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Zero-Knowledge Proof (ZKP) technology marks a revolutionary advancement in the field of
cryptography, enabling the verification of certain information ownership without revealing any
specific details. This technology, with its paradoxical yet powerful characteristics, provides a
solid foundation for a wide range of applications, especially in enhancing the privacy and
security of blockchain technology and other cryptographic systems. As ZKP technology
increasingly becomes a part of the blockchain infrastructure, its importance for security and
integrity becomes more pronounced. However, the complexity of ZKP implementation and
the rapid iteration of the technology introduce various vulnerabilities, challenging the privacy
and security it aims to offer.

This study bases on the integrity, soundness, and zero-knowledge properties of ZKP to
meticulously classify existing vulnerabilities and deeply explores multiple categories of
vulnerabilities, including integrity issues, soundness problems, information leakage, and
non-standardized cryptographic implementations. Furthermore, we propose a set of defense
strategies that include a rigorous security audit process and a robust distributed network
security ecosystem. This audit strategy employs a divide-and-conquer approach,
segmenting the project into different levels, from the application layer to the platform-nature
infrastructure layer, using threat modeling, linear code checking, and internal cross-review,
among other means, aimed at comprehensively identifying vulnerabilities in ZKP circuits,
revealing design flaws in ZKP applications, and accurately identifying inaccuracies in the
integration process of ZKP primitives.
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Introduce
ZKP is a cryptographic protocol that allows a prover to demonstrate the truth of a statement
to a verifier without revealing any additional information beyond the validity of the statement
itself. This unique attribute makes ZKP a powerful tool for enhancing privacy and security
across various applications[4][5][6][8][10][11][14][15][16].

The applications of ZKP are wide-ranging and influential[9]. In blockchain technology, ZKP is
used to protect the privacy of transactions while ensuring the integrity of the ledger.
Moreover, it finds application in identity verification processes[23], allowing for the
authentication of individual credentials without disclosing specific information[20]. Other use
cases for ZKP include privacy-preserving voting systems, verifying the validity of rollups on
the base Layer 1, and compressing blockchain states[24].

By exploring the background and key concepts of ZKP, we can appreciate its significance
and the diversity of its applications. Nevertheless, the complexity of ZKP implementations
introduces a variety of vulnerabilities[1][2][3]. The following sections of this paper will delve
into these vulnerabilities and explore the ongoing necessity for their analysis and audit. This
is crucial for maximizing the potential of ZKP and ensuring the privacy[19] and security[25] it
aims to provide.

Vulnerabilities in ZKP
The unique properties of ZKP have become the cornerstone for maintaining privacy in
various cryptographic applications, fundamentally relying on its three main attributes:
completeness, soundness, and the zero-knowledge aspect. Completeness ensures that true
statements can be reliably proven; soundness guarantees that false statements are not
mistakenly recognized as true[17][18][21][22]; and the most crucial, the zero-knowledge
property, ensures that no additional information beyond the truthfulness of the statement is
revealed during the proof process. These attributes together make ZKP a key tool for
facilitating secure and confidential digital interactions, especially in blockchain technology,
where they achieve a balance between transparency and confidentiality.

However, the characteristics of ZKP also mean it often plays a critical role in key aspects of
applications, such as protecting user privacy or verifying crucial proofs of financial assets. If
any vulnerabilities exist and are maliciously exploited, this could severely threaten the
privacy and security protections ZKP aims to provide. In the context of blockchain, these
vulnerabilities not only threaten the network's integrity and security but can also lead to direct
financial losses and undermine trust in decentralized systems. Addressing these
vulnerabilities requires a deep understanding of ZKP's theoretical framework and practical
applications, a task made particularly complex by the sophisticated mathematical structures
underlying ZKP. This complexity highlights the necessity for ongoing and careful scrutiny and
effective mitigation strategies to prevent potential security vulnerabilities[40]. Therefore, to
facilitate a more systematic analysis, this study classifies the vulnerabilities in ZKP based on
the three core attributes of zero-knowledge proof.



Completeness Issues

Over-constrained Circuits
Over-constrained circuits refer to the addition of extra constraints on a circuit that is already
normally constrained, leading to the circuit's inability to successfully prove or verify. This
issue may stem from the mechanisms of the compilers themselves. Taking circom and halo2
as examples, they establish constraints through assertions while compiling circuits.
However, during the optimization process of compiling circuits, the compiler might introduce
additional assertions, causing the inputs and outputs not to satisfy the constraints at the time
of proving, thereby leading to errors. Additionally, developers adding too many or redundant
constraints when designing circuits could also trigger such issues.

