.

Since LWEmongrass is indeed snake-eye resistant, we can easily prove that this new OMR con-
struction is DoS-resistant.

Efficiency improvement compared to OMRp2. Since LWEmongrass public key size is only
O(ℓ · n log(q)), the clue key size of our new OMR construction is much smaller than OMRp2 in
[30]. Furthermore, the range r for LWEmongrass is also much smaller than r for PVW when β1, β2
are small (e.g., β1 = β2 = 1 for ternary or binary secrets). Therefore, for the same false positive
rate ϵp = (4r+1

q)ℓ, ℓ can be set to a smaller number compared to [30]. Since the detector needs
to perform a homomorphic decryption process for all the ℓ bits, a smaller ℓ helps to reduce the
computation work of the detector.

Moreover, as introduced in [32], a smaller r leads to a a more efficient homomorphic decryption
circuit. In [30], the homomorphic decryption circuit is designed to be a linear transformation
followed by a degree-(q − 1) polynomial f(x) (to check whether the linear transformation result
is within [−r + q/2, r + q/2]; if so, return 1; otherwise, return 0). However, [32] observes that
another polynomial f ′(x) = 1 −

∏
i∈[r](x

2 − r2)q−1 has the same functionality as f(x), but only
needs r + log(q) homomorphic multiplications, which is fewer than q multiplications with r ≪ q;
and utlizing this technique, our scheme’s homomorphic decryption is much faster than the one in
[30].

[32] also proposes some additional optimizations, but since those are irrelevant to the main topic
of this paper (e.g., [32] also improved the encoding scheme), we omit the details. Our construction
formally described in Algorithm 2 incorporates all the optimizations introduced in [32].

Theorem 7.2. The scheme DoS-PerfOMR in Algorithm 2 is a DoS-resistant OMR scheme for
N < D · t/2, assuming the correctness, key-privacy, and snake-eye-resistance of LWEmongrass
(Theorem 5.2, Theorem 5.3), and the correctness and CPA-security of BFV leveled HE.

Proof sketch. The proof remains very similar to the proof in [30], except that they prove the theorem
with a conjecture that PVW is snake-eye resistant, while we prove it under the fact that our scheme

30

Algorithm 2 Practical Snake-eye Resistant OMR Scheme

1: procedure DoS-PerfOMR.GenParam(1λ, ϵp, ϵn)
2: Choose BFV parameters ppBFV such that BFV is secure and correct.
3: Choose ℓ, t such that

1. (4r+1
t)ℓ ≤ ϵp

2. ppLWEmongrass = (. . . , r, . . .) ← LWEmongrass.GenParams(1λ, (ℓ, t, 2, T , χσ, 1)) where r is
chosen such that LWEmongrass.Dec(pp, ·, ·) is correct with probability > 1− ϵn − negl(λ).

3. t is the plaintext space of the underlying BFV scheme.

4: return pp = (ppBFV, ppLWEmongrass, ϵp, ϵn)

5: procedure DoS-PerfOMR.KeyGen(pp)
6: (skLWEmongrass, pkLWEmongrass)← LWEmongrass.KeyGen(ppLWEmongrass)
7: (skBFV, pkBFV)← BFV.KeyGen(ppBFV)
8: ctskLWEmongrass

← BFV.Enc(pkBFV, skLWEmongrass)
9: return (sk = (skBFV), pk = (pkclue = pkLWEmongrass, pkdet = (pkBFV, ctskLWEmongrass

)))

10: procedure DoS-PerfOMR.GenClue(pp, pkclue, x)
11: p⃗← (0, . . . , 0) ∈ Zℓ

2

12: c← LWEmongrass.Enc(ppLWEmongrass, pkclue, p⃗)
13: return c
14: procedure DoS-PerfOMR.Retrieve(pp,BB = (xi, ci)i∈[N], pkdet, m̄)
15: Use BFV to homomorphically decrypt each ci using ctskLWEmongrass

and ppLWEmongrass to obtain

N encryption bit vectors P⃗Vi each of length ℓ ▷ See [32, Alg.1] for a concrete realization
16: Homomorphically compute PVi ←

∏
j(1− P⃗Vi[j]), so that PVi encrypts 1 iff the message is

encrypted under skLWEmongrass encrypted under ctskLWEmongrass
.

