
Quantum Implementation and Analysis of SHA-2 and SHA-3

Kyungbae Jang1, Sejin Lim1, Yujin Oh1, Hyunjun Kim1,
Anubhab Baksi2⋆, Sumanta Chakraborty3, and Hwajeong Seo1

1 Hansung University, Seoul, South Korea
2 Nanyang Technological University, Singapore

3 Techno International New Town, West Bengal, India
starj1023@gmail.com, dlatpwls834@gmail.com, oyj0922@gmail.com, khj930704@gmail.com,

anubhab.baksi@ntu.edu.sg, sumanta phd21@iiitkalyani.ac.in, hwajeong84@gmail.com

Abstract. Quantum computers have the potential to solve hard problems that are nearly impossible
to solve by classical computers, this has sparked a surge of research to apply quantum technology and
algorithm against the cryptographic systems to evaluate for its quantum resistance. In the process of
selecting post-quantum standards, NIST categorizes security levels based on the complexity that quantum
computers would require to crack AES encryption (levels 1, 3, and 5) and SHA-2 or SHA-3 (levels 2 and 4).
In assessing the security strength of cryptographic algorithms against quantum threats, accurate predictions
of quantum resources are crucial. Following the work of Jaques et al. in Eurocrypt 2020, NIST estimated
security levels 1, 3, and 5, corresponding to quantum circuit size for finding the key for AES-128, AES-192,
and AES-256, respectively. This work has been recently followed-up by Huang et al. (Asiacrypt’22) and Liu
et al. (Asiacrypt’23). However, for levels 2 and 4, which relate to the collision finding for the SHA-2 and
SHA-3 hash functions, quantum attack complexities are probably not well-studied.
In this paper, we present novel techniques for optimizing the quantum circuit implementations for SHA-2
and SHA-3 algorithms in all the categories specified by NIST. After that, we evaluate the quantum circuits
of target cryptographic hash functions for quantum collision search. Finally, we define the optimal quantum
attack complexity for levels 2 and 4, and comment on the security strength of the extended level. We
present new concepts to optimize the quantum circuits at the component level and the architecture level.

Keywords: Quantum Circuit · Quantum Collision Search · SHA-2 · SHA-3 · NIST Post Quantum
Cryptography · Quantum Security Levels

1 Introduction

With the progress in quantum computing, it has become essential to evaluate the vulnerability of
cryptographic algorithms against it. Since quantum computers can efficiently solve certain hard
problems in commonly used cryptographic algorithms, concerns arise about the compromised security
of traditional cryptography. Shor’s algorithm [1] is particularly noteworthy for its ability to compromise
traditional public-key cryptography, such as RSA and ECC. In case of symmetric key, like AES, SHA-2,
and SHA-3, the primary threat is Grover’s search algorithm [2], which offers a quadratic speedup,
significantly reducing the time needed for an exhaustive search.

This changing landscape requires a thorough reassessment of cryptographic protocols and exploration
of quantum-resistant alternatives to ensure enough quantum security strength in the future. As widely
known, the National Institute of Standards and Technology (NIST) is conducting a competition
in Post-Quantum Cryptography (PQC) to standardize algorithms that are secure against potential
quantum attacks. As part of this contest, NIST introduced security strength categories to classify the
post-quantum cryptography candidates [3], as shown in Table 11. These classifications were determined
by considering the intricacies of quantum attacks, measured in terms of quantum circuit size. In addition
to the gate count, MAXDEPTH is another parameter proposed by NIST. It involves the concept of
limiting quantum attacks by setting a maximum runtime or quantum circuit depth. This approach is
motivated by the challenges associated with executing excessively long sequential computations.

⋆ This project is partially supported by the Wallenberg – NTU Presidential Post-doctoral Fellowship.
1 The definition of the quantum security levels as per [3] is somewhat ambiguous, as [3, Page 16] defines up to level 5,
but [3, Page 17] defines up to the extended level.



2

Table 1: Security levels defined by NIST (in context of post-quantum cryptography competition) along with our extension.

Category Cipher Quantum gate count

Level 1 AES-128 2157/MAXDEPTH

Level 2 SHA-2-256/SHA-3-256 Unspecified

Level 3 AES-192 2221/MAXDEPTH

Level 4 SHA-2-384/SHA-3-384 Unspecified

Level 5 AES-256 2285/MAXDEPTH

Level 6 (Extension) SHA-2-512/SHA-3-512 Not applicable

NIST defines post-quantum security levels [3,4] ranging from 1 to 5. Levels 1, 3, and 5 correspond to
the quantum circuit size of finding a solution key for AES-128, AES-192, and AES-256 using the Grover
algorithm, respectively. However, for levels 2 and 4, which relate to the collision finding (i.e., same
output with different inputs) for the SHA-2 and SHA-3 hash functions, quantum circuit sizes are yet
to be defined (only classical circuit sizes are reported). Inspired by this, we optimize quantum circuits
for representative two cryptographic hash functions, including SHA-2 and SHA-3. The anticipated
outcome from our work is to provide more efficient quantum circuits for cryptographic hash functions
compared to previous works [5, 6, 7, 8, 9], while simultaneously offering the lowest complexity that can
be designated as the quantum post-quantum security level by NIST (discussed in detail in Section 4).

1.1 Contributions

To the best of our knowledge, we integrated all the best techniques for optimizing the quantum circuit
depth of quantum circuit implementations for SHA-2 and SHA-3 algorithms in all categories. And
then, we benchmarked against the-state-of-art quantum circuit implementations for two representative
cryptographic hash functions (i.e. SHA-2 and SHA-3). For SHA-2 and SHA-3 algorithms, our implemen-
tations include novel tricks not yet described in the literature. In all quantum circuit implementations,
we achieve the lowest circuit depth and the best performance for Grover’s algorithm. The detailed
contributions are as follows:

– Quantum Carry-Save Adder based quantum circuit implementations of SHA-2: We present optimized
quantum circuits by using the Quantum Carry-Save Adder (QCSA) [10] for multi-operand addition,
a resource-critical step of SHA-2. Concretely, we achieve a critical path of around 1 for quantum
additions in a round. This represents a significant improvement compared to the previous best result,
achieved in Lee et al.’s work [5], which was 3. We also introduce efficient implementation techniques;
reusing output qubits, and optimization for a fixed input length, based on the out-of-place approach.

– Improved out-of-place and interval architecture based quantum circuit implementations of SHA-3:
We introduce novel out-of-place round architecture. Based on the improved architecture, novel
techniques are incorporated; all-in-one, parallel design with copying, and trick of the X gate
operation. We also develop a novel architecture that can reuse/reduce many of these ancilla qubits
without increasing circuit depth, called the interval architecture. With the interval architecture,
our quantum circuits of SHA-3 offer the lowest depths with the best trade-off performance.

– Defining the NIST quantum attack complexity for levels 2 and 4 In a realistic approach to Grover’s
search, the full circuit should be split into reduced sizes and operated in parallel to address the
issue of extreme circuit depth. In this parallelization process, our depth-optimized implementations
of SHA-2 and SHA-3 offer a benefit in achieving the best trade-off performance compared to qubit-
optimized implementations (related discussion is given in Appendix A). Based on the estimated
cost for quantum collision search using the presented SHA-2 and SHA-3 quantum circuits, we define
the quantum complexity for levels 2 and 4, which have not yet been defined.



3

Table 2: Security levels defined in this work.

Strength Category Hash function Quantum gate count

Level 2
A SHA-2-256 2188/MAXDEPTH

B SHA-3-256 2183/MAXDEPTH

Level 4
A SHA-2-384 2266/MAXDEPTH

B SHA-3-384 2260/MAXDEPTH

Level 6 (Extension)
A SHA-2-512 2343/MAXDEPTH

B SHA-3-512 2337/MAXDEPTH

– Extending the NIST quantum attack complexity for the extended level: We also optimized the
SHA-2-512 and SHA-3-512 in quantum circuits. This specified the quantum complexity for the
extended level.

The security levels depending on the hash functions are mentioned in [3]. Following this, we using
the naming convention for the security levels as shown in Table 2.

1.2 Related Works

In the quantum implementations, the evaluation metrics are similar to the hardware based cryptography
implementations but the point of view is a bit different. In order to evaluate the performance of quantum
circuits properly, the following metrics are commonly defined in related research [6, 11,12,13]

– Time Complexity: Quantum circuits can be designed with Clifford + T gates (Section 2). The time
complexity can be measured by the full depth of the quantum circuit, representing the critical
path of target quantum circuits. For fault-tolerant quantum computing, the T -depth, counted by
non-parallelizable T gates, also signifies the time complexity of quantum circuits.

– Space Complexity The required number of qubits of quantum circuits (often denoted as width)
corresponds to the space complexity.

– Time-Space Complexity: The time-space complexity is the product of the depth and width of
the quantum circuit. This metric is often employed to evaluate the trade-off performance of the
quantum circuit.

– Quantum Attack Complexity: The quantum attack complexity is determined by the product of
the total number of gates and the depth of the quantum circuit. This metric was introduced by
NIST [3] to establish boundaries for post-quantum levels 1 to 5 of post-quantum cryptography
candidates (refer to Section 4 and Appendix A for details).

Quantum circuits for SHA-2 and SHA-3. Quantum circuit implementations of SHA-2 were initially
introduced by Amy et al. in [7]. SHA-2 quantum circuits in [6, 7] have a high circuit depth due to
the sequential execution of major functions, such as Ch, Maj, and addition operations. In [5], Lee
et al. subsequently presented enhanced quantum circuits that achieve the lowe Toffoli depth with a
reasonable number of qubits.

In [7], the authors introduced a round in-place architecture for the SHA-3 quantum circuit to reduce
the number of qubits. In this approach, each function should be designed to be reversible (an intuitive
view is in Figure 6). Song et al. [14] presented a new circuit for SHA-3 to reduce T -depth by excluding
reversible functions and allocating extra qubits.

Häner et al. [9] and Meuli et al. [8] presented algorithms for optimizing Toffoli-related metricsl
such as T gates, Toffoli gates, and T -depth, in quantum implementation. They did not provide specific
quantum circuits for SHA-2 and SHA-3; instead, they estimated the required quantum resources using
their algorithms.