In the early versions of the Poseidon hash circuit within Scroll's zkEVM, there is a section of
code that uses the variable “mpt_only” to control the hash processing mode. In this circuit,
specific lines start in a custom way and are subject to zero-padding restrictions. When
“mpt_only = true,” it means there is one custom line and two field elements need to be
hashed; conversely, it implies there are two custom lines. This represents the variability in
the length of variable inputs.

config.s_custom.enable(region, 1)?;
if self.mpt_only {

return Ok(1);
}

Based on the return value in the code, when self.mpt_only is set to true, the circuit
erroneously marks the second line as custom. This means that the line, which should have
been used for hash input, is now overly constrained to zero.

Therefore, any attempt to hash with non-zero input will fail because the excessive constraint
on the second line contradicts its original design purpose, conflicting with its intended
function to accommodate hash inputs.

Soundness Issues

Under-constrained Circuits
The vulnerabilities associated with under-constrained circuits refer to instances during the
design or programming implementation of circuits where certain constraints are either not set
or incompletely set. This can result in the circuit exhibiting uncertain behavior or producing
unintended results. In specific cases, such under-constrained circuits can lead to serious
consequences. For instance, in the incremental merkle tree implemented by the Zk-Kit smart
contracts, there's a lack of range constraints on the values of leaf nodes, which allows
malicious attackers to exploit this vulnerability to generate illegitimate zero-knowledge
proofs, thereby facilitating the repeated extraction of funds.

A typical example can be found in "Missing Bit Length Check" in Dark Forest v0.3:



template RangeProof(bits, max_abs_value) {
signal input in;
component lowerBound = LessThan(bits);
component upperBound = LessThan(bits);
…

}

In this version, the RangeProof template implemented by Dark Forest directly invokes the
LessThan template from the circomlib library to compare the size of input data. However,
LessThan does not set actual constraints on the bit length of the input data, resulting in the
inability to limit the bit length of inputs via the max_abs_value parameter when calling
RangeProof. Consequently, attackers can input a max_abs_value and an in value that
exceed the expected maximum number of bits, thus constructing a legitimate proof that can
pass the RangeProof verification.

1. Nondeterministic Circuits

Nondeterministic circuits vulnerabilities are a type of under-constrained circuits vulnerability,
specifically referring to those situations where the lack of explicit constraints allows the
circuit to produce multiple valid proofs for the same output. For example, in the Tornado
Cash system, to prevent the double-spending of the same Note, users need to generate and
reveal a nullifier when spending a Note commitment. If a user attempts to use the same Note
commitment a second time, they must reveal the same nullifier, an action that would be
revoked by the smart contract. However, if the zero-knowledge proof circuit has
nondeterministic vulnerabilities, malicious attackers could exploit this for double-spending
attacks.

In the vulnerability "Circom-Pairing, Missing Output Check Constraint," the Circom-Pairing
circuit, when dealing with integers that require the use of more than 254-bit prime fields, calls
the circom big-int library. To ensure the accuracy of the computations, the Circom-Pairing
circuit would typically use the BigLessThan circuit to ensure all numbers are less than a
certain upper limit.

template CoreVerifyPubkeyG1(n, k){
...
var q[50] = get_BLS12_381_prime(n, k);
component lt[10];
// check all len k input arrays are correctly formatted bigints < q (BigLessThan calls

Num2Bits)
for(var i=0; i<10; i++){

lt[i] = BigLessThan(n, k);
for(var idx=0; idx<k; idx++)

lt[i].b[idx] <== q[idx];
}
for(var idx=0; idx<k; idx++){

lt[0].a[idx] <== pubkey[0][idx];
lt[1].a[idx] <== pubkey[1][idx];

}



In the CoreVerifyPubkeyG1 circuit, although BigLessThan was called multiple times to
ensure pubkey < q, there were no constraints on the output of BigLessThan. This resulted in
proofs where pubkey >= q and BigLessThan correctly outputted a result still being
successfully verified and accepted.

2. Mismatching Bit Lengths

The mismatching bit lengths vulnerability refers to the failure to properly constrain the bit
length of signals within a circuit, leading to circuit outputs that are inconsistent with
expectations. This type of vulnerability is a common form of under-constrained circuits
vulnerability, particularly noticeable when building circuits with circom.