17: Use PVi and xi to generate the digest M via BFV: if PVi encrypts 1, xi ∈ Decode(M, sk)
and otherwise, xi ̸∈ Decode(M, sk). ▷ See [32, Alg.2&3] for a concrete realization

18: return M
19: procedure DoS-PerfOMR.Decode(M, sk)
20: Decrypt and decode M with skBFV. ▷ See [32, Alg.4] for a concrete realization

LWEmongrass is indeed snake-eye resistant under standard lattice assumption. Due to the similarity
and that the proof is relatively straightforward, we simply sketch the proof.

We first construct an indicator I with ϵn, ϵp. The indicator simply performs LWEmongrass.Dec
using sk to each clue ci. By the correctness of LWEmongrass, indicator completeness holds. Further-
more, by the ((4r + 1)/q)ℓ-snake-eye-resistance property of LWEmongrass, the collision resistance
property holds. Namely, if an adversary breaks the collision resistance, there is an adversary that
breaks the snake-eye-resistance property of LWEmongrass: the clue that breaks the DoS resistance
property can be decrypted into the same message under two honestly generated LWEmongrass secret
keys with > ϵn = ((4r + 1)/q)ℓ probability.

Then, by the correctness of BFV together with line 17, DoS-completeness and DoS-soundness
hold (mi is included in the correctly decoded payload, iff ci is homomorphically decrypted into 0ℓ).

Lastly, the computational privacy is trivially implied by the CPA-security of BFV (such that
skLWEmongrass remains private) and the key-privacy property of LWEmongrass (which implies com-

31

putational privacy given that skLWEmongrass is private).

Remark 7.3. We briefly discuss the two properties we skipped in Section 7.2: compactness and
key-unlinkability. Compactness requires that |M | ≪ |BB|. We skip the details because achieving
compactness mainly depends on how the compression at line 17 is realized and is irrelevant to the
paper. Using the compression technique of prior works, we achieve the same compactness guarantee
as [30, 32].

The strongest form of key-unlinkability defined in [30, Def 9.2] is full-key-unlinkability. It states
that (1) the recipient can generate multiple clue keys and detection keys with the same secret key
and all the properties still hold regardless of which keys are used; (2) all these keys are unlinkable to
each other (i.e., indistinguishable from keys generated using independently and honestly generated
secret keys). Our scheme achieves such full-key-unlinkability as in [30] under standard Ring-LWE
assumption (by the fact that LWEmongrass and BFV public keys are indistinguishable from random
samples and the CPA security of BFV).

8 Evaluation

We implemented the above DoS-PerfOMR scheme in a (open-sourced) C++ library [20]. Our
code extends the OMR library [38] and uses the SEAL [36] and PALISADE [41, 3] libraries. We
compare our constructions to the conjectured-DoS-resistant construction OMR-OPT introduced in
[30]10 and the non-DoS-resistant constructions PerfOMR1 and PerfOMR2 introduced in [32]. We
run our implementation and the improved OMR-OPT using Google Compute Cloud e2-standard-4

with 32GB of RAM for a fair comparison.

Parameters. We chose the number of messages to be N = 219, and let the total number of
pertinent messages (and the bound estimated by the recipient) be m = m̄ = 50; we also set the
payload size is 612 bytes (based on Zcash transactions [21]), all same as in [30, 31, 32].

All the computational security estimations below are done using the up-to-date version of [18].
For OMR-OPT, we reuse the parameters in [31] and guarantee > 120-bit of computational secu-
rity. Therefore, for the LWEmongrass used in DoS-PerfOMR we choose n1 = 936, n2 = 760, q =
65537, σ = 0.5, k = 1 with ternary secrets for KeyGen and binary secrets for Enc which guarantees
computational 128-bit security for the underlying LWE (with ternary secrets) and rhLWE (with
binary secrets) to hold11, to guarantee CPA-security and key-privacy, which are essential. In addi-
tion, the above parameter guarantees a computational security of 100-bit and a statistical security
of 40-bit for the underlying corLWE (with ternary secrets) to hold, under which our DoS-PerfOMR is
proved to be DoS-resistant. Then, we set r = 79, ℓ = 3 to guarantee an ϵn < 2−30, ϵp < 2−22 (equal
or smaller than the prior works [30, 31, 32]). For the underlying BFV scheme, we set ring dimension
D = 215, plaintext modulus t = 65537, and ciphertext modulus Q ≈ 2970, which guarantees 105-bit
security according to [18].