4

|0⟩ H
1√
2
(|0⟩+ |1⟩)

(a) H gate

|x⟩ X |∼ x⟩
(b) X gate

|x⟩ • |x⟩
|y⟩ |x⊕ y⟩

(c) CNOT gate

|x⟩ • |x⟩
|y⟩ • |y⟩
|z⟩ |z ⊕ (x · y)⟩

(d) Toffoli gate

Figure 1: Quantum gates employed in our quantum circuit implementations.

2 Quantum Gates

Before describing our quantum circuits for cryptographic hash functions, the quantum gates (i.e., at
the bottom level) employed for our implementation are briefly outlined in this section. Figure 1 shows
the diagrams of the quantum gates utilized in this paper to design the quantum circuits (notations of
∼, ⊕, and · represent NOT, XOR, and AND operations, respectively):

The H (Hadamard) gate is a fundamental quantum gate in quantum computing that creates
superposition by equally weighting the |0⟩ and |1⟩ states. The X gate (Figure 1(b)) inverts the state of
the qubit from 0 to 1 or from 1 to 0 (similar to the classical NOT operation (∼)). The CNOT gate
(Figure 1(c)) inverts the state of the target qubit (y) if the control qubit (x) is 1. Thus, this quantum
gate can replace the classical XOR operation (⊕). Figure 1(d), the Toffoli gate, inverts the state of the
target qubit (z) if both control qubits (x and y) are 1. This is the most important quantum gate in
this paper (and the same holds true for other papers [11,12,15,16]) for optimizing quantum circuits.
There are two reasons why this quantum gate is major for optimization.

Actually, the Toffoli gate is implemented by combining multiple quantum gates, such as X, CNOT,
T , and H gates. Figure 1(d) is an intuitive diagram for understanding. There are many proposals to
efficiently design the Toffoli gate (which consumes more quantum resources) [17, 18, 19, 20]. In this
work, we decompose a single Toffoli gate using 6 CNOT gates + 2 H gates + 7 T gates, with a total
depth of 8 (T -depth is 4), following one of the methods described in [17].

3 Grover’s Algorithm

The steps of Grover’s search can be divided into three stages: Setting Input, Oracle, and Diffusion
Operator. We describe Grover’s algorithm by applying it to the preimage search for hash functions.

1. Setting Input : Hadamard gates are applied to an n-qubit input to prepare a superposition state
|ψ⟩, resulting in equal probabilities for all 2n inputs:

H⊗n |0⟩⊗n = |ψ⟩ =
( |0⟩+ |1⟩√

2

)
=

1

2n/2

2n−1∑

x=0

|x⟩ (1)

2. In the Oracle, the hash function is implemented as a quantum circuit that generates the hash output
using the previous input in a superposition state. The generated hash output (in a superposition
state) is then compared with the known hash output (this part is usually ignored in resource
estimation [11, 12, 21]), and if a match is found (i.e., if f(x) = 1) and the sign of the solution input
(i.e., preimage) is negated (i.e., if f(x) = −1):

f(x) =

{
1 if Hash(x) = target output

0 if Hash(x) ̸= target output
(2)



5

Uf (|ψ⟩ |−⟩) = 1

2n/2

2n−1∑

x=0

(−1)f(x) |x⟩ |−⟩ (3)

3. The Diffusion Operator is designed to amplify the amplitude of the preimage marked by the
Oracle. Due to its minimal complexity in comparison to the Oracle, the diffusion operator is usually
disregarded in estimating Grover’s algorithm [11,21].

Application to Grover’s Algorithm to Collision Search

For applying the Grover algorithm to the collision finding of hash functions, we investigate three
approaches in this section:

Second preimage attack. In the second preimage attack, a collision search is performed by finding
a second preimage for a given first preimage. Grover’s algorithm searches for the second preimage
that satisfies the output of the first preimage by excluding the first preimage from the input set. This
method is similar to a quantum key search with the same complexity of O(2n/2).

The second preimage attack has the advantage of not requiring quantum memory, but it may not
align with NIST’s considerations. NIST defines the post-quantum strength of SHA-2/3-256 as level 2,
assuming that a quantum collision attack on SHA-2/3-256 is more feasible than a quantum key search
on AES-192 (i.e., level 3). If we estimate the complexity of the collision search on SHA-2/3-256 using
the second preimage attack it is higher than the key search on AES-192.

BHT algorithm. The Brassard, Hoyer, and Tapp (BHT) algorithm [22] combines the classical speedup
from the birthday paradox with the quantum speedup from Grover’s algorithm, as described in
Algorithm 1.

Algorithm 1: BHT algorithm for collision search.

Input: Input set 2n

Output: Collision
1: Select a subset K (size of 2n/3) ∈ 2n at random and query the hash function
2: if there is a Collision in K then
3: return the Collision
4: else
5: Construct a subset L (size of 22n/3) ∈ 2n that does not include K

6: end if
7: Grover’s algorithm finds x1 ∈ L that collides with x0 ∈ K
8: return (x0, x1)

In the BHT algorithm, a subset K of size O(2n/3) is randomly selected from the set of all possible
inputs (2n represents the input size). According to the birthday paradox, the likelihood of collisions
within this subset increases, allowing for a faster classical search for collisions. After selecting subset K
and checking for collisions classically, a subset L of size O(22n/3) is constructed, excluding the elements
in K. Grover’s algorithm is then applied to find a collision between an element x0 ∈ K and an element
x1 ∈ L. Classical search could find a collision with O(2n/3) queries, and Grover’s algorithm can find a

collision with O(
√

2n

2n/3 ) = O(2n/3) extra queries to the hash function.

However, this algorithm requires a significantly large amount of quantum memory, O(2n/3). Addi-
tionally, in [23], Bernstein discussed the impracticality of the BHT algorithm for collision search.



6

CNS algorithm. In Asiacrypt’17, Chailloux, Naya-Plasencia, and Schrottenloher proposed a new
quantum algorithm for collision search [24], known as the CNS algorithm, with a query complexity of
O(22n/5) using O(2n/5) classical memory . Although the complexity of the CNS algorithm is higher
than that of the BHT algorithm, it does not require quantum memory, making it practical. Thus, we
adopt the CNS algorithm for estimating the cost of quantum attacks on SHA-2 and SHA-3.

The CNS algorithm employs the Quantum Amplitude Amplification (QAA) algorithm [25], which is
a generalized version of Grover’s algorithm and consists of two phases: constructing the list and finding
collisions using the QAA algorithm. We provide a brief description related to the complexity analysis
as follows (for further details, refer to [24]).

Sd
H denotes the set comprising pairs of input/output (x, H(x)), where H(x) starts with d zeros. In

the first phase, a list L of size 2t−d is constructed from Sd
H using Grover’s algorithm with complexity

2d/2 (i.e., square root). Thus, the entire list L can be constructed with complexity 2t−d/2. The optimized
parameters for t and d are t = 3n

5 and d = 2n
5 according to [24]. In the next phase, the QAA algorithm

performs 2d/2 Grover iterations and 2t−d operations to access the list L. By executing the QAA
algorithm 2(n−t−1)/2 times, the total complexity is given by 2(n−t−1)/2(2d/2 + 2t−d) + 2t−2/d. Finally,
with optimized parameters, a collision can be found in O(22n/5) with O(2n/5) classical memory. The
authors of the CNS algorithm also presented a parallelization method that can reduce the search
complexity. For parallelization with 2s quantum instances, the search complexity exponent of the CNS
algorithm for collision search is reduced to 2n

5 − 3s
5 (s ≤ n

4 ).
In this paper, to establish appropriate boundaries for NIST post-quantum security levels, we assume

s = n/6 and a large size of classical memory. For SHA-2/3-n, the search complexities for n = 256, 384,
and 512 are (approximately) calculated as 276 (level 2), 2115 (level 4), and 2153 (the extended level),
respectively, using the formula 2n

5 − 3s
5 . These search complexities are appropriate, considering that

the required search complexities for levels 1, 3, and 5 (Grover’s key search on AES-128, 192, and 256)
are approximately 264, 296, and 2128, respectively. More discussion can be found in Section 9.1.

It is important to note that operating 2n/6 instances in parallel requires a significant number of
qubits. The parallelization with 2(n/6) instances is intended to provide suitable boundaries for levels 2,
4, and the extended level, and therefore can be adjusted.

4 NIST Post-Quantum Security Strength

NIST proposed the following approach in [3,4] to address uncertainties in estimating the post-quantum
security strengths of post-quantum cryptography candidates:

– Any attack that breaks the relevant security definition must require computational resources compa-
rable to or greater than those required for key search on AES and collision search on SHA-2/3.

Each category is defined by a relatively easy-to-analyze reference primitive, serving as a baseline for
various metrics that NIST considers potentially relevant to practical security. Specifically, NIST defined
a separate category for each of the following security requirements as shown in Table 1. Estimated
quantum resources for each category are the result of considering the quantum gate count, full depth,
and MAXDEPTH. We present the related discussion in Appendix A.

Levels 1, 3, and 5 correspond to key search on AES, while levels 2, 4, and the extended level
correspond to collision search on SHA-2/3. In a previous NIST document [4], the estimated resources
for Grover’s key search on AES by Grassl et al. [21] were defined for levels 1, 3, and 5. Recently, NIST
adjusted levels 1, 3, and 5 as Jaques et al. [11], which reduced the required quantum resources by
improving the quantum circuits of AES.

It is important to note that quantum resources for levels 2, 4, and the extended level have not been
defined yet. In our view, this is due to the lack of a clear estimation for collision search on SHA-2/3,
unlike what the authors did in [11, 12, 21, 26]. Furthermore, there is not an optimized quantum circuit
that satisfies the estimation method for quantum attacks (adopted by NIST). Generally, previous



7

works have focused on reducing the qubit count, which is not a recommended approach for Grover’s
algorithm.

Inspired by this, we present optimized quantum circuits for cryptographic hash functions SHA-2
and SHA-3 and the clear estimation of collision search (refer to Section 3). Based on the quantum
circuits of SHA-2 and SHA-3, new boundaries for levels 2, 4, and the extended level are suggested in
this work.