Attackers can deliberately provide input parameters with mismatching bit lengths to bypass
preset verification restrictions or compromise system security, thereby causing information
leakage, verification errors, or other forms of security issues. Specifically, when the bit length
of input parameters does not match what the circuit expects, the verification process may
fail. In such cases, zero-knowledge proofs may become ineffective, preventing the system
from accurately verifying the required evidence and posing a serious threat to the security
and reliability of the entire protocol.

Take, for example, the LessThan circuit in circomlib. It accepts two input parameters, in[0]
and in[1], and uses the parameter n to limit the maximum bit length of the inputs. If in[0] <
in[1], LessThan outputs 1; otherwise, it outputs 0.

template LessThan(n) {
assert(n <= 252);
signal input in[2];
signal output out;
component n2b = Num2Bits(n+1);
n2b.in <== in[0]+ (1<<n) - in[1];
out <== 1-n2b.out[n];

}

LessThan calls the Num2Bits circuit to convert the inputs to bit form but does not set specific
constraints on the bit length of the input to Num2Bits. As a result, the circuit effectively
compares the lower n bits of in[0] to in[1]. Therefore, even if the length of in[0] exceeds n
and is greater than in[1], LessThan might still output 1.

3. Unused Public Inputs Optimized Out

In circom1.0, there was a scenario where many circuits introduced a variable as a public
input without imposing any constraints on it. These unconstrained public inputs could serve
as critical information during the proof verification. However, in the compiler for Circom 2.0, if
these public inputs are found to be irrelevant to any constraints, the optimizer will remove
them from the circuit.



When public inputs of a circuit are used for data storage or transmission and are removed
due to the intervention of the optimizer, it may lead to data loss, causing errors in program
logic or issues with data integrity. More seriously, if the public inputs in a circuit are not
properly constrained, malicious attackers could exploit this vulnerability to forge proofs,
threatening the security of zero-knowledge proof applications.

Take the zero-knowledge proof application Semaphore as an example, which allows users to
send messages while remaining anonymous. Specifically, Semaphore hashes the messages
sent by users and then uses the resulting hash value as one of the public inputs for the
proof.

template Message(){
signal input message_plaintext;
signal input message_hash; // public
...

}

According to the example code, if Semaphore's developers do not set any constraints on
these variables, malicious attackers could tamper with the user information hash value in the
public inputs to obtain a valid proof. Proofs modified in this way could be used for replay
attacks, allowing attackers to forge any message.

4. Assigned but not Constrained

In circom and halo2, the assignment and constraint of signals within a circuit are designed to
be conducted separately, aiming to provide developers with a convenient means of signal
assignment. However, in practice, many circuits neglect to apply the necessary constraints
after completing signal assignment, leading to the emergence of the "Assigned but not
Constrained" vulnerability.

When this type of vulnerability exists in the source code of circom and halo2, malicious
attackers could fork the source code and then modify the values of related assignment
expressions. This alteration could change the values of other signals to bypass the circuit's
constraints, forging a legitimate proof.

Take the IsZero circuit in circomlib as an example. This circuit determines if input in is equal
to 0 by checking if the inverse inv of in exists.

template IsZero() {
signal input in;
signal output out;
signal inv;
inv <-- in!=0 ? 1/in : 0;
out <== -in*inv +1;
in*out === 0;

}



Due to circom's syntax limitations, it's not possible to directly use constraints to determine
whether the inverse (“inv”) of “in” exists. Therefore, it is necessary first to calculate the “inv”
of “in” through an assignment, then use it to construct constraints on “in” and “out” to
determine if “in” is 0.

Similarly, in the PSE zkEVM using halo2, for the handling of the SHL and SHR opcode
circuits, although the following code correctly assigns values to inputs “shf0” and “shift”, it
lacks the necessary constraint to force “shf0” to be set to the first byte of “shift”.

let shf0 = pop1.to_le_bytes()[0];
...
self.shift.assign(region, offset, Some(pop1.to_le_bytes()))?;
self.shf0.assign(region, offset, Value::known(u64::from(shf0).into()))?;

Information Leakage

Trusted Setup Leak
Trusted Setup Leak refers to the issue in cryptographic protocols based on zero-knowledge
proofs where the parameter generation process might expose sensitive information, thereby
compromising the security of the protocol. If any participant involved in generating the
parameters retains some secret values, they could potentially use this information to forge
valid proofs, deceiving other participants or stealing their assets.