Performance analysis. As shown in Table 1, our construction is DoS-resistance as OMRp2 in
[30, 31] (proven by our result), while having a comparable performance with PerfOMR1 in [32]. Our
construction is about 12x faster than OMRp2 in terms of the detector runtime, which is indeed the
main cost of the OMR construction, and only about 1.24x slower than PerfOMR1. Furthermore,

10We benchmark the improved version from [31].
11Note when using LWE with n = 760, q, σ, it gives 131.5 bits of security to cover the 2|χ| + 1 security loss from

rhLWE.

32

Detector Runtime
(ms/msg)

Clue Key
Size (KB)

Clue Size
(bytes)

Detector Key
Size (MB)

Digest Size
(bytes/msg)

Recipient
Runtime (ms)

DoS-resistance

OMRp2
[30, 31]

109.50 132.81 956 139 1.08 20
Conjectured in [30],
proven by Lemma 4.3

PerfOMR1
[32]

7.31 2.13 2181 171 2.57 37 No,
(attacks in
Section 5.1)

PerfOMR2
[32]

39.64 0.56 583 140 1.08 20

DoS-PerfOMR
Section 7.4

9.10 4.73 1996 183 2.57 36 Yes (Theorem 5.3)

Table 1: Comparison with prior OMR constructions for N = 219,m = m̄ = 50.

our clue key size is about 28x smaller than OMRp2 and only about 2.2x larger than PerfOMR1.
Note that PerfOMR2 uses a different parameterization that minimizes the clue key size and clue
size, while sacrificing detector runtime. Therefore, it has different trade-offs compared to PerfOMR1
and thereby our construction.

In terms of scalability, our construction has the same behavior as all prior constructions in the
table: the total runtime scales linearly with N (thus the amortized runtime ms/msg stays the same)
and is independent of m, m̄; the total digest size scales linearly with m, m̄ and is independent of
N .12 Thus, we defer the benchmark results about scalability to Appendix A.

Attacks on [32]. We implement the attack we proposed in Section 5.1 (adapted according to the
ternary sparse secret as used in [32]). By maliciously crafting a clue (⃗a, b), with a⃗ having r ones
and b = 0, we observe that the message attached with this clue is detected as pertinent in all the
10 trials of different honestly generated detection keys. Such attack easily generalizes as discussed
in Section 5.1.

9 Extension of PKE Snake-eye Resistance

While Definition 4.1 is enough for the application we are interested in, we can prove an even stronger
property for PVW and our scheme.

In this section, we consider a generalization: A not only outputs a ciphertext ct, but also a
difference between the two decrypted plaintexts d ∈ P. The adversary wins as long as the two
decrypted results’ difference is d. Formally, it is defined as follows.

Definition 9.1 (δ-general-snake-eye resistance of PKE). A PKE scheme is δ-general-snake-eye-
resistant if the following holds: let pp← PKE.GenParam(1λ), (pk1, sk1)← PKE.KeyGen(pp), (pk2,sk2)←
PKE.KeyGen(pp); for any PPT adversary A, let (ct, d) ← A(pp, pk1, pk2), where d ∈ P, P being
the plaintext space, it holds that:

Pr [PKE.Dec(pp, sk1, ct) = PKE.Dec(pp, sk2, ct) + d] ≤ δ.

9.1 General-snake-eye-resistance of PVW and LWEmongrass

Now we show that both PVW (Definition 3.3) and our new construction (Algorithm 1) are also
snake-eye-resistant with respect to this generalized definition. The proof is almost exactly the same
with a small difference on the δ and the range checked in the proof.

12There is some polylog dependence in all these constructions, but in practice, such effect is negligible for the
parameters of interest.