5 Depth Optimization for Quantum Circuit Implementation

The design philosophy for our quantum circuit implementation focuses on minimizing quantum circuit
depth rather than reducing the qubit count. However, it is essential to note that qubit count remains
one of the most critical resources in quantum computers. In this context, we prioritize circuit depth
reduction but carefully also consider the trade-off between qubit count and quantum circuit depth. We
adhere to the following principles for quantum circuit implementations:

1. If the quantum circuit depth can be effectively reduced by allocating additional ancilla qubits, it is
permitted.

2. We reverse the quantum operations to reuse the ancilla qubits, if it is possible and there is no depth
overhead for the reverse process.

Keeping these two principles in mind, we design depth-optimized quantum implementations for
cryptographic hash functions with a reasonable number of qubits. Our quantum circuits of SHA-2 and
SHA-3 offer the least quantum circuit depth compared to the previous work [5, 6, 7].

In the application of Grover’s algorithm to cryptographic hash functions, it is more effective to
reduce depth rather than the number of qubits (related discussion is in Appendix A). Demonstrating
this, our results showcase the best performance in all trade-off metrics for SHA-2 and SHA-3 under
Grover’s algorithm (strictly speaking, for parallel search). Finally, we prove that the quantum circuits
for cryptographic hash functions outlined in this paper are effective under Grover’s algorithm, offering
the lowest attack complexity, minimal depth, and the best trade-off metrics.

Applying AND gate. In recent quantum implementations, the use of AND gates (AND + AND†) is
recommended to reduce T -depth, full depth, and gate count. We also provide the AND gate version of
quantum circuits for three cryptographic hash functions. The AND gate operates the same as Toffoli
gate, except that the target qubit must be in a clean state (i.e., |0⟩). We adopt the recently updated
AND gate implementation introduced in Jaques et al. [27]. The AND gate requires an ancilla qubit
and consists of 11 Clifford + 4 T gates, with a T -depth of 1 and full depth of 8. The AND† gate is the
reverse of the AND gate based on the Measurement gate. It consists of 5 Clifford + 1 Measurement
gates, with a full depth of 4 (T -depth is 0). Due to the nature of the AND gate, where the target
qubit must be in a clean state and the requirement of one ancilla qubit, additional considerations are
included in our implementation.

6 Quantum Circuit Implementation of SHA-2

We describe the depth-optimized quantum circuits for the SHA-2 components here. For conciseness,
we focus on describing our optimization method for SHA-2-256 algorithm. SHA-2-384 and SHA-2-512
share a similar inner structure with SHA-2-256, allowing our method to be equally applicable.

6.1 Implementation of Σ0, Σ1, σ0 and σ1

Four operations of linear layer are used in SHA-2 as follows (the notations ‘≫’ and ‘≫’ respectively
represent the right rotation and right shift operations):



8

Σ0(a) = (a≫ 2)⊕ (a≫ 13)⊕ (a≫ 22).

Σ1(e) = (e≫ 6)⊕ (e≫ 11)⊕ (e≫ 25).

σ0(Wt−15) = (Wt−15 ≫ 7)⊕ (Wt−15 ≫ 18)⊕ (Wt−15 ≫ 3).

σ1(Wt−2) = (Wt−2 ≫ 17)⊕ (Wt−2 ≫ 19)⊕ (Wt−2 ≫ 10).

(4)

These operations consist of XOR operations, and each linear layer can be represented as a binary
matrix. By applying PLU factorization to the binary matrix, we can obtain three factor matrices (namely,
permutation, lower triangular and upper triangular). With those matrices, an in-place implementation
of the linear layer can be achieved, as described in [28]. The 32× 32 binary matrices associated with
the SHA-2 linear layer are shown in Figure 2.

In [5], the authors presented in-place implementations of Σ0, Σ1, σ0, and σ1 (i.e., without using any
ancilla/output qubit), by employing PLU factorization2. However, this approach leads to an increase
in quantum circuit depth due to the operations of CNOT gates in limited space (i.e., within the input
qubits). In [5], a maximum of 193 CNOT gates are operated within 32 qubits, resulting in a sequential
flow between them (with a maximum depth of 55).

(a) Σ0 (b) Σ1 (c) σ0 (d) σ1

: 0 : 1

Figure 2: 32× 32 binary matrices used in SHA-2 linear layer.

Out-of-place implementation. In contrast, we present out-of-place implementations of Σ0, Σ1, σ0, and
σ1. We allocate 32 qubits for the output (our first principle in Section 5) and compute the result by
XOR-ing the input qubits to the output qubits using CNOT gates. For example, for Σ0, we perform the
following operations: CNOT (a≫ 2, output), CNOT (a≫ 13, output), CNOT (a≫ 22, output). As
a result, our out-of-place implementations of Σ0, Σ1, σ0, and σ1, only have a depth of 3, respectively,
and require a maximum of 96 CNOT gates3. Since shift operations are included (≫ 3 and ≫ 10), the
required number of CNOT gates for σ0 and σ1 is reduced by 3 and 10, respectively.

Reusing output qubits. Later, the results of operations Σ0, Σ1, σ0, and σ1 will be used as operands
for additions (refer to Equations (6) and (7)). Once the additions are completed, these results are
no longer needed. To reduce the number of qubits, we initialize the results to the clean state (i.e.,
|0⟩) by performing the previous operations in reverse and then we reuse them (our second design
methodology). Thanks to this approach, by incurring the initial allocation burden, subsequent linear

2 This method has been used in other works too, see, e.g., [29].
3 In general, operations involving the swapping of qubits, such as shift, rotation, and rearrangement, are implemented
logically without using quantum Swap gates.



9

Table 3: Quantum resources required for implementations of Σ0, Σ1, σ0 and σ1.

Linear layer Source #CNOT #Qubit (reuse) Depth

Σ0
PLU [5] 166 32 55

Ours (Out-of-place) 96 64 (32) 3

Σ1
Lee et al. (PLU) [5] 166 32 44

Ours (Out-of-place) 96 64 (32) 3

σ0
Lee et al. (PLU) [5] 193 32 50

Ours (Out-of-place) 93 64 (32) 3

σ1
Lee et al. (PLU) [5] 142 32 40

Ours (Out-of-place) 86 64 (32) 3

layers are implemented with low depth by reusing the initialized output qubits. Quantum resources
required for implementations of Σ0, Σ1, σ0 and σ1 are shown in Table 34.

6.2 Implementation of Ch and Maj

The operations of Choose (Ch) and Majority (Maj) are used in SHA-2 as follows:

Ch(e, f, g) = (e · f)⊕ (∼ e · g).
Maj(a, b, c) = (a · b)⊕ (a · c)⊕ (b · c).

(5)

We adopt the optimized circuits from [30] and [5], which utilize only one Toffoli gate. Similar to
the operations in Section 6.1, the results of Ch and Maj operations are no longer needed after being
used as operands in addition. Since the qubit values provided as inputs (i.e., a, b, c, e, f, and g) are
used in the next round, we apply reverse operations (i.e., Ch† and Maj†) to initialize the results. The
circuits for this and the quantum resources required for implementation are shown in Figure 3 and
Table 4, respectively.

|e⟩ /
32 • |e⟩

|f⟩ /
32 • |f ⊕ g⟩

|g⟩ /
32 • |Ch(e, f, g)⟩
(a) Ch in [5]

|a⟩ /
32 • |a⊕ c⟩

|b⟩ /
32 • |b⊕ c⟩

|c⟩ /
32 • • |Maj(a, b, c)⟩
(b) Maj in [30]

Figure 3: Quantum circuits for the operations Ch and Maj.

Table 4: Quantum resources required for implementations of Ch and Maj.

Operation #CNOT #1qCliff #T Toffoli depth #Qubit Full depth

Ch 224 64 224 1 96 9

Maj 256 64 224 1 96 10

4 The required quantum resources are not provided in [7] and [6]. In [7], the description of the implementation technique
is not specific, and in [6], single output qubits are shared for all Linear layer operations, which increases the depth and
gate count.



10

6.3 Implementation of Multi-operands Addition

In the SHA-2 quantum circuit, the most resource-intensive operation is the repeated addition operations.
The addition operations are carried out in both the round function and the message scheduling algorithm
(Expressions (6) and (7), respectively):

h = Σ0(a) +Maj(a, b, c) +Σ1(e) + Ch(e, f, g) + h+Ki +Wi.

d = d+Σ1(e) + Ch(e, f, g) + h+Ki +Wi.
(6)

Wt =Mt (0 ≤ t ≤ 15)

= σ1(Wt−2) +Wt−7 + σ0(Wt−15) +Wt−16 (16 ≤ t ≤ 63).
(7)

In [5], the authors introduced a quantum circuit featuring a critical path composed of three
consecutive quantum adders. In their approach, they employed Draper’s adder (in-place version) [31]
and Takahashi’s adder [32]. However, generic quantum adders designed to operate on two operands
cannot handle operations with overlapping operands (more than two) in parallel. This limitation led
the authors to conclude that a critical path of three was the best achievable.

Utilizing a Multi-Operand Adder Circuit. Our approach involves designing a multi-operand adder
circuit to simultaneously handle all additions, thus achieving a critical path of around 1, instead of
using the adder multiple times. We utilize [10]’s Quantum Carry-Save Adder (QCSA), which can
handle multi-operand and provides low circuit depth. While QCSA requires a relatively large number
of ancilla qubits, we can efficiently reuse most of these qubits by applying the reverse operation. Figure
4 illustrates how the QCSA from [10] is utilized and optimized for the SHA-2 algorithm.

Figure 4: Optimized and modified structure of the QCSA with a critical path of around 1, ①: Partial sums; ②: Total
sum; ③: Reverse.



11

The three QCSAs (aligned vertically) in Figure 4 are performed in parallel, with a critical path
of around 1. From left to right, the operations corresponding to Expressions (6) (h, d) and (7) are
performed by receiving 7, 6, and 4 operands of 32 bits, respectively. The following provides a step-by-step
description of Figure 4:

① Partial sums: QCSA reduces the number of operands by using Quantum Full Adder (QFA, the
black dashed rectangles for three operands, refer to Figure 4) and Quantum Half Adder (QHA,
the blue dashed rectangles for two operands) to compute the partial sums of the operands until
only two operands remain (the yellow dashed rectangles). In our implementation, four operations
of partial sum are performed sequentially from ①-1 to ①-4. The operations included in each step
are performed in parallel. The diagonally connected dots placed on the higher bits represent the
carry bits generated from the QFA/QHA additions.