Take Zcash as an example, a cryptocurrency that relies on zk-SNARKs technology to protect
user privacy. The implementation of zk-SNARKs requires a trusted setup process to
generate crucial parameters, and the confidentiality of these parameters is essential;
otherwise, attackers could exploit them to forge valid proofs. Although there are concerns
that parameters might be leaked during Zcash's trusted setup process, giving attackers an
opportunity, there have been no reports to date of this vulnerability being successfully
exploited for attacks.

Arithmetic Over/Under Flows
In the field of zero-knowledge cryptography, modular arithmetic operations are common,
typically performed over scalar fields. However, due to the limitations of finite field orders,
failing to properly handle arithmetic overflows and underflows can lead to issues. For
example, in circom, all integers are established on a scalar field with the following order:

p=21888242871839275222246405745257275088548364400416034343698204186575808
495617

In zero-knowledge proof applications built using circom, ignoring the order of the field or not
correctly handling overflows and underflows can result in certain constraint statements
producing incorrect results, such as:

(0-1)===218882428718392752222464057452572750885483644004160343436982041865
75808495616;



(2188824287183927522224640574525727508854836440041603434369820418657580849
5616+1)===0;

If arithmetic overflows and underflows are not properly handled, this may cause errors in the
verification process or be exploited by malicious attackers to bypass intended verification
restrictions.

A typical "Missing Smart Contract Range Check" vulnerability was discovered in the
Semaphore application. Semaphore is a decentralized application built on Ethereum that
allows users to prove they are members of a group using zero-knowledge proofs without
revealing their specific identity. Given that Solidity's uint256 type can contain values
exceeding the SNARK scalar field, Semaphore stipulates that if an input group ID exceeds
the order of the SNARK scalar field, the smart contract's verification will fail. The logic code
is as follows:

require(input[i] < snark_scalar_field, "verifier-gte-snark-scalar-field");

However, when a new group is created, any valid uint256 type number can be input as the
group ID, leading to a scenario where if the group ID exceeds the range of the SNARK
scalar field at creation, the group member's identity verification will never pass.

Therefore, to ensure the reliability and security of zero-knowledge proof applications, it is
crucial to thoroughly consider and address arithmetic overflows and underflows during
design and implementation, to prevent related vulnerabilities.

Unstandardized cryptographic implementation

1. Forging of Zero Knowledge Proofs
If a zero-knowledge proof protocol has security flaws, then a malicious prover could
construct forged proofs that pass verification. These forged proofs can be used to "prove"
any claim the prover wishes to assert, a type of security vulnerability that the TrailOfBits
team has dubbed the “Frozen Heart” vulnerability.

The “Frozen Heart” vulnerability is a serious security flaw that can compromise the
correctness of various zero-knowledge proof systems, including PlonK and Bulletproofs.
Once a zero-knowledge proof system is affected by such a vulnerability, safeguards for user
privacy, data integrity, and transaction security, among others, can become ineffective.

Many zero-knowledge proof protocols adopt the Fiat-Shamir transformation for
non-interactive verification, which fundamentally relies on the so-called “random oracle
model.” However, as TrailOfBits points out, the implementation of the Fiat-Shamir
transformation generally faces execution issues, mainly due to a lack of specific guidance for
different protocol implementations. Typically, the design papers of protocols do not include all
the critical details needed in coding practices in detail, leading to flaws and vulnerabilities
during implementation. These vulnerabilities provide attackers with opportunities to
successfully forge proofs, thereby undermining the correctness and security of
zero-knowledge proof systems. To address this challenge, TrailOfBits recommends providing



more detailed implementation guidance to assist developers in accurately implementing the
Fiat-Shamir transformation, thereby avoiding potential security risks.

2. Bad Randomness
The essence of zero-knowledge proofs lies in the ability to verify a party's knowledge or
attributes without revealing any additional information, where randomness plays a crucial
role. Once a protocol employs an inappropriate source of randomness, it may allow
attackers to predict or infer the generated random numbers, rendering the interaction
between the prover and verifier meaningless. If the proof system used by the prover has
defects in randomness, then sensitive information may be leaked. Similarly, if the random
challenges issued by the verifier are singular or predictable, attackers could prepare false
proofs in advance to deceive the verifier.