33

Essentially, we are leveraging the fact that both of these schemes are linearly homomorphic
(with scalars). In other words, for a ciphertext ct = Enc(m1) of these two schemes, it satisfies
that Dec(ct′) = m2 = m1 + d where ct′ ← ct + ∆ · d for ∆ = ⌊q/t⌋ (recall that these schemes
encode the plaintext first during encryption). The only caveat is that if m2 = 0,m1 ̸= 0, k ̸= 0,
the ∆ · m2 = 0 ≡ q mod q, but ∆ · (m1 + k) ̸= q. Instead, ∆ · (m1 + k) ∈ [q − 2, q]. To
capture this caveat, instead of proving δ = (4r+1

q)ℓ for the weaker snake-eye-resistance property as

in Lemma 4.3 and Theorem 5.3, we prove δ = (4r+5
q)ℓ to accommodate this “off-by-two” issue for

this general-snake-eye resistance formally as follows.

Lemma 9.2 (PVW is (4r+5
q)ℓ-general-snake-eye resistant). The PVW PKE scheme (Definition 3.3)

with pp = (n, ℓ, w, q,U , σ, ·), is (4r+5
q)ℓ-snake-eye resistant (Definition 4.1) if corLWEn,ℓ,w,q,Un,χσ

(Definition 4.2) is hard.

Proof. The proof follows the same idea as for Lemma 4.3. (The difference is marked in blue).
Given a PPT adversary A that breaks the snake-eye resistance property of PVW, we construct

an adversary A′ that breaks Lemma 6.1 as follows.
Given (A1, b⃗1, A2, b⃗2, sk1 − sk2), we directly feed pk1 = (A1, b⃗1), pk2 = (A2, b⃗2) into A. Upon

receiving (⃗a, b⃗) and d, if |⃗a(sk1,j − sk2,j) − ⌊ qp⌋ · d| ≤ 2r + 2 for all j ∈ [ℓ], output “the input is a
valid corLWE sample”; otherwise, output “the input is a random sample”.

If the original (A1, b⃗1), (A2, b⃗2) are indeed valid LWE samples, then, it satisfies that |⃗a,ski,j− b⃗j−
⌊ qp⌋·mi| ≤ r+ for i ∈ {1,2}, j ∈ [ℓ] wherem1 = m2+d ∈ P, and thus |⃗a(sk1,j−sk2,j)−⌊ qp⌋·d| ≤ 2r+2
via triangle inequality.

On the other hand, if the original (A1, b⃗1), (A2, b⃗2) are random sample, A receives no information
about sk1, sk2 (which are both uniformly randomly sampled). Thus, for a⃗ ̸= 0n, we have Pr[∀j ∈
[ℓ], |⃗a(sk1,j − sk2,j)| ≤ 2r + 2] = (4r+5

q)ℓ.

Therefore, for any A with noticeable advantage δ over (4r+5
q)ℓ, A′ has the same advantage δ.

Lemma 9.3. Under corLWEn1,ℓ,n2,q,Dn
β∥Uk,χ is hard, where n1 = n+ k, the PKE scheme defined in

Algorithm 1 is (4r+5
q)ℓ-general-snake-eye resistance.

Proof sketch. Similarly change all the checks of 2r to 2r+ 2 for the proof of Theorem 5.3 as in the
blue part of the proof of Lemma 9.2. Everything else follows exactly the same.

10 Open Questions

Tighter snake-eye resistance. As mentioned in Remark 4.4, the main difference between what
we prove and what is conjectured in [30] is that they conjecture δ = ((2r+1)/q)ℓ while we prove for
δ = ((4r + 1)/q)ℓ. Note that δ = ((2r + 1)/q)ℓ is indeed the bound if ct is honestly generated (i.e.,
encrypted using the Enc interface with some honestly generated public key). Therefore, it is natural
to believe that δ = ((2r + 1)/q)ℓ even in the malicious case. While this has limited influence in
practice, it is an interesting theoretical question whether we can indeed prove snake-eye resistance
with δ = ((2r + 1)/q)ℓ.