①-1 : The addition operations for updating h in the round function are performed initially. In
this step, five operands (Σ1, Ch, h,Ki,Wi) overlap with those used for updating d (refer to
Expression (6)). In order to optimize the architecture for the additions, we adjust the positions
of the operands as follows.

Among the five overlapping operands, Wi and Ki are required for updating d in ①-2. Thus, the
result of Wi +Ki +Σ0 in ①-1 is stored in Σ0 (marked in red), since the operands of Wi and Ki

must retain their original value for the subsequent operation in ①-2. The result of h+Σ1+Ch in
①-1 is stored in Ch. The updated Ch will be efficiently employed for the subsequent operation
in ①-3.

①-2 : As illustrated in the green part of Figure 4, the updated Ch and Σ0 are used to calculate the
result of Ch+Σ0 +Maj. And the result of Wi +Ki + d is stored in d. These two operations in
①-2 are performed in parallel.

①-3 : The addition of d+ Ch is performed by using the updated Ch in ①-1. In this case, QHA (the
blue dashed rectangle) is applied for the least significant bit as only two operands remain. At
the same time, the addition of Wi + σ0 +Wi+9 and the remaining part of Ch+Σ0 +Maj are
performed in parallel.

①-4 : The partial sum operations are performed until only two operands remain.

② Total sum: Finally, the two operands, which contain the cumulative sum of multiple operands, are
added using Draper’s out-of-place adder.

③ Reverse: The operations performed in ① are reversed. This process restores the updated operands
for subsequent rounds and initializes ancilla qubits for future use.

Table 55 represents the quantum resources required for addition operations for the typical round.
In our implementation, the Toffoli-depth is determined by the first QCSA in Figure 4. As a result, we
achieve the lowest Toffoli-depth and Full-depth.

Table 5: Quantum resources required for the additions in SHA-2 (one round).

Source #CNOT #1qCliff #T Toffoli depth #Qubit (reuse) Full depth

Kim et al. [6] 18,367 3,362 19,124 224 501 (85) 1777

Lee et al. [5] - - - 66 546 (162) -

Ours 9,220 1,487 6,546 19 819 (371) 180

5 We could not extrapolate the result from [7,8, 9] since the implementation technique is not specific.



12

Optimizing for a fixed input length. In the SHA-2-256 quantum circuit, the length of the input is fixed
at 256 bits (W0 ∼W7). The words of W8 and W15 are padded with constant values, and the words of
W9 ∼ W14 are set to 0. We can initialize the words W8 and W15 after their use (using X gates) and
efficiently utilize them, in a total of 256 qubits (32× 8), instead of allocating new qubits (specifically,
it is used for the output of Wt). Also, we skip the addition operations involving W9 ∼W14 as they are
zero. This method is applied from the 10th to the 15th rounds, reducing the Toffoli depth by 2 for
each round, resulting in a total reduction of 12.

(Conditional) Borrowing technique. We search idle qubits from the round function (Expressions (6))
and then borrow it for the message scheduling (Expressions (7)). We provide Algorithm 2 to decide
the qubits to borrow from the round function. Even after generating all the Wi, the round function
continues to proceed. We conditionally borrow the idle output qubits from the last round (i.e., in
reverse order) and return them before the round function begins, resulting in a total reduction of 896
(= 32× 28) qubits.

Algorithm 2: Conditional borrowing in SHA-2-256

Input: Output qubit set outputround in round function
Output: The output qubit set outputround borrowed during message scheduling
1: Check for idle output qubits in outputround

2: for the round i from 0 to 39 do
3: if i < 28 then
4: if i < 19 then
5: Put output

(63−i)
round function into ancilla

[2i:2i+1]
borrow

6: end if
7: Use ancillai

borrow for the i-th message scheduling
8: else Allocate outputinew for the i-th message scheduling

9: end if
10: end for
11: for each i ∈ ancilla

[0:27]
borrow in reverse order do ▷ ancilla

[28:37]
borrow are employed in other operations

12: Reverse i-th message scheduling ▷ Intialize ancillai
borrow

13: end for
14: return ancillaborrow

Consideration of AND gate. The target qubit of the AND gate must be in a clean state due to the
nature of the AND gate. Thus, we modify the quantum circuit of Ch in Figure 3 as shown in Figure 5.
The same modification is applied to the circuit of Maj and similarly to the Draper adder. Additionally,
to construct quantum circuits for Ch, Maj, and partial sums (① in the QCSA) using AND gates,
additional ancilla qubits are required. However, we borrow idle qubits (in a clean state, |0⟩) from the
Draper adders in the QCSA (i.e., ③). Thus, additional ancilla qubits are allocated only for the AND
gates in the Draper adders. The borrowed qubits are initialized after the operation of AND gates.1

|e⟩ /
32

AND

|e⟩
|f ⊕ g⟩ /

32 |f ⊕ g⟩
|0⟩ /

32 • |Ch(e, f, g)⟩
|0⟩ /

32 |0⟩
|g⟩ /

32 |Ch(e, f, g)⟩

AND†
|e⟩
|f ⊕ g⟩

• |0⟩

|g⟩

Fig. 1: Method of applying the AND gate in the Ch and Maj functions.

1 Qcircuit

References

Figure 5: Quantum circuit for the AND-based Ch.



13

7 Results

Tables 6 and 7 present the required quantum resources for the quantum circuits and Grover’s oracle
of SHA-2 in comparison to previous works [5, 6, 7, 8, 9]6 Our quantum circuits for SHA-2 provide the
best results in terms of Toffoli and full depths. While the full depth was not reported in [5], the
T -depth optimization technique presented therein increases the full depth as a trade-off. Although the
trade-off performance of our TD-M is slightly lower than that reported in [5], our quantum circuit
achieves improvement in the key metrics for Grover’s algorithm (TD2-M and FD2-M) through depth
optimization. Furthermore, the previous work implemented only the quantum circuit for SHA-2-256 or
SHA-2-512, but we extended our quantum circuits to include SHA-2-384 and SHA-2-512.

Table 6: Quantum resources required for implementations of SHA-2.

Hash function Source #CNOT #1qCliff #T
Toffoli depth #Qubit Full depth

TD-M FD-M TD2-M FD2-M
(TD) (M) (FD)

SHA-2-256

Amy et al. [7] 534,272 515,952 401,584 57,184 2,402 528,768 1.02 · 227 1.18 · 230 1.79 · 242 1.19 · 249
Amy et al. [7] (Opt.) 4,209,072 173,264 228,992 57,184 2,402 830,720 1.02 · 227 1.86 · 230 1.79 · 242 1.47 · 250

Kim et al. [6] - - - 10,112 938 - 1.13 · 223 - 1.40 · 236 -

Lee et al. [5] - - - 4,418 962 - 1.01 · 222 - 1.09 · 234 -

Häner et al. [9] - - 90,292 1,607 23,684 - 1.13 · 225 - 1.78 · 235 -

Meuli et al. [8] - - 90,292 1,607 23,957 - 1.15 · 225 - 1.80 · 235 -

Ours 693,832 84,086 495,089 1,332 5,715 12,791 1.81 · 222 1.09 · 226 1.18 · 233 1.70 · 239

SHA-2-384 Ours 1,847,124 225,008 1,335,511 1,824 13,773 17,257 1.50 · 224 1.77 · 227 1.33 · 235 1.87 · 241

SHA-2-512

Häner et al. [9] - - 231,788 3,303 60,448 - 1.49 · 227 - 1.20 · 239 -

Meuli et al. [8] - - 231,788 3,304 59,995 - 1.48 · 227 - 1.19 · 239 -

Ours 1,864,872 226,533 1,346,011 1,828 13,901 17,303 1.51 · 224 1.79 · 227 1.35 · 235 1.89 · 241

Table 7: Required decomposed quantum resources for Grover’s oracle on SHA-2.

Hash function Source #CNOT #1qCliff #T #Measure
T -depth #Qubit Full depth

Td-M FD-M Td2-M FD2-M
(Td) (M) (FD)

SHA-2-256

Amy et al. [7] 1,068,544 1,031,904 803,168 0 343,104 2,403 1,057,536 1.54 · 229 1.18 · 231 1.00 · 248 1.19 · 251

Amy et al. [7] (Opt.) 8,418,144 346,528 457,984 0 140,800 2,403 1,661,440 1.26 · 228 1.86 · 231 1.35 · 245 1.47 · 252

Kim et al. [6] - - - 0 80,896✳ 939 - 1.13 · 226 - 1.40 · 242 -

Lee et al. [5] - - - 0 9,872 963 - 1.13 · 223 - 1.37 · 236

Häner et al. [9] - - 180,584 0 3,214 23,685 - 1.13 · 226 - 1.78 · 237 -

Meuli et al. [8] - - 180,584 0 3,214 23,958 - 1.15 · 226 - 1.80 · 237 -

Ours 1,387,664 168,172 990,178 0 10,656 5,716 25,582 1.82 · 225 1.09 · 227 1.18 · 239 1.70 · 241

Ours-AND 1,334,920 535,632 340,976 76,620 1,780 5,880 19,034 1.25 · 223 1.67 · 226 1.08 · 234 1.94 · 240

SHA-2-384
Ours 3,694,248 450,016 2,671,022 0 14,592 13,774 34,514 1.50 · 227 1.77 · 228 1.33 · 241 1.87 · 243

Ours-AND 3,566,072 1,449,800 926,208 208,808 2,544 14,127 26,338 1.07 · 225 1.39 · 228 1.33 · 236 1.11 · 243

SHA-2-512

Häner et al. [9] - - 463,576 0 6,606 60,449 - 1.49 · 228 - 1.20 · 241 -

Meuli et al. [8] - - 463,576 0 6,608 59,996 - 1.48 · 228 - 1.19 · 241 -

Ours 3,729,744 453,066 2,692,022 0 14,624 13,902 34,606 1.51 · 227 1.79 · 228 1.35 · 241 1.89 · 243

Ours-AND 3,597,016 1,460,202 932,192 210,304 2,548 14,255 26,394 1.08 · 225 1.40 · 228 1.35 · 236 1.13 · 243

8 Quantum Circuit Implementation of SHA-3

SHA-3 performs 24 round operations, and each round consists of θ, ρ, π, χ and ι. The input of the
SHA-3 quantum circuit consists of a 1,600-qubit state, denoted as state S[x][y][z]. The state S is the
three-dimensional array and the sizes of the x, y, and z are 5, 5, and 64, respectively. With a novel
architecture, our SHA-3 quantum circuit achieves the lowest Toffoli depth and requires fewer qubits,
specifically 24 and 22400, respectively. In comparison, the previous best results reported in [8] were 24
and 44,798, respectively.