Take the Schnorr signature scheme as an example, a signing mechanism based on the
Discrete Logarithm Problem, often used as an example of interactive and non-interactive
zero-knowledge proofs. In this scheme, the prover needs to choose random blinding factors
to generate a proof or signature.

fn schnorr_sign(message: &[u8], private_key: &[u8]) -> ([u8; 32], [u8; 32]) {
let k = generate_random(); // Secure random blinding factor or not secure
let r = calculate_r(&k); // Depends on k
let s = calculate_s(&r, message, private_key); // Signature calculation
(r, s)

}

According to the pseudocode above, if the blinding factors used by the prover in generating
a signature can be predicted by attackers, or if the same blinding factors are reused across
multiple signing operations, or if the blinding factors for one signature are arithmetically
operated on or transformed to obtain the blinding factors for the next signature, it could lead
to the leakage of secret information. Even if only a few bits of the blinding factors are leaked,
attackers might deduce the complete blinding factors through guessing and brute-force
methods, thereby revealing sensitive information.

3. Bad Polynomial Implementation
"Bad Polynomial Implementation" involves implementation flaws in the polynomial
computation process of zero-knowledge proof protocols, which might stem from
programming errors, poor algorithm choices, or a lack of understanding of mathematical
properties. These issues can occur in critical components of zero-knowledge proof protocols,
such as constructing polynomial commitments, performing polynomial evaluations, or
verifying polynomial equations. Improper handling of polynomials may lead to inaccurate
computational results or leak information that should remain confidential, thereby
compromising the security and effectiveness of zero-knowledge proofs.

Zendoo, a protocol that utilizes zero-knowledge proofs for cross-chain transfers, implements
methods for handling dense polynomials for Fast Fourier Transform (FFT) in its
fft/polynomial/dense.rs file. When using the add() function to perform addition on two



polynomials of the same degree, if the sum of the trailing coefficients is zero, these
coefficients are not trimmed. This results in the leading term of the generated polynomial
having a non-zero coefficient, contradicting the fundamental principles of polynomial
representation.

fn add(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
if self.is_zero() {

other.clone()
} else if other.is_zero() {

self.clone()
} else {

if self.degree() >= other.degree() {
let mut result = self.clone();
for (a, b) in result.coeffs.iter_mut().zip(&other.coeffs) {

*a += b
}
result

} else {
let mut result = other.clone();
for (a, b) in result.coeffs.iter_mut().zip(&self.coeffs) {

*a += b
}
// If the leading coefficient ends up being zero, pop it off.
while result.coeffs.last().unwrap().is_zero() {

result.coeffs.pop();
}
result

}
}

}

For example, performing addition on two polynomials with coefficients [3, 2, 1] and [1, 0, p-1]
through the above code would result in coefficients [4, 2, 0], where the trailing zero
coefficient is not trimmed. Although the else branch of the add() function performs a trimming
operation, failure to correctly handle this in all cases could cause panic when calling the
degree() function below, leading to erroneous calculations or denial-of-service attacks.

/// Returns the degree of the polynomial.
pub fn degree(&self) -> usize {

if self.is_zero() {
0

} else {
assert!(self.coeffs.last().map_or(false, |coeff| !coeff.is_zero()));
self.coeffs.len() - 1

}
}



4. Deprecated Hash Function
The security and effectiveness of ZKP depend on the correct implementation and security of
its cryptographic primitives, such as hash functions. With the increase in computing power,
some early hash functions, such as MD5, SHA-1, RIPEMD, RIPEMD-128, and Whirlpool,
are no longer considered secure.

Using these deprecated hash functions could make it easier for attackers to predict or reveal
confidential information through brute force attacks, thereby undermining the fundamental
properties of zero-knowledge proofs.

For example, in Tornado Cash, the following circuit shows how a user can generate a note
using a secure hash function to be able to withdraw stored ETH in the future..