Additional parameterization for our LWE variants. In Section 6, we proved that under
some secret distributions (i.e., uniform, binary and ternary), corLWE and rhLWE are at least as
hard as regular LWE. While the distributions we proved are enough to support our claims about

34

the snake-eye resistance of LWEmongrass (T for corLWE and B for rhLWE), there are other popular
secret distributions, like Gaussian distribution, uniform-t-ary (i.e., uniform over [−t, t]), sparse
secrets (i.e., with some fixed hamming weight h≪ n), and so on. For these different distributions,
it seems intuitive that we can obtain a reduction from standard LWE to corLWE and/or rhLWE with
some security loss using similar proof techniques (e.g., for rhLWE, it seems to hold for any secret
distribution as long as the corresponding LHL holds). We leave it for future work to explore and
improve the tightness of the reduction. Another interesting question is whether one can prove or
disprove rhLWE with k = O(log(n)) is as hard as standard LWE for binary secrets.

Futher generalization of the snake-eye resistance property. While we have discussed
some generalizations (in Section 9), there are other natural definitions that are even stronger. For
example, can the adversary output a function f such that Dec(ct, sk1) = f(Dec(ct, sk2))? Or can
the adversary outputs a relation R such that R(Dec(ct, sk1),Dec(ct, sk2)) = 1? While all these are
intriguing directions, it seems hard for our scheme to satisfy. In particular, taking the function f
version of generalization as an example, the ciphertext satisfies that a⃗(sk1,j − sk2,j) ≈ m1 − f(m1)
for some unkown m1; thereby m1 − f(m1) may be arbitrary. Thus, we cannot check the result
against some range r. Whether such definitions can be satisfied by any constructions is thus left
for future works to explore.

35

References

[1] C. Abou Haidar, A. Passelègue, and D. Stehlé. Efficient updatable public-key encryption
from lattices. In J. Guo and R. Steinfeld, editors, Advances in Cryptology – ASIACRYPT
2023, pages 342–373, Singapore, 2023. Springer Nature Singapore.

[2] J. Alperin-Sheriff and C. Peikert. Circular and KDM security for identity-based encryption. In
M. Fischlin, J. Buchmann, and M. Manulis, editors, PKC 2012, volume 7293 of LNCS, pages
334–352, Darmstadt, Germany, May 21–23, 2012. Springer, Heidelberg, Germany.

[3] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise, S. Halevi,
H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov, S. R.V., K. Rohloff,
J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca. Openfhe: Open-
source fully homomorphic encryption library. Cryptology ePrint Archive, Paper 2022/915,
2022. https://eprint.iacr.org/2022/915.

[4] G. Beck, J. Len, I. Miers, and M. Green. Fuzzy message detection. ACM CCS 2021.

[5] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE S&P, pages 459–474, 2014.

[6] J. Bethencourt, D. X. Song, and B. Waters. New techniques for private stream searching.
ACM Trans. Inf. Syst. Secur., 12:16:1–16:32, 2009.

[7] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan, D. Lie, M. Rudominer,
U. Kode, J. Tinnes, and B. Seefeld. Prochlo: Strong privacy for analytics in the crowd. In
SOSP, pages 441–459, 2017.

[8] O. Biçer and C. Tschudin. Oblivious homomorphic encryption. Cryptology ePrint Archive,
Paper 2023/1699, 2023. https://eprint.iacr.org/2023/1699.

[9] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler,
and D. Stehle. Crystals - kyber: A cca-secure module-lattice-based kem. In 2018 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 353–367, 2018.

[10] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. Zexe: Enabling decentralized
private computation. In 2020 IEEE S&P (SP), pages 947–964, 2020.

[11] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In CRYPTO 2012, LNCS. Springer, Aug. 19–23, 2012.

[12] Z. Brakerski and N. Döttling. Hardness of LWE on general entropic distributions. In A. Can-
teaut and Y. Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 551–
575, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

[13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC,
pages 575–584, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

36

https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2023/1699

[14] J. H. Cheon, D. Kim, D. Kim, J. Lee, J. Shin, and Y. Song. Lattice-based secure biometric
authentication for hamming distance. In J. Baek and S. Ruj, editors, ACISP 21, volume 13083
of LNCS, pages 653–672, Virtual Event, Dec. 1–3, 2021. Springer, Heidelberg, Germany.