6 [7] (Opt.) refers to the T -depth-optimized version presented by the author. In [5, 6], only the qubit count, Toffoli
depth, and T -depth were reported, and the T count was additionally reported in [8, 9].



14
1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

Figure 6: In-place round architecture in [7].

8.1 Improved out-of-place implementation

Amy et al. [7] proposed a round in-place architecture as depicted in Figure 6. In order to implement
this, reversed components of θ and χ (i.e., θ−1 and χ−1) were used. In contrast, Haner et al. [9] and
Meuli et al. [8] presented an out-of-place architecture to optimize Toffoli depth, specifically targeting
the operation of χ in SHA-3, which is the only Toffoli-demanding operation in SHA-3. Recently, Song
et al. [14] also employed an out-of-place architecture to reduce Toffoli depth and full depth. However,
the SHA-3 quantum circuits in [8, 33] still provide better performance (fewer qubits and lower Toffoli
depth) compared to [14].

We present an improved out-of-place implementation, as depicted in Figure 7, that optimizes Toffoli
and full depths, and further reduces qubit count. In the following, we offer an in-depth explanation of
our components.

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

L4
i=0 S[x][i][z]

References Figure 7: Out-of-place round implementation (Ours).

8.2 Implementation of θ

In the operation of θ, the XOR result of the S(x − 1, z) column and the S(x + 1, z − 1) column is
XORed with S(x, y, z). The linear operation on state S is given by:

S[x][y][z] = S[x][y][z])⊕

(
4⊕

i=0

S[x− 1][i][z]⊕ S[x+ 1][i][z − 1]

)
(8)

In [7], the authors implemented θ (Equation 8) using 17,600 CNOT gates, and this count is derived
as follows:

– S[x][y][z]) ⊕ → + 1 CNOT gate.

–
(⊕4

i=0 S[x− 1][i][z])⊕ S[x+ 1][i][z − 1]
)
→ + 10 CNOT gates.

– [x][y][z] range → × 5× 5× 64 = 1600.

The quantum circuit for θ, with a total of 17,600 CNOT gates (11 CNOT gates × 1,600), was
presented in [7]. In [7], the authors also implemented the reverse operation of θ (i.e., θ−1) to initialize
ancilla qubits to the zero state. This approach has a benefit as it can reduce the number of qubits
by continuously reusing the initialized ancilla qubits. However, the implementation of θ−1 requires
1,360,000 CNOT gates, which is significantly larger than what is required for θ (17,600 CNOT gates).



15

This is because assigning a formula for the reverse of θ is more challenging, as it depends on specific
pre-computed constants. In [7], a total of 1,377,600 CNOT gates are used, including both θ and θ−1,
with a depth of 300.

Our implementation does not involve the reverse operation (θ−1), reflecting our design philosophy.
We do not aim to keep the qubit count low. Instead, our goal is to minimize depth, even if it means
slightly increasing the number of qubits. We present an optimized quantum circuit for θ using only a total
of 4,800 CNOT gates, with a depth of 15. Algorithm 3 describes our quantum circuit implementation
of θ.

Algorithm 3: Quantum circuit implementation of θ.

Input: The state S[x][y][z]
Output: θ(S)
1: Prepare the XOR results of S[x][z] columns
2: Allocate 320 qubits → Sancilla[x][z]
3: for each column ∈ S[x][z] and each qubit ∈ Sancilla[x][z] do
4: for i = 0 to 4 do
5: Sancilla[x][z]← CNOT (S[x][i][z], Sancilla[x][z])

6: end for
7: end for
8: Update S[x][y][z] using Sancilla[x][z]
9: for each qubit ∈ S[x][y][z] do
10: S[x][y][z]← CNOT (Sancilla[x− 1][z], S[x][y][z])
11: S[x][y][z]← CNOT (Sancilla[x+ 1][z − 1], S[x][y][z])

12: end for
13: Discard Sancilla[x][z]
14: return S[x][y][z]

All-in-One. In our implementation for θ, 320 ancilla qubits are allocated in advance to prepare the
XOR result of the S[x − 1][z] column and the S[x + 1][z − 1] column (i.e.,

⊕4
i=0 S[x − 1][i][z] and⊕4

i=0 S[x + 1][i][z − 1]). It is the same as preparing the XOR results of all columns of S[x][z] (i.e.,⊕4
i=0 S[x][i][z]). For this, 5 CNOT gates are employed to store the XOR result for each ancilla qubit,

resulting in a total of 1,600 (= 5 × 320) CNOT gates and a circuit depth of 5. As a result, the XOR
results of all columns of S[x][z] are stored in the 320 ancilla qubits.

Then, we can efficiently update S[x][y][z] by repeatedly utilizing the pre-computed results stored
in the 320 ancilla qubits, thereby avoiding the need to compute the XOR result each time. In this
update, the XOR results of two columns (i.e., S[x− 1][z] and S[x+ 1][z − 1]), stored in ancilla qubits,
are XORed with each state of S[x][y][z]. Thus, 1, 600× 2 CNOT gates are used, resulting in a circuit
depth of 10. Thanks to this pre-computation method, our quantum implementation of θ requires only
4,800 (= 1, 600 + 3, 200) CNOT gates and has a depth of 15 (= 5 + 10).

In [8, 9], optimized quantum circuits for θ were not presented as the focus was on developing
algorithms for Toffoli metrics in quantum implementation, specifically targeting the χ operation, which
requires Toffoli gates in SHA-3. In [14], Song et al. implemented only the quantum circuit of θ. However,
they allocated 1,600 ancilla qubits for θ and did not reuse these ancilla qubits (i.e., no θ−1). Although
a similar approach is adopted, their implementation requires 24,000 CNOT gates, and the depth is 79,
both of which are higher than the costs of our implementation.

Table 8 shows the required quantum resources for the implementation of θ in comparison to previous
implementations of θ. The reported quantum resources for [7] include both θ and θ−1, and 1,600 out of
the 3,200 qubits are reused. Note that we also reuse 320 ancilla qubits, allocated to prepare the XOR
result, with our new architecture. This will be described in detail in Section 8.4.



16

Table 8: Quantum resources required for implementations of θ.

Source #CNOT #Qubit (reuse) Depth

Amy et al. [7]✲ 1,377,600 3,200 (1,600) 300

Song et al. [14] 24,000 3,200 79

Ours 4,800 1,920 (320)✳ 15

✲: Include both θ and θ−1.

✳: Partially reused.

8.3 Implementation of χ

The component of the SHA-3 quantum circuit implementation that requires the most quantum resources
is χ, as Toffoli gates are exclusively necessary here. The operation of χ is the sole non-linear operation
in SHA-3, and its operation on the state S is defined by:

S[x][y][z] = S[x][y][z]⊕ (∼ S[x+ 1][y][z] · S[x+ 2][y][z]). (9)

In other words, χ represents the following 3-bit S-box: 05234167.
We present a depth-optimized quantum circuit for χ by following our two principles (allocate ancilla

qubits and reverse them). Figure 8 shows our quantum circuit implementation of χ.

1

1 Qcircuit

Once in the beginning Reverse

|0⟩ • |1⟩
|0⟩ • |1⟩
|0⟩ • |1⟩
|0⟩ • |1⟩
|0⟩ • |1⟩

S[x][y][z] • S[x][y][z]
S[x+ 1][y][z] • S[x+ 1][y][z]
S[x+ 2][y][z] • S[x+ 2][y][z]
S[x+ 3][y][z] • S[x+ 3][y][z]
S[x+ 4][y][z] • S[x+ 4][y][z]

|0⟩ • • /
|0⟩ • • /
|0⟩ • • /
|0⟩ • • /
|0⟩ • • /

Fig. 1: Quantum circuit implementation of χ (Toffoli depth 1).

References

Figure 8: Quantum circuit of χ in SHA-3

Parallel design with copying. The operation of ∼ S[x+ 1][y][z] · S[x+ 2][y][z] is implemented using
Toffoli gates, and our quantum circuit for χ is designed with Toffoli depth one (i.e., all Toffoli gates are
operated in parallel). According to our first principle, we allocate 3,200 (= 1,600 × 2) ancilla qubits to
generate two copies of the state S. The state S is copied using 3,200 CNOT gates. One of the two
copies is inverted using 1,600 X gates (used as ∼ S[x+ 1][y][z]). In this way, we independently prepare
all operands of Equation 9, allowing us to implement χ with Toffoli depth one using 1,600 Toffoli gates.

We present a quantum circuit implementation of χ with minimal depth, achieved by allocating
additional ancilla qubits. However, as previously mentioned, our design philosophy prioritizes minimizing
depth while also aiming to reduce the overall number of qubits through the reuse of ancilla qubits (as
per our second design principle).



17

Reusing ancilla qubits. We allocated ancilla qubits for two copies of the state S. One copy serves as the
output, while the other serves as an operand for the χ operation. Notably, the copy designated for the
operand only plays a crucial role in enabling parallel execution during the χ operation. Consequently,
we can initialize these ancilla qubits after the operation by applying the reverse operation of the copy
process (i.e., utilizing 1,600 CNOT gates once again, see Figure 8). This initialization ensures that the
ancilla qubits are in a clean state, ready for use in the subsequent χ operation without the need for
reallocation. Note that the other ancilla qubits for the other copy (the bottom lines in Figure 8) will
be initialized/reused with our new architecture and will be further discussed in Section 9.

Trick of the X gate operation. We omit the X gate operation from the reverse operation. Instead
of initializing the ancilla qubits to |0⟩, we leave the ancilla qubits in the flipped state (i.e., |1⟩) by
skipping the X gate operation. This approach avoids the need for an X gate operation in the next
round, resulting in reduced depth and fewer gates. As illustrated in Figure 8, the X gate operation is
applied only once in the initial round, and subsequent rounds no longer require an X gate.