// computes Pedersen(nullifier + secret)
template CommitmentHasher() {

signal input nullifier;
signal input secret;
signal output commitment;
signal output nullifierHash;
component commitmentHasher = Pedersen(496);
component nullifierHasher = Pedersen(248);
component nullifierBits = Num2Bits(248);
component secretBits = Num2Bits(248);
nullifierBits.in <== nullifier;
secretBits.in <== secret;
for (var i = 0; i < 248; i++) {

nullifierHasher.in[i] <== nullifierBits.out[i];
commitmentHasher.in[i] <== nullifierBits.out[i];
commitmentHasher.in[i + 248] <== secretBits.out[i];

}
commitment <== commitmentHasher.out[0];
nullifierHash <== nullifierHasher.out[0];

}

If this circuit used an insecure hash function, such as MD5 or SHA-1, to construct the user's
note, attackers might attempt to create hash collisions and generate new proofs to withdraw
the user's stored ETH, achieving theft.

Therefore, when constructing zero-knowledge proof circuits or proof systems, it is advisable
to prioritize secure hash functions. For example, the Pedersen hash function, widely used in
some ZK frameworks like halo2, or other zk-friendly hash functions such as Poseidon,
MiMC, etc.



Case Study

1.Soundness Vulnerability in zkSync Era Mainnet
zkSync Era is an innovative Layer 2 scaling solution designed to address the scalability
challenges of the Ethereum while maintaining its security and decentralization principles[38].
Within zkSync Era's virtual machine (EraVM), the execution of write instructions relies on two
special structs, MemoryWriteQuery and RawMemoryQuery.

The value to be written is initially stored in the MemoryWriteQuery struct as two registers,
then split into three values: (lowest_128, u64_word_2, u64_word_3). These values are
constrained through LinearCombination to ensure the correctness of the splitting process.
Ultimately, these values are packaged and stored in RawMemoryQuery. However, the
vulnerability exists within the code for applying linear constraints:

let mut lc = LinearCombination::zero();
 lc.add_assign_number_with_coeff(&u64_word_2.inner, shifts[0]);
lc.add_assign_number_with_coeff(&u64_word_3.inner, shifts[64]);
lc.add_assign_number_with_coeff(&highest_128.inner, minus_one);

This code snippet is intended to constrain the value of lc to 0, but it fails to call
lc.enforce_zero(cs) or lc.into_num(cs) to actually apply the constraint. This leads to the
highest 128 bits in MemoryWriteQuery being unconstrained, allowing malicious provers to
replace these 128 bits with any value, generating a fake proof that would be accepted.

Attack plans and strategies exploiting the vulnerability:

This vulnerability allows the prover to modify the highest 128 bits of the value stored in
memory and generate a valid proof. There are various ways to exploit this vulnerability,
where attacking the L2EthToken system contract is a relatively easy method.

According to the zkSync Era mechanism, transactions withdrawing ETH from zkSync Era to
the mainnet first send verification information to L1, followed by creating two
MemoryWriteQuery objects to record the withdrawal amount parameter “_amount”.
Therefore, malicious attackers can exploit this mechanism by modifying the code that
handles the write operation to perform the following actions:

● Check if the “_amount” value being written matches a specific value, such as
0x1371337137 or ~0.00002 ETH.

● If it matches, modify the high 128 bits of the written value, turning “_amount” into a
huge value, for example, 0x152d0000133713371337 or ~100K ETH.

Through the above operations, when a malicious attacker initiates a transaction withdrawing
ETH from zkSync Era to the mainnet, the value of “_amount” will be adjusted to a figure far
exceeding the actual withdrawal amount, allowing the attacker to successfully steal a large
amount of ETH.



2. Vulnerability in MACI
The Minimal Anti-Collusion Infrastructure (MACI) is an open-source public platform designed
to provide a confidential on-chain voting mechanism[39]. In the MACI protocol, two types of
messages are distinguished: vote/key change messages and top-up messages. The
message type is identified by its first index in an array (msgs[0]), where "1" represents a
vote/key change message, and "2" represents a top-up message. Users can publish their
messages through the publishMessage() function within poll.sol, using their own parameters.
If users intend to post a top-up message to increase their voting balance, they need to use
the topup() function, which first attempts to retrieve the user's new top-up amount. If retrieval
fails, the user cannot submit a top-up message.