[15] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords, 1998.

[16] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In 36th
FOCS, pages 41–50. IEEE Computer Society Press, Oct. 23–25, 1995.

[17] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messaging system
handling millions of users. In 2015 IEEE S&P, pages 321–338, 2015.

[18] B. Curtis, C. Lefebvre, F. Virdia, F. Göpfert, J. Owen, L. Ducas, M. Schmidt, M. Albrecht,
R. Player, and S. Scott. Security estimates for the learning with errors problem.

[19] G. Danezis and C. Diaz. Space-efficient private search with applications to rateless codes. In
FC’07, page 148–162. Springer, 2007.

[20] DoS-PerfOMR implementation. https://github.com/ObliviousMessageRetrieval/

ObliviousMessageRetrieval/tree/dos_perfomr, Mar. 2024.

[21] Electric Coin Company. Zcash Rust crates. https://github.com/zcash/librustzcash.
Commit hash: 99d877e22d58610dc43021b831a28286ef353a89.

[22] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. https://ia.cr/2012/144.

[23] M. Finiasz and K. Ramchandran. Private stream search at almost the same communication
cost as a regular search. In L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography,
pages 372–389, Berlin, Heidelberg, 2013. Springer.

[24] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92, Santa Barbara, CA, USA,
Aug. 18–22, 2013. Springer, Heidelberg, Germany.

[25] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning
with errors assumption. In A. C.-C. Yao, editor, ICS 2010, pages 230–240, Tsinghua University,
Beijing, China, Jan. 5–7, 2010. Tsinghua University Press.

[26] S. Jakkamsetti, Z. Liu, and V. Madathil. Scalable private signaling. Cryptology ePrint Archive,
Paper 2023/572, 2023. https://eprint.iacr.org/2023/572.

[27] Y. Jia, V. Madathil, and A. Kate. Homerun: High-efficiency oblivious message retrieval,
unrestricted. Cryptology ePrint Archive, Paper 2024/188, 2024. https://eprint.iacr.org/
2024/188.

[28] D. Kim, D. Lee, J. Seo, and Y. Song. Toward practical lattice-based proof of knowledge
from hint-mlwe. In H. Handschuh and A. Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, pages 549–580, Cham, 2023. Springer Nature Switzerland.

37

https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/dos_perfomr
https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/dos_perfomr
https://github.com/zcash/librustzcash
https://ia.cr/2012/144
https://eprint.iacr.org/2023/572
https://eprint.iacr.org/2024/188
https://eprint.iacr.org/2024/188

[29] J. Lee, D. Kim, D. Kim, Y. Song, J. Shin, and J. H. Cheon. Instant privacy-preserving
biometric authentication for hamming distance. IACR Cryptol. ePrint Arch., 2018:1214, 2018.

[30] Z. Liu and E. Tromer. Oblivious message retrieval. In Y. Dodis and T. Shrimpton, edi-
tors, Advances in Cryptology – CRYPTO 2022, pages 753–783, Cham, 2022. Springer Nature
Switzerland. Full version: Cryptology ePrint Archive 2021; internal citations follow the latter’s
numbering.

[31] Z. Liu, E. Tromer, and Y. Wang. Group oblivious message retrieval. S&P 2024, 2024.

[32] Z. Liu, E. Tromer, and Y. Wang. Perfomr: Oblivious message retrieval with reduced com-
munication and computation. Cryptology ePrint Archive, Paper 2024/204, 2024. To appear,
Usenix Security 2024.

[33] J. Lund. Technology preview: Sealed sender for signal. https://signal.org/blog/

sealed-sender/, Oct. 2018.

[34] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. J. ACM, 2013.

[35] V. Madathil, A. Scafuro, I. A. Seres, O. Shlomovits, and D. Varlakov. Private signaling.
USENIX Security 2022, 2022.

[36] Microsoft SEAL. https://github.com/Microsoft/SEAL, Nov. 2020. Microsoft Research,
Redmond, WA.

[37] S. Noether. Ring signature confidential transactions for monero. IACR Cryptology ePrint
Archive, 2015:1098, 2015.