The quantum implementation of χ is a well-demonstrated case for reducing depth while considering
the number of qubits (our design philosophy). Table 9 shows the quantum resources required for
implementations of χ (including χ−1), in comparison to previous implementations [7, 14]. Although
specific implementation methods are not described in [8,9], we anticipate that parallel concepts similar
to our quantum circuit for χ may have been incorporated.

Table 9: Quantum resources required for implementations of χ.

Source #CNOT #1qCliff #T Toffoli depth #Qubit (reuse) Full depth

Amy et al. [7] 33,280 14,400 24,640 11 3,200 (1,600) 121

Song et al. [14] 10,240 6,400 11,200 5 2,240 47

Ours 14,400 6,400 11,200 1 4,800 (3,200)✲ 10

✲: Partially reused.

8.4 Interval Architecture

We introduce a novel interval architecture that can reuse many ancilla qubits used in the round process.
The interval architecture performs reverse operations with intervals while executing round operations.
Note that the developed method is generic, and in our case, the optimal interval is 4 rounds. Thanks
to the interval architecture, we reduce the number of qubits for the SHA-3 implementation by 26,800
without increasing the circuit depth.

Recall that the out-of-place round implementation in Figure 7. We allocated two copies for the
parallel operation of χ. Among them, only one copy could be initialized, and then the other copy was
discarded (i.e., garbage qubits). We denote this garbage qubits generated in the r-th round as Gbgr.

However, if we view the out-of-place implementation over two rounds (i.e., not in a single round),
we can initialize the Gbg1 used in the 1st round using the Gbg2 used in the 2nd round. Let us perform
the reverse operation of the operations π ◦ρ◦θ (the red rectangle in Figure 9(a)) from the 2nd round on
the state Gbg2. Keep in mind that Gbg2 is a copy of the input of χ, thus we can successfully initialize
ancilla qubits for θ used in the 2nd round. Also, since the state of Gbg2 changes to R1(S) after the
reverse operation, we can perform the reverse operation (the blue rectangle in Figure 9(a)) of the 1st
round using Gbg2.

From this 2-round interval process, we identify the following two aspects to determine the optimal
interval for the SHA-3 implementation:

– In the first reverse operation, we can initialize only 320 ancilla qubits used in θ.



18

– In the last reverse operation, we can initialize all 3520 (= 1600 + 1600 + 320) ancilla qubits.

Let the interval be 3 rounds, as depicted in Figure 9(b). The first and last reverse operations are
exactly the same as those in the 2-round interval process. The only difference is that we use Gbg3
instead of Gbg2. For the middle round (i.e., 2nd round, the yellow rectangle in Figure 9(b)), all ancilla
qubits are initialized. However, it should be noted that the initialized copy (on the top lane, not the
Gbg2 on the bottom lane) of the input of χ in the 2nd round is used for the last reverse operation.
Thus, strictly speaking, the Gbg2 and ancilla qubits for the operation of θ are initialized. In the SHA-3
implementation, the optimal interval for the reverse process is 4 rounds. Details regarding this decision
will be provided in the next section.

– In the middle reverse operation, we can initialize 1920 (= 1600 + 320) ancilla qubits.

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

L4
i=0 S[x][i][z]

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

L4
i=0 S[x][i][z]

References

tickz

starj1023

March 2024

1 Introduction

Reverse

1

tickz

starj1023

March 2024

1 Introduction

Gbg2

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg2

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Reverse

1

tickz

starj1023

March 2024

1 Introduction

Reverse

1

2

|0i⌦1600

�

|0i

|R1(S)i •
✓

⇡ � ⇢ • ◆ R2(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 4: The improved out-of-place architecture.

|0i⌦1600

�

|0i

|Si •
✓

⇡ � ⇢ • ◆ R1(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 5: The improved out-of-place architecture.

1

|0i⌦1600

�

|0i

|R2(S)i •
✓

⇡ � ⇢ • ◆ R3(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 1: The improved out-of-place architecture.

|0i⌦1600

�

|0i

|Si •
✓

⇡ � ⇢ • ◆ R1(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

References

(a) Reverse process with a 2-round interval (from right to left)

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

L4
i=0 S[x][i][z]

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

L4
i=0 S[x][i][z]

References

tickz

starj1023

March 2024

1 Introduction

Reverse

1

tickz

starj1023

March 2024

1 Introduction

Gbg2

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Reverse

1

tickz

starj1023

March 2024

1 Introduction

Reverse

1

2

|0i⌦1600

�

|0i

|R1(S)i •
✓

⇡ � ⇢ • ◆ R2(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 4: The improved out-of-place architecture.

|0i⌦1600

�

|0i

|Si •
✓

⇡ � ⇢ • ◆ R1(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 5: The improved out-of-place architecture.

1

|0i⌦1600

�

|0i

|R2(S)i •
✓

⇡ � ⇢ • ◆ R3(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 1: The improved out-of-place architecture.

|0i⌦1600

�

|0i

|Si •
✓

⇡ � ⇢ • ◆ R1(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

References

1

|0i⌦1600

�

|0i

|R2(S)i •
✓

⇡ � ⇢ • ◆ R3(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 1: The improved out-of-place architecture.

|0i⌦1600

�

|0i

|Si •
✓

⇡ � ⇢ • ◆ R1(S)

|0i⌦320 / |0i⌦1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si |✓(S)i |⇡ � ⇢ � ✓(S)i |� � ⇡ � ⇢ � ✓(S)i

|Si
✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i ⇡ � ⇢ |0i

Fig. 1: new.

1 Qcircuit

References

1

|Si /
1600

✓ ✓�1

|0i |0i
� ��1

◆ R(S)

|0i /
1600 ⇡ � ⇢ |0i

Fig. 1: new.

|0i /
1600

�

|0i

|Si /
1600 •

✓

⇡ � ⇢ • ◆ R(S)

|0i /
320

/ |0i /
1600 • /

Fig. 2: The improved out-of-place architecture.

1 Qcircuit

L4
i=0 S[x][i][z]

References

tickz

starj1023

March 2024

1 Introduction

Reverse

1

tickz

starj1023

March 2024

1 Introduction

Gbg2

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Reverse

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Gbg1

1

(b) Reverse process with a 3-round interval (from right to left)

Figure 9: Interval architecture in SHA-3 quantum circuit.

Shallow technique In [7,11,13,21], the presented quantum circuits wait for the reverse operation to
reuse the initialized qubits in the subsequent operations. This approach can reduce the number of qubits
but increases the circuit depth. In contrast, we burden the number of qubits only in the initial stage
and perform the subsequent rounds and reverse operations in parallel. In other words, the subsequent
rounds continue without waiting for the reverse operations. This concept was first proposed in [26]
for the quantum implementation of AES, referred to as the shallow architecture. We incorporate this
concept into our interval architecture.

Let the interval round be n. The reverse process is performed from the end of round-n, and at the
same time, round-(n+ 1) begins. Recall that for the out-of-place round implementation (Figure 7), 320
ancilla qubits are required for the operation of θ, and 3,200 qubits are required for the operation of χ.
We allocate 3, 520 (= 320 + 1, 600 + 1, 600) ancilla qubits for round-(n+ 1) (this is the initial burden
as mentioned before) because we do not have any ancilla qubits for round-(n+ 1) since the reverse
operation of round-n has just begun. From round-(n+ 2), we can reuse initialized ancilla qubits in the
reverse operations.

Figure 10(a) illustrates the interval architecture for n = 3 using the shallow technique. As we just
mentioned, round-4 requires 3, 520 (= 320+ 3200) ancilla qubits (denote this as A). On the other hand,
rounds 5 and 6 can reuse initialized ancilla qubits from the reverse operations of rounds 3 and 2 (i.e.,
Round 3† and Round 2†), respectively (See Figure 10(a)). Recall the following two points: Rounds 5
and 6 require only 1, 920 (= 320 + 1, 600) ancilla qubits each (denote this as B), since one copy of the
operation χ (1600 ancilla qubits) is initialized and reused (See Figure 8). The reverse operations of



19

rounds 3 and 2 (denote these as C and B for first and middle, respectively) initialize 320 and 1920
ancilla qubits, respectively (See Figure 9). Thus, round-5 requires only 1, 600 ancilla qubits (= B − C)
by reusing initialized ancilla qubits from the reverse operation of round-3 (Round 3†), and round-6 does
not require any ancilla qubits (B −B) by reusing initialized ancilla qubits from the reverse operation
of round-2 (Round 2†).

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

(a) Process with a 3-round interval

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1
Round 2
Round 3
Round 4
Round 5
Round 6
Round 7
Round 8
Round 9
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Round 10
Round 11
Round 12
A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Round 10
Round 11
Round 12
A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Round 10
Round 11
Round 12
A
B
C
Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

tickz

starj1023

March 2024

1 Introduction

Gbg3

Round 1†

Round 2†

Round 3†

Round 4†

Round 5†

Round 6†

Round 7†

Round 8†

Round 9†

Gbg1

1

(b) Process with a 4-round interval

Figure 10: Shallow technique.

Like this, we iterate the reverse process and reuse technique with the interval. Note that except for
the initial state (i.e., Round 4 in Figure 10(a)), the rounds which require A ancilla qubits (e.g., Round
7 in Figure 10(a)) fully reuse A ancilla qubits from the last reverse operation, without additional ancilla
qubits. Depending on the interval n for 24 rounds, we can determine the required ancilla qubits as
follows (n ̸= 1).

– Ancilla qubits: A = 3, 520, B = 1, 920 and C = 320.

– Total ancilla qubits: 2A+B · (n− 1) + (B − C) · ⌈24/(n− 1)⌉.

The optimal interval bound is n = 4, depicted in Figure 10(b), with the number of required ancilla
qubits being 20,800.

Consideration of AND gate. For an AND gate, an additional ancilla qubit is required. Therefore, we
allocate 1,600 ancilla qubits to perform 1,600 AND gates in the operation of χ. It is important to note
that these ancilla qubits are initialized after the AND gates, and we reuse them subsequently.

The target qubit of the AND gate must be in a clean state (i.e., |0⟩) due to the nature of the AND
gate. However, as shown in Figure 8, the target qubits of the AND operations are not in a clean state.
To address this, we slightly modify the circuits (with no degradation in performance) presented in
Figure 8 as follows (the circuit is represented in three parts: top, middle, and bottom).

– The copying of the bottom lines is postponed.

– The target qubits of AND operations are changed from the middle to the bottom lines.