However, in the MACI implementation, there is a lack of sufficient validation and constraint
on the message type within the publishMessage() function. This oversight allows malicious
attackers to arbitrarily modify the message type, thereby executing unauthorized operations.

function publishMessage(Message calldata _message, PubKey calldata _encPubKey) public
isWithinVotingDeadline {

// we check that we do not exceed the max number of messages
if (numMessages == maxValues.maxMessages) revert TooManyMessages();

// validate that the public key is valid
if (_encPubKey.x >= SNARK_SCALAR_FIELD || _encPubKey.y >=

SNARK_SCALAR_FIELD) {
revert MaciPubKeyLargerThanSnarkFieldSize();

}

// cannot realistically overflow
unchecked {

numMessages++;
}

// need to restrict the msgType to 1：message.msgType =1;

uint256 messageLeaf = hashMessageAndEncPubKey(_message, _encPubKey);
extContracts.messageAq.enqueue(messageLeaf);

emit PublishMessage(_message, _encPubKey);
}

Attack plans and strategies exploiting the vulnerability:

In the implementation of MACI, it was originally designed that users could only top up their
accounts if they had actual on-chain credit, to ensure the fairness of the voting system.
However, due to the lack of sufficient verification and constraints on message types in the
publishMessage() function, malicious users were able to modify the message type to "2",
erroneously triggering the system to recognize it as a top-up message. This oversight
allowed users without actual on-chain credit to falsely top up their accounts, thereby



illegitimately gaining increased voting balances. Such actions could ultimately enable
attackers to obtain voting rights far beyond reasonable limits, undermining the fairness and
effectiveness of the entire voting mechanism.

Vulnerability Defense Strategies
The root cause of these vulnerabilities lies in circuits not being fully constrained. Although
these vulnerabilities have not led to severe consequences in the current security
environment, the advancement of distributed network technology is gradually diminishing the
development teams' direct control over protocols. This trend significantly increases the
potential risk of malicious attackers submitting attack code, making it especially crucial to
formulate appropriate security strategies to counter such threats.

Firstly, during the circuit design phase, rigorous mathematical forms, such as R1CS or QAP,
should be used to precisely describe the circuits to be implemented. This practice helps
check for unconstrained conditions after the circuit's concrete implementation. Moreover,
after the circuit implementation, it is essential to carefully verify that each variable in the
circuit is constrained by its bit length and to test with inputs that exceed the prime field range
of the circuit, effectively eliminating potential vulnerabilities of arithmetic overflow. Ultimately,
it requires considering the overall project perspective to check if other modules may affect
the security of ZKP. For example, reviewing the uint256 data type variables used directly for
zero-knowledge circuit computations in smart contracts to ensure there are no mismatches
in bit length.

Regarding the issue of needing a trusted setup in zk-SNARKs[7][12][13], secure multiparty
computation techniques can be utilized, allowing multiple participants to jointly contribute
randomness to generate a Common Reference String (CRS). As long as at least one
participant destroys their private entropy part, the security of the CRS can be ensured.
Additionally, consider adopting zero-knowledge proof protocols that do not require a trusted
setup, such as zk-STARK and halo2, to fundamentally eliminate potential security risks
during the zk-SNARK initialization process.

Conducting Security Audits for ZKP
Zero-Knowledge Proof technology plays a crucial role in multiple domains such as
blockchain, authentication, voting systems, the Internet of Things, and more. Despite its
significance, it also faces challenges in complex computations and validations. To ensure the
correctness and security of ZKP applications, conducting security audits is an indispensable
step. Security auditing of ZKP applications is not only a key task but also a process that
helps developers and users identify potential vulnerabilities and errors, thereby enhancing
the application's trustworthiness and security level.

There are various security auditing methods, including static analysis, dynamic testing, and
manual verification, each with its advantages, disadvantages, and applicable scenarios.
During the security audit process, it is necessary to consider multiple factors such as the
program's scale, complexity, security requirements, performance demands, and
cost-effectiveness[33][34][36][37].



With the advancement of ZKP technology and the expansion of its application scope, the
importance of security audits is increasingly recognized, presenting greater challenges.
Therefore, continuously innovating and improving audit strategies and tools to ensure the
correct execution and security of applications is an inevitable trend for future development.

Audit Strategy

Methodology: Divide & Conquer

From a project point of view, we divide the entire project into several layers, with the top
layer being the architectural design layer, followed by the business logic layer, then various
dependency libraries and infrastructure, and at the bottom, there are various atomic
components (for example random number generators, language features).

Figure 1 illustrates a ZKP application from the perspective of security auditing.

Figure 1: Show the ZKP application from the perspective of security audit

● At the topmost layer is the Application Layer, which comprises two main components:
high-level architectural design and business logic, including contracts, circuits, and
front-end. This layer must deal with potential malicious user inputs, protocol inputs,
and configuration settings. Ensuring the security of key/nonce management and
interfaces, while guarding against side-channel attacks and replay attacks, is crucial.