[38] Oblivious message retrieval implementation. https://github.com/ZeyuThomasLiu/

ObliviousMessageRetrieval, Dec. 2021.

[39] A. O’Neill, C. Peikert, and B. Waters. Bi-deniable public-key encryption. In P. Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 525–542, Santa Barbara, CA, USA,
Aug. 14–18, 2011. Springer, Heidelberg, Germany.

[40] R. Ostrovsky and W. E. Skeith. Private searching on streaming data. In CRYPTO, 2005.

[41] PALISADE lattice cryptography library (release 11.2). https://palisade-crypto.org/,
June 2021.

[42] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO 2008, pages 554–571. Springer, 2008.

[43] S. Pu, S. A. Thyagarajan, N. Döttling, and L. Hanzlik. Post quantum fuzzy stealth signatures
and applications. Cryptology ePrint Archive, 2023.

[44] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
Sept. 2009.

38

https://eprint.iacr.org/2021/1256
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://github.com/Microsoft/SEAL
https://github.com/ZeyuThomasLiu/ObliviousMessageRetrieval
https://github.com/ZeyuThomasLiu/ObliviousMessageRetrieval
https://palisade-crypto.org/

[45] I. A. Seres, B. Pejó, and P. Burcsi. The effect of false positives: Why fuzzy message detection
leads to fuzzy privacy guarantees? In I. Eyal and J. Garay, editors, Financial Cryptography
and Data Security, pages 123–148, Cham, 2022. Springer International Publishing.

[46] J. Szefer. Survey of microarchitectural side and covert channels, attacks, and defenses. Journal
of Hardware and Systems Security, 3:219–234, Sept. 2019.

[47] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in numbers: Making
strong anonymity scale. In OSDI 12, pages 179–182. USENIX, Oct. 2012.

A Additional Evaluation

We add some additional benchmarks of our DoS-PerfOMR construction to show its scalability.
As shown in Table 2, our construction runtime essentially grows linearly with N and grows

slightly with m̄ as well. Digest size remains unchanged with different N but grows linearly with
m̄. These scalability behaviors are essentially the same as all prior single-server practical OMR
constructions [30, 31, 32].

m = m̄ = 50

N
Amortized runtime

(ms/msg)
Total runtime

(s)
Amortized digest
size (bytes/msg)

Total digest
size (MB)

DoS-PerfOMR
219

9.10
4768.12 2.57

1.35221 18996.20 0.68
223 76781.09 0.17

N = 219

m = m̄
Amortized runtime

(ms/msg)
Total runtime

(s)
Amortized digest
size (bytes/msg)

Total digest
size (MB)

DoS-PerfOMR
50 9.10 4768.12 2.70 1.35

100 11.70 5855.82 4.71 2.47
150 13.10 6865.69 9.34 4.67

Table 2: Scalability of our construction DoS-PerfOMR.

39

	Abstract
	Contents
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Organization

	2 Related Works
	3 Preliminary
	3.1 Notation
	3.2 Hard Problems
	3.3 Public Key Encryption
	3.4 PVW PKE scheme
	3.5 shortLWE PKE scheme
	3.6 The Snake-eye Conjecture
	3.7 BFV Homomorphic Encryption Scheme

	4 Snake-eye Resistant Public Key Encryption
	4.1 PKE Snake-eye Resistance
	4.2 Snake-eye resistance of PVW

	5 A More Efficient Snake-eye Resistant PKE
	5.1 Short-key LWE is not snake-eye resistant
	5.2 LWEmongrass, New Snake-Eye Resistant PKE Construction

	6 LWE Variants
	6.1 LWE with Correlation
	6.2 LWE with Random Hints
	6.3 Discussion of other LWE variants with Side-information

	7 Constructing OMR from Snake-eye Resistant PKE
	7.1 DoS-resistant OMR Definition
	7.2 DoS-resistance of OMRp2 in OMR
	7.3 Non-DoS Resistance of PerfOMR in perfomr
	7.4 New DoS-resistant OMR

	8 Evaluation
	9 Extension of PKE Snake-eye Resistance
	9.1 General-snake-eye-resistance of PVW and LWEmongrass

	10 Open Questions
	References
	A Additional Evaluation