– The copying of the bottom lines (which is postponed) is performed.

– The bottom lines represent the result, and the middle lines are discarded.



20

8.5 Implementation of ρ, π and ι

In SHA-3, the operations of ρ and π correspond to rotation and rearrangement operations. Thus,
similar to SHA-2, we implement ρ and π using the logical swap method without requiring quantum
resources.

The operation of ι, which involves XORing the round constant with the state S, is categorized in
classical-quantum implementation. As the round constants are predefined, X gates are applied based on
the bits of the constant, where the value is 1. The implementation of ι is simplified using only X gates,
and this is a conventional and generally adopted approach in quantum implementations [7,14,26,34,35].

8.6 Results

Tables 10 and 11 present the required quantum resources for the quantum circuits and Grover’s Oracle
of SHA-3 in comparison to previous work [7, 8, 9, 14]7. Our quantum circuits for SHA-3 provide the
best results in terms of depths and trade-off performance compared to the previous work [7, 8, 9, 14].

Table 10: Quantum resources required for implementations of SHA-3.

Source #CNOT #1qCliff #T
Toffoli depth #Qubit Full depth

TD-M FD-M TD2-M FD2-M
(TD) (M) (FD)

Amy et al. [7] 33,269,760 169,045 591,360 264 3,200 10,128 1.61 · 219 1.93 · 224 1.66 · 227 1.19 · 238

Amy et al. (Opt) [7] 34,260,480 215,125 499,200 264 3,200 11,040 1.61 · 219 1.05 · 225 1.66 · 227 1.42 · 238

Häner et al. [9] · · 153,600 24 46,400 · 1.06 · 220 · 1.59 · 224 ·
Meuli et al. [8] · · 153,600 24 44,798 · 1.03 · 220 · 1.54 · 224 ·
Song et al. [14] 821,760 153,688 268,800 120 55,360 2,860 1.58 · 222 1.18 · 227 1.48 · 229 1.65 · 238

Ours 752,000 124,937 425,600 24 22,400 578 1.03 · 219 1.54 · 223 1.54 · 223 1.74 · 232

Table 11: Required decomposed quantum resources for Grover’s oracle on SHA-3.

Source #CNOT #1qCliff #T #Measure
T -depth #Qubit Full depth

Td-M FD-M Td2-M FD2-M
(Td) (M) (FD)

Amy et al. [7] 66,539,520 338,090 1,182,720 0 1,584 3,201 20,256 1.21 · 222 1.93 · 225 1.87 · 232 1.19 · 240

Amy et al. (Opt) [7] 68,520,960 430,250 998,400 0 864 3,201 22,080 1.32 · 221 1.05 · 226 1.11 · 231 1.42 · 240

Häner et al. [9] · · 307,200 0 48 46,411 · 1.06 · 221 · 1.59 · 226 ·
Meuli et al. [8] · · 307,200 0 48 44,799 · 1.03 · 221 · 1.54 · 226 ·
Song et al. [14] 1,643,520 307,376 537,600 0 960 55,361 5,720 1.58 · 225 1.18 · 228 1.48 · 235 1.65 · 240

Ours 1,504,000 249,874 851,200 0 192 22,401 1,156 1.03 · 222 1.54 · 224 1.54 · 229 1.74 · 234

Ours-AND 1,321,600 387,474 243,200 60,800 43 24,001 1,049 1.97 · 219 1.5 · 224 1.32 · 225 1.54 · 234

9 Quantum Collision Search on Hash Functions

Based on the quantum circuits for SHA-2 and SHA-3 presented in this work, we estimate the required
quantum resources for quantum collision search using the CNS algorithm (refer to Section 3). To
find a collision for the n-bit output of SHA-2 or SHA-3, n-bit input within the search space 2n is
explored. According to the CNS algorithm [24], Grover’s circuit finds a collision with the search
complexity (iteration) of 22n/5− 3s/5 using a parallelization method with s = n/6 (as we determined

7 The SHA-3 quantum circuit requires the same quantum resources for input lengths of 256, 384 and 512; due to the
equal number of permutation.



21

in Section 3). As described in Section 3, the cost of the diffusion operator is ignored in resource
estimations [11,12,21,26,34], and we also exclude this cost from our estimation. Finally, the complexity
of quantum collision search for cryptographic hash functions SHA-2 and SHA-3 is approximately
the cost of the Oracle × 22n/5− 3s/5 (where n is the output size and s = n/6). We use Toffoli and
AND-based decompositions to estimate the quantum resources for quantum collision search.

In Table 12, the results use the Toffoli-based decomposition:

– 8 Clifford + 7 T gates, T -depth 4, and full depth 8.

Table 12: Toffoli-based quantum resources for quantum collision search on SHA-2 and SHA-3.

Hash
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M FD2-M Td2-M
(G) (FD) (Td) (M)

SHA-2-256 1.49 · 297 1.06 · 291 1.77 · 289 1.1 · 255 1.77 · 2188 1.18 · 2146 1.97 · 2144 1.26 · 2237 1.75 · 2234

SHA-2-384 1.47 · 2137 1.9 · 2129 1.6 · 2128 1.68 · 277 1.39 · 2267 1.59 · 2207 1.35 · 2206 1.51 · 2337 1.08 · 2335

SHA-2-512 1.95 · 2175 1.25 · 2168 1.06 · 2167 1.06 · 299 1.22 · 2344 1.34 · 2267 1.13 · 2266 1.68 · 2435 1.20 · 2433

SHA-3-256 1.70 · 297 1.54 · 286 1.02 · 284 1.08 · 257 1.30 · 2184 1.67 · 2143 1.1 · 2141 1.29 · 2230 1.12 · 2225

SHA-3-384 1.12 · 2136 1.01 · 2125 1.34 · 2122 1.36 · 278 1.14 · 2261 1.39 · 2203 1.84 · 2200 1.41 · 2328 1.23 · 2323

SHA-3-512 1.48 · 2174 1.34 · 2163 1.77 · 2160 1.72 · 299 1.98 · 2337 1.15 · 2263 1.52 · 2260 1.55 · 2426 1.35 · 2421

The quantum circuits, constructed using AND-based decomposition, have the lowest gate count
and circuit depth. In Table 13, the results use the AND-based decomposition:

– AND gate: 11 Clifford + 4 T gates, T -depth 1, and full depth 8.

– AND† gate: 5 Clifford + 1 Measurement gates, T -depth 0, and full depth 4.

Table 13: AND-based quantum resources for quantum collision search on SHA-2 and SHA-3.

Hash
#Gate Full depth T -depth #Qubit

G-FD FD-M Td-M Fd2-M Td2-M
(G) (FD) (Td) (M)

SHA-2-256 1.49 · 297 1.58 · 290 1.18 · 287 1.13 · 255 1.18 · 2188 1.81 · 2145 1.35 · 2142 1.43 · 2236 1.60 · 2229

SHA-2-384 1.32 · 2137 1.45 · 2129 1.12 · 2126 1.72 · 277 1.91 · 2266 1.25 · 2207 1.93 · 2203 1.81 · 2336 1.08 · 2330

SHA-2-512 1.76 · 2175 1.91 · 2167 1.48 · 2164 1.09 · 299 1.68 · 2343 1.05 · 2267 1.62 · 2263 1.00 · 2435 1.20 · 2428

SHA-3-256 1.31 · 297 1.39 · 286 1.79 · 281 1.16 · 257 1.83 · 2183 1.62 · 2143 1.04 · 2139 1.13 · 2230 1.87 · 2220

SHA-3-384 1.73 · 2135 1.84 · 2124 1.18 · 2120 1.46 · 278 1.59 · 2260 1.35 · 2203 1.73 · 2198 1.24 · 2328 1.02 · 2319

SHA-3-512 1.14 · 2174 1.21 · 2163 1.56 · 2158 1.84 · 299 1.39 · 2337 1.12 · 2263 1.44 · 2258 1.36 · 2426 1.12 · 2417

9.1 Update on NIST Post-Quantum Security Strength

We present updated post-quantum security levels in Table 2 by selecting the lowest quantum attack
complexity for the cryptographic hash functions SHA-2 and SHA-3 and provide a brief discussion
on this matter. In the initial stages (in 2016) [4], NIST designated AES-128, 192, and 256 at levels
1, 3, and 5, respectively, based on the implementation by Grassl et al. [21], and its quantum attack
complexity was high. Recent research has significantly reduced the quantum attack complexity of
AES [11,12,26] and NIST updated the quantum attack complexities accordingly primarily based on
the results from Jaques et al’s work [11].



22

NIST designated SHA-2/3-256 at level 2 and SHA-2/3-384 at level 4 by judging that in real-world
cryptanalysis, success tends to be highest when attackers can exploit highly parallel implementations.
Consequently, they consider finding collisions in a hash function to be easier than searching for the key
of a block cipher (does not parallelize well).

Currently, the quantum attack complexity for levels 2 and 4, corresponding to collision search on
hash functions SHA-2 and SHA-3, has not been defined yet. In this work, in defining the quantum
attack complexity for levels 2 and 4, we fully incorporate NIST’s judgment and considerations [36, Page
7]. We assumed the highly parallelized quantum collision search for levels 2 and 4 to be positioned
between levels 1 and 3, and levels 3 and 5, respectively. Indeed, Tables 1 and 2 demonstrate that
appropriate quantum attack complexities for the post-quantum security levels are defined as follows:
level 1: 2157, level 2: 2188/183, level 3: 2221, level 4: 2266/260, and level 5: 2285. Along with this, we also
define the quantum complexity of collision search for SHA-2-512 and SHA-3-512 for the extended level
as 2343/337, which provides the highest post-quantum security strength.

10 Conclusion

In this work, we focused on optimizing the depth of quantum circuits for the cryptographic hash
functions SHA-2 and SHA-3. We detailed the implementation of target cryptographic hash algorithms
in terms of core components (e.g., linear layer and additions in the round function) and architectural
level. We integrated all the novel and best implementation techniques for optimizing the depth of
quantum circuit implementations for SHA-2 and SHA-3 across in categories and evaluated the necessary
quantum resources using architectures employing gate decomposition. After that, we obtained the
lowest quantum resources for quantum collision search on SHA-2 and SHA-3. Finally, we defined the
NIST quantum attack complexity for level 2 and level 4. Along with this, we suggested one more option
that provides the highest post-quantum security level, the extended level.