● Secondly, the Prover/Verifier Layer aims to fulfill the roles of the two parties involved
in the zero-knowledge protocol. For this, it is necessary to implement and protect
various cryptographic primitives that support the circuit and proof system. These



include but are not limited to hash function, commitment, randomness, merkle trees,
fiat-shamir transformation, hash-to-curve, and linear algebra.

● The next layer down is designed to support the two roles above, requiring more
foundational operations, such as circuit arithmetization and constraint generation.
Typical arithmetization strategies include R1CS, AIR, CCS, and PLONKish, along
with their necessary polynomial implementations.

● The layer below involves field arithmetic and elliptic curves groups operations.
Acceleration algorithms for these operations, such as FFT and Multi-Scalar
Multiplication (MSM), can be considered.

● The foundational layer pertains to platform-specific elements: programming
language, runtime, OS, hardware, and dependencies. Consideration must be given
to the characteristics (and flaws) of the programming language itself, RNG, and other
factors.

This layered approach enables a comprehensive and secure implementation of ZKP
protocols, ensuring that each layer builds upon the secure foundation of the layer below it,
from managing application-specific logic and security issues to efficiently utilizing underlying
hardware and software platforms.

The audit team should conduct threat modeling before beginning the audit. Threat modeling
involves creating a list of potential vulnerabilities for each layer of the project, thereby
allowing them to address every possible error. Moreover, it is advisable for each member of
the audit team to perform a line-by-line code inspection, followed by an internal cross-review.
These measures ensure that the entire ZKP audit can not only identify vulnerabilities within
ZK circuits but also highlight design flaws in the ZKP application and pinpoint any
inaccuracies in the integration process of ZK primitives.

The Role of Audit Tools in Circuit Auditing
To facilitate the auditing of ZKP applications, the industry has developed a variety of audit
tools. These tools are primarily static analyzers[27], designed to identify common
vulnerabilities within ZKP circuits. Depending on the static analysis method adopted, these
tools can be classified into two main categories: abstract interpretation and formal
verification. Abstract interpretation methods use abstract domains to approximate the
representation of values in concrete domains and approximate concrete functions and
transformations, thus detecting vulnerabilities in zero-knowledge circuits. Formal verification
tools, on the other hand, use mathematical logic and methods to prove the correctness and
security of systems. This method provides rigorous and trustworthy proofs, effectively
avoiding human errors and vulnerabilities[29][30][31][32].

For example, audit tools such as Ecne and Circomspect[28] employ abstract interpretation
methods, while tools like Veridise's Coda[26] use formal verification methods. Others, like
korrekt and Picus, combine these two approaches. They first conduct a preliminary
vulnerability screening using abstract interpretation methods, followed by an in-depth
security inspection using formal verification methods to ensure the security of the ZKP
circuit. However, these tools can only provide limited assistance, auditors should not rely
solely on these tools to perform circuit audits[35].



Conclusion
This article has embarked on a comprehensive exploration of the vulnerabilities inherent in
Zero-Knowledge Proof (ZKP) technologies, underpinning the crucial balance between
maintaining stringent security protocols and fostering the revolutionary potential of ZKPs in
enhancing privacy and integrity within blockchain and other cryptographic systems. Through
meticulous classification and analysis of various vulnerabilities, ranging from completeness
and soundness issues to information leakage and non-standardized cryptographic
implementations, we have delineated the intricate challenges posed by the complex
implementation and rapid iteration inherent in ZKP technologies.

The vulnerabilities and defense mechanisms discussed herein underscore a broader
discourse on the necessity of continuous vigilance, innovation, and refinement in the security
auditing of cryptographic systems. As ZKP technologies evolve and their applications
become increasingly integral to the cryptographic infrastructure, the challenges of ensuring
their security and reliability become more complex and demanding.

Looking forward, the field of ZKP and its security auditing beckons for further research and
development. This entails not only the enhancement of existing audit tools and
methodologies but also a collaborative effort among researchers, developers, and
practitioners to forge novel solutions that address the ever-evolving landscape of
vulnerabilities. Such endeavors will be pivotal in harnessing the full potential of ZKP
technologies, paving the way for a more secure, private, and efficient cryptographic future.
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