A Time-Space Complexity Trade-off under MAXDEPTH

The quantum gate count for levels in Table 1 is derived as the product of the gate count and the
full depth (e.g., level 1 for AES-128: 2157 = 287 × 275, [11, Table 11]). Additionally, NIST introduced
a parameter, MAXDEPTH, to account for the extreme depth of Grover’s algorithm when applied
to cryptographic algorithms. If the quantum attack circuit exceeds these specified boundaries for
the MAXDEPTH, it is recommended to consider parallelizing Grover’s algorithm. However, Grover’s
algorithm has poor performance for parallelization, as analyzed in [6,11]. Summarizing the analysis
from [6], reducing the circuit depth by S requires increasing the number of Grover instances by S2

(i.e., unbalanced).

If the total circuit depth D exceeds MAXDEPTH, a depth reduction using a parallel approach
must be applied to satisfy MAXDEPTH. The reduction factor, S, is calculated as D

MAXDEPTH (since
D/S = MAXDEPTH). For the gate count, G, the count for each instance is reduced by S, and
the number of instances increases by S2. Thus, the estimation formula for Table 1 is derived as
G · D

MAXDEPTH by G
S · S2. This formulation illustrates that NIST takes into account gate count, depth,

and MAXDEPTH when estimating the complexity of quantum attacks.

In terms of the trade-off metrics, TD-M and FD-M (where M is the qubit count, TD and FD

represent Toffoli and Full depths, respectively), the qubit countM is increased by S2 (i.e., FD2·M
MAXDEPTH2 ).

Thus, in parallelization, the FD-M cost changes to FD2·M
MAXDEPTH (with FD replaced by MAXDEPTH).

In other words, the metrics of FD-M and TD-M transform into minimizing the FD2-M and TD2-M
metrics under the constraint of MAXDEPTH.



23

References

1. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual
symposium on foundations of computer science, pp. 124–134, IEEE, 1994. 1

2. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pp. 212–219, 1996. 1

3. NIST., “Call for additional digital signature schemes for the post-quantum cryptography stan-
dardization process,” 2022. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

call-for-proposals-dig-sig-sept-2022.pdf. 1, 2, 3, 6
4. NIST., “Submission requirements and evaluation criteria for the post-quantum cryptography standardiza-

tion process,” 2016. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf. 2, 6, 21
5. J. Lee, S. Lee, Y.-S. Lee, and D. Choi, “T-depth reduction method for efficient SHA-256 quantum circuit construction,”

IET Information Security, vol. 17, no. 1, pp. 46–65, 2023. 2, 3, 7, 8, 9, 10, 11, 13
6. P. Kim, D. Han, and K. C. Jeong, “Time–space complexity of quantum search algorithms in symmetric cryptanalysis:

applying to AES and SHA-2,” Quantum Information Processing, vol. 17, pp. 1–39, 2018. 2, 3, 7, 9, 11, 13, 22
7. M. Amy, O. Di Matteo, V. Gheorghiu, M. Mosca, A. Parent, and J. Schanck, “Estimating the cost of generic quantum

pre-image attacks on SHA-2 and SHA-3,” in Selected Areas in Cryptography – SAC 2016 (R. Avanzi and H. Heys,
eds.), (Cham), pp. 317–337, Springer International Publishing, 2017. 2, 3, 7, 9, 11, 13, 14, 15, 16, 17, 18, 20

8. G. Meuli, M. Soeken, and G. De Micheli, “XOR-and-inverter graphs for quantum compilation,” npj Quantum
Information, vol. 8, no. 1, p. 7, 2022. 2, 3, 11, 13, 14, 15, 17, 20

9. T. Häner and M. Soeken, “Lowering the T-depth of quantum circuits by reducing the multiplicative depth of logic
networks,” arXiv preprint arXiv:2006.03845, 2020. 2, 3, 11, 13, 14, 15, 17, 20

10. P. Gossett, “Quantum carry-save arithmetic,” arXiv preprint quant-ph/9808061, 1998. 2, 10
11. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing Grover Oracles for quantum key search on AES

and LowMC,” in Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II (A. Canteaut
and Y. Ishai, eds.), vol. 12106 of Lecture Notes in Computer Science, pp. 280–310, Springer, 2020. 3, 4, 5, 6, 18, 21, 22

12. Q. Liu, B. Preneel, Z. Zhao, and M. Wang, “Improved quantum circuits for AES: Reducing the depth and the number
of qubits.” Cryptology ePrint Archive, Paper 2023/1417, 2023. https://eprint.iacr.org/2023/1417. 3, 4, 6, 21

13. J. Zou, Z. Wei, S. Sun, X. Liu, and W. Wu, “Quantum circuit implementations of AES with fewer qubits,” in Advances
in Cryptology – ASIACRYPT 2020 (S. Moriai and H. Wang, eds.), (Cham), pp. 697–726, Springer International
Publishing, 2020. 3, 18

14. G. Song, K. Jang, and H. Seo, “Improved low-depth SHA3 quantum circuit for fault-tolerant quantum computers,”
Applied Sciences, vol. 13, no. 6, p. 3558, 2023. 3, 14, 15, 16, 17, 20

15. I. Van Hoof, “Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli
gate count,” arXiv preprint arXiv:1910.02849, 2019. 4

16. K. Jang, W. Kim, S. Lim, Y. Kang, Y. Yang, and H. Seo, “Optimized implementation of quantum binary field
multiplication with Toffoli depth one,” in Information Security Applications: 23rd International Conference, WISA
2022, Jeju Island, South Korea, August 24–26, 2022, Revised Selected Papers, pp. 251–264, Springer, 2023. 4

17. M. Amy, D. Maslov, M. Mosca, M. Roetteler, and M. Roetteler, “A meet-in-the-middle algorithm for fast synthesis of
depth-optimal quantum circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 32, p. 818–830, Jun 2013. 4

18. Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang, “Decompositions of n-qubit Toffoli gates with linear
circuit complexity,” International Journal of Theoretical Physics, vol. 56, no. 7, pp. 2350–2361, 2017. 4

19. P. Selinger, “Quantum circuits of T-depth one,” Physical Review A, vol. 87, no. 4, p. 042302, 2013. 4
20. P. Niemann, A. Gupta, and R. Drechsler, “T-depth optimization for fault-tolerant quantum circuits,” in 2019 IEEE

49th International Symposium on Multiple-Valued Logic (ISMVL), pp. 108–113, IEEE, 2019. 4
21. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying Grover’s algorithm to AES: Quantum resource

estimates,” in Post-Quantum Cryptography (T. Takagi, ed.), (Cham), pp. 29–43, Springer International Publishing,
2016. 4, 5, 6, 18, 21

22. G. Brassard, P. Hoyer, and A. Tapp, “Quantum algorithm for the collision problem,” arXiv preprint quant-ph/9705002,
1997. 5

23. D. J. Bernstein, “Cost analysis of hash collisions: Will quantum computers make sharcs obsolete,” SHARCS, vol. 9,
p. 105, 2009. 5

24. A. Chailloux, M. Naya-Plasencia, and A. Schrottenloher, “An efficient quantum collision search algorithm and impli-
cations on symmetric cryptography,” in Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II 23, pp. 211–240, Springer, 2017. 6, 20

25. G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” Contemporary
Mathematics, vol. 305, pp. 53–74, 2002. 6

26. K. Jang, A. Baksi, H. Kim, G. Song, H. Seo, and A. Chattopadhyay, “Quantum analysis of AES.” Cryptology ePrint
Archive, Paper 2022/683, 2022. https://eprint.iacr.org/2022/683. 6, 18, 20, 21

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2023/1417
https://eprint.iacr.org/2022/683


24

27. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing Grover Oracles for quantum key search on AES
and LowMC.” Cryptology ePrint Archive, Report 2019/1146, 2019. https://eprint.iacr.org/2019/1146. 7

28. S. Roy, A. Baksi, and A. Chattopadhyay, “Quantum implementation of ascon linear layer.” Cryptology ePrint Archive,
Paper 2023/617, 2023. https://eprint.iacr.org/2023/617. 8

29. Y. Yang, K. Jang, A. Baksi, and H. Seo, “Optimized implementation and analysis of cham in quantum computing,”
Applied Sciences, vol. 13, no. 8, p. 5156, 2023. 8

30. S. Cuccaro, T. Draper, S. Kutin, and D. Moulton, “A new quantum ripple-carry addition circuit.” arXiv, 2008.
https://arxiv.org/pdf/quant-ph/0410184.pdf. 9

31. T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, “A logarithmic-depth quantum carry-lookahead adder,”
arXiv preprint quant-ph/0406142, 2004. 10

32. Y. Takahashi, S. Tani, and N. Kunihiro, “Quantum addition circuits and unbounded fan-out,” 2009. https:

//arxiv.org/abs/0910.2530. 10
33. T. Häner, S. Jaques, M. Naehrig, M. Roetteler, and M. Soeken, “Improved quantum circuits for elliptic curve discrete

logarithms,” in International Conference on Post-Quantum Cryptography, pp. 425–444, Springer, 2020. 14
34. A. Baksi, K. Jang, G. Song, H. Seo, and Z. Xiang, “Quantum implementation and resource estimates for rectangle

and knot,” Quantum Information Processing, vol. 20, dec 2021. 20, 21
35. J. Feng, H. Chen, S. Gao, L. Fan, and D. Feng, “Improved fault analysis on the block cipher speck by injecting faults

in the same round,” in Information Security and Cryptology – ICISC 2016: Seoul, South Korea, Revised Selected
Papers (S. Hong and J. H. Park, eds.), (Cham), pp. 317–332, Springer International Publishing, 2017. 20

36. NIST., “Post-quantum cryptography standardization historical faqs,” 2016. https://csrc.nist.gov/csrc/media/
projects/post-quantum-cryptography/documents/archive/faq-historical.pdf. 22

https://eprint.iacr.org/2019/1146
https://eprint.iacr.org/2023/617
https://arxiv.org/pdf/quant-ph/0410184.pdf
https://arxiv.org/abs/0910.2530
https://arxiv.org/abs/0910.2530
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/archive/faq-historical.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/archive/faq-historical.pdf

	Quantum Implementation and Analysis of SHA-2 and SHA-3